Concurrent Programming, August—November 2016

Assignment 2, 14 November, 2016
Due: 26 November, 2016

Note: Only electronic submissions accepted, via Moodle.

All exercises are from “The Art of Multiprocessor Programming” by Maurice
Herlihy and Nir Shavit and the exercise numbers are from the book. Refer to
the book if there is any ambiguity.

Chapter 7

Exercise 85 Here is an alternative implementation of CLHLock in which a thread reuses
its own node instead of its predecessor node. Explain how this implementation can
go wrong.

1 public class BadCLHLock implements Lock {
2 // most recent lock holder

3 AtomicReference<Qnode> tail;

4 // thread-local variable

5 ThreadLocal<Qnode> myNode;

6 public void lock() {

7 Qnode gnode = myNode.get();

8

gnode.locked = true; // I'm not done
9 // Make me the new tail, and find my predecessor
10 Qnode pred = tail.getAndSet(gnode);
11 // spin while predecessor holds lock
12 while (pred.locked) {}
13 }
14 public void unlock() {
15 // reuse my node next time
16 myNode.get() .locked = false;
17 }
18 static class Qnode { // Queue node inner class
19 public boolean locked = false;
20 }
21 '}
Chapter 9

Variant of Exercise 105 Can the contains() method for the fine-grained algorithm
[Section 9.5] be implemented without hand-over-hand locking. Explain why, or
provide a counterexample.



Chapter 10

Exercise 125 Consider the unbounded queue implementation shown below. This queue
is blocking, meaning that the deq() method does not return until it has found an
item to dequeue.

public class HWQueue<T> {
AtomicReference<T>[] items;
AtomicInteger tail;

1

2

3

4

5 public void eng(T x) {

6 int i = tail.getAndIncrement();

7 items[i].set(x);

8 }

g public T deq() {

10 while (true) {

11 int range = tail.get();

12 for (int i = 0; i < range; i++) {
13 T value = items[i].getAndSet (null);
14 if (value != null) {

15 return value;

16

17

18

19

20

The queue has two fields: items is a very large array [assume unbounded|, and
tail is the index of the next unused element in the array.

1.

Are the enq() and deq() methods wait-free? If not, are they lock-free? Ex-
plain.

Identify the linearization points for enq() and deq(). (Careful! They may be
execution-dependent.)



