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Shared-Memory Computability

Wait-free/Lock-free computable 
= 

Threads with methods that solve n-
consensus

10011Universal 
 Object
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public class RMWRegister { 
 private int value; 
 public boolean getAndSet(int update)  
 { 
  int prior = this.value; 
  this.value = update; 
  return prior; 
 } 
}

GetAndSet is not Universal

(1)
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public class RMWRegister { 
 private int value; 
 public boolean getAndSet(int update)  
 { 
  int prior = this.value; 
  this.value = update; 
  return prior; 
 } 
}

GetAndSet is not Universal

(1)

Consensus number 2
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public class RMWRegister { 
 private int value; 
 public boolean getAndSet(int update)  
 { 
  int prior = this.value; 
  this.value = update; 
  return prior; 
 } 
}

GetAndSet is not Universal

(1)

Not universal for ≥ 3 threads
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public class RMWRegister { 
 private int value; 
 public boolean 
   compareAndSet(int expected, 
                 int update) { 
  int prior = this.value; 
  if (this.value == expected) { 
   this.value = update; 
   return true; 
  } 
 return false; 
 }}

CompareAndSet is Universal

(1)
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public class RMWRegister { 
 private int value; 
 public boolean 
   compareAndSet(int expected, 
                 int update) { 
  int prior = this.value; 
  if (this.value == expected) { 
   this.value = update; 
   return true; 
  } 
 return false; 
 }}

CompareAndSet is Universal

(1)

Consensus number ∞
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public class RMWRegister { 
 private int value; 
 public boolean 
   compareAndSet(int expected, 
                 int update) { 
  int prior = this.value; 
  if (this.value == expected) { 
   this.value = update; 
   return true; 
  } 
 return false; 
 }}

CompareAndSet is Universal

(1)

Universal for any number of threads
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On Older Architectures

• IBM 360 
– testAndSet (getAndSet) 

• NYU UltraComputer 
– getAndAdd 

• Neither universal 
– Except for 2 threads
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On Newer Architectures

• Intel x86, Itanium, SPARC 
– compareAndSet 

• Alpha AXP, PowerPC 
– Load-locked/store-conditional 

• All universal 
– For any number of threads 

• Trend is clear …
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Practical Implications

• Any architecture that does not 
provide a universal primitive has 
inherent limitations 

• You cannot avoid locking for 
concurrent data structures … 

• But why do we care? 



Locking and Schedeuling

• What are the practical implications of 
locking?  

• Locking affects the assumptions we 
need to make on the operating system 
in order to guarantee progress 

• Lets understand how…
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Schedeuling

• The scheduler is a part of the OS that 
determines  
– Which thread gets to run on which 

processor 
– How long it runs for 

• A given thread can thus be active, that 
is, executing instructions, or suspended
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Review Progress Conditions
• Deadlock-free: some thread trying to acquire the locks 

eventually succeeds. 
• Starvation-free: every thread trying to acquire the locks 

eventually succeeds. 
• Lock-free: some thread calling the method eventually 

returns. 
• Wait-free: every thread calling the method eventually 

returns. 
• Obstruction-free:  every thread calling the method 

returns if it executes in isolation for long enough. 
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The Simple Snapshot is Obstruction-Free

• Put increasing labels on each entry 
• Collect twice 
• If both agree, 

– We’re done 

• Otherwise, 
– Try again

1

22
1

7

13

18
12

=

Collect2Collect1

1

22
1

7

13

18
12



Obstruction-freedom

• In the simple snapshot alg: 
• The update method is wait-free 
• But the scan is obstruction-free: will 

complete only if it executes for long 
enough without concurrent updates. 
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Progress of Methods

• Some of the above defs refer to locks 
(part of implementation) or method calls 

• And they ignore the scheduler 
• Lets refine our progress definitions so 

that they apply to methods, and 
• Take scheduling into account
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A “Periodic Table” of Progress Conditions  

109

Everyone 
 makes  
progress

Non-Blocking Blocking

Someone 
 makes  
progress

Lock- 
free

Starvation- 
free

Deadlock- 
free

Wait- 
free

Obstruction- 
free



A bit more formally  
• Standard notion of abstract object 
• Progress conditions relate to method 

calls of an object 
•  Threads on a multiprocessor never fail: 

– A thread is active if it takes an infinite 
number of concrete (machine level) steps  

– And is suspended if not. 
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Maximal vs. Minimal

• For a given history H:  
• Minimal progress: in every suffix of H, 

some method call eventually completes. 
• Maximal progress: in every suffix of 

H, every method call eventually 
completes.

111



The “Periodic Table” of Progress Conditions  
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Maximal 
progress

Non-Blocking Blocking

Minimal 
progress Lock- 

free

Starvation- 
free

Deadlock- 
free

Wait- 
free

Obstruction- 
free



The Scheduler’s Role
On a multiprocessor progress properties: 
• Are not about the guarantees a 
method's implementation provides. 
• They are about the scheduling 
assumptions needed in order to provide 
minimal or maximal progress.
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Fair Scheduling
• A history is fair if each thread takes 

an infinite number of steps 

• A method implementation is deadlock-
free  if it guarantees minimal progress 
in every fair history, and maximal 
progress in some fair history.
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Starvation Freedom
• A method implementation is 

starvation-free  if it guarantees 
maximal progress in every fair 
history.
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Dependent Progress
• A progress condition is dependent  if 

it does not guarantee minimal progress 
in every history, and is independent  if 
it does. 

• The blocking progress conditions 
(deadlock-freedom, Starvation-
freedom) are dependent
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Non-blocking Independent Conditions

• A method implementation is lock-free  
if it guarantees minimal progress in 
every history, and maximal progress 
in some history. 

• A method implementation is wait-
free  if it guarantees maximal 
progress in every history.
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The “Periodic Table” of Progress Conditions  
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Maximal 
progress

Non-Blocking Blocking

Minimal 
progress Lock- 

free

Starvation- 
free

Deadlock- 
free

Wait- 
free

Obstruction- 
free

Independent Dependent



Uniformly Isolating Schedules

• A history is uniformly isolating if, for 
every k > 0, any thread that takes an 
infinite number of steps has an interval 
where it takes at least k contiguous steps 

• Modern systems provide ways of 
providing isolation…later we will learn 
about “backoff” and “yeild”.
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A Non-blocking Dependent Condition

• A method implementation is 
obstruction-free  if it guarantees 
maximal progress in every uniformly 
isolating history. 
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The “Periodic Table” of Progress Conditions  
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The “Periodic Table” of Progress Conditions  
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Maximal 
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Non-Blocking Blocking

Minimal 
progress

Lock- 
free

Starvation- 
free

Deadlock- 
free

Wait- 
free

Obstruction- 
free

Independent Dependent

Uniform iso 
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The “Periodic Table” of Progress Conditions  
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Maximal 
progress

Non-Blocking Blocking

Minimal 
progress

Lock- 
free

Starvation- 
free

Deadlock- 
free

Wait- 
free
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free
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The “Periodic Table” of Progress Conditions  
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Maximal 
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Lock- 
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Clash-Freedom: the “Einsteinium” of 
Progress
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Clash-Freedom: the “Einsteinium” of 
Progress

• A method implementation is clash-free  
if it guarantees minimal progress in 
every uniformly isolating history.  

• Thm: clash-freedom strictly weaker 
than obstruction-freedom
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Getting from Minimal to Maximal
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Getting from Minimal to Maximal
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Maximal 
progress

Non-Blocking Blocking

Minimal 
progress

Lock- 
free

Starvation- 
free

Deadlock- 
free

Wait- 
free

Obstruction- 
free

Independent Dependent

?Clash- 
free

?
Helping

But helping is expensive



Universal Constructions
• Our lock-free universal construction provides 

minimal progress 
• A scheduler is benevolent  for that algorithm if 

it guarantees maximal progress in every 
allowable history. 

• Many real-world operating system schedulers 
are benevolent 

• They do not single out any indiviudual thread
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Getting from Minimal to Maximal
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Use Wait-free/Lock-free 
Consensus Objects
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Maximal 
progress

Non-Blocking Blocking

Minimal 
progress

Lock- 
free

Starvation- 
free

Deadlock- 
free

Wait- 
free

Obstruction- 
free

Independent Dependent

?Clash- 
free

Universal Wait-free Construction

Universal Lock-free 
Construction

If we use Starvation-free/Deadlock-free 
Consensus Objects result is respectively 

Starvation-free/Deadlock-free 



Benevolent Schedulers
• Consider an algorithm that guarantees minimal 

progress.  
• A scheduler is benevolent  for that algorithm if 

it guarantees maximal progress in every 
allowable history. 

• Many real-world operating system schedulers 
are benevolent 

• They do not single out any indiviudual thread
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In Practice
On a multiprocessor we will write code 
expecting maximal progress.  
Progress conditions will then define the 
scheduling assumptions needed in order 
to provide it.
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This Means
We will mostly write lock-free and lock-
based  deadlock-free algorithms…  
and expect them to behave as if they 
are wait-free… 
because modern schedulers can be made 
benevolent and fair.
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Principles to Practice

• We learned how to define the safety 
(correctness) and liveness (progress) of 
concurrent programs and objects 

• We are ready to start the practice of 
implementing them 

• Next lecture: implementing spin locks 
on multiprocesor machines…
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