
Art of Multiprocessor
Programming© Copyright Herlihy-

Shavit 2007
93

Shared-Memory Computability

Wait-free/Lock-free computable
=

Threads with methods that solve n-
consensus

10011Universal
 Object

Art of Multiprocessor
Programming© Copyright Herlihy-

Shavit 2007
94

public class RMWRegister {
 private int value;
 public boolean getAndSet(int update)
 {
 int prior = this.value;
 this.value = update;
 return prior;
 }
}

GetAndSet is not Universal

(1)

Art of Multiprocessor
Programming© Copyright Herlihy-

Shavit 2007
95

public class RMWRegister {
 private int value;
 public boolean getAndSet(int update)
 {
 int prior = this.value;
 this.value = update;
 return prior;
 }
}

GetAndSet is not Universal

(1)

Consensus number 2

Art of Multiprocessor
Programming© Copyright Herlihy-

Shavit 2007
96

public class RMWRegister {
 private int value;
 public boolean getAndSet(int update)
 {
 int prior = this.value;
 this.value = update;
 return prior;
 }
}

GetAndSet is not Universal

(1)

Not universal for ≥ 3 threads

Art of Multiprocessor
Programming© Copyright Herlihy-

Shavit 2007
97

public class RMWRegister {
 private int value;
 public boolean
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value == expected) {
 this.value = update;
 return true;
 }
 return false;
 }}

CompareAndSet is Universal

(1)

Art of Multiprocessor
Programming© Copyright Herlihy-

Shavit 2007
98

public class RMWRegister {
 private int value;
 public boolean
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value == expected) {
 this.value = update;
 return true;
 }
 return false;
 }}

CompareAndSet is Universal

(1)

Consensus number ∞

Art of Multiprocessor
Programming© Copyright Herlihy-

Shavit 2007
99

public class RMWRegister {
 private int value;
 public boolean
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value == expected) {
 this.value = update;
 return true;
 }
 return false;
 }}

CompareAndSet is Universal

(1)

Universal for any number of threads

Art of Multiprocessor
Programming© Copyright Herlihy-

Shavit 2007
100

On Older Architectures

• IBM 360
– testAndSet (getAndSet)

• NYU UltraComputer
– getAndAdd

• Neither universal
– Except for 2 threads

Art of Multiprocessor
Programming© Copyright Herlihy-

Shavit 2007
101

On Newer Architectures

• Intel x86, Itanium, SPARC
– compareAndSet

• Alpha AXP, PowerPC
– Load-locked/store-conditional

• All universal
– For any number of threads

• Trend is clear …

Art of Multiprocessor
Programming© Copyright Herlihy-

Shavit 2007
102

Practical Implications

• Any architecture that does not
provide a universal primitive has
inherent limitations

• You cannot avoid locking for
concurrent data structures …

• But why do we care?

Locking and Schedeuling

• What are the practical implications of
locking?

• Locking affects the assumptions we
need to make on the operating system
in order to guarantee progress

• Lets understand how…

Art of Multiprocessor
Programming© Copyright Herlihy-

Shavit 2007
103

Schedeuling

• The scheduler is a part of the OS that
determines
– Which thread gets to run on which

processor
– How long it runs for

• A given thread can thus be active, that
is, executing instructions, or suspended

Art of Multiprocessor
Programming© Copyright Herlihy-

Shavit 2007
104

Review Progress Conditions
• Deadlock-free: some thread trying to acquire the locks

eventually succeeds.
• Starvation-free: every thread trying to acquire the locks

eventually succeeds.
• Lock-free: some thread calling the method eventually

returns.
• Wait-free: every thread calling the method eventually

returns.
• Obstruction-free: every thread calling the method

returns if it executes in isolation for long enough.

105

© 2007 Herlihy & Shavit
106

The Simple Snapshot is Obstruction-Free

• Put increasing labels on each entry
• Collect twice
• If both agree,

– We’re done

• Otherwise,
– Try again

1

22
1

7

13

18
12

=

Collect2Collect1

1

22
1

7

13

18
12

Obstruction-freedom

• In the simple snapshot alg:
• The update method is wait-free
• But the scan is obstruction-free: will

complete only if it executes for long
enough without concurrent updates.

Art of Multiprocessor
Programming© Copyright Herlihy-

Shavit 2007
107

Progress of Methods

• Some of the above defs refer to locks
(part of implementation) or method calls

• And they ignore the scheduler
• Lets refine our progress definitions so

that they apply to methods, and
• Take scheduling into account

Art of Multiprocessor
Programming© Copyright Herlihy-

Shavit 2007
108

A “Periodic Table” of Progress Conditions

109

Everyone
 makes
progress

Non-Blocking Blocking

Someone
 makes
progress

Lock-
free

Starvation-
free

Deadlock-
free

Wait-
free

Obstruction-
free

A bit more formally
• Standard notion of abstract object
• Progress conditions relate to method

calls of an object
• Threads on a multiprocessor never fail:

– A thread is active if it takes an infinite
number of concrete (machine level) steps

– And is suspended if not.

110

Maximal vs. Minimal

• For a given history H:
• Minimal progress: in every suffix of H,

some method call eventually completes.
• Maximal progress: in every suffix of

H, every method call eventually
completes.

111

The “Periodic Table” of Progress Conditions

112

Maximal
progress

Non-Blocking Blocking

Minimal
progress Lock-

free

Starvation-
free

Deadlock-
free

Wait-
free

Obstruction-
free

The Scheduler’s Role
On a multiprocessor progress properties:
• Are not about the guarantees a
method's implementation provides.
• They are about the scheduling
assumptions needed in order to provide
minimal or maximal progress.

113

Fair Scheduling
• A history is fair if each thread takes

an infinite number of steps

• A method implementation is deadlock-
free if it guarantees minimal progress
in every fair history, and maximal
progress in some fair history.

114

Starvation Freedom
• A method implementation is

starvation-free if it guarantees
maximal progress in every fair
history.

115

Dependent Progress
• A progress condition is dependent if

it does not guarantee minimal progress
in every history, and is independent if
it does.

• The blocking progress conditions
(deadlock-freedom, Starvation-
freedom) are dependent

116

Non-blocking Independent Conditions

• A method implementation is lock-free
if it guarantees minimal progress in
every history, and maximal progress
in some history.

• A method implementation is wait-
free if it guarantees maximal
progress in every history.

117

The “Periodic Table” of Progress Conditions

118

Maximal
progress

Non-Blocking Blocking

Minimal
progress Lock-

free

Starvation-
free

Deadlock-
free

Wait-
free

Obstruction-
free

Independent Dependent

Uniformly Isolating Schedules

• A history is uniformly isolating if, for
every k > 0, any thread that takes an
infinite number of steps has an interval
where it takes at least k contiguous steps

• Modern systems provide ways of
providing isolation…later we will learn
about “backoff” and “yeild”.

119

A Non-blocking Dependent Condition

• A method implementation is
obstruction-free if it guarantees
maximal progress in every uniformly
isolating history.

120

The “Periodic Table” of Progress Conditions

121

Maximal
progress

Non-Blocking Blocking

Minimal
progress

Lock-
free

Starvation-
free

Deadlock-
free

Wait-
free

Obstruction-
free

Independent Dependent

The “Periodic Table” of Progress Conditions

121

Maximal
progress

Non-Blocking Blocking

Minimal
progress

Lock-
free

Starvation-
free

Deadlock-
free

Wait-
free

Obstruction-
free

Independent Dependent

 Fair scheduler

The “Periodic Table” of Progress Conditions

121

Maximal
progress

Non-Blocking Blocking

Minimal
progress

Lock-
free

Starvation-
free

Deadlock-
free

Wait-
free

Obstruction-
free

Independent Dependent

 Fair scheduler

 Fair scheduler

The “Periodic Table” of Progress Conditions

121

Maximal
progress

Non-Blocking Blocking

Minimal
progress

Lock-
free

Starvation-
free

Deadlock-
free

Wait-
free

Obstruction-
free

Independent Dependent

Uniform iso
scheduler

The “Periodic Table” of Progress Conditions

122

Maximal
progress

Non-Blocking Blocking

Minimal
progress

Lock-
free

Starvation-
free

Deadlock-
free

Wait-
free

Obstruction-
free

Independent Dependent

?

The “Periodic Table” of Progress Conditions

122

Maximal
progress

Non-Blocking Blocking

Minimal
progress

Lock-
free

Starvation-
free

Deadlock-
free

Wait-
free

Obstruction-
free

Independent Dependent

?Clash-
free

Clash-Freedom: the “Einsteinium” of
Progress

123

Clash-Freedom: the “Einsteinium” of
Progress

• A method implementation is clash-free
if it guarantees minimal progress in
every uniformly isolating history.

• Thm: clash-freedom strictly weaker
than obstruction-freedom

123

Getting from Minimal to Maximal

124

Maximal
progress

Non-Blocking Blocking

Minimal
progress

Lock-
free

Starvation-
free

Deadlock-
free

Wait-
free

Obstruction-
free

Independent Dependent

?Clash-
free

?

Getting from Minimal to Maximal

124

Maximal
progress

Non-Blocking Blocking

Minimal
progress

Lock-
free

Starvation-
free

Deadlock-
free

Wait-
free

Obstruction-
free

Independent Dependent

?Clash-
free

?
Helping

Getting from Minimal to Maximal

124

Maximal
progress

Non-Blocking Blocking

Minimal
progress

Lock-
free

Starvation-
free

Deadlock-
free

Wait-
free

Obstruction-
free

Independent Dependent

?Clash-
free

?
Helping

But helping is expensive

Universal Constructions
• Our lock-free universal construction provides

minimal progress
• A scheduler is benevolent for that algorithm if

it guarantees maximal progress in every
allowable history.

• Many real-world operating system schedulers
are benevolent

• They do not single out any indiviudual thread

125

Getting from Minimal to Maximal

126

Maximal
progress

Non-Blocking Blocking

Minimal
progress

Lock-
free

Starvation-
free

Deadlock-
free

Wait-
free

Obstruction-
free

Independent Dependent

?Clash-
free

?
Helping

Getting from Minimal to Maximal

126

Maximal
progress

Non-Blocking Blocking

Minimal
progress

Lock-
free

Starvation-
free

Deadlock-
free

Wait-
free

Obstruction-
free

Independent Dependent

?Clash-
free

?
Helping

Universal Lock-free
Construction

Getting from Minimal to Maximal

126

Maximal
progress

Non-Blocking Blocking

Minimal
progress

Lock-
free

Starvation-
free

Deadlock-
free

Wait-
free

Obstruction-
free

Independent Dependent

?Clash-
free

?
Helping

Universal Lock-free
Construction

Universal Wait-free
Construction

Getting from Minimal to Maximal

126

Maximal
progress

Non-Blocking Blocking

Minimal
progress

Lock-
free

Starvation-
free

Deadlock-
free

Wait-
free

Obstruction-
free

Independent Dependent

?Clash-
free

?
Helping

Universal Lock-free
Construction

Universal Wait-free
Construction

Use Wait-free/Lock-free
Consensus Objects

Getting from Minimal to Maximal

127

Maximal
progress

Non-Blocking Blocking

Minimal
progress

Lock-
free

Starvation-
free

Deadlock-
free

Wait-
free

Obstruction-
free

Independent Dependent

?Clash-
free

Universal Wait-free Construction

Universal Lock-free
Construction

Getting from Minimal to Maximal

127

Maximal
progress

Non-Blocking Blocking

Minimal
progress

Lock-
free

Starvation-
free

Deadlock-
free

Wait-
free

Obstruction-
free

Independent Dependent

?Clash-
free

Universal Wait-free Construction

Universal Lock-free
Construction

If we use Starvation-free/Deadlock-free
Consensus Objects result is respectively

Starvation-free/Deadlock-free

Benevolent Schedulers
• Consider an algorithm that guarantees minimal

progress.
• A scheduler is benevolent for that algorithm if

it guarantees maximal progress in every
allowable history.

• Many real-world operating system schedulers
are benevolent

• They do not single out any indiviudual thread

128

In Practice
On a multiprocessor we will write code
expecting maximal progress.
Progress conditions will then define the
scheduling assumptions needed in order
to provide it.

129

This Means
We will mostly write lock-free and lock-
based deadlock-free algorithms…
and expect them to behave as if they
are wait-free…
because modern schedulers can be made
benevolent and fair.

130

Principles to Practice

• We learned how to define the safety
(correctness) and liveness (progress) of
concurrent programs and objects

• We are ready to start the practice of
implementing them

• Next lecture: implementing spin locks
on multiprocesor machines…

Art of Multiprocessor
Programming© Copyright Herlihy-

Shavit 2007
131

Art of Multiprocessor
Programming© Copyright Herlihy-

Shavit 2007
132

  
This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of Multiprocessor

Programming” (but not in any way that suggests that the authors
endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a
compatible license.

• For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to
– http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get permission from the
copyright holder.

• Nothing in this license impairs or restricts the author's moral rights.

