Shared-Memory Computability

Universal
Object

Wait-free/Lock-free computable

Threads with methods that solve n-
CONSENSLISsor

Programming® Copyright Herlihy- 93
Shavit 2007



GetAndSet is not Universal

public class RMWRegister {
private int value;
public boolean getAndSet(int update)
{
int prior = this.value;
this.value = update;
return prior;

}
}

Art of Multiprocessor
1) Programming® Copyright Herlihy-
Shavit 2007



GetAndSet is not Universal

booleﬁ getAndSet(int update) j

Consensus number 2

Art of Multiprocessor
1) Programming® Copyright Herlihy-
Shavit 2007

95



GetAndSet is not Universal

booleﬁ getAndSet(int update) j

Not universal for > 3 threads

Art of Multiprocessor
1) Programming® Copyright Herlihy-
Shavit 2007

96



CompareAndSet is Universal

public class RMWRegister {
private int value;
public boolean
compareAndSet(int expected,
int update) {
int prior = this.value;
if (this.value == expected) {
this.value = update;
return true;

}

return false;

B

Art of Multiprocessor
1) Programming® Copyright Herlihy-
Shavit 2007



CompareAndSet is Universal

cqimpareAndSeT(inT expected,
int update) { :I

Consensus number oo

Art of Multiprocessor
1) Programming® Copyright Herlihy-
Shavit 2007

98



CompareAndSet is Universal

ef(int expected,
int update) { :l

Universal for any number of threads

Art of Multiprocessor
1) Programming® Copyright Herlihy-
Shavit 2007

99



On Older Architectures

- IBM 360
- testAndSet (getAndSet)

* NYU UltraComputer
- getAndAdd

* Neither universal
- Except for 2 threads

Art of Multiprocessor
Programming® Copyright Herlihy- 100
Shavit 2007



On Newer Architectures

» Intel x86, Itanium, SPARC
- compareAndSet

+ Alpha AXP, PowerPC
- Load-locked/store-conditional

» All universal
- For any number of threads

* Trend is clear ...

Art of Multiprocessor
Programming® Copyright Herlihy-
Shavit 2007

101



Practical Implications

» Any architecture that does not
provide a universal primitive has
inherent limitations

* You cannot avoid locking for
concurrent data structures ...

* But why do we care?

Art of Multiprocessor
Programming® Copyright Herlihy-
Shavit 2007

102



Locking and Schedeuling

 What are the practical implications of
locking?
* Locking affects the assumptions we

need to make on the operating system
in order to guarantee progress

+ Lets understand how...

Art of Multiprocessor
Programming® Copyright Herlihy- 103
Shavit 2007



Schedeuling

» The scheduler is a part of the OS that

determines

- Which thread gets to run on which
processor
- How long it runs for

» A given thread can thus be active, that
IS, executing instructions, or suspended

Art of Multiprocessor
Programming® Copyright Herlihy- 104
Shavit 2007



Review Progress Conditions

* Deadlock-free: some thread trying to acquire the locks
eventually succeeds.

- Starvation-free: every thread trying to acquire the locks
eventually succeeds.

* Lock-free: some thread calling the method eventually
returns.

* Wait-free: every thread calling the method eventually
returns.

 Obstruction-free: every thread calling the method
returns if it executes in isolation for long enough.

105



The Simple Snapshot is Obstruction-Free

* Put increasing labels on each entry
+ Collect twice

* If both agree, g > <>

- We're done N

- Otherwise, % %
. 7 — B

- Try again — —

18 18

T 10 | BV

© 2007 Herlihy & Shavi
106



Obstruction-freedom

* In the simple snapshot alg:
* The update method is wait-free

* But the scan is obstruction-free: will
complete only if it executes for long
enough without concurrent updates.

Art of Multiprocessor
Programming® Copyright Herlihy- 107
Shavit 2007



Progress of Methods

- Some of the above defs refer to locks
(part of implementation) or method calls

» And they ignore the scheduler

+ Lets refine our progress definitions so
that they apply to methods, and

» Take scheduling into account

Art of Multiprocessor
Programming® Copyright Herlihy- 108
Shavit 2007



A "Periodic Table" of Progress Conditions

Everyone
makes
progress

Someone
makes
progress

Non-Blocking Blocking
Wait- Obstruction- Starvation-
free free free
Lock- Deadlock-
free free

109



A bit more formally

Standard notion of abstract object

Progress conditions relate to method
calls of an object

Threads on a multiprocessor never fail:
- A thread is active if it takes an infinite
number of concrete (machine level) steps
- And is suspended if not.

110



Maximal vs. Minimal

* For a given history H:
» Minimal progress: in every suffix of H,
some method call eventually completes.

* Maximal progress: in every suffix of
H, every method call eventually
completes.

111



The "Periodic Table" of Progress Conditions

Maximal
progress

Minimal
progress

Non-Blocking Blocking
Wait- Obstruction- Starvation-
free free free
Lock- Deadlock-
free free

112



The Scheduler’s Role

On a multiprocessor progress properties:

* Are not about the guarantees a
method's implementation provides.

* They are about the scheduling
assumptions needed in order to provide
minimal or maximal progress.

113



Fair Scheduling

A history is fair if each thread takes
an infinite number of steps

A method implementation is deadlock-
free if it guarantees minimal progress
in every fair history, and maximal
progress in some fair history.

114



Starvation Freedom

A method implementation is
starvation-free if it guarantees
maximal progress in every fair
history.

115



Dependent Progress

- A progress condition is dependent if
it does not guarantee minimal progress
in every history, and is independent if
it does.

» The blocking progress conditions
(deadlock-freedom, Starvation-
freedom) are dependent

116



Non-blocking Independent Conditions

A method implementation is lock-free
if it guarantees minimal progress in
every history, and maximal progress
in some history.

A method implementation is wait-
free if it guarantees maximal
progress in every history.

117



The "Periodic Table" of Progress Conditions

Maximal
progress

Minimal
progress

Non-Blocking Blocking
Wait- Obstruction- Starvation-
free free free
Lock- Deadlock-
free free
Independent Dependent

118



Uniformly Isolating Schedules

* A history is uniformly isolating if, for
every k > O, any thread that takes an
infinite number of steps has an interval
where it takes at least k contiguous steps

» Modern systems provide ways of
providing isolation...later we will learn

about "backoff" and "yeild".

119



A Non-blocking Dependent Condition

* A method implementation is
obstruction-free if it guarantees
maximal progress in every uniformly
isolating history.

120



The "Periodic Table" of Progress Conditions

Maximal
progress

Minimal
progress

Non-Blocking Blocking
Wait- Obstruction- Starvation-
free free free
Lock- Deadlock-
free free
Independent Dependent

121



The "Periodic Table" of Progress Conditions

Maximal
progress

Minimal
progress

Non-Blocking Blocking
‘1._ AL | ~a . e _
Wai Fair scheduler -
free
Lock- Deadlock-
free free
Independent Dependent

121



The "Periodic Table" of Progress Conditions

Non-Blocking Blocking
MC(XimC(I WaiT_ . AL —alato | —~ ' ’on_
progress free Fair scheduler
Minimal g Fair scheduler i
progress free I I A
Independent Dependent

121



The "Periodic Table" of Progress Conditions

Maximal
progress

Minimal
progress

Non-Blocking Blocking
I
Wair Uniform iso Starvation-
free Scheduler free
Lock- Deadlock-
free free
Independent Dependent

121



The "Periodic Table" of Progress Conditions

Maximal
progress

Minimal
progress

Non-Blocking Blocking
Wait- Obstruction- Starvation-
free free free
Lock- Deadlock-
free ;> free
Independent Dependent

122



The "Periodic Table" of Progress Conditions

Maximal
progress

Minimal
progress

Non-Blocking Blocking
Wait- Obstruction- Starvation-
free free free
Lock- Clash- Deadlock-
free free free
Independent Dependent

122



Clash-Freedom: the "Einsteinium"” of
Progress

123



Clash-Freedom: the "Einsteinium"” of
Progress

* A method implementation is clash-free
if it guarantees minimal progress in
every uniformly isolating history.

* Thm: clash-freedom strictly weaker
than obstruction-freedom

123



Getting from Minimal to Maximal

Non-Blocking Blocking
Maximal Wait- Obstruction- Starvation-
progress free free free
_______________________ ?
Minimal Lock- Clash- Deadlock-
progress free free free
Independent Dependent

124



Getting from Minimal to Maximal

Non-Blocking Blocking
Maximal Wait- Obstruction- Starvation-
progress free free free
Minimal Lock- Clash- Deadlock- Helping
progress free free free
Independent Dependent

124



Getting from Minimal to Maximal

Maximal
progress

Minimal
progress

Non-Blocking Blocking
Wait- Obstruction- Starvation-
free free free
W@
_______________ Wel }
e)‘\)e’ :
Lock- ne \‘)\“g ,qulock— Helping
free YE\Y‘ free
Independent Dependent

124



Universal Constructions

* Our lock-free universal construction provides
minimal progress

+ A scheduler is benevolent for that algorithm if
iT guarantees maximal progress in every
allowable history.

* Many real-world operating system schedulers
are benevolent

* They do not single out any indiviudual thread

125



Getting from Minimal to Maximal

Non-Blocking Blocking
Maximal Wait- Obstruction- Starvation-
progress free free free
Minimal Lock- Clash- Deadlock- Helping
progress free free free
Independent Dependent

-
S

e
ool BROWN 126

A~ -4



Uni | Lock- :
niversa oc:. free :'} Maximal
Construction

Non-Blocking Blocking
Maximal ait- Obstruction- Starvation-
progress be free free
Minimal ck- Clash- Deadlock- Helping
progress free free free
Independent Dependent

H% BROWN 126
o &



Universal Locl.<-fr'ee \l) Maximal
Cons

Universal Wait-free
Construction
Maximal it Obstruction- Starvation-
progress be free free
Minimal ck- Clash- Deadlock- Helping
progress free free free
Independent Dependent

ool BROWN 126



Universal Lock-free
Cons

\I) Maximal

Universal Wait-free
Construction
Maximal F” Obstruction- Starvation-
progress be free free
Minimal cho— Al Beelled Halal
progress i Use Wait-free/Lock-free
— Consensus Objects
Independent Dependent

P

S

Hg BROWN 126
id &



Universal Wait-free Construction

Non-Blocking g9
SN
Universal Lock-free
o Starvati
Construction free
e
Minimal Lock- Clash- Deadldck-
progress free free free
Independent Dependent

R
ool BROWN
LHH,

127



|: Universal Wait-free Construction :l

Non-Blocking g9
~ N
Universal Lock-free
C . Starvati
— onstruction free
e

Minimal Lock-

— —~
If we use Starvation-free/Deadlock-free

Consensus Objects result is respectively

~— Starvation-free/Deadlock-free —




Benevolent Schedulers

» Consider an algorithm that guarantees minimal
progress.

+ A scheduler is benevolent for that algorithm if
iT guarantees maximal progress in every
allowable history.

* Many real-world operating system schedulers
are benevolent

* They do not single out any indiviudual thread

R
IUIw' BROWN 128
(W) @



In Practice

On a multiprocessor we will write code
expecting maximal progress.

Progress conditions will then define the
scheduling assumptions needed in order
to provide it.

129



This Means

We will mostly write lock-free and lock-
based deadlock-free algorithms...

and expect them to behave as if they
are wait-free...

because modern schedulers can be made
benevolent and fair.

130



Principles to Practice

* We learned how to define the safety
(correctness) and liveness (progress) of
concurrent programs and objects

+ We are ready to start the practice of
implementing them

* Next lecture: implementing spin locks
on multiprocesor machines...

Art of Multiprocessor
Programming® Copyright Herlihy- 131
Shavit 2007



e
SUME RIGHTS RESTRVED

This work is licensed under a

You are free:
- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:

- Attribution. You must attribute the work to “The Art of Multiprocessor
Programming” (but not in any way that suggests that the authors
endorse you or your use of the work).

- Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission from the
copyright holder.

Nothing in this license impairs or restricts the author's moral rights.

Art of Multiprocessor
Programming® Copyright Herlihy- 132
Shavit 2007



