
8. HoIn, B.K.P. Determining lightness from an image. Comptr.
Graphics and Image Processing 3, 4(Dec. 1974), 277-299.
9. Huffman, D.A. Impossible objects as nonsense sentences. In
Machine Intelligence 6, B. Meltzer and D. Michie, Eds., Edinburgh U.
Press, Edinburgh, 1971, pp. 295-323.
10. Mackworth, A.K. Consistency in networks of relations. Artif.
Intell. 8, 1(1977), 99-118.
I1. Marr, D. Simple memory: A theory for archicortex. Philos. Trans.
Roy. Soc. B. 252 (1971), 23-81.
12. Marr, D., and Poggio, T. Cooperative computation of stereo
disparity. A.I. Memo 364, A.I. Lab., M.I.T., Cambridge, Mass., 1976.
13. Minsky, M., and Papert, S. Perceptrons. M.I.T. Press, Cambridge,
Mass., 1968.
14. Montanari, U. Networks of constraints: Fundamental properties
and applications to picture processing. Inform. Sci. 7, 2(April 1974),
95-132.
15. Rosenfeld, A., Hummel, R., and Zucker, S.W. Scene labelling by
relaxation operations. IEEE Trans. Systems, Man, and Cybernetics
SMC-6, 6(June 1976), 420-433.
16. Sussman, G.J., and McDermott, D.V. From PLANNER to
CONNIVER--a genetic approach. Proc. AFIPS 1972 FJCC, Vol. 41,
AFIPS Press, Montvale, N.J., pp. 1171-1179.
17. Sussman, G.J., and Stallman, R.M. Forward reasoning and
dependency-directed backtracking in a system for computer-aided
circuit analysis. A.I. Memo 380, A.I. Lab., M.I.T., Cambridge, Mass.,
1976.
18. Tenenbaum, J.M., and Barrow, H.G. IGS: A paradigm for
integrating image segmentation and interpretation. In Pattern
Recognition and Artificial Intelligence, C. H. Chen, Ed., Academic
Press, New York, 1976, pp. 472-507.
19. Ullman, J.R. Associating parts of patterns. Inform. and Control 9,
6(Dec. 1966), 583-601.
20. Ullman, J. R. Pattern Recognition Techniques. Crane Russak,
New York, 1973.
21. Ullman, J.R. An algorithm for subgraph isomorphism. J.A CM
23, l(Jan. 1976), 3142.
22. Unger, S.H. GIT--a heuristic program for testing pairs of
directed line graphs for isomorphism. Comm. ACM 7, l(Jan. 1964),
26-34.
23. Waltz, D.L. Generating semantic descriptions from drawings of
scenes with shadows. AI-TR-271, A.I. Lab., M.I.T., Cambridge,
Mass., 1972.
24. Zucker, S.W. Relaxation labelling, local ambiguity, and low-level
vision. In Pattern Recognition and Artificial Intelligence, C. H. Chen,
Ed., Academic Press, New York, 1976, pp. 593-616.

Operating R.S. Gaines
Systems Editor

On-the-Fly Garbage
Collection: An Exercise in
Cooperation
Edsger W. Dijkstra
Burroughs Corporation

Leslie Lamport
SRI International

A.J. Martin, C.S. Scholten, and
E.F.M. Steffens
Philips Research Laboratories

As an example of cooperation between sequential
processes with very little mutual interference despite
frequent manipulations of a large shared data space, a
technique is developed which allows nearly all of the
activity needed for garbage detection and collection to
be performed by an additional processor operating con-
currently with the processor devoted to the computation
proper. Exclusion and synchronization constraints have
been kept as weak as could be achieved; the severe
complexities engendered by doing so are illustrated.

Key Words and Phrases: multiprocessing, t'me-
grained interleaving, cooperation between sequential
processes with minimized mutual exclusion, program cor-
rectness for multiprogramming tasks, garbage collection

CR Categories: 4.32, 4.34, 4.35, 4.39, 5.24

966

1. Introduction

In a n y l a rge - sca le c o m p u t e r i n s t a l l a t i on t oday , a

c o n s i d e r a b l e a m o u n t o f t i m e o f the (gene ra l p u r p o s e)

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and it s date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Authors' addresses: E.W. Dijkstra, Burroughs, Plataanstraat 5,
5671 A1 Nuenen, The Netherlands; L. Lamport, SRI International, 333
Ravenswood Ave., Menlo Park, CA 94025; A.J. Martin, C.S. Scholten,
and E.F.M. Steffens, Philips Research Laboratories, 5656 AA Eind-
hoven, The Netherlands.

For reference purposes a glossary of names has been added as an
Appendix.
© 1978 ACM 0001-0782/78/1100-0966 $00.75

Communications November 1978
of Volume 21
the ACM Number 11

processor is spent on "operating the system." With the
advent of multiprocessor installations, the question arises
to what extent such "housekeeping activities" can be
carded out concurrently with the computation(s) proper.
One of the problems that have to be dealt with is
organizing the cooperation of the concurrent processes
so as to keep exclusion and synchronization constraints
extremely weak, in spite of very frequent manipulations
(by all processes involved) of a large shared data space.
The problem of garbage collection was selected as one
of the most challenging problems in this respect (and
hopefully a very instructive one). Our exercise has not
only been very instructive, but at times even humiliating,
as we have fallen into nearly every logical trap possible.
In our presentation we have tried to blend a condensed
design history--so as not to hide the heuristics too
much--with a rather detailed justification of our final
solution. We have tried to keep exclusion and synchro-
nization constraints between the processes as weak as
possible, and how to deal with the complexities engen-
dered by doing so is the main topic of this paper.

It has hardly been our purpose to contribute specifi-
cally to the art of garbage collection, and consequently
no practical significance is claimed for our solution. For
that reason we felt justified in tackling a specific form of
the garbage collection problem as it presents itself in the
traditional implementation environment of pure Lisp.
We are aware of the fact that we have left out of
consideration several aspects of the garbage collection
problem that are important from other points of view
(see, for instance, [4]).

In our abstract form of the problem, we consider a
directed graph of varying structure but with a fixed
number of nodes, in which each node has at most two
outgoing edges. More precisely, each node may have a
left-hand outgoing edge and may have a right-hand
outgoing edge, but either of them or both may be missing.
In this graph a fixed set of nodes exists, called "the
roots." A node is called "reachable" if it is reachable
from at least one root via a directed path along the edges.
The subgraph consisting of all reachable nodes and their
interconnections is called "the data structure;" nonreach-
able nodes, i.e. nodes that do not belong to the data
structure, are called "garbage nodes." The data structure
can be modified by actions of the following types:

(1) Redirecting an outgoing edge of a reachable node
towards an already reachable one.

(2) Redirecting an outgoing edge of a reachable node
towards a not yet reachable one without outgoing edges.

(3) Adding--where an outgoing edge was missing--
an edge pointing from a reachable node towards an
already reachable one.

(4) Adding--where an outgoing edge was missing--
an edge pointing from a reachable node towards a not
yet reachable one without outgoing edges.

(5) Removing an outgoing edge of a reachable node.
In actions (1), (2), and (5) nodes may be disconnected
from the data structure and thus become garbage. In

967

actions (2) and (4) a garbage node is "recycled," i.e.
made reachable again.

The representation of the graph is such that each
node can be identified independently of the structure of
the graph, and that finding the left- or right-hand suc-
cessor of a node can be regarded as a primitive operation,
whereas finding its predecessor nodes would imply a
search through the complete collection of nodes. Because
of this representation, finding garbage is a nontrivial
task, which is delegated to a so-called "garbage collec-
tor." The garbage collector maintains a so-called "free
list," i.e. a collection of nodes that have been identified
as garbage and are available to be added to the data
structure.

In classical Lisp implementations the computation
proper (i.e. the modifications of the data structure as
described above) proceeds until the free list is exhausted
(or nearly so). Then the computation proper comes to a
grinding halt, after which garbage is collected: starting
from the roots, all reachable nodes are marked; upon
completion of this marking cycle all unmarked nodes
can be concluded to be garbage, and are appended
to the free list, after which the computation proper is
resumed.

The minor disadvantage of this arrangement is the
delay of the computation proper; its major disadvantage
is the unpredictability of these garbage collecting inter-
ludes, which makes it hard to design such systems so as
to meet real-time requirements as well. It was therefore
tempting to investigate whether a second processor--
called "the collector"--could collect garbage concur-
rently with the activity of the other processor--for the
purpose of this discussion called "the mutator"--which
would be dedicated to the computation proper. In order
to investigate an exemplary problem, we have imposed
upon our solution a number of constraints (compare
[4]).

First, we wanted the synchronization and exclusion
constraints between the mutator and the collector to be
as weak as possible. (The classical implementation pre-
sents in this respect the other extreme: a garbage collect-
ing interlude can in its entirety be regarded as a single
critical section that excludes all mutator activity!) We
wanted in particular to avoid highly frequent mutual
exclusion of "elaborate" activities, as this would defy our
aim of concurrent activity: our ultimate aim was some-
thing like no more interference than the mutual exclusion
of a single read and/or write of the same single variable.
One synchronization measure is evidently unavoidable:
when needing a new node from the free list, the mutator
may have to be delayed until the collector has appended
some nodes to the free list.

Second, we wanted to keep the overhead on the
activity of the mutator (as required for the cooperation
with the collector) as small as possible.

Third, we did not want the mutator's ongoing activity
to impair the collector's ability to identify garbage more
than we could avoid. With a major cycle of the collector

Communications November 1978
of Volume 21
the ACM Number I l

consisting of a marking phase followed by an appending
phase, it is impossible to guarantee that the appending
phase will append all garbage existing at its beginning:
new garbage could have been created between an ap-
pending phase and the preceding marking phase. We do
require:, however, that such garbage, existing at the be-
ginning of an appending phase but not identified as such
by the collector, will be appended in the next major cycle
of the collector. Moreover, we have rejected solutions in
which garbage created during a marking phase was
guaranteed not to be appended during the next append-
ing phase.

2. The Grain of Action

The fact that we require concurrent operation of two
or more processes raises the problem of defining the net
effect of such concurrent operation. In order to explain
the problem we introduce the terms "local variable" for
those variables that are accessed by one process only,
and "shared variable" for those that are accessed by at
least two processes.

As long as our concurrent processes only operate on
local variables, there is no problem: we suppose that no
one will have any doubt as to the net result of the
concurrent operation of the two programs So and $1
given by

So :x :=0 and $1:y:=3

This, however, changes radically as soon as we con-
sider shared variables. With shared "z" some readers
may assume that the concurrent operation of $2 and $3,
given by

S2:z:=0 and $3:z:=3

will yield either z = 0 or z = 3, but in that case we must
destroy that illusion! We need only assume z to consist
of two bits z0 and Zl (z = 2Zl + Zo), and $2 and $3 on
closer scrutiny to be composed as follows:

S2:z0: = 0; and S3:z0:= 1;
z~:= 0 z~:= 1

to reach the conclusion that z = 1 and z = 2 are also
possible results.

In order to express our intentions unambiguously, we
introduce the notion of "atomic operations," denoted in
this paper by a piece of program placed between a pair
of angle brackets (we do not allow nested use of such
pairs). We further require all accesses to shared variables
to be part of an atomic operation and postulate that the
net effect of our concurrently operating processes is as if
atomic operations are mutually exclusive, i.e. the execu-
tion periods of atomic operations don't overlap. (We
note in passing that it is pointless to introduce atomic
operations accessing local variables only.) As a result it
is now clear that concurrent operation of

$2: (z:= 0) and Sa: (z:=3)

968

will, indeed, yield either z = 0 or z = 3 (even if, upon
closer scrutiny, the assignments to z turn out to be
composed of successive operations on the individual
bits).

Having introduced atomic operations, we are now in
a position to define a (partial) ordering between pro-
grams based on the notions "coarser-grained" and
"finer-grained" ("A is coarser-grained than B" is equiv-
alent to "B is finer-grained than A"). We say that A is
coarser-grained than B (or alternatively, "has a coarser
grain of action") if B is the result of replacing an atomic
operation of A by a piece of program containing at least
two atomic operations, and having all by itself the same
net effect as the original operation.

Since a possible sequencing of the atomic operations
in a coarse-grained solution of a problem can always be
regarded as a possible sequencing of the atomic opera-
tions in a finer-grained solution, the proof that the fmer-
grained solution is correct implies the same for the
coarse-grained solution. Hence the advantage of coarser-
grained solutions is that their correctness proofs are
easier than those for finer-grained ones; their disadvan-
tage, however, is that their implementation usually re-
quires more severe mutual exclusion measures, which
tend to defeat the aim of concurrency.

3. Reformulation of the Problem

Our first step was to restate the problem in as simple
a form as we could. We found two important simplifi-
cations.

First, we followed the not unusual practice of intro-
ducing a special root node, called "NIL ," whose two
outgoing edges point to itself, and representing a for-
merly missing edge now by an edge with the node N I L
as its target. (In order to shorten our discussions we use
the terms "source" and "target" of an edge: if an edge
points from node A to node B, then A is said to be the
source and B is said to be the target of that edge.) For
us, the introduction of the node N I L was definitely much
more than just a coding trick. It allowed us to view data
structure modifications of types (3) and (5) as special
cases of type (1), and those of type (4) as special cases of
type (2), so that we were left with only two types of
modification. In the sequel it will become clear that the
reduced diversity thus achieved has been absolutely es-
sential for our purposes.

A second simplification was obtained by viewing the
nodes of the free list no longer as garbage, but as part of
the data structure. This was achieved by introducing one
or more special root nodes, and by linking the free nodes
in such a way that N I L and all free nodes, but no others,
are reachable from these special root nodes. This implies
that from now on the nodes on the free list are reachable,
and thus considered to be part of the data structure. A
modification of type (2) is now replaced by a sequence
of modifications of type (l): first redirecting an edge

Communications November 1978
of Volume 21
the ACM Number 11

towards a node in the free list, then redirecting edges of
free list nodes so as to remove that node from the free
list. (Note that the operations must be performed in such
an order that the node in question remains permanently
reachable.) Making the free list part of the data structure
is again no mere coding trick. It allowed us to eliminate
modifications of type (2): now only o n e type of modifi-
cation of the data structure is left to the mutator, namely
type (1) "redirecting an outgoing edge of a reachable
node towards an already reachable one." (Even the
actions of the collector, required for appending an iden-
tified garbage node to the free list, are very close to the
one operation available to the mutator. The only differ-
ence is that we have to allow the collector to redirect the
outgoing edge of a reachable node towards a not yet
reachable one.)

The activities of mutator and collector can now be
described as repeated executions of

mutator: "redirect an outgoing edge of a reachable
node towards an already reachable one"

collector: marking phase:
"mark all reachable nodes";

appending phase:
"append all unmarked nodes to the free
list ar/d remove the markings from all
marked nodes".

The mutator and the collector must cooperate in such a
fashion that the following two correctness criteria are
satisfied.

CC 1: Every garbage node is eventually appended to the
free list. More precisely, every garbage node pres-
ent at the beginning of an appending phase will
have been appended by the end of the next ap-
pending phase.

CC2: Appending a garbage node to the free list is the
collector's only modification of (the shape of) the
data structure.

Our final goal was a fine-grained solution in which
each atomic operation would be something like a single
read or write of a variable. More precisely, we wanted in
our final solution to accept the following atomic opera-
tions: "redirecting an edge," "finding the (left- or right-
hand) successor of a node," and "testing and/or setting
certain attributes of a node." (The latter class of opera-
tions is obviously needed for marking the nodes.) The
implementation of these atomic operations falls outside
the scope of this paper.

Moreover, we allow ourselves the (not essential but
convenient) luxury of considering "append node nr. i to
the free list" to be an atomic operation available to the
collector. We felt entitled to do so because its finer-
grained implementation in terms of a succession of re-
direction of edges is simple provided the free list remains
long enough, for then the nodes involved are not touched
by the mutator. Nor do we describe how to prevent the
free list from getting too short, i.e. how to delay the

969

mutator, if necessary, when it is about to take a node
from the free list. (The latter is the familiar consumer/
producer coupling, a fine-grained solution of which has
been given in [3].)

We have taken the course of first finding a coarse-
grained solution, and then transforming it into a freer-
grained one. This two-stage approach has been of great
heuristic value; it was, however, not without pitfalls.

4. The First Coarse-Grained Solution

A counterexample taught us that the goal "no extra
overhead for the mutator" is unattainable. Suppose that
the nodes A and B are permanently reachable via a
constant set of edges, while node C is initially reachable
only via an edge from A to C. Suppose furthermore that,
from then on, the mutator performs repeatedly a se-
quence of redirections with the following results:

(1) making an outgoing edge from B point to C
(2) making the edge from A to C disappear
(3) making an outgoing edge from A point to C
(4) making the edge from B to C disappear.

Since the collector observes nodes one at a time, it may
never discover that C is reachable: while the collector is
observing A for its successors, C may be reachable via B
only, and the other way round. We therefore expect that
the mutator may have to mark in some way the target
nodes of edges it redirects.

Marking will be described in terms of colors. We start
with all nodes white, and will design the algorithm so
that the combined activity of the collector's marking
phase and the mutator will make all reachable nodes
black. All nodes that are still white after the marking
phase will thus be garbage. For any repetitive process--
and the marking phase certainly is one--we have always
two concerns (see [1]): first, we must have a monotonicity
argument on which to base our proof of termination,
and second, we must fred an invariant relation which is
initially true and not destroyed during the repetition, so
that it still holds upon termination. For the monotonicity
argument we choose (fairly obviously) that during the
marking phase no node will go back from black to white.
Since we will soon introduce the color "gray," we restate
this more generally as: "during the marking phase no
node will become lighter." (Gray is darker than white
and lighter than black.) For the invariant relation--
which must be satisfied both before and after the collec-
tor's marking cycle--we must generalize the initial and
final states of the marking cycle. Our first choice (perhaps
less obvious, but not unnatural) was

P 1: "no edge points from a black node to a white one."

Additional action is now required from the mutator
when it is about to introduce an edge from a black node
to a white one, since just placing it would cause a
violation of P I. The monotonicity argument requires
that the black source node of the new edge has to remain

Communications November 1978
of Volume 21
the ACM Number 11

black, so P 1 tells us that the target node of the new edge
cannot be allowed to remain white. But the mutator
cannot just make it black, because that could cause a
violation of P I between the new target node and its
immediate successors. We therefore introduce the inter-
mediate color "gray," and let the mutator change the
new target's color from white to gray; for reasons of
simplicity, the mutator shall do so independently of the
color of the new edge's source. Our choice was a coarse-
grained mutator that repeatedly performs the following
atomic operation, in which "shading a node" means
making it gray if it is white, and leaving it unchanged if
it is gray or black:

MI: (redirect an outgoing edge of a reachable node
towards an already reachable one, and shade the
new target).

Note 1. Disregarding P l, the problem of node C
from the counterexample at the beginning of this section
could also have been solved by having the mutator shade
the old target instead of the new one. This, however,
would lead to a solution in which garbage created during
a marking phase is guaranteed not to be collected during
the next appending phase. Hence, we rejected this solu-
tion in accordance with the last sentence of Section 1. []

We have decided that the collector's marking phase
should make all reachable nodes black while keeping P 1
invariant. This decision leads fairly directly to a coarse-
grained collector. Like the mutator, the collector's mark-
ing phase uses the intermediate color gray to preserve
P 1. Gray nodes are then ones which must be made black,
but which might still have white successors. Hence,
whenever it encounters a gray node, the marking phase
must make it black and shade its successors. For our
coarse-grained collector, let the entire operation of black-
ening a gray node and shading its successors be a single
atomic operation. Since the marking phase must make
all gray nodes black, it can terminate only when there
are no more gray nodes. The obvious way of trying to
guarantee the absence of gray nodes is to let the marking
phase terminate when the collector had observed all
nodes in some order without finding any gray ones. This
produces the collector given below; it is described with
the "if...fi" and "do...od" constructs introduced in [1].
(The idea of "B ~ S," a so-called "guarded command,"
is that the statement list S is only eligible for execution
in those initial states for which B is true. Below we need
only a few simple cases. The repetitive construct "do B

S o d " is semantically equivalent to the now traditional
"while B do S od." The alternative construct "if B 1
S1 n B2 ~ $2 fi" requires B1 or B2 to hold to start with;
if B2 were non B1, it would be semantically equivalent
to the now traditional "if B1 then S1 else $2 ft.") As
before, angle brackets are used to enclose atomic opera-
tions. Comments have been inserted between braces, and
labels have been inserted for future reference.

The collector has two local integer variables i and k,
and a local variable c of type color; the nodes are

970

assumed to be numbered from 0 through M - 1. Our
coarse-grained collector then repeatedly executes the
following program:
marking phase:
begin {there are no black nodes}

"shade all roots" {P 1 and there are no white roots} ;
i:= 0; k:= M;

marking cycle:
do k > 0 ~ {PI and there are no white roots}

(c:= color of node nr. i);
if c = gray ~ k:= M;

CI : (shade the successors of node nr. i and make node nr. i
black)

n c ~ g r a y ~ k : = k - 1
11;
i:= (i + 1) mod M

od
end {P1 and there are no white roots and no gray nodes, h e n c e - - a s is

easily seen- -a l l white nodes are garbage} ;
appending phase:
begin i:= 0;

appending cycle:
do i < M ~ {all nodes with a n u mb er < i are nonblack; all nodes

with a n u m b e r ~ i are nongray, and are garbage, if white}
(c:= color of node nr. i);
if c = white ---, (append node nr. i to the free list)
I] c = black --~ (make node nr. i white)
fi;
i : = i + 1

od {there are no black nodes}
end

Note 2. Appending node nr. i to the free list includes
redirecting its outgoing edges so that no other nodes than
N I L or free nodes can be reached from it (see our second
simplification as described in Section 3). []

Note 3. It does not matter in which order nodes are
examined during the marking phase, so we could have
written a more general algorithm that does not specify
any fixed order. Such an algorithm would allow more
efficient implementations of the marking phase, in which
the collector maintains a list of gray or probably gray
nodes. For the sake of simplicity, we have not done
so. []

We shall now demonstrate that the correctness cri-
teria CC 1 and CC2 are met.

PROOF. In order to prove that CC2 is met, we observe
that, because in the marking phase the collector does not
change (the shape of) the data structure, it suffices to
show that during the appending phase it appends only
garbage nodes to the free list. Because node nr. i is
appended after having been observed to be white, it
suffices to show that the relation "a white node with a
number _> i is garbage" (1) is an invariant of the append-
ing cycle's repeatable action, (2) holds when the collector
enters its appending cycle.

(1) We shall demonstrate the invariance first, and
shall do so by first proving it for the appending cycle's
repeatable action in isolation, and then showing that the
mutator leaves that proofs assertions invariant.

Because in the appending cycle's repeatable action i
is increased, the collector could only violate the relation
by making a nongarbage node white or by making a
(white) garbage node into nongarbage. By the alternative

Communica t ions November 1978
of Volume 21
the ACM N u m b e r 11

construct either violation is possible, but only with re-
spect to node nr. i; we can still guarantee "a white node
with a number > i is garbage," from which it follows that
the subsequent increase i:= i + 1 restores the original
relation.

Because i is a local variable of the collector, also the
mutator could only violate the assertions either by mak-
ing a nongarbage node white--which it does not, because
M 1 only shades--or by making a (white) garbage node
into nongarbage--which it does not either, because M 1
only redirects edges towards already reachable nodes
and, hence, leaves garbage garbage. Therefore the mu-
tator's actions do not invalidate the demonstration that
the relation is an invariant of the appending cycle's
repeatable action.

(2) To show next that the relation holds at the begin-
ning of the appending cycle, we have to demonstrate
(because i = 0) that the marking phase has established
that "all white nodes are garbage," which shall be shown
under the assumption that, at the beginning of the mark-
ing phase, there were no black nodes.

Because the absence of black nodes implies P1, and
because M 1 and C I have been carefully designed so as
to leave P1 invariant and not to introduce white roots,
"PI and there are no white roots" is clearly established
before and kept invariant during the marking cycle.
When furthermore all gray nodes have disappeared, our
target state, in which all reachable nodes are black and
all white nodes are garbage, has been reached.

The marking cycle terminates with a scan past all
nodes, during which no gray nodes are encountered. If
we had only the collector to consider, the conclusion that
at the end of such a scan gray nodes are absent--and
hence the target state has been reached--would be triv-
ial. Due to the ongoing activity of the mutator-- the
shading activity of which can introduce gray nodes!--a
more subtle argument, which now follows, is required.

First, we observe that the target state, characterized
by the absence of gray nodes, is stable: the absence of
white reachable nodes prevents the mutator from intro-
ducing gray ones, and the absence of gray nodes prevents
the collector from doing so.

Second, we show that a collector scan past all nodes,
during which no gray nodes are encountered, implies
that the stable target state has already been reached at
the beginning of that scan: because the mutator leaves
gray nodes gray and the collector did not color any nodes
during that scan, a gray node existing at its beginning
would, in contradiction to the assumption, have been
encountered during that scan. Hence we can conclude
that upon termination of the marking phase all white
nodes are indeed garbage.

Because the appending phase makes all black nodes
white, and the mutator does not introduce black nodes,
there are no black nodes at the end of the appending
phase; this justifies the assumption made above that
there would be no black nodes at the beginning of the
marking phase. Thus we have completed the proof that

971

starting the collector in the absence of black nodes
ensures that CC2 is met.

To prove that CC1 is met, we must first show that
the collector's two phases terminate properly.

Proper termination of the appending phase is ob-
vious, except for one thing: node nr. i must be black or
white, because the alternative construct does not cater
for the case "c = gray." But we have already proved that
at the end of the marking phase, there are no gray nodes
and every white node is garbage. Since the mutator
cannot shade a garbage node, and shading a black node
has no effect, it is clear that every node is either black or
white when it is examined during the appending phase.

Termination of the marking phase follows from the
fact that the integral quantity k + M*(the number of
nonblack nodes)--which, by definition, is nonnegative--
is left invariant by the activity of the mutator, and is
decreased by at least one in each iteration of the marking
cycle.

Consider now the situation at the beginning of an
appending phase. At that moment, the nodes are parti-
tioned into three sets:
- -The set of reachable nodes (they are black)
- -The set of white garbage nodes (during the first ap-

pending phase to come, they will be appended to the
free list)

- -The set of black garbage nodes (during the first ap-
pending phase to come, they will not be appended to
the free list, but they will be made white).

Calling the last set the set of "D-nodes," we have to show
that all D-nodes will be appended during the second
appending phase to come.

We call an edge "leading into D" when its target is
a D-node, but its source is not. Because D-nodes are
garbage, we can state that at the beginning of the first
appending phase, sources of edges leading into D are
white garbage nodes.

Since the D-nodes are garbage, the mutator will not
redirect edges so as to make them point to a D-node,
and since they are black to start with, during the first
appending phase the collector will not do so either. The
collector, however, will append all white garbage nodes,
which includes--see note 2--redirecting outgoing edges
of the nodes appended, so that, as a result, we can state
that at the end of the first appending phase

- -a l l D-nodes are white garbage nodes
-- there are no edges leading into D.

The absence of edges leading into D is an invariant
for the subsequent marking phase: the mutator does not
introduce them, because D-nodes are garbage, and the
collector does not redirect edges during its marking
phase. The continued absence of edges leading into D,
plus the fact that all D-nodes are white garbage to start
with, implies that the D-nodes remain white garbage
nodes during the subsequent marking phase: because
they are garbage, the mutator leaves them as they are,
and because they are all white, the collector is prevented

Communications November 1978
of Volume 2 l
the ACM Number 11

from shading them. (Shading the first D-node by the
collector would require the existence of an edge pointing
to it fi'om a gray node; in view of the absence of edges
leading into D, this gray node would have to be a D-
node, which is impossible.) Consequently, at the end of
the marking phase, all D-nodes are still white garbage
and will be appended to the free list during the subse-
quent appending phase. Hence, CC 1 is also met. []

By keeping P1 invariant during the marking cycle,
we obtained our coarse-grained solution. Encouraged by
this success, we tried to keep P1 also invariant in a freer-
grained solution--a solution in which the mutator's ac-
tion M1 was split into two atomic operations: one for
redirecting the edge and one for shading the new target.
In order to keep P1 invariant, the mutator had to shade
the future target first, and then redirect the edge towards
the node just shaded. This freer-grained solution--al-
though presented in a way sufficiently convincing to fool
ourselves--contained the following bug, discovered by
N. Stenning and M. Woodger [5].

Consider the following sequence of events:
1. Prior to introducing an edge from node A to node B,

the mutator shades node B (and goes to sleep)
2. The collector goes through a complete marking phase,

followed by an appending phase (node B is now
white, i.e. the mutator's shading has been undone! We
further note that there is no garbage)

3. The collector goes through part of the next marking
phase (and then goes to sleep), during which it so
happens that node A is made black and node B is left
white

4. The mutator (wakes up and) introduces without mak-
ing garbage the edge from A to B (P 1 is now violated)

5. The mutator removes all other ingoing edges of B--
the absence of garbage makes this possible--and goes
to sleep again (node B is now only reachable via the
edge from A)

6. The collector completes its marking phase (node B
has remained white)

7. The collector goes through its appending phase, dur-
ing which the reachable node B is erroneously ap-
pended to the free list.

This ill-fated effort convinced us that in the finer-
grained solution we were heading for, total absence of
an edge from a black node to a white one was a stronger
relation than we could maintain. However, it still seemed
reasonable to retain the notion of "gray" as "semi-
marked," more precisely, as representing an unfulfilled
marking obligation. This meant that we could use the
same collector. However, we had to find a different
coarse-grained mutator that we could use as a stepping
stone to our ultimate fine-grained solution.

5. A New Coarse-Grained Solution

For our new coarse-grained solution, we had to re-
place P1 by a weaker relation. (It was replaced by P2

972

and P3, defined below.) In our first solution, we had
• made essential use of the fact that during the marking
cycle, the validity of P 1 allowed us to conclude that the
existence of a white reachable node implied the existence
of a gray node. (It even implied the existence of a gray
reachable node, but the reachabihty of the gray node
was not essential.) For our new solution we needed a
weaker relation P2, from which the same conclusion
could be drawn. We defined a "propagation path" to be
one consisting solely of edges with white targets, and
starting from a gray node, and chose the following
relation:

P2: "for each white reachable node, there exists a prop-
agation path leading to it."

Note 4. The gray node of the propagation path is not
necessarily reachable. []

COROLLARY 1. I f each root is gray or black, the
absence of edges f rom black to white clearly implies that
relation 1>2 is satisfied. In particular, P2 is true at the
beginning of the marking cycle, because all roots have been
shaded and there are no black nodes.

In proving the correctness of our first solution, the
invariance of P1 was only needed to prove that, during
the marking cycle, the absence of gray nodes implies that
all white nodes are garbage. We can clearly use P2
instead of P 1 to draw the same conclusion. Therefore, to
prove the correctness of our new solution, we need only
prove that both the mutator and the marking collector
leave P2 invariant. However, P2 turned out to be too
weak a relation from which to conclude that its truth will
not be destroyed. To keep P2 invariant, we had to restrict
the existence of black-to-white edges by the following
further relation--analogous to P1, but weaker--

P3: "only the last edge placed by the mutator may lead
from a black node to a white one."

COROLLARY 2. In the absence of black nodes, P3 is
trivially satisfied. Hence it holds at the beginning of the
marking cycle.

By Corollaries l and 2, P2 and P3 is true at the
beginning of the marking cycle. To show that the mark-
ing cycle of our coarse-grained collector leaves P2 and
P3 invariant, we must show that the atomic operation
C1 cannot destroy its truth. Shading a node can cause
neither P2 nor P3 to become false; shading the successors
of a node implies that its outgoing edges are no longer
part of any propagation path, so making that node black
immediately afterwards does not make P2 false either.
Moreover, since its successors have just been shaded,
making the node black does not introduce a black-to-
white edge, and, hence, cannot make P3 false either.
Combining these results we conclude that in its marking
cycle the collector leaves P2 and P3 invariant.

All that remains to be done now in order to construct
a correct coarse-grained solution is to define a mutator
operation that leaves P2 and P3 invariant. When the
mutator redefines an outgoing edge of a black node, it

Communicat ions November 1978
of Volume 21
the ACM Number 11

may direct it towards a white node. This new black-to-
white edge is the one permitted by P3. We must prevent,
however, the previously redirected edge from also being
a black-to-white edge, and we therefore consider for our
coarse-grained mutator the following atomic operation:

M2: (shade the target of the previously redirected edge,
and redirect an outgoing edge of a reachable node
towards a reachable node).

N o t e 5. For the very first time that the mutator
redirects an edge, we can assume that (for lack of a
previously redirected edge) either the shading will be
suppressed or else an arbitrary reachable node will be
shaded. The choice does not matter for the sequel. []

Action M2 has been carefully chosen in such a way
that it leaves P3 invariant. We now prove that it leaves
the stronger relation P2 and P3 invariant as well, thereby
showing that the new mutator with our original collector
gives a correct solution.

PROOF. The action M2 cannot introduce new reach-
able nodes. Hence, every white node which is reachable
after the operation had a propagation path leading to it
before the operation. If the node whose successor is
redefined is black, then its outgoing edge was not part of
any propagation path, so the edges of the old propagation
paths will be sufficient to provide the propagation paths
needed to maintain P2. (We may not need all of them
because of the shading operation, and because some
white reachable nodes may have been made unreacha-
ble.) If the node whose successor is redefined was white
or gray to start with, then the net result of action M2 will
be a graph without edges from a black node to a white
one: if one existed, then its target has now been shaded,
and no new one has been introduced since the source of
the new edge is not black. The roots must still be gray or
black, so by Corollary 1, P2 still holds. []

6. A Fine-Grained Solution

To complete our task, we now use the coarse-grained
solution of Section 5 as a stepping stone to a fine-grained
one. For our fine-grained mutator, M2 is split up into
the following succession of atomic operations:

M2.1: (shade the target of the previously redirected
edge);

M2.2: (redirect an outgoing edge of a reachable node
towards a reachable node)

In the collector, we break open C 1 as the sequence of
five atomic operations (ml and m2 being local variables
of the collector):

C 1.1: (m 1 := number of the left-hand successor of node
hr. i);

CI.2: (shade node nr. ml) ;
C1.3: (m2:= number of the right-hand successor of node

hr. i);
C 1.4: (shade node nr. m2);
CI.5: (make node nr. i black).

973

We first observe that the collector's action of shading
a node commutes with any number of mutator actions
M2.1 and M2.2; without loss of generality we can, there-
fore, continue our discussion as if the four atomic oper-
ations C 1.1 through C 1.4 were replaced by a succession
of the following two atomic operations:

Cl . la : (shade the left-hand successor of node nr. i);
C I.3a: (shade the right-hand successor of node nr. i).

Examining the proof for our coarse-grained solution,
it is clear that in order to prove the correctness of this
fine-grained one, it suffices to prove that P2 and P3 is
still invariant during the (fine-grained) marking cycle.
We shall prove the invariance of P2 and P3 by proving
the invariance of a stronger relation.

For the purpose of its defmition, we first introduce
the notion of so-called "C-edges." Loosely formulated,
C-edges are the edges, the sources of which have been
detected as gray by the collector's marking cycle. More
precisely, the set of C-edges is empty at the beginning of
the marking cycle, and the actions C1. la and C1.3a add
to it the left-hand and fight-hand outgoing edge of node
nr. i, respectively. Note that the formulation has been
chosen so as to make it clear that, from C 1.1 a onwards,
being a C-edge is a property of the left-hand outgoing
edge of node nr. i, independent of the node it points to.
In particular, being a C-edge is invariant with respect to
redirection of that edge by the mutator.

N o t e 6. We only define the set of C-edges for our

benefit. The set is not explicitly updated, although the
collector could easily do so. In the jargon, the term
"ghost variable" is sometimes used for such an entity. []

The strengthened versions of P2 and P3 can now be
formulated as follows:

P2a: "every root is gray or black, and for each white
reachable node there exists a propagation path
leading to it, containing no C-edges"

P3a: "there exists at most one edge "E" satisfying
pr: " (E is a black-to-white edge) or

(E is a C-edge with a white target);"
the existence of such an E satisfying pr implies that
the mutator is between action M2.2 and the sub-
sequent action M2.1, and that E is identical with
the edge most recently redirected by the mutator."

We now prove that P2a and P3a holds when the
collector executes its marking cycle.

PROOF. We first observe that P2a holds at the begin-
ning of the marking cycle, thanks to Corollary 1 and the
fact that the set of C-edges is then empty. As there are
neither C-edges nor black nodes at the beginning of the
marking cycle, there is no edge E satisfying pr, so at the
beginning of the marking cycle P3a holds as well.

We further make the general remark that none of the
operations M2.1, M2.2, Cl . la , C1.3a, and CI.5 intro-
duces new white reachable nodes. Consequently, when
proving the invariance of P2a under these operations, it
suffices to show that the existence, before the operation,

Communicat ions November 1978
of Volume 2 l
the ACM Number 11

of a propagation path without C-edges, leading to a
reachable node that is white before and after the opera-
tion, implies the existence afterwards of such a propa-
gation path leading to that node.

The invariance of P2a and P3a with respect to the
three shading operations M2.1, C 1. l a, and C 1.3a can be
dealt with simultaneously. Propagation paths leading to
a reachable node that is white both before and after the
shading operation are either left intact or are shortened
by it. I f these propagation paths did not contain C-edges
before the shading operation, then they won't do so
afterwards. The shading operations of the collector do
create new C-edges, but these are C-edges with gray or
black targets, and, therefore, cannot belong to any prop-
agation path. This proves the invariance of P2a. Relation
P3a is invariant as well, because the collector's shading
acts introduce neither a black-to-white edge, nor a C-
edge with a white target, and operation M2.1 only re-
moves the edge E if it did exist.

Action C1.5 leaves P2a invariant: because the out-
going edges of the gray node nr. i are C-edges, they don't
belong to existing propagation paths without C-edges,
and hence making that node black leaves the existence
of such paths unaffected. Action C1.5 also leaves P3a
invariant, as it introduces no new solutions E of pr: it
may introduce a black-to-white edge, but then that edge
was already a C-edge with a white target.

Action M2.2 leaves P3a invariant because, if P3a held
before M2.2, no edge E satisfying pr existed, and the
redirection can create at most one such edge. We finally
prove the invariance of P2a under M2.2. If the edge to
be redirected is a C-edge or if its source is black, it does
not belong to a propagation path without C-edges. Since,
furthermore, M2.2 does not create C-edges, the existence
of such paths remains in this case unaffected. In the
other case--i.e, if the edge to be redirected is not a C-
edge and has a white or gray source-- the already estab-
lished invariance of P3a implies after M2.2 the absence
of black-to-white edges and the absence of C-edges with
a white target. In view of Corollary 1, these absences
imply for all white reachable nodes the existence of
propagation paths without C-edges. []

In Retrospect

It has been surprisingly hard to find the published
solution and justification. It was only too easy to design
what looked--sometimes even for weeks and to many
people--l ike a perfectly valid solution, until the effort to
prove it to be correct revealed a (sometimes deep) bug.
The reasoning we have used contains most of the ideas
needed for a formal proof in the style of [3] or [2].
Because the inclusion of such a proof would result in a
paper, possibly tedious, but in any case very different
from what we intended to write this time, we have
confined ourselves to our informal justification (which
we do not regard as an adequate substitute for a formal

974

correctness proof). Whether our stepwise approach is
more generally applicable, is at the moment of writing
still an open question.

When it is objected that we still needed rather subtle
arguments, we can only agree wholeheartedly: all of us
would have preferred a simpler argument! Perhaps we
should conclude that constructions that give rise to such
tricky problems are not to be recommended. One firm
conclusion, however, can be drawn: to believe that such
solutions can be found without a very careful justification
is optimism on the verge of foolishness.

History and Acknowledgments. (As in this combina-
tion, this is our first exercise in international and inter-
company cooperation, some internal credit is given as
well.) After careful consideration of a wider class of
problems the third and the fifth authors selected and
formulated this problem, and did most of the preliminary
investigations; the first author found a first solution
during a discussion with the fifth author, W.H.J. Feijen,
and M. Rem. It was independently improved by the
second au thor - - to give the free list a root and mark its
nodes as well, was his suggestion--and, on a suggestion
made by John M. Mazola, by the first and the third
author. The first and the fourth merged these embellish-
ments, but introduced the bug that was found by N.
Stenning and M. Woodger. The final version and its
justification are the result of several trans-Atlantic iter-
ations. The active and inspiring interest shown by David
Giles is mentioned in gratitude. As with each new ver-
sion of the manuscript the proofs became simpler, we
also express our indebtedness to R. Stockton Gaines,
whose comments on an earlier version caused two further
iterations.

Glossary of Names

Correctness criteria
CC 1: Every garbage node is eventually appended to the

free list. More precisely, every garbage node pres-
ent at the beginning of an appending phase will
have been appended by the end of the next ap-
pending phase.

CC2: Appending a garbage node to the free list is the
collector's only modification of (the shape of) the
data structure.

Atomic operations of the mutator
M l: (redirect an outgoing edge of a reachable node

towards an already reachable one, and shade the
new target).

M2: (shade the target of the previously redirected
edge, and redirect an outgoing edge of a reachable
node towards a reachable node).

M2.1: (shade the target of the previously redirected
edge).

M2.2: (redirect an outgoing edge of a reachable node
towards a reachable node).

Communicat ions November 1978
of Volume 2 l
the ACM Number 11

Atomic operations of the collector

C h (shade the successors of node nr. i and make
node nr. i black).

C1. l: (ml := number of the left-hand successor of node
nr. i).

C1.2: (shade node nr. ml) .
CI.3: (m2:= number of the right-hand successor of

node nr. i).
CI.4: (shade node nr. m2).
CI.5: (make node nr. iblack).
C I. la: (shade the left-hand successor of node nr. i).
CI.3a: (shade the right-hand successor of node nr. i).

Invariant relations

P 1: No edge points from a black node to a white one.
P2: For each white reachable node, there exists a prop-

agation path leading to it.
P3: Only the last edge placed by the mutator may lead

from a black node to a white one.

P2a: Every root is gray or black, and for each white
reachable node there exists a propagation path
leading to it, containing no C-edges.

P3a: There exists at most one edge "E" satisfying
pr: "(E is a black-to-white edge) or

(E is a C-edge with a white target)";
the existence of such an E satisfying pr implies that
the mutator is between action M2.2 and the sub-
sequent action M2.1, and that E is identical with
the edge most recently redirected by the mutator.

Rece ived July 1977; revised F e b r u a r y 1978

Refe rences
1. Dijkstra, E.W. G u a r d e d c o m m a n d s , n o n d e t e r m i n a c y and formal
der iva t ion of p rograms . Comm. A C M 18, 8 (Aug. 1975), 453~;57.
2. Gries , D. A n exercise in p rov ing paral lel p r o g r a m s correct.
Comm. A C M . 20, 12 (Dec. 1977), 921-930.
3. L a m p o r t , L. Proving the correctness of mul t iprocess p rograms .
I E E E Trans. So f tware Eng. SE-3, 2 (March 1977), 125-143.
4. Steele, Jr., G .L . Mult iprocess ing compac t i fy ing ga rbage
collection. Comm. A C M 18, 9 (Sep. 1975), 495-508.
5. Woodger , M. Pr ivate communica t ions .

P r o f e s s i o n a l A c t i v i t i e s :
Calendar of Events

ACM's calendar policy is to list open com-
puter science meetings that are held on a not-for-
profit basis. Not included in the calendar are edu-
cational seminars, institutes, and courses. Sub-
mittals should be substantiated with name of the
sponsoring organization, fee schedule, and chair-
man's name and full address.

One telephone number contact for those in-
terested in attending a meeting will be given when
a number is specified for this purpose.

All requests for ACM sponsorship or coop-
eration should be addressed to Chairman, Con-
ferences and Symposia Committee, Seymour J.
Wolfson. 643 MacKenzie Hall. Wayne State Uni-
versity, Detroit, MI 48202. with a copy to Louis
Flora, Conference Coordinator, ACM Head-
quarters. 1133 Avenue of the Americas, New York,
NY 10036; 212 265-6300. For European events, a
copy of the request should also be sent to the
European Representative. Technical Meeting Re-
quest Forms for this purpose can be obtained
from ACM Headquarters or from the European
Regional Representative. Lead time should include
2 months (3 months if for Europe) for processing
of the request, plus the necessary months (mini-
mum 2) for any publicity to appear in Communi-
cations.

• This symbol indicates that the Conferences
and Symposia Committee has given its approval
for ACM sponsorship or cooperation.
In this issue the calendar is given in its entirety.
New Listings are shown first; they will appear
next month as Previous Listings.

NEW LISTINGS
22-24 November 1978
Performance Evaluation of Computer Sys-

tems, Brussels, Belgium. Sponsor: lAG. Contact:
IAG Headquarters, 40, Paulus Potterstraat, 1071
DB Amsterdam, The Netherlands.

3-8 January 1979
A A A S Annual Meeting, Houston, Tex. Spon-

sor: American Association for the Advancement
of Science. Contact: AAAS Meetings Office, 1776
Massachusetts Ave., NW, Washington, DC 20036.

8-9 January 1979
First International Symposium on Mini and

Microcomputers in Control, fslandia Hyatt
House, San Diego, Calif. Sponsors: International
Society for Mini and Microcomputers, IEEE
Control Systems Society. Contact: The Secretary,
Computers in Control Symposium, Box 2481,
Anaheim, CA 92804; 714 774-6144.

16-18 January 1979
Seventh International Symposium on Mini

and Microcomputers, Anaheim, Calif. Sponsor:
International Society for Mini and Microcomput-
ers. Contact: MIMI 79 Secretary, Box 2481, Ana-
heim, CA 92804; 714 774-6144.

29 March 1979
Federal A D P Expo 79 of Tidewater, Nor-

975

folk, Va. Sponsor: Federal ADP Council, Greater
Tidewater Area. Contact: Dorothy Dalton,
NARDACWASH DETLANT. CINCLANT Com-
pound, Norfolk, VA 23511; 804 444-6906.

1-4 April 1979
Southeastcon 79, Roanoke, Va. Sponsor:

IEEE Region 3. Gen. chin. K. Reed Thompson,
General Electric Co., 1501 Roanoke Blvd., Room
244, Salem, VA 24153; 703 387-7370.

2-6 April 1979
Tenth Southeastern Conference on Combi-

natorics, Graph Theory and Computing, Florida
Atlantic University, Boca Raton, Fla. Sponsor:
Florida Atlantic University. Contact: Frederick
Hoffman, Dept. of Mathematics, Florida Atlantic
University, Boca Raton, FL 33431; 305 395-5100.

5-6 April 1979
Computers in Ophthalmology, St. Louis, Me.

Sponsor: Washington University School of Medi-
cine. Contact: Robert Greenfield, Biomedical
Computer Laboratory, Washington University
School of Medicine, 700 South Euclid Ave., St.
Louis, M e 63110.

6 April 1979
Sixth Annual Indiana University Computer

Network Conference on Academic Computer Ap-
plications, UI Northwest, Gary, Ind. Sponsor:
Indiana University Computing Network. Gen.
chin: Robert Andree, Indiana University-North-
west, 3400 Broadway, Gary, IN 46408.

28-30 May 1979
International Symposium on Multiple-Valued

Logic, Bath, England. Sponsor: IEEE-CS. Con-
tact: Jon T. Butler, Dept. of EE and CS, The
Technological Institute, Northwestern Univer-
sity, Evanston, IL 60201.

11-13 June 1979
Teleinformatics 79, Paris, France. Sponsors:

IFIP, UNESCO. ICCC, Commission of European
Communities. Contact: Thomas H. Martin, An-
nenburg School of Communications, University of
Southern California, Los Angeles, CA 90007.

20-22 June 1979
• S e c o n d M A C S Y M A U s e r s ' C o n f e r e n c e ,
Shoreham Americana, Washington, D.C. Spon-
sors: M.I.T., U.S. Army, U.S. Navy, with coop-
eration of ACM SIGSAM. Gen. chm: Elizabeth
Cuthill, Code 1805, David Taylor Naval Ship
Research and Development Center, Bethesda, MD
20084.

2-4 July 1979
• International Symposium on Semantics of
Concurrent Computation, Evian. France. Spon-
sor: European Association for Theoretical Com-
puter Science in cooperation with ACM SIGACT.
Contact: G. Kahn, IRIA, B.P. 105, 78150 Le
Chesnay, France.

6-8 August 1979
Seventh Conference on Electronic Compu-

tation, St. Louis, Mo. Sponsors: ASCE, Washing-
ton University. Contact: C. Wayne Martin, 212
Bancroft Bldg., University of Nebraska, Lincoln,
NE 68588.

4-6 September 1979
International Conference and Exhibition on

Engineering Software, University of Southampton,

C o m m u n i c a t i o n s
of
the A C M

England. Contact: R. Adey, ENGSOFT, 6 Cran-
bury Place, Southampton S02 OLG, England.

29-31 October 1979
s•or: A C M 79, Detroit Plaza, Detroit, Mich. Spon-

ACM. Gen. chin: Mayford L. Roark. Ford
Motor Co., The American Road, Room 895 WHQ,
Dearborn, MI 48121; 313 323-1690.

10-12 December 1979
• 7th Symposium on Operating System Prin-
ciples, Asilomar Conference Grounds, Pacific
Grove, Calif. Sponsor: ACM SIGOPS. Conf.
chin: Michael D. Schroeder, Xerox Palo Alto
Research Center, 3333 Coyote Hill Road, Palo
Alto, CA 94304; 415 494-4310.

PREVIOUS LISTINGS
15-17 November 1978

• S o f t w a r e Q u a l i t y A s s u r a n c e W o r k s h o p :
Functional and Performance Issues, San Diego.
Calif. Sponsors: ACM SIGMETRICS. SIGSOFT.
and Los Angeles Chapter. Gem chin: A.C. (Toni)
Shetler. Xerox Corp.. A3-49. 701 South Aviation
Blvd.. El Segundo. CA 90245; 213 679-4511 x1968.

19-22 November 1978
• M I C R O l l - - A n n u a l M i e r o p r o g r a m m i n g
Workshop, Pacific Grove. Calif. Sponsors: ACM
SIGMICRO, IEEE-CS. Conf. chin: Stanley Ha-
bib, Computer Science Dept., CCNY, 140th St.
and Convent Ave., New York, NY 10031.

21-25 November 1978
15th International Automation and Instru-

mentation Conference and Exhibition, Milan,
Italy. Organizers: FAST, ANIPLA. Contact:
Conference Secretariat. Viale Premuda 2, 20129
Milan, Italy.

27-29 November 1978
Symposium on C A D of Digital Electronic

Circuits and Systems, Brussels, Belgium. Spon-
sor: Commission of the European Community.
Contact: Kennass Belgium Congress SA, Rue de
l'Industrie 17, 1040 Brussels, Belgium.

4-6 December 1978
• A C M 78, Sheraton Park Hotel, Washington,
D.C. Sponsor: ACM. Gen. chin: Richard H. Aust-
ing, Dept. of Computer Science, University of
Maryland, College Park, MD 20742; 301 454-2002.

4-6 December 1978
• Winter Simulation Conference, Miami Beach,
Fla. Sponsors: ACM SIGSIM, NBS. AIIE. IEEE
Systems, Man. and Cybernetics Society. ORSA.
TIMS, SCS. Prog. chm: Norman R. Nielsen, In-
formation Science Laboratory, (J-1041), SRI In-
ternational. 333 Ravenswood Ave., Menlo Park,
CA 94025; 415 326-6200 x 2859.

4-6 December 1978
National Telecommunications Conference,

Birmingham. Ala. Sponsors: IEEE Communica-
tions Society, Aerospace and Electronic Systems
Society, and Geoscience Group. Contact: Ronald
C. l-louts. Box 2478, University, AL 35486.

5-8 December 1978
CMG IX International Conference on Man-

agement and Evaluation of Computer Perform-
ance, Fairmont Hotel. San Francisco, Calif. Spun-

(Calendar continued on p. 980)

N o v e m b e r 1978
V o l u m e 21
N u m b e r 11

