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processor is spent on "operating the system." With the 
advent of multiprocessor installations, the question arises 
to what extent such "housekeeping activities" can be 
carded out concurrently with the computation(s) proper. 
One of the problems that have to be dealt with is 
organizing the cooperation of the concurrent processes 
so as to keep exclusion and synchronization constraints 
extremely weak, in spite of very frequent manipulations 
(by all processes involved) of a large shared data space. 
The problem of garbage collection was selected as one 
of the most challenging problems in this respect (and 
hopefully a very instructive one). Our exercise has not 
only been very instructive, but at times even humiliating, 
as we have fallen into nearly every logical trap possible. 
In our presentation we have tried to blend a condensed 
design history--so as not to hide the heuristics too 
much--with a rather detailed justification of our final 
solution. We have tried to keep exclusion and synchro- 
nization constraints between the processes as weak as 
possible, and how to deal with the complexities engen- 
dered by doing so is the main topic of this paper. 

It has hardly been our purpose to contribute specifi- 
cally to the art of garbage collection, and consequently 
no practical significance is claimed for our solution. For 
that reason we felt justified in tackling a specific form of 
the garbage collection problem as it presents itself in the 
traditional implementation environment of pure Lisp. 
We are aware of the fact that we have left out of 
consideration several aspects of the garbage collection 
problem that are important from other points of view 
(see, for instance, [4]). 

In our abstract form of the problem, we consider a 
directed graph of varying structure but with a fixed 
number of nodes, in which each node has at most two 
outgoing edges. More precisely, each node may have a 
left-hand outgoing edge and may have a right-hand 
outgoing edge, but either of them or both may be missing. 
In this graph a fixed set of nodes exists, called "the 
roots." A node is called "reachable" if it is reachable 
from at least one root via a directed path along the edges. 
The subgraph consisting of all reachable nodes and their 
interconnections is called "the data structure;" nonreach- 
able nodes, i.e. nodes that do not belong to the data 
structure, are called "garbage nodes." The data structure 
can be modified by actions of the following types: 

(1) Redirecting an outgoing edge of a reachable node 
towards an already reachable one. 

(2) Redirecting an outgoing edge of a reachable node 
towards a not yet reachable one without outgoing edges. 

(3) Adding--where an outgoing edge was missing-- 
an edge pointing from a reachable node towards an 
already reachable one. 

(4) Adding--where an outgoing edge was missing-- 
an edge pointing from a reachable node towards a not 
yet reachable one without outgoing edges. 

(5) Removing an outgoing edge of a reachable node. 
In actions (1), (2), and (5) nodes may be disconnected 
from the data structure and thus become garbage. In 
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actions (2) and (4) a garbage node is "recycled," i.e. 
made reachable again. 

The representation of the graph is such that each 
node can be identified independently of the structure of 
the graph, and that finding the left- or right-hand suc- 
cessor of a node can be regarded as a primitive operation, 
whereas finding its predecessor nodes would imply a 
search through the complete collection of nodes. Because 
of this representation, finding garbage is a nontrivial 
task, which is delegated to a so-called "garbage collec- 
tor." The garbage collector maintains a so-called "free 
list," i.e. a collection of nodes that have been identified 
as garbage and are available to be added to the data 
structure. 

In classical Lisp implementations the computation 
proper (i.e. the modifications of the data structure as 
described above) proceeds until the free list is exhausted 
(or nearly so). Then the computation proper comes to a 
grinding halt, after which garbage is collected: starting 
from the roots, all reachable nodes are marked; upon 
completion of this marking cycle all unmarked nodes 
can be concluded to be garbage, and are appended 
to the free list, after which the computation proper is 
resumed. 

The minor disadvantage of this arrangement is the 
delay of the computation proper; its major disadvantage 
is the unpredictability of these garbage collecting inter- 
ludes, which makes it hard to design such systems so as 
to meet real-time requirements as well. It was therefore 
tempting to investigate whether a second processor-- 
called "the collector"--could collect garbage concur- 
rently with the activity of the other processor--for the 
purpose of this discussion called "the mutator"--which 
would be dedicated to the computation proper. In order 
to investigate an exemplary problem, we have imposed 
upon our solution a number of constraints (compare 
[4]). 

First, we wanted the synchronization and exclusion 
constraints between the mutator and the collector to be 
as weak as possible. (The classical implementation pre- 
sents in this respect the other extreme: a garbage collect- 
ing interlude can in its entirety be regarded as a single 
critical section that excludes all mutator activity!) We 
wanted in particular to avoid highly frequent mutual 
exclusion of "elaborate" activities, as this would defy our 
aim of concurrent activity: our ultimate aim was some- 
thing like no more interference than the mutual exclusion 
of a single read and/or  write of the same single variable. 
One synchronization measure is evidently unavoidable: 
when needing a new node from the free list, the mutator 
may have to be delayed until the collector has appended 
some nodes to the free list. 

Second, we wanted to keep the overhead on the 
activity of the mutator (as required for the cooperation 
with the collector) as small as possible. 

Third, we did not want the mutator's ongoing activity 
to impair the collector's ability to identify garbage more 
than we could avoid. With a major cycle of the collector 
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consisting of a marking phase followed by an appending 
phase, it is impossible to guarantee that the appending 
phase will append all garbage existing at its beginning: 
new garbage could have been created between an ap- 
pending phase and the preceding marking phase. We do 
require:, however, that such garbage, existing at the be- 
ginning of an appending phase but not identified as such 
by the collector, will be appended in the next major cycle 
of the collector. Moreover, we have rejected solutions in 
which garbage created during a marking phase was 
guaranteed not to be appended during the next append- 
ing phase. 

2. The Grain of  Action 

The fact that we require concurrent operation of two 
or more processes raises the problem of defining the net 
effect of such concurrent operation. In order to explain 
the problem we introduce the terms "local variable" for 
those variables that are accessed by one process only, 
and "shared variable" for those that are accessed by at 
least two processes. 

As long as our concurrent processes only operate on 
local variables, there is no problem: we suppose that no 
one will have any doubt as to the net result of the 
concurrent operation of the two programs So and $1 
given by 

So :x :=0  and $1:y:=3 

This, however, changes radically as soon as we con- 
sider shared variables. With shared "z" some readers 
may assume that the concurrent operation of $2 and $3, 
given by 

S2:z:=0 and $3:z:=3 

will yield either z = 0 or z = 3, but in that case we must 
destroy that illusion! We need only assume z to consist 
of two bits z0 and Zl (z = 2Zl + Zo), and $2 and $3 on 
closer scrutiny to be composed as follows: 

S2:z0: = 0; and S3:z0:= 1; 
z~:= 0 z~:= 1 

to reach the conclusion that z = 1 and z = 2 are also 
possible results. 

In order to express our intentions unambiguously, we 
introduce the notion of "atomic operations," denoted in 
this paper by a piece of program placed between a pair 
of  angle brackets (we do not allow nested use of such 
pairs). We further require all accesses to shared variables 
to be part of  an atomic operation and postulate that the 
net effect of our concurrently operating processes is as if 
atomic operations are mutually exclusive, i.e. the execu- 
tion periods of atomic operations don't overlap. (We 
note in passing that it is pointless to introduce atomic 
operations accessing local variables only.) As a result it 
is now clear that concurrent operation of  

$2: (z:= 0) and Sa: (z:=3) 
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will, indeed, yield either z = 0 or z = 3 (even if, upon 
closer scrutiny, the assignments to z turn out to be 
composed of successive operations on the individual 
bits). 

Having introduced atomic operations, we are now in 
a position to define a (partial) ordering between pro- 
grams based on the notions "coarser-grained" and 
"finer-grained" ("A is coarser-grained than B" is equiv- 
alent to "B is finer-grained than A"). We say that A is 
coarser-grained than B (or alternatively, "has a coarser 
grain of action") if B is the result of replacing an atomic 
operation of A by a piece of program containing at least 
two atomic operations, and having all by itself the same 
net effect as the original operation. 

Since a possible sequencing of the atomic operations 
in a coarse-grained solution of a problem can always be 
regarded as a possible sequencing of the atomic opera- 
tions in a finer-grained solution, the proof that the fmer- 
grained solution is correct implies the same for the 
coarse-grained solution. Hence the advantage of coarser- 
grained solutions is that their correctness proofs are 
easier than those for finer-grained ones; their disadvan- 
tage, however, is that their implementation usually re- 
quires more severe mutual exclusion measures, which 
tend to defeat the aim of concurrency. 

3. Reformulation of  the Problem 

Our first step was to restate the problem in as simple 
a form as we could. We found two important simplifi- 
cations. 

First, we followed the not unusual practice of intro- 
ducing a special root node, called "NIL ,"  whose two 
outgoing edges point to itself, and representing a for- 
merly missing edge now by an edge with the node N I L  
as its target. (In order to shorten our discussions we use 
the terms "source" and "target" of an edge: if an edge 
points from node A to node B, then A is said to be the 
source and B is said to be the target of that edge.) For 
us, the introduction of the node N I L  was definitely much 
more than just a coding trick. It allowed us to view data 
structure modifications of types (3) and (5) as special 
cases of  type (1), and those of type (4) as special cases of 
type (2), so that we were left with only two types of 
modification. In the sequel it will become clear that the 
reduced diversity thus achieved has been absolutely es- 
sential for our purposes. 

A second simplification was obtained by viewing the 
nodes of the free list no longer as garbage, but as part of 
the data structure. This was achieved by introducing one 
or more special root nodes, and by linking the free nodes 
in such a way that N I L  and all free nodes, but no others, 
are reachable from these special root nodes. This implies 
that from now on the nodes on the free list are reachable, 
and thus considered to be part of the data structure. A 
modification of type (2) is now replaced by a sequence 
of modifications of  type (l): first redirecting an edge 
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towards a node in the free list, then redirecting edges of 
free list nodes so as to remove that node from the free 
list. (Note that the operations must be performed in such 
an order that the node in question remains permanently 
reachable.) Making the free list part of the data structure 
is again no mere coding trick. It allowed us to eliminate 
modifications of type (2): now only o n e  type of modifi- 
cation of the data structure is left to the mutator, namely 
type (1) "redirecting an outgoing edge of a reachable 
node towards an already reachable one." (Even the 
actions of the collector, required for appending an iden- 
tified garbage node to the free list, are very close to the 
one operation available to the mutator. The only differ- 
ence is that we have to allow the collector to redirect the 
outgoing edge of a reachable node towards a not yet 
reachable one.) 

The activities of mutator and collector can now be 
described as repeated executions of 

mutator: "redirect an outgoing edge of a reachable 
node towards an already reachable one" 

collector: marking phase: 
"mark all reachable nodes"; 

appending phase: 
"append all unmarked nodes to the free 
list ar/d remove the markings from all 
marked nodes". 

The mutator and the collector must cooperate in such a 
fashion that the following two correctness criteria are 
satisfied. 

CC 1: Every garbage node is eventually appended to the 
free list. More precisely, every garbage node pres- 
ent at the beginning of an appending phase will 
have been appended by the end of the next ap- 
pending phase. 

CC2: Appending a garbage node to the free list is the 
collector's only modification of (the shape of) the 
data structure. 

Our final goal was a fine-grained solution in which 
each atomic operation would be something like a single 
read or write of a variable. More precisely, we wanted in 
our final solution to accept the following atomic opera- 
tions: "redirecting an edge," "finding the (left- or right- 
hand) successor of a node," and "testing and/or  setting 
certain attributes of a node." (The latter class of opera- 
tions is obviously needed for marking the nodes.) The 
implementation of these atomic operations falls outside 
the scope of this paper. 

Moreover, we allow ourselves the (not essential but 
convenient) luxury of considering "append node nr. i to 
the free list" to be an atomic operation available to the 
collector. We felt entitled to do so because its finer- 
grained implementation in terms of a succession of re- 
direction of edges is simple provided the free list remains 
long enough, for then the nodes involved are not touched 
by the mutator. Nor do we describe how to prevent the 
free list from getting too short, i.e. how to delay the 
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mutator, if  necessary, when it is about to take a node 
from the free list. (The latter is the familiar consumer/ 
producer coupling, a fine-grained solution of  which has 
been given in [3].) 

We have taken the course of first finding a coarse- 
grained solution, and then transforming it into a freer- 
grained one. This two-stage approach has been of great 
heuristic value; it was, however, not without pitfalls. 

4. The First Coarse-Grained Solution 

A counterexample taught us that the goal "no extra 
overhead for the mutator" is unattainable. Suppose that 
the nodes A and B are permanently reachable via a 
constant set of edges, while node C is initially reachable 
only via an edge from A to C. Suppose furthermore that, 
from then on, the mutator performs repeatedly a se- 
quence of redirections with the following results: 

(1) making an outgoing edge from B point to C 
(2) making the edge from A to C disappear 
(3) making an outgoing edge from A point to C 
(4) making the edge from B to C disappear. 

Since the collector observes nodes one at a time, it may 
never discover that C is reachable: while the collector is 
observing A for its successors, C may be reachable via B 
only, and the other way round. We therefore expect that 
the mutator may have to mark in some way the target 
nodes of edges it redirects. 

Marking will be described in terms of colors. We start 
with all nodes white, and will design the algorithm so 
that the combined activity of the collector's marking 
phase and the mutator will make all reachable nodes 
black. All nodes that are still white after the marking 
phase will thus be garbage. For any repetitive process-- 
and the marking phase certainly is one--we have always 
two concerns (see [1]): first, we must have a monotonicity 
argument on which to base our proof of termination, 
and second, we must fred an invariant relation which is 
initially true and not destroyed during the repetition, so 
that it still holds upon termination. For the monotonicity 
argument we choose (fairly obviously) that during the 
marking phase no node will go back from black to white. 
Since we will soon introduce the color "gray," we restate 
this more generally as: "during the marking phase no 
node will become lighter." (Gray is darker than white 
and lighter than black.) For the invariant relation-- 
which must be satisfied both before and after the collec- 
tor's marking cycle--we must generalize the initial and 
final states of the marking cycle. Our first choice (perhaps 
less obvious, but not unnatural) was 

P 1: "no edge points from a black node to a white one." 

Additional action is now required from the mutator 
when it is about to introduce an edge from a black node 
to a white one, since just placing it would cause a 
violation of P I. The monotonicity argument requires 
that the black source node of the new edge has to remain 
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black, so P 1 tells us that the target node of  the new edge 
cannot be allowed to remain white. But the mutator 
cannot just make it black, because that could cause a 
violation of  P I between the new target node and its 
immediate successors. We therefore introduce the inter- 
mediate color "gray," and let the mutator change the 
new target's color from white to gray; for reasons of  
simplicity, the mutator shall do so independently of the 
color of  the new edge's source. Our choice was a coarse- 
grained mutator that repeatedly performs the following 
atomic operation, in which "shading a node" means 
making it gray if it is white, and leaving it unchanged if 
it is gray or black: 

MI: (redirect an outgoing edge of a reachable node 
towards an already reachable one, and shade the 
new target). 

Note  1. Disregarding P l, the problem of  node C 
from the counterexample at the beginning of  this section 
could also have been solved by having the mutator shade 
the old target instead of  the new one. This, however, 
would lead to a solution in which garbage created during 
a marking phase is guaranteed not to be collected during 
the next appending phase. Hence, we rejected this solu- 
tion in accordance with the last sentence of  Section 1. [] 

We have decided that the collector's marking phase 
should make all reachable nodes black while keeping P 1 
invariant. This decision leads fairly directly to a coarse- 
grained collector. Like the mutator, the collector's mark- 
ing phase uses the intermediate color gray to preserve 
P 1. Gray nodes are then ones which must be made black, 
but which might still have white successors. Hence, 
whenever it encounters a gray node, the marking phase 
must make it black and shade its successors. For our 
coarse-grained collector, let the entire operation of  black- 
ening a gray node and shading its successors be a single 
atomic operation. Since the marking phase must make 
all gray nodes black, it can terminate only when there 
are no more gray nodes. The obvious way of  trying to 
guarantee the absence of  gray nodes is to let the marking 
phase terminate when the collector had observed all 
nodes in some order without finding any gray ones. This 
produces the collector given below; it is described with 
the "if...fi" and "do...od" constructs introduced in [1]. 
(The idea of  "B ~ S," a so-called "guarded command," 
is that the statement list S is only eligible for execution 
in those initial states for which B is true. Below we need 
only a few simple cases. The repetitive construct "do B 

S o d "  is semantically equivalent to the now traditional 
"while B do S od." The alternative construct "if B 1 
S1 n B2 ~ $2 fi" requires B1 or B2 to hold to start with; 
if B2 were non B1, it would be semantically equivalent 
to the now traditional "if B1 then S1 else $2 ft.") As 
before, angle brackets are used to enclose atomic opera- 
tions. Comments have been inserted between braces, and 
labels have been inserted for future reference. 

The collector has two local integer variables i and k, 
and a local variable c of  type color; the nodes are 
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assumed to be numbered from 0 through M - 1. Our 
coarse-grained collector then repeatedly executes the 
following program: 
marking  phase: 
begin {there are no black nodes} 

"shade all roots" {P 1 and there are no  white roots} ; 
i:= 0; k:= M; 

marking  cycle: 
do k > 0 ~ {PI and there are no  white roots} 

(c:= color of  node nr. i); 
if c = gray ~ k:= M; 

CI :  (shade the successors of  node nr. i and make node nr. i 
black) 

n c ~ g r a y ~ k : = k -  1 
11; 
i:= (i  + 1) mod M 

od 
end {P1 and there are no white roots and no gray nodes, h e n c e - - a s  is 

easily seen- -a l l  white nodes are garbage} ; 
appending  phase: 
begin i:= 0; 

appending  cycle: 
do i < M ~ {all nodes with a n u mb er  < i  are nonblack; all nodes 

with a n u m b e r  ~ i  are nongray,  and are garbage, if white} 
(c:= color of  node nr. i); 
if c = white ---, (append node nr. i to the free list) 
I] c = black --~ (make  node nr. i white)  
fi; 
i : = i +  1 

od {there are no black nodes} 
end 

Note  2. Appending node nr. i to the free list includes 
redirecting its outgoing edges so that no other nodes than 
N I L  or free nodes can be reached from it (see our second 
simplification as described in Section 3). [] 

Note 3. It does not matter in which order nodes are 
examined during the marking phase, so we could have 
written a more general algorithm that does not specify 
any fixed order. Such an algorithm would allow more 
efficient implementations of  the marking phase, in which 
the collector maintains a list of  gray or probably gray 
nodes. For  the sake of  simplicity, we have not done 
so. [] 

We shall now demonstrate that the correctness cri- 
teria CC 1 and CC2 are met. 

PROOF. In order to prove that CC2 is met, we observe 
that, because in the marking phase the collector does not 
change (the shape of) the data structure, it suffices to 
show that during the appending phase it appends only 
garbage nodes to the free list. Because node nr. i is 
appended after having been observed to be white, it 
suffices to show that the relation "a white node with a 
number _> i is garbage" (1) is an invariant of  the append- 
ing cycle's repeatable action, (2) holds when the collector 
enters its appending cycle. 

(1) We shall demonstrate the invariance first, and 
shall do so by first proving it for the appending cycle's 
repeatable action in isolation, and then showing that the 
mutator leaves that proofs  assertions invariant. 

Because in the appending cycle's repeatable action i 
is increased, the collector could only violate the relation 
by making a nongarbage node white or by making a 
(white) garbage node into nongarbage. By the alternative 
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construct either violation is possible, but only with re- 
spect to node nr. i; we can still guarantee "a white node 
with a number > i is garbage," from which it follows that 
the subsequent increase i:= i + 1 restores the original 
relation. 

Because i is a local variable of the collector, also the 
mutator could only violate the assertions either by mak- 
ing a nongarbage node white--which it does not, because 
M 1 only shades--or by making a (white) garbage node 
into nongarbage--which it does not either, because M 1 
only redirects edges towards already reachable nodes 
and, hence, leaves garbage garbage. Therefore the mu- 
tator's actions do not invalidate the demonstration that 
the relation is an invariant of the appending cycle's 
repeatable action. 

(2) To show next that the relation holds at the begin- 
ning of the appending cycle, we have to demonstrate 
(because i = 0) that the marking phase has established 
that "all white nodes are garbage," which shall be shown 
under the assumption that, at the beginning of the mark- 
ing phase, there were no black nodes. 

Because the absence of black nodes implies P1, and 
because M 1 and C I have been carefully designed so as 
to leave P1 invariant and not to introduce white roots, 
"PI and there are no white roots" is clearly established 
before and kept invariant during the marking cycle. 
When furthermore all gray nodes have disappeared, our 
target state, in which all reachable nodes are black and 
all white nodes are garbage, has been reached. 

The marking cycle terminates with a scan past all 
nodes, during which no gray nodes are encountered. If  
we had only the collector to consider, the conclusion that 
at the end of such a scan gray nodes are absent--and 
hence the target state has been reached--would be triv- 
ial. Due to the ongoing activity of the mutator-- the 
shading activity of which can introduce gray nodes!--a 
more subtle argument, which now follows, is required. 

First, we observe that the target state, characterized 
by the absence of gray nodes, is stable: the absence of 
white reachable nodes prevents the mutator from intro- 
ducing gray ones, and the absence of gray nodes prevents 
the collector from doing so. 

Second, we show that a collector scan past all nodes, 
during which no gray nodes are encountered, implies 
that the stable target state has already been reached at 
the beginning of that scan: because the mutator leaves 
gray nodes gray and the collector did not color any nodes 
during that scan, a gray node existing at its beginning 
would, in contradiction to the assumption, have been 
encountered during that scan. Hence we can conclude 
that upon termination of the marking phase all white 
nodes are indeed garbage. 

Because the appending phase makes all black nodes 
white, and the mutator does not introduce black nodes, 
there are no black nodes at the end of the appending 
phase; this justifies the assumption made above that 
there would be no black nodes at the beginning of the 
marking phase. Thus we have completed the proof that 

971 

starting the collector in the absence of black nodes 
ensures that CC2 is met. 

To prove that CC1 is met, we must first show that 
the collector's two phases terminate properly. 

Proper termination of the appending phase is ob- 
vious, except for one thing: node nr. i must be black or 
white, because the alternative construct does not cater 
for the case "c = gray." But we have already proved that 
at the end of the marking phase, there are no gray nodes 
and every white node is garbage. Since the mutator 
cannot shade a garbage node, and shading a black node 
has no effect, it is clear that every node is either black or 
white when it is examined during the appending phase. 

Termination of the marking phase follows from the 
fact that the integral quantity k + M*(the number of 
nonblack nodes)--which, by definition, is nonnegative-- 
is left invariant by the activity of the mutator, and is 
decreased by at least one in each iteration of the marking 
cycle. 

Consider now the situation at the beginning of an 
appending phase. At that moment, the nodes are parti- 
tioned into three sets: 
- -The  set of reachable nodes (they are black) 
- -The  set of white garbage nodes (during the first ap- 

pending phase to come, they will be appended to the 
free list) 

- -The  set of black garbage nodes (during the first ap- 
pending phase to come, they will not be appended to 
the free list, but they will be made white). 

Calling the last set the set of "D-nodes," we have to show 
that all D-nodes will be appended during the second 
appending phase to come. 

We call an edge "leading into D" when its target is 
a D-node, but its source is not. Because D-nodes are 
garbage, we can state that at the beginning of the first 
appending phase, sources of edges leading into D are 
white garbage nodes. 

Since the D-nodes are garbage, the mutator will not 
redirect edges so as to make them point to a D-node, 
and since they are black to start with, during the first 
appending phase the collector will not do so either. The 
collector, however, will append all white garbage nodes, 
which includes--see note 2--redirecting outgoing edges 
of the nodes appended, so that, as a result, we can state 
that at the end of the first appending phase 

- -a l l  D-nodes are white garbage nodes 
-- there are no edges leading into D. 

The absence of edges leading into D is an invariant 
for the subsequent marking phase: the mutator does not 
introduce them, because D-nodes are garbage, and the 
collector does not redirect edges during its marking 
phase. The continued absence of edges leading into D, 
plus the fact that all D-nodes are white garbage to start 
with, implies that the D-nodes remain white garbage 
nodes during the subsequent marking phase: because 
they are garbage, the mutator leaves them as they are, 
and because they are all white, the collector is prevented 
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from shading them. (Shading the first D-node by the 
collector would require the existence of an edge pointing 
to it fi'om a gray node; in view of the absence of edges 
leading into D, this gray node would have to be a D- 
node, which is impossible.) Consequently, at the end of 
the marking phase, all D-nodes are still white garbage 
and will be appended to the free list during the subse- 
quent appending phase. Hence, CC 1 is also met. [] 

By keeping P1 invariant during the marking cycle, 
we obtained our coarse-grained solution. Encouraged by 
this success, we tried to keep P1 also invariant in a freer- 
grained solution--a solution in which the mutator's ac- 
tion M1 was split into two atomic operations: one for 
redirecting the edge and one for shading the new target. 
In order to keep P1 invariant, the mutator had to shade 
the future target first, and then redirect the edge towards 
the node just shaded. This freer-grained solution--al- 
though presented in a way sufficiently convincing to fool 
ourselves--contained the following bug, discovered by 
N. Stenning and M. Woodger [5]. 

Consider the following sequence of events: 
1. Prior to introducing an edge from node A to node B, 

the mutator shades node B (and goes to sleep) 
2. The collector goes through a complete marking phase, 

followed by an appending phase (node B is now 
white, i.e. the mutator's shading has been undone! We 
further note that there is no garbage) 

3. The collector goes through part of the next marking 
phase (and then goes to sleep), during which it so 
happens that node A is made black and node B is left 
white 

4. The mutator (wakes up and) introduces without mak- 
ing garbage the edge from A to B (P 1 is now violated) 

5. The mutator removes all other ingoing edges of B-- 
the absence of garbage makes this possible--and goes 
to sleep again (node B is now only reachable via the 
edge from A) 

6. The collector completes its marking phase (node B 
has remained white) 

7. The collector goes through its appending phase, dur- 
ing which the reachable node B is erroneously ap- 
pended to the free list. 

This ill-fated effort convinced us that in the finer- 
grained solution we were heading for, total absence of 
an edge from a black node to a white one was a stronger 
relation than we could maintain. However, it still seemed 
reasonable to retain the notion of "gray" as "semi- 
marked," more precisely, as representing an unfulfilled 
marking obligation. This meant that we could use the 
same collector. However, we had to find a different 
coarse-grained mutator that we could use as a stepping 
stone to our ultimate fine-grained solution. 

5. A New Coarse-Grained Solution 

For our new coarse-grained solution, we had to re- 
place P1 by a weaker relation. (It was replaced by P2 
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and P3, defined below.) In our first solution, we had 
• made essential use of the fact that during the marking 
cycle, the validity of P 1 allowed us to conclude that the 
existence of a white reachable node implied the existence 
of a gray node. (It even implied the existence of a gray 
reachable node, but the reachabihty of the gray node 
was not essential.) For our new solution we needed a 
weaker relation P2, from which the same conclusion 
could be drawn. We defined a "propagation path" to be 
one consisting solely of edges with white targets, and 
starting from a gray node, and chose the following 
relation: 

P2: "for each white reachable node, there exists a prop- 
agation path leading to it." 

Note 4. The gray node of the propagation path is not 
necessarily reachable. [] 

COROLLARY 1. I f  each root is gray or black, the 
absence of  edges f rom black to white clearly implies that 
relation 1>2 is satisfied. In particular, P2 is true at the 
beginning of  the marking cycle, because all roots have been 
shaded and there are no black nodes. 

In proving the correctness of our first solution, the 
invariance of P1 was only needed to prove that, during 
the marking cycle, the absence of gray nodes implies that 
all white nodes are garbage. We can clearly use P2 
instead of P 1 to draw the same conclusion. Therefore, to 
prove the correctness of our new solution, we need only 
prove that both the mutator and the marking collector 
leave P2 invariant. However, P2 turned out to be too 
weak a relation from which to conclude that its truth will 
not be destroyed. To keep P2 invariant, we had to restrict 
the existence of black-to-white edges by the following 
further relation--analogous to P1, but weaker-- 

P3: "only the last edge placed by the mutator may lead 
from a black node to a white one." 

COROLLARY 2. In the absence of black nodes, P3 is 
trivially satisfied. Hence it holds at the beginning of  the 
marking cycle. 

By Corollaries l and 2, P2 and P3 is true at the 
beginning of the marking cycle. To show that the mark- 
ing cycle of our coarse-grained collector leaves P2 and 
P3 invariant, we must show that the atomic operation 
C1 cannot destroy its truth. Shading a node can cause 
neither P2 nor P3 to become false; shading the successors 
of a node implies that its outgoing edges are no longer 
part of any propagation path, so making that node black 
immediately afterwards does not make P2 false either. 
Moreover, since its successors have just been shaded, 
making the node black does not introduce a black-to- 
white edge, and, hence, cannot make P3 false either. 
Combining these results we conclude that in its marking 
cycle the collector leaves P2 and P3 invariant. 

All that remains to be done now in order to construct 
a correct coarse-grained solution is to define a mutator 
operation that leaves P2 and P3 invariant. When the 
mutator redefines an outgoing edge of a black node, it 
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may direct it towards a white node. This new black-to- 
white edge is the one permitted by P3. We must prevent, 
however, the previously redirected edge from also being 
a black-to-white edge, and we therefore consider for our 
coarse-grained mutator the following atomic operation: 

M2: (shade the target of the previously redirected edge, 
and redirect an outgoing edge of a reachable node 
towards a reachable node). 

N o t e  5. For the very first time that the mutator 
redirects an edge, we can assume that (for lack of a 
previously redirected edge) either the shading will be 
suppressed or else an arbitrary reachable node will be 
shaded. The choice does not matter for the sequel. [] 

Action M2 has been carefully chosen in such a way 
that it leaves P3 invariant. We now prove that it leaves 
the stronger relation P2 and P3 invariant as well, thereby 
showing that the new mutator with our original collector 
gives a correct solution. 

PROOF. The action M2 cannot introduce new reach- 
able nodes. Hence, every white node which is reachable 
after the operation had a propagation path leading to it 
before the operation. If  the node whose successor is 
redefined is black, then its outgoing edge was not  part of 
any propagation path, so the edges of the old propagation 
paths will be sufficient to provide the propagation paths 
needed to maintain P2. (We may not need all of them 
because of the shading operation, and because some 
white reachable nodes may have been made unreacha- 
ble.) If the node whose successor is redefined was white 
or gray to start with, then the net result of action M2 will 
be a graph without edges from a black node to a white 
one: if one existed, then its target has now been shaded, 
and no new one has been introduced since the source of 
the new edge is not black. The roots must still be gray or 
black, so by Corollary 1, P2 still holds. [] 

6. A Fine-Grained Solution 

To complete our task, we now use the coarse-grained 
solution of Section 5 as a stepping stone to a fine-grained 
one. For our fine-grained mutator, M2 is split up into 
the following succession of atomic operations: 

M2.1: (shade the target of the previously redirected 
edge); 

M2.2: (redirect an outgoing edge of a reachable node 
towards a reachable node) 

In the collector, we break open C 1 as the sequence of 
five atomic operations (ml and m2 being local variables 
of the collector): 

C 1.1: (m 1 := number of the left-hand successor of node 
hr. i); 

CI.2: (shade node nr. ml) ;  
C1.3: (m2:= number of the right-hand successor of node 

hr. i); 
C 1.4: (shade node nr. m2); 
CI.5: (make node nr. i black). 
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We first observe that the collector's action of shading 
a node commutes with any number of mutator actions 
M2.1 and M2.2; without loss of generality we can, there- 
fore, continue our discussion as if the four atomic oper- 
ations C 1.1 through C 1.4 were replaced by a succession 
of  the following two atomic operations: 

Cl . la :  (shade the left-hand successor of node nr. i); 
C I.3a: (shade the right-hand successor of node nr. i). 

Examining the proof for our coarse-grained solution, 
it is clear that in order to prove the correctness of this 
fine-grained one, it suffices to prove that P2 and P3 is 
still invariant during the (fine-grained) marking cycle. 
We shall prove the invariance of P2 and P3 by proving 
the invariance of a stronger relation. 

For the purpose of  its defmition, we first introduce 
the notion of  so-called "C-edges." Loosely formulated, 
C-edges are the edges, the sources of which have been 
detected as gray by the collector's marking cycle. More 
precisely, the set of C-edges is empty at the beginning of 
the marking cycle, and the actions C1. la and C1.3a add 
to it the left-hand and fight-hand outgoing edge of node 
nr. i, respectively. Note that the formulation has been 
chosen so as to make it clear that, from C 1.1 a onwards, 
being a C-edge is a property of the left-hand outgoing 
edge of node nr. i, independent of the node it points to. 
In particular, being a C-edge is invariant with respect to 
redirection of that edge by the mutator. 

N o t e  6. We only define the set of C-edges for our 

benefit. The set is not explicitly updated, although the 
collector could easily do so. In the jargon, the term 
"ghost variable" is sometimes used for such an entity. [] 

The strengthened versions of P2 and P3 can now be 
formulated as follows: 

P2a: "every root is gray or black, and for each white 
reachable node there exists a propagation path 
leading to it, containing no C-edges" 

P3a: "there exists at most one edge "E" satisfying 
pr: " (E  is a black-to-white edge) or 

(E is a C-edge with a white target);" 
the existence of such an E satisfying pr implies that 
the mutator is between action M2.2 and the sub- 
sequent action M2.1, and that E is identical with 
the edge most recently redirected by the mutator." 

We now prove that P2a and P3a holds when the 
collector executes its marking cycle. 

PROOF. We first observe that P2a holds at the begin- 
ning of the marking cycle, thanks to Corollary 1 and the 
fact that the set of C-edges is then empty. As there are 
neither C-edges nor black nodes at the beginning of the 
marking cycle, there is no edge E satisfying pr, so at the 
beginning of the marking cycle P3a holds as well. 

We further make the general remark that none of the 
operations M2.1, M2.2, Cl . la ,  C1.3a, and CI.5 intro- 
duces new white reachable nodes. Consequently, when 
proving the invariance of P2a under these operations, it 
suffices to show that the existence, before the operation, 
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of  a propagation path without C-edges, leading to a 
reachable node that is white before and after the opera- 
tion, implies the existence afterwards of such a propa- 
gation path leading to that node. 

The invariance of  P2a and P3a with respect to the 
three shading operations M2.1, C 1. l a, and C 1.3a can be 
dealt with simultaneously. Propagation paths leading to 
a reachable node that is white both before and after the 
shading operation are either left intact or are shortened 
by it. I f  these propagation paths did not contain C-edges 
before the shading operation, then they won't do so 
afterwards. The shading operations of  the collector do 
create new C-edges, but these are C-edges with gray or 
black targets, and, therefore, cannot belong to any prop- 
agation path. This proves the invariance of  P2a. Relation 
P3a is invariant as well, because the collector's shading 
acts introduce neither a black-to-white edge, nor a C- 
edge with a white target, and operation M2.1 only re- 
moves the edge E if it did exist. 

Action C1.5 leaves P2a invariant: because the out- 
going edges of  the gray node nr. i are C-edges, they don't  
belong to existing propagation paths without C-edges, 
and hence making that node black leaves the existence 
of  such paths unaffected. Action C1.5 also leaves P3a 
invariant, as it introduces no new solutions E of  pr: it 
may introduce a black-to-white edge, but then that edge 
was already a C-edge with a white target. 

Action M2.2 leaves P3a invariant because, if P3a held 
before M2.2, no edge E satisfying pr existed, and the 
redirection can create at most one such edge. We finally 
prove the invariance of  P2a under M2.2. If the edge to 
be redirected is a C-edge or if its source is black, it does 
not belong to a propagation path without C-edges. Since, 
furthermore, M2.2 does not create C-edges, the existence 
of such paths remains in this case unaffected. In the 
other case--i.e, if the edge to be redirected is not a C- 
edge and has a white or gray source-- the already estab- 
lished invariance of P3a implies after M2.2 the absence 
of  black-to-white edges and the absence of C-edges with 
a white target. In view of  Corollary 1, these absences 
imply for all white reachable nodes the existence of 
propagation paths without C-edges. [] 

In Retrospect 

It has been surprisingly hard to find the published 
solution and justification. It was only too easy to design 
what looked--sometimes even for weeks and to many 
people--l ike a perfectly valid solution, until the effort to 
prove it to be correct revealed a (sometimes deep) bug. 
The reasoning we have used contains most of the ideas 
needed for a formal proof in the style of [3] or [2]. 
Because the inclusion of such a proof would result in a 
paper, possibly tedious, but in any case very different 
from what we intended to write this time, we have 
confined ourselves to our informal justification (which 
we do not regard as an adequate substitute for a formal 
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correctness proof). Whether our stepwise approach is 
more generally applicable, is at the moment of writing 
still an open question. 

When it is objected that we still needed rather subtle 
arguments, we can only agree wholeheartedly: all of  us 
would have preferred a simpler argument! Perhaps we 
should conclude that constructions that give rise to such 
tricky problems are not to be recommended. One firm 
conclusion, however, can be drawn: to believe that such 
solutions can be found without a very careful justification 
is optimism on the verge of  foolishness. 

History and Acknowledgments. (As in this combina- 
tion, this is our first exercise in international and inter- 
company cooperation, some internal credit is given as 
well.) After careful consideration of  a wider class of  
problems the third and the fifth authors selected and 
formulated this problem, and did most of  the preliminary 
investigations; the first author found a first solution 
during a discussion with the fifth author, W.H.J. Feijen, 
and M. Rem. It was independently improved by the 
second au thor - - to  give the free list a root and mark its 
nodes as well, was his suggestion--and, on a suggestion 
made by John M. Mazola, by the first and the third 
author. The first and the fourth merged these embellish- 
ments, but introduced the bug that was found by N. 
Stenning and M. Woodger. The final version and its 
justification are the result of  several trans-Atlantic iter- 
ations. The active and inspiring interest shown by David 
Giles is mentioned in gratitude. As with each new ver- 
sion of  the manuscript the proofs became simpler, we 
also express our indebtedness to R. Stockton Gaines, 
whose comments on an earlier version caused two further 
iterations. 

Glossary of Names 

Correctness criteria 
CC 1: Every garbage node is eventually appended to the 

free list. More precisely, every garbage node pres- 
ent at the beginning of  an appending phase will 
have been appended by the end of  the next ap- 
pending phase. 

CC2: Appending a garbage node to the free list is the 
collector's only modification of  (the shape of) the 
data structure. 

Atomic operations of the mutator 
M l: (redirect an outgoing edge of  a reachable node 

towards an already reachable one, and shade the 
new target). 

M2: (shade the target of the previously redirected 
edge, and redirect an outgoing edge of a reachable 
node towards a reachable node). 

M2.1: (shade the target of  the previously redirected 
edge). 

M2.2: (redirect an outgoing edge of  a reachable node 
towards a reachable node). 
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Atomic operations of the collector 

C h (shade the successors of node nr. i and make 
node nr. i black). 

C1. l: (ml := number of  the left-hand successor of node 
nr. i). 

C1.2: (shade node nr. ml) .  
CI.3: (m2:= number of  the right-hand successor of 

node nr. i). 
CI.4: (shade node nr. m2). 
CI.5: (make node nr. iblack).  
C I. la: (shade the left-hand successor of node nr. i). 
CI.3a: (shade the right-hand successor of node nr. i). 

Invariant relations 

P 1: No  edge points from a black node to a white one. 
P2: For each white reachable node, there exists a prop- 

agation path leading to it. 
P3: Only the last edge placed by the mutator may lead 

from a black node to a white one. 

P2a: Every root is gray or black, and for each white 
reachable node there exists a propagation path 
leading to it, containing no C-edges. 

P3a: There exists at most one edge "E" satisfying 
pr: "(E is a black-to-white edge) or 

(E is a C-edge with a white target)"; 
the existence of  such an E satisfying pr implies that 
the mutator is between action M2.2 and the sub- 
sequent action M2.1, and that E is identical with 
the edge most recently redirected by the mutator. 
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P r o f e s s i o n a l  A c t i v i t i e s :  
Calendar of Events 

ACM's calendar policy is to list open com- 
puter science meetings that are held on a not-for- 
profit basis. Not included in the calendar are edu- 
cational seminars, institutes, and courses. Sub- 
mittals should be substantiated with name of the 
sponsoring organization, fee schedule, and chair- 
man's name and full address. 

One telephone number contact for those in- 
terested in attending a meeting will be given when 
a number is specified for this purpose. 

All requests for ACM sponsorship or coop- 
eration should be addressed to Chairman, Con- 
ferences and Symposia Committee, Seymour J. 
Wolfson. 643 MacKenzie Hall. Wayne State Uni- 
versity, Detroit, MI 48202. with a copy to Louis 
Flora, Conference Coordinator, ACM Head- 
quarters. 1133 Avenue of the Americas, New York, 
NY 10036; 212 265-6300. For European events, a 
copy of the request should also be sent to the 
European Representative. Technical Meeting Re- 
quest Forms for this purpose can be obtained 
from ACM Headquarters or from the European 
Regional Representative. Lead time should include 
2 months (3 months if for Europe) for processing 
of the request, plus the necessary months (mini- 
mum 2) for any publicity to appear in Communi- 
cations. 

• This symbol indicates that the Conferences 
and Symposia Committee has given its approval 
for ACM sponsorship or cooperation. 
In this issue the calendar is given in its entirety. 
New Listings are shown first; they will appear 
next month as Previous Listings. 

NEW LISTINGS 
22-24 November 1978 
Performance Evaluation of Computer Sys- 

tems, Brussels, Belgium. Sponsor: lAG. Contact: 
IAG  Headquarters, 40, Paulus Potterstraat, 1071 
DB Amsterdam, The Netherlands. 

3-8 January 1979 
A A A S  Annual Meeting, Houston, Tex. Spon- 

sor: American Association for the Advancement 
of Science. Contact: AAAS Meetings Office, 1776 
Massachusetts Ave., NW, Washington, DC 20036. 

8-9 January 1979 
First International Symposium on Mini and 

Microcomputers in Control, fslandia Hyatt 
House, San Diego, Calif. Sponsors: International 
Society for Mini and Microcomputers, IEEE 
Control Systems Society. Contact: The Secretary, 
Computers in Control Symposium, Box 2481, 
Anaheim, CA 92804; 714 774-6144. 

16-18 January 1979 
Seventh International Symposium on Mini 

and Microcomputers, Anaheim, Calif. Sponsor: 
International Society for Mini and Microcomput- 
ers. Contact: MIMI 79 Secretary, Box 2481, Ana- 
heim, CA 92804; 714 774-6144. 

29 March 1979 
Federal A D P  Expo 79 of Tidewater, Nor- 
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folk, Va. Sponsor: Federal ADP Council, Greater 
Tidewater Area. Contact: Dorothy Dalton, 
NARDACWASH DETLANT. CINCLANT Com- 
pound, Norfolk, VA 23511; 804 444-6906. 

1-4 April 1979 
Southeastcon 79, Roanoke, Va. Sponsor: 

IEEE Region 3. Gen. chin. K. Reed Thompson, 
General Electric Co., 1501 Roanoke Blvd., Room 
244, Salem, VA 24153; 703 387-7370. 

2-6 April 1979 
Tenth Southeastern Conference on Combi- 

natorics, Graph Theory and Computing, Florida 
Atlantic University, Boca Raton, Fla. Sponsor: 
Florida Atlantic University. Contact: Frederick 
Hoffman, Dept. of Mathematics, Florida Atlantic 
University, Boca Raton, FL 33431; 305 395-5100. 

5-6 April 1979 
Computers in Ophthalmology, St. Louis, Me. 

Sponsor: Washington University School of Medi- 
cine. Contact: Robert Greenfield, Biomedical 
Computer Laboratory, Washington University 
School of Medicine, 700 South Euclid Ave., St. 
Louis, M e  63110. 

6 April 1979 
Sixth Annual Indiana University Computer 

Network Conference on Academic Computer Ap- 
plications, UI  Northwest, Gary, Ind. Sponsor: 
Indiana University Computing Network. Gen. 
chin: Robert Andree, Indiana University-North- 
west, 3400 Broadway, Gary, IN 46408. 

28-30 May 1979 
International Symposium on Multiple-Valued 

Logic, Bath, England. Sponsor: IEEE-CS. Con- 
tact: Jon T. Butler, Dept. of EE and CS, The 
Technological Institute, Northwestern Univer- 
sity, Evanston, IL 60201. 

11-13 June 1979 
Teleinformatics 79, Paris, France. Sponsors: 

IFIP, UNESCO. ICCC, Commission of European 
Communities. Contact: Thomas H. Martin, An- 
nenburg School of Communications, University of 
Southern California, Los Angeles, CA 90007. 

20-22 June 1979 
• S e c o n d  M A C S Y M A  U s e r s '  C o n f e r e n c e ,  
Shoreham Americana, Washington, D.C. Spon- 
sors: M.I.T., U.S. Army, U.S. Navy, with coop- 
eration of ACM SIGSAM. Gen. chm: Elizabeth 
Cuthill, Code 1805, David Taylor Naval Ship 
Research and Development Center, Bethesda, MD 
20084. 

2-4 July 1979 
• International Symposium on Semantics of 
Concurrent Computation, Evian. France. Spon- 
sor: European Association for Theoretical Com- 
puter Science in cooperation with ACM SIGACT. 
Contact: G. Kahn, IRIA, B.P. 105, 78150 Le 
Chesnay, France. 

6-8 August 1979 
Seventh Conference on Electronic Compu- 

tation, St. Louis, Mo. Sponsors: ASCE, Washing- 
ton University. Contact: C. Wayne Martin, 212 
Bancroft Bldg., University of Nebraska, Lincoln, 
NE 68588. 

4-6 September 1979 
International Conference and Exhibition on 

Engineering Software, University of Southampton, 

C o m m u n i c a t i o n s  
of  
the A C M  

England. Contact: R. Adey, ENGSOFT, 6 Cran- 
bury Place, Southampton S02 OLG, England. 

29-31 October 1979 
s•or: A C M  79, Detroit Plaza, Detroit, Mich. Spon- 

ACM. Gen. chin: Mayford L. Roark. Ford 
Motor Co., The American Road, Room 895 WHQ, 
Dearborn, MI 48121; 313 323-1690. 

10-12 December 1979 
• 7th Symposium on Operating System Prin- 
ciples, Asilomar Conference Grounds, Pacific 
Grove, Calif. Sponsor: ACM SIGOPS. Conf. 
chin: Michael D. Schroeder, Xerox Palo Alto 
Research Center, 3333 Coyote Hill Road, Palo 
Alto, CA 94304; 415 494-4310. 

PREVIOUS LISTINGS 
15-17 November 1978 

• S o f t w a r e  Q u a l i t y  A s s u r a n c e  W o r k s h o p :  
Functional and Performance Issues, San Diego. 
Calif. Sponsors: ACM SIGMETRICS. SIGSOFT. 
and Los Angeles Chapter. Gem chin: A.C. (Toni) 
Shetler. Xerox Corp.. A3-49. 701 South Aviation 
Blvd.. El Segundo. CA 90245; 213 679-4511 x1968. 

19-22 November 1978 
• M I C R O  l l - - A n n u a l  M i e r o p r o g r a m m i n g  
Workshop, Pacific Grove. Calif. Sponsors: ACM 
SIGMICRO, IEEE-CS. Conf. chin: Stanley Ha- 
bib, Computer Science Dept., CCNY, 140th St. 
and Convent Ave., New York, NY 10031. 

21-25 November 1978 
15th International Automation and Instru- 

mentation Conference and Exhibition, Milan, 
Italy. Organizers: FAST, ANIPLA.  Contact: 
Conference Secretariat. Viale Premuda 2, 20129 
Milan, Italy. 

27-29 November 1978 
Symposium on C A D  of Digital Electronic 

Circuits and Systems, Brussels, Belgium. Spon- 
sor: Commission of the European Community. 
Contact: Kennass Belgium Congress SA, Rue de 
l'Industrie 17, 1040 Brussels, Belgium. 

4-6 December 1978 
• A C M  78, Sheraton Park Hotel, Washington, 
D.C. Sponsor: ACM. Gen. chin: Richard H. Aust- 
ing, Dept. of Computer Science, University of 
Maryland, College Park, MD 20742; 301 454-2002. 

4-6 December 1978 
• Winter Simulation Conference, Miami Beach, 
Fla. Sponsors: ACM SIGSIM, NBS. AIIE.  IEEE 
Systems, Man. and Cybernetics Society. ORSA. 
TIMS, SCS. Prog. chm: Norman R. Nielsen, In- 
formation Science Laboratory, (J-1041), SRI In- 
ternational. 333 Ravenswood Ave., Menlo Park, 
CA 94025; 415 326-6200 x 2859. 

4-6 December 1978 
National Telecommunications Conference, 

Birmingham. Ala. Sponsors: IEEE Communica- 
tions Society, Aerospace and Electronic Systems 
Society, and Geoscience Group. Contact: Ronald 
C. l-louts. Box 2478, University, AL 35486. 

5-8 December 1978 
CMG IX International Conference on Man- 

agement and Evaluation of Computer Perform- 
ance, Fairmont Hotel. San Francisco, Calif. Spun- 

(Calendar continued on p. 980) 
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