Shared-Memory Computability

Universal
Object

Wait-free/Lock-free computable

Threads with methods that solve n-
CONSENSLISsor
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GetAndSet is not Universal

public class RMWRegister {
private int value;
public boolean getAndSet(int update)
{
int prior = this.value;
this.value = update;
return prior;

}
}
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GetAndSet is not Universal

booleﬁ getAndSet(int update) j

Consensus number 2
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GetAndSet is not Universal

booleﬁ getAndSet(int update) j

Not universal for > 3 threads
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CompareAndSet is Universal

public class RMWRegister {
private int value;
public boolean
compareAndSet(int expected,
int update) {
int prior = this.value;
if (this.value == expected) {
this.value = update;
return true;

}

return false;

B
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CompareAndSet is Universal

cqimpareAndSeT(inT expected,
int update) { :I

Consensus number oo
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CompareAndSet is Universal

ef(int expected,
int update) { :l

Universal for any number of threads
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On Older Architectures

- IBM 360
- testAndSet (getAndSet)

* NYU UltraComputer
- getAndAdd

* Neither universal
- Except for 2 threads
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On Newer Architectures

» Intel x86, Itanium, SPARC
- compareAndSet

+ Alpha AXP, PowerPC
- Load-locked/store-conditional

» All universal
- For any number of threads

* Trend is clear ...

Art of Multiprocessor
Programming® Copyright Herlihy-
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Practical Implications

» Any architecture that does not
provide a universal primitive has
inherent limitations

* You cannot avoid locking for
concurrent data structures ...

* But why do we care?

Art of Multiprocessor
Programming® Copyright Herlihy-
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102



Locking and Schedeuling

 What are the practical implications of
locking?
* Locking affects the assumptions we

need to make on the operating system
in order to guarantee progress

+ Lets understand how...

Art of Multiprocessor
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Schedeuling

» The scheduler is a part of the OS that

determines

- Which thread gets to run on which
processor
- How long it runs for

» A given thread can thus be active, that
IS, executing instructions, or suspended

Art of Multiprocessor
Programming® Copyright Herlihy- 104
Shavit 2007



Review Progress Conditions

* Deadlock-free: some thread trying to acquire the locks
eventually succeeds.

- Starvation-free: every thread trying to acquire the locks
eventually succeeds.

* Lock-free: some thread calling the method eventually
returns.

* Wait-free: every thread calling the method eventually
returns.

 Obstruction-free: every thread calling the method
returns if it executes in isolation for long enough.
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The Simple Snapshot is Obstruction-Free

* Put increasing labels on each entry
+ Collect twice

* If both agree, g > <>

- We're done N

- Otherwise, % %
. 7 — B

- Try again — —

18 18

T 10 | BV

© 2007 Herlihy & Shavi
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Obstruction-freedom

* In the simple snapshot alg:
* The update method is wait-free

* But the scan is obstruction-free: will
complete only if it executes for long
enough without concurrent updates.

Art of Multiprocessor
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Progress of Methods

- Some of the above defs refer to locks
(part of implementation) or method calls

» And they ignore the scheduler

+ Lets refine our progress definitions so
that they apply to methods, and

» Take scheduling into account

Art of Multiprocessor
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A "Periodic Table" of Progress Conditions

Everyone
makes
progress

Someone
makes
progress

Non-Blocking Blocking
Wait- Obstruction- Starvation-
free free free
Lock- Deadlock-
free free
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A bit more formally

Standard notion of abstract object

Progress conditions relate to method
calls of an object

Threads on a multiprocessor never fail:
- A thread is active if it takes an infinite
number of concrete (machine level) steps
- And is suspended if not.
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Maximal vs. Minimal

* For a given history H:
» Minimal progress: in every suffix of H,
some method call eventually completes.

* Maximal progress: in every suffix of
H, every method call eventually
completes.
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The "Periodic Table" of Progress Conditions

Maximal
progress

Minimal
progress

Non-Blocking Blocking
Wait- Obstruction- Starvation-
free free free
Lock- Deadlock-
free free
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The Scheduler’s Role

On a multiprocessor progress properties:

* Are not about the guarantees a
method's implementation provides.

* They are about the scheduling
assumptions needed in order to provide
minimal or maximal progress.
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Fair Scheduling

A history is fair if each thread takes
an infinite number of steps

A method implementation is deadlock-
free if it guarantees minimal progress
in every fair history, and maximal
progress in some fair history.
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Starvation Freedom

A method implementation is
starvation-free if it guarantees
maximal progress in every fair
history.
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Dependent Progress

- A progress condition is dependent if
it does not guarantee minimal progress
in every history, and is independent if
it does.

» The blocking progress conditions
(deadlock-freedom, Starvation-
freedom) are dependent
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Non-blocking Independent Conditions

A method implementation is lock-free
if it guarantees minimal progress in
every history, and maximal progress
in some history.

A method implementation is wait-
free if it guarantees maximal
progress in every history.
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The "Periodic Table" of Progress Conditions

Maximal
progress

Minimal
progress

Non-Blocking Blocking
Wait- Obstruction- Starvation-
free free free
Lock- Deadlock-
free free
Independent Dependent
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Uniformly Isolating Schedules

* A history is uniformly isolating if, for
every k > O, any thread that takes an
infinite number of steps has an interval
where it takes at least k contiguous steps

» Modern systems provide ways of
providing isolation...later we will learn

about "backoff" and "yeild".
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A Non-blocking Dependent Condition

* A method implementation is
obstruction-free if it guarantees
maximal progress in every uniformly
isolating history.
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The "Periodic Table" of Progress Conditions

Maximal
progress

Minimal
progress

Non-Blocking Blocking
Wait- Obstruction- Starvation-
free free free
Lock- Deadlock-
free free
Independent Dependent
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The "Periodic Table" of Progress Conditions

Maximal
progress

Minimal
progress

Non-Blocking Blocking
‘1._ AL | ~a . e _
Wai Fair scheduler -
free
Lock- Deadlock-
free free
Independent Dependent
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The "Periodic Table" of Progress Conditions

Non-Blocking Blocking
MC(XimC(I WaiT_ . AL —alato | —~ ' ’on_
progress free Fair scheduler
Minimal g Fair scheduler i
progress free I I A
Independent Dependent
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The "Periodic Table" of Progress Conditions

Maximal
progress

Minimal
progress

Non-Blocking Blocking
I
Wair Uniform iso Starvation-
free Scheduler free
Lock- Deadlock-
free free
Independent Dependent
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The "Periodic Table" of Progress Conditions

Maximal
progress

Minimal
progress

Non-Blocking Blocking
Wait- Obstruction- Starvation-
free free free
Lock- Deadlock-
free ;> free
Independent Dependent

122



The "Periodic Table" of Progress Conditions

Maximal
progress

Minimal
progress

Non-Blocking Blocking
Wait- Obstruction- Starvation-
free free free
Lock- Clash- Deadlock-
free free free
Independent Dependent
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Clash-Freedom: the "Einsteinium"” of
Progress
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Clash-Freedom: the "Einsteinium"” of
Progress

* A method implementation is clash-free
if it guarantees minimal progress in
every uniformly isolating history.

* Thm: clash-freedom strictly weaker
than obstruction-freedom
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Getting from Minimal to Maximal

Non-Blocking Blocking
Maximal Wait- Obstruction- Starvation-
progress free free free
_______________________ ?
Minimal Lock- Clash- Deadlock-
progress free free free
Independent Dependent
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Getting from Minimal to Maximal

Non-Blocking Blocking
Maximal Wait- Obstruction- Starvation-
progress free free free
Minimal Lock- Clash- Deadlock- Helping
progress free free free
Independent Dependent
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Getting from Minimal to Maximal

Maximal
progress

Minimal
progress

Non-Blocking Blocking
Wait- Obstruction- Starvation-
free free free
W@
_______________ Wel }
e)‘\)e’ :
Lock- ne \‘)\“g ,qulock— Helping
free YE\Y‘ free
Independent Dependent
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Universal Constructions

* Our lock-free universal construction provides
minimal progress

+ A scheduler is benevolent for that algorithm if
iT guarantees maximal progress in every
allowable history.

* Many real-world operating system schedulers
are benevolent

* They do not single out any indiviudual thread
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Getting from Minimal to Maximal

Non-Blocking Blocking
Maximal Wait- Obstruction- Starvation-
progress free free free
Minimal Lock- Clash- Deadlock- Helping
progress free free free
Independent Dependent
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Uni | Lock- :
niversa oc:. free :'} Maximal
Construction

Non-Blocking Blocking
Maximal ait- Obstruction- Starvation-
progress be free free
Minimal ck- Clash- Deadlock- Helping
progress free free free
Independent Dependent

H% BROWN 126
o &



Universal Locl.<-fr'ee \l) Maximal
Cons

Universal Wait-free
Construction
Maximal it Obstruction- Starvation-
progress be free free
Minimal ck- Clash- Deadlock- Helping
progress free free free
Independent Dependent
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Universal Lock-free
Cons

\I) Maximal

Universal Wait-free
Construction
Maximal F” Obstruction- Starvation-
progress be free free
Minimal cho— Al Beelled Halal
progress i Use Wait-free/Lock-free
— Consensus Objects
Independent Dependent
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Universal Wait-free Construction

Non-Blocking g9
SN
Universal Lock-free
o Starvati
Construction free
e
Minimal Lock- Clash- Deadldck-
progress free free free
Independent Dependent

R
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|: Universal Wait-free Construction :l

Non-Blocking g9
~ N
Universal Lock-free
C . Starvati
— onstruction free
e

Minimal Lock-

— —~
If we use Starvation-free/Deadlock-free

Consensus Objects result is respectively

~— Starvation-free/Deadlock-free —




Benevolent Schedulers

» Consider an algorithm that guarantees minimal
progress.

+ A scheduler is benevolent for that algorithm if
iT guarantees maximal progress in every
allowable history.

* Many real-world operating system schedulers
are benevolent

* They do not single out any indiviudual thread
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In Practice

On a multiprocessor we will write code
expecting maximal progress.

Progress conditions will then define the
scheduling assumptions needed in order
to provide it.
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This Means

We will mostly write lock-free and lock-
based deadlock-free algorithms...

and expect them to behave as if they
are wait-free...

because modern schedulers can be made
benevolent and fair.
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Principles to Practice

* We learned how to define the safety
(correctness) and liveness (progress) of
concurrent programs and objects

+ We are ready to start the practice of
implementing them

* Next lecture: implementing spin locks
on multiprocesor machines...

Art of Multiprocessor
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You are free:
- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:

- Attribution. You must attribute the work to “The Art of Multiprocessor
Programming” (but not in any way that suggests that the authors
endorse you or your use of the work).

- Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission from the
copyright holder.

Nothing in this license impairs or restricts the author's moral rights.
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