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2 The linear time — branching time spectrum I

Introduction

Process theory A process is the behaviour of a system. The system can be a machine, an
elementary particle, a communication protocol, a network of falling dominoes, a chess player,
or any other system. Process theory is the study of processes. Two main activities of process
theory are modelling and verification. Modelling is the activity of representing processes, mostly
by mathematical structures or by expressions in a system description language. Verification is the
activity of proving statements about processes, for instance that the actual behaviour of a system
is equal to its intended behaviour. Of course, this is only possible if a criterion has been defined,
determining whether or not two processes are equal, i.e. two systems behave similarly. Such a
criterion constitutes the semantics of a process theory. (To be precise, it constitutes the semantics
of the equality concept employed in a process theory.) Which aspects of the behaviour of a system
are of importance to a certain user depends on the environment in which the system will be running,
and on the interests of the particular user. Therefore it is not a task of process theory to find the
‘true’ semantics of processes, but rather to determine which process semantics is suitable for which
applications.

Comparative concurrency semantics This paper aims at the classification of process se-
mantics.! The set of possible process semantics can be partially ordered by the relation ‘makes
strictly more identifications on processes than’, thereby becoming a complete lattice>. Now the
classification of some useful process semantics can be facilitated by drawing parts of this lattice and
locating the positions of some interesting process semantics, found in the literature. Furthermore
the ideas involved in the construction of these semantics can be unravelled and combined in new
compositions, thereby creating an abundance of new process semantics. These semantics will, by
their intermediate positions in the semantic lattice, shed light on the differences and similarities of
the established ones. Sometimes they also turn out to be interesting in their own right. Finally
the semantic lattice serves as a map on which it can be indicated which semantics satisfy certain
desirable properties, and are suited for a particular class of applications.

Most semantic notions encountered in contemporary process theory can be classified along four
different lines, corresponding with four different kinds of identifications. First there is the dichotomy
of linear time versus branching time: to what extent should one identify processes differing only in
the branching structure of their execution paths? Secondly there is the dichotomy of interleaving
semantics versus partial order semantics: to what extent should one identify processes differing
only in the causal dependencies between their actions (while agreeing on the possible orders of
execution)? Thirdly one encounters different treatments of abstraction from internal actions in a
process: to what extent should one identify processes differing only in their internal or silent actions?
And fourthly there are different approaches to infinity: to what extent should one identify processes
differing only in their infinite behaviour? These considerations give rise to a four dimensional
representation of the proposed semantic lattice.

!This field of research is called comparative concurrency® semantics, a terminology first used by MEYER in .

*Here concurrency is taken to be synonymous with process theory, although strictly speaking it is only the study
of parallel (as opposed to sequential) processes. These are the behaviours of systems capable of performing different
actions at the same time. In this paper the term concurrency is considered to include sequential process theory. This
may be justified since much work on sequential processes is intended to facilitate later studies involving parallelism.

3The supremum of a set of process semantics is the semantics identifying two processes whenever they are identified
by every semantics in this set.
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However, at least three more dimensions can be distinguished. In this paper, stochastic and real-
time aspects of processes are completely neglected. Furthermore it deals with uniform concurrency®
only. This means that processes are studied, performing actions® a, b, ¢, ... which are not subject to
further investigations. So it remains unspecified if these actions are in fact assignments to variables
or the falling of dominoes or other actions. If also the options are considered of modelling (to a
certain degree) the stochastic and real-time aspects of processes and the operational behaviour of
the elementary actions, three more parameters in the classification emerge.

Process domains In order to be able to reason about processes in a mathematical way, it is
common practice to represent processes as elements of a mathematical domain®. Such a domain
is called a process domain. The relation between the domain and the world of real processes is
mostly stated informally. The semantics of a process theory can be modelled as an equivalence on
a process domain, called a semantic equivalence. In the literature one finds among others:

e graph domains, in which a process is represented as a process graph, or state transition diagram,
e net domains, in which a process is represented as a (labelled) Petri net,

e cvent structure domains, in which a process is represented as a (labelled) event structure,

e czplicit domains, where a process is represented as a mathematically coded set of its properties,
e projective limit domains, which are obtained as projective limits of series of finite term domains,

e and term domains, in which a process is represented as a term in a system description language.

Action relations Write p — ¢ if the process p can evolve into the process ¢, while performing
the action a. The binary predicates — are called action relations. The semantic equivalences
which are treated in this paper will be defined entirely in terms of action relations. Hence these
definitions apply to any process domain on which action relations are defined. Such a domain is
called a labelled transition system. Furthermore they will be defined uniformly in terms of action
relations, meaning that all actions are treated in the same way. For reasons of convenience, even
the usual distinction between internal and external actions is dropped in this paper.

Finitely branching, concrete, sequential processes Being a first step, this paper limits itself
to a very simple class of processes. First of all only sequential processes are investigated: processes
capable of performing at most one action at a time. Furthermore, instead of dropping the usual
distinction between internal and external actions, one can equivalently maintain to study concrete
processes: processes in which no internal actions occur. For this simple class of processes the
announced semantic lattice collapses in two out of four dimensions and covers only the infinitary
linear time — branching time spectrum.

Moreover, the main interest is in finitely branching processes: processes having in each state only
finitely many possible ways to proceed. The material pertaining to infinitely branching processes—
coloured brown in the electronic version of this paper—can easily be omitted in first reading.

4The term uniform concurrency is employed by DE BAKKER ET AL .

%Strictly speaking processes do not perform actions, but systems do. However, for reasons of convenience, this
paper sometimes uses the word process, when actually referring to a system of which the process is the behaviour.

5T use the word domain in the sense of universal algebra; it can be any class of mathematical objects—typically the
first component of an algebra; the other component being a collection of operators defined on this domain. Without
further adjectives I do not refer to the more restrictive domains employed in domain theory.
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Literature In the literature on uniform concurrency 12 semantics can be found, which are uni-
formly definable in terms of action relations and different on the domain of finitely branching,
sequential processes (see Figure 1). The coarsest one (i.e. the semantics making the most identifi-
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Figure 1: The linear time — branching time spectrum

cations) is trace semantics, as presented in HOARE [30]. In trace semantics only partial traces are
employed. The finest one (making less identifications than any of the others) is bisimulation seman-
tics, as presented in MILNER [39]. Bisimulation semantics is the standard semantics for the system
description language CCS (MILNER [37]). The notion of bisimulation was introduced in PARK [41].
Bisimulation equivalence is a refinement of observational equivalence, as introduced by HENNESSY
& MILNER in [27]. On the domain of finitely branching, concrete, sequential processes, both equiv-
alences coincide. Also the semantics of DE BAKKER & ZUCKER, presented in [9], coincides with
bisimulation semantics on this domain. Then there are ten semantics in between. First of all a
variant of trace semantics can be obtained by using complete traces besides partial ones. In this
paper it is called completed trace semantics. Failures semantics is introduced in BROOKES, HOARE
& ROsCOE [13], and used in the construction of a model for the system description language CSP
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(HoARE [29, 31]). It is finer than completed trace semantics. The semantics based on testing equiv-
alences, as developed in DE NicoLA & HENNESSY [17], coincides with failures semantics on the
domain of finitely branching, concrete, sequential processes, as do the semantics of KENNAWAY
and DARONDEAU [15]. This has been established in DE Nicora [16]. In OLDEROG & HOARE
readiness semantics is presented, which is slightly finer than failures semantics. Between readiness
and bisimulation semantics one finds ready trace semantics, as introduced independently in PNUELI
(there called barbed semantics), BAETEN, BERGSTRA & KLOP [6] and POMELLO (under the
name ezhibited behaviour semantics). The natural completion of the square, suggested by failures,
readiness and ready trace semantics yields failure trace semantics. For finitely branching processes
this is the same as refusal semantics, introduced in PHILLIPS [42]. Simulation semantics, based on
the classical notion of simulation (see e.g. PARK [41]), is independent of the last five semantics.
Ready simulation semantics was introduced in BLoOM, ISTRAIL & MEYER under the name
GSOS trace congruence. Tt is finer than ready trace as well as simulation semantics. In LARSEN
& Skou a more operational characterization of this equivalence was given under the name
%—bisimulation equivalence. The (denotational) notion of possible worlds semantics of VEGLIONI &
DE Nicora fits between ready trace and ready simulation semantics. Finally 2-nested simula-
tion semantics, introduced in GROOTE & VAANDRAGER [25], is located between ready simulation
and bisimulation semantics, and possible-futures semantics, as proposed in ROUNDS & BROOKES
[46], can be positioned between 2-nested simulation and readiness semantics.

Tree semantics, employed in WINSKEL [50], is even finer than bisimulation semantics. However,
a proper treatment requires more than mere action relations.

About the contents The first section of this paper introduces labelled transition systems and
process graphs. A labelled transition system is any process domain that is equipped with action
relations. The domain of process graphs or state transition diagrams is one of the most popular
labelled transition systems. In Sections 2-14 all semantic equivalences mentioned above are defined
on arbitrary labelled transition systems. In particular these definitions apply to the domain of
process graphs. Most of the equivalences can be motivated by the observable behaviour of processes,
according to some testing scenario. (Two processes are equivalent if they allow the same set of
possible observations, possibly in response to certain experiments.) I will try to capture these
motivations in terms of button pushing ezperiments (cf. MILNER [37], pp. 10-12). Furthermore the
semantics will be partially ordered by the relation ‘makes at least as many identifications as’. This
yields the linear time — branching time spectrum. Counterexamples are provided, showing that on
the graph domain this ordering cannot be further expanded. However, for deterministic processes
the spectrum collapses, as was first observed by PARK [41]. describes various other classes
of processes on which parts of the spectrum collapse. In Bection 17, the semantics are applied to a
simple language for finite, concrete, sequential, nondeterministic processes, and for twelve of them
a complete axiomatization is provided. applies a few criteria indicating which semantics
are suitable for which applications. Finally, in the work of this paper is extended to
labelled transition systems that distinguish between deadlock and successful termination.

With each of the semantic equivalences treated in this paper (except for tree semantics) a
preorder is associated that may serve as an implementation relation between processes. The results
obtained for the equivalences are extended to the associated preorders as well.

Acknowledgment My thanks to Tony Hoare for suggesting that the axioms of could be
simplified along the lines of [Table 5.


Ho78
DH84
Ke81
Da82
DN87
OH86
Pn85
BBK87b
Pm86
Ph87
Pa81
BIM95
LS91
VD98
GrV92
RB81
Wi84b
Mi80
Pa81
determinism
axiomatizations
criteria
termination
axioms
axioms BCSP

6 The linear time — branching time spectrum I

1 Labelled transition systems and process graphs

1.1 Labelled transition systems

In this paper processes will be investigated that are capable of performing actions from a given set
Act. By an action any activity is understood that is considered as a conceptual entity on a chosen
level of abstraction. Actions may be instantaneous or durational and are not required to terminate,
but in a finite time only finitely many actions can be carried out. Any activity of an investigated
process should be part of some action a € Act performed by the process. Different activities that
are indistinguishable on the chosen level of abstraction are interpreted as occurrences of the same
action a € Act.

A process is sequential if it can perform at most one action at the same time. In this paper only
sequential processes will be considered. A class of sequential processes can often be conveniently
represented as a labelled transition system. This is a domain IP on which infix written binary
predicates — are defined for each action a € Act. The elements of IP represent processes, and
p — ¢ means that p can start performing the action a and after completion of this action reach
a state where ¢ is its remaining behaviour. In a labelled transition system it may happen that
p—qandp b 7 for different actions a and b or different processes g and r. This phenomenon
is called branching. It need not be specified how the choice between the alternatives is made, or
whether a probability distribution can be attached to it.

Certain actions may be synchronizations of a process with its environment, or the receipt of
a signal sent by the environment. Naturally, these actions can only occur if the environment
cooperates. In the labelled transition system representation of processes all these potential actions
are included, so p —— ¢ merely means that there is an environment in which the action a can occur.

Notation: For any alphabet X, let X* be the set of finite sequences and % the set of infinite
sequences over Y. XY := 3* U X®°. Write € for the empty sequence, op for the concatenation of
o € ¥* and p € 3%, and a for the sequence consisting of the single symbol a € .

Definition 1.1 A labelled transition system is a pair (IP, —) with IP a class and — C IP x Act x P,
such that for p € IP and a € Act the class {g € P | (p,a,q) € —} is a set.

Most of this paper should be read in the context of a given labelled transition system (IP,—),
ranged over by p,q,r,.... Write p —— ¢ for (p,a,q) € —. The binary predicates — are called
action relations.

Definition 1.2 (Remark that the following concepts are defined in terms of action relations only)

o The generalized action relations —= for o € Act* are defined recursively by:

1. p == p, for any process p.
2. (p,a,q) € — with a € Act implies p — ¢ with a € Act*.
3. p&q#rimpliespﬂw‘.
In words: the generalized action relations —~+ are the reflexive and transitive closure of the

ordinary action relations —. p -2+ g means that p can evolve into g, while performing the
sequence o of actions. Remark that the overloading of the notion p —— ¢ is quite harmless.

e A process g € IP is reachable from p € IP if p —— ¢ for some o € Act*.
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The set of initial actions of a process p is defined by: I(p) = {a € Act | Iqg: p = q}.

e A process p € IP is finite if the set {(0,q) € (Act* x IP) | p - ¢} is finite.
p is image finite if for each o € Act* the set {q € P | p -Z ¢} is finite.

p is deterministic if p > gAp > r=q=r.

p is well-founded if there is no infinite sequence p — p; — py —2 « -

e pis finitely branching if for each ¢ reachable from p, the set {(a,r) € Act x P | ¢ —= r} is finite.

Note that a process p € IP is image finite iff for each ¢ € IP reachable from p and each a € Act, the
set {r € IP | ¢ - r} is finite. Hence finitely branching processes are image finite. Moreover, by
Konig’s lemma a process is finite iff it is well-founded and finitely branching.

1.2 Process graphs

Definition 1.3 A process graph over an alphabet Act is a rooted, directed graph whose edges are
labelled by elements of Act. Formally, a process graph g is a triple (NODES(g), ROOT(g), EDGES(g)),
where

e NODES(g) is a set, of which the elements are called the nodes or states of g,
e ROOT(g) € NODES(g) is a special node: the root or initial state of g,

e and EDGES(g) C NODES(g) X Act X NODES(g) is a set of triples (s, a,t) with s,7 € NODES(g) and
a € Act: the edges or transitions of g.

Ife = (s,a,t) € EDGES(g), one says that e goes from s to t. A (finite) path 7 in a process graph is an
alternating sequence of nodes and edges, starting and ending with a node, such that each edge goes
from the node before it to the node after it. If 7 = so(so,a1,51)s1(81,a2,52) - (Sn—1,an, Sn)Sn,
also denoted as 7 : sg — s1 —2 --- " g,,, one says that © goes from sg to sp; it starts in s and
ends in end(mw) = s,. Let PATHS(g) be the set of paths in g starting from the root. If s and ¢ are
nodes in a process graph then t can be reached from s if there is a path going from s to ¢t. A process
graph is said to be connected if all its nodes can be reached from the root; it is a phrase-tree if each
node can be reached from the root by exactly one path. Let G be the domain of connected process
graphs over a given alphabet Act.

Definition 1.4 Let g,h € G. A graph isomorphism between g and h is a bijective function
f : NODES(g) — NODES(h) satisfying

¢ f(rROOT(g)) = ROOT(g) and
e (s,a,t) € EDGES(g) < (f(s),a, f(t)) € EDGES(h).

Graphs g and h are isomorphic, notation g = h, if there exists a graph isomorphism between them.

In this case g and h differ only in the identity of their nodes. Remark that graph isomorphism is
an equivalence relation on G.

Connected process graphs can be pictured by using open dots (o) to denote nodes, and labelled
arrows to denote edges, as can be seen further on. There is no need to mark the root of such a
process graph if it can be recognized as the unique node without incoming edges, as is the case
in all my examples. These pictures determine process graphs only up to graph isomorphism, but
usually this suffices since it is virtually never needed to distinguish between isomorphic graphs.
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Definition 1.5 For g € G and s € NODES(g), let g5 be the process graph defined by
e NODES(gs) = {t € NODES(g) | there is a path going from s to ¢},
e ROOT(g5) = S € NODES(gs),
e and (¢,a,u) € EDGES(g;) iff t,u € NODES(g5) and (¢, a,u) € EDGES(g).

Of course g; € G. Note that groor(g) = 9- Now on G action relations -2 for a € Act are defined

by ¢ % h iff (ROOT(g),a,s) € EDGES(g) and h = g,. This makes G into a labelled transition
system.

1.3 Embedding labelled transition systems in G
Let (IP, —) be an arbitrary labelled transition system and let p € IP. The canonical graph G(p) of
p is defined as follows:
e NODES(G(p)) = {q €P | o € Act*: p 5 ¢},
e ROOT(G(p)) = p € NODES(G(p)),
e and (¢,a,7) € EDGES(G(p)) iff ¢, € NODES(G(p)) and ¢ —= .
Of course G(p) € G. This means G is a function from P to G.

Proposition 1.1 G : IP — G is injective and satisfies, for a € Act: G(p) = G(q) & p % q.
Moreover, G(p) — h only if h has the form G(q) for some g € P (with p - q).
Proof: Trivial. O

Proposition 1.1 says that G is an embedding of P in G. Tt implies that any labelled transition
system over Act can be represented as a subclass G(IP) = {G(p) € G | p € IP} of G.

Since G is also a labelled transition system, G can be applied to G itself. The following
proposition says that the function G : G — G leaves its arguments intact up to graph isomorphism.

1%

Proposition 1.2 For g € G, G(g9) = g.
Proof: Remark that NODES(G(g)) = {gs | s € NODES(g)}.
Now the function f : NODES(G(g)) — NODES(g) defined by f(gs) = s is a graph isomorphism. O

1.4 Equivalences relations and preorders on labelled transition systems

This paper studies semantics on labelled transition systems. Each of the semantics examined here
(except for tree semantics) is defined or characterized in terms of a function O that associates with
every process p € IP a set O(p). In most cases the elements of O(p) can be regarded as the possible
observations one could make while interacting with the process p in the context of a particular
testing scenario. The set O(p) then constitutes the observable behaviour of p. For every such O, the
equivalence relation =p € IP x IP is given by p =¢p ¢ & O(p) = O(q), and the preorder Cp € IP x IP
by p Co ¢ & O(p) C O(q). Obviously p =0 ¢ & p Co g A q CEo p. The semantic equivalence
=@ partitions IP into equivalence classes of processes that are indistinguishable by observation
(using observations of type ). The preorder C moreover provides a partial order between these
equivalence classes; one that could be taken to constitute an “implementation” relation. The
associated semantics, also called O, is the criterion that identifies two processes whenever they are
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O-equivalent. Two semantics are considered the same if the associated equivalence relations are
the same.

As the definitions of O are given entirely in terms of action relations, they apply to any la-
belled transition system IP. Moreover, the definitions of O(p) involve only action relations between
processes reachable from p. Thus [Proposition 1.1] implies that O(G(p)) = O(p). This in turn yields

Corollary 1.1 p o ¢ iff G(p) Eo G(q) and p =0 ¢ iff G(p) =0 G(q)- O

Write O <p N if semantics O makes at least as much identifications as semantics A. This is the
case if the equivalence corresponding with O is equal to or coarser than the one corresponding with
N,ie. if p=xq= p=0 qforall p,q € P. Let < abbreviate =@- The following is then immediate

by [Corollary 1.1

Corollary 1.2 O XN iff O =P N for each labelled transition system IP.
On the other hand, O A N iff O Ap N for some labelled transition system IP. O

Write O ji‘P N ifp Ty g = p Co g for all p,g € IP, and let <* abbreviate ja}. By definition
O =<* N = O XN for all semantics @ and N. The reverse does not hold by definition, but it will
be shown to hold for all semantics discussed in this paper (cf. Bection 15).

1.5 Initial nondeterminism

In a process graph it need not be determined in which state one ends after performing a nonempty
sequence of actions. This phenomenon is called nondeterminism. However, process graphs as
defined above are not capable of modelling initial nondeterminism, as there is only one initial
state. This can be rectified by considering process graphs with multiple roots, in which ROOTS(g)
may be any nonempty subset of NODES(g)—let G™" be the class of such connected process graphs.
A process graph with multiple roots can also be regarded as a nonempty set of process graphs with
single roots. More generally, initial nondeterminism can be modelled in any labelled transition
system IP by regarding the nonempty subsets of IP (rather than merely its elements) to be processes.
The elements of a process P C IP then represent the possible initial states of P.

Now any notion of observability O on IP extends to processes with initial nondeterminism by
defining O(P) = Upep O(p) for P C P. Thus also the equivalences =¢ and preorders Cp are
defined on such processes. Write O <pp N if P =y Q = P =0 Q for all nonempty P,Q C IP, and
let <’ abbreviate j'G. Clearly, one has O <' N' = O < N for all semantics O and N.

Let g be a process graph over Act with multiple roots. Let 7 be an action (initialize) which is
not in Act. Define p(g) as the process graph over ActU{i} obtained from g by adding a new state *,
which will be the root of p(g), and adding a transition (x, i, r) for every r € ROOTS(g). Now for every
semantics O to be discussed in this paper it will be the case that g Co h < p(g) Co p(h), as the
reader may easily verify for each such @. From this it follows that we have infact O <' N < O <N
for all semantics @ and N treated in this paper. This justifies focusing henceforth on process graphs
with single roots and processes as mere elements of labelled transition systems.

2 Trace semantics

Definition 2 ¢ € Act* is a trace of a process p if there is a process g such that p —=» ¢q. Let
T'(p) denote the set of traces of p. Two processes p and ¢ are trace equivalent, notation p = ¢, if
T(p) = T(q). In trace semantics (T') two processes are identified iff they are trace equivalent.
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Testing scenario Trace semantics is based on the idea that two processes are to be identified
if they allow the same set of observations, where an observation simply consists of a sequence of
actions performed by the process in succession.

Modal characterization

Definition 2.1 The set L7 of trace formulas over Act is defined recursively by:
o T € L.
o If o € L7 and a € Act then ap € L.
The satisfaction relation = C IP x L is defined recursively by:
e p=T forall p e IP.
e p = ap if for some g € IP: p - g and q |= ¢.

Note that a trace formula satisfied by a process p represents nothing more or less than a trace of
p- Hence one has

Proposition 2.1 p=7rq & Yo € Lr(pE ¢ < q [ ). O

Process graph characterization Let g € G™ and 7 : $g —» 51 —2 -+ —% s, € PATHS(g).
Then T'(7) := a1az---a, € Act* is the trace of m. As G is a labelled transition system, 7T'(g) is
defined above. Alternatively, it could be defined as the set of traces of paths of g. It is easy to see
that these definitions are equivalent:

Proposition 2.2 T'(g) = {T(n) | # € PATHS(g)}- O

Explicit model In trace semantics a process can be represented by a trace equivalence class
of process graphs, or equivalently by the set of its traces. Such a trace set is always nonempty
and prefix-closed. The next proposition shows that the domain T of trace sets is in bijective
correspondence with the domain G/, of process graphs modulo trace equivalence, as well as with
the domain G™"/_,, of process graphs with multiple roots modulo trace equivalence. Models of
concurrency like T, in which a process is not represented as an equivalence class but rather as a
mathematically coded set of its properties, are sometimes referred to as explicit models.

Definition 2.2 The trace domain T is the set of subsets T of Act* satisfying

Tl e€eT,
T2 opeT = ocT.

Proposition 2.3 Te T g€ G:T(g) =T Ige G™ : T(g) =T.
Proof: Let T € T. Define the canonical graph G(T) of T by NODES(G(T)) = T, ROOT(G(T)) = ¢
and (o,a,p) € EDGES(G(T)) iff p = oa. As T satisfies T2, G(T) is connected, i.e. G(T) € G. In
fact, G(T) is a tree. Moreover, for every path 7 € PATHS(G(T)) one has T'(w) = end(w). Hence,
using Proposition 2.9, T(G(T)) = T.

For the remaining two implication, note that G C G™", and the trace set T'(g) of any graph
g € G™ satisfies T1 and T2. O

T was used as a model of concurrency in HOARE [30]-
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Infinite processes For infinite processes one distinguishes two variants of trace semantics: (fini-
tary) trace semantics as defined above, and infinitary trace semantics (T'°°), obtained by taking
infinite runs into account.

Definition 2.3 ajas--- € Act™ is an infinite trace of a process p € IP if there are processes
P1, P2, ... such that p = p; 25 ... Let T (p) denote the set of infinite traces of p. Two processes

p and q are infinitary trace equivalent, notation p =%° g, if T'(p) = T'(q) and T*°(p) = T°(q).

Clearly p =% g = p =7 ¢q. That on G the reverse does not hold follows from [Counterexample 1}:

Counterexample 1: Finitary equivalent but not infinitary equivalent

one has T'(left) = T(right) = {a™ | n € IN}, but T*°(left) # T°°(right), as only the graph at the
right has an infinite trace.

However, with Konig’s lemma one easily proves that for image finite processes finitary and
infinitary trace equivalence coincide:

Proposition 2.4 Let p and g be image finite processes with p =7 ¢q. Then p =% q.

Proof: It is sufficient to show that 7°°(p) can be expressed in terms of T'(p) for any image finite
process p. In fact, T7°°(p) consists of all those infinite traces for which all finite prefixes are in T'(p).
One direction of this statement is trivial: if o € T°(p), all finite prefixes of ¢ must be in T'(p).
For the other direction suppose that, for i € IN, a; € Act and aqa9---a; € T(p). With induction
on i € IN one can show that there exists processes p; such that i = 0 and py = p, or pi_1 —= p;,
and for every j > i one has a;y1a;42---a; € T(p;). The existence of these p;’s immediately entails
that ajagag--- € T*(p). The base case (¢ = 0) is trivial. Suppose the claim holds for certain
1. For every j > ¢ + 1 there must be a process ¢ with p; Zitl, ¢ and ai2ai43---a; € T(q). As
there are only finitely many processes ¢ with p; =2 ¢, there must be one choice of ¢ for which
ai2ai43 -+ - a; € T(q) for infinitely many values of j. Take this g to be p;11. As T'(p;j41) is prefix-
closed, one has a;12ai43---a; € T(pi41) for all j > i+ 1. O

An explicit representation of infinitary trace semantics is obtained by taking the subsets T of Act¥
satisfying T1 and T2.

3 Completed trace semantics

Definition 3 o € Act* is a complete trace of a process p, if there is a process ¢ such that p = ¢
and I(q) = 0. Let CT(p) denote the set of complete traces of p. Two processes p and ¢ are
completed trace equivalent, notation p =cr g, if T(p) = T(q) and CT(p) = CT(q). In completed
trace semantics (CT) two processes are identified iff they are completed trace equivalent.
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Testing scenario Completed trace semantics can be explained with the following (rather trivial)
completed trace machine. The process is modelled as a black box that contains as its interface to

Figure 2: The completed trace machine

the outside world a display on which the name of the action is shown that is currently carried out
by the process. The process autonomously chooses an execution path that is consistent with its
position in the labelled transition system (IP,—). During this execution always an action name
is visible on the display. As soon as no further action can be carried out, the process reaches a
state of deadlock and the display becomes empty. Now the existence of an observer is assumed
that watches the display and records the sequence of actions displayed during a run of the process,
possibly followed by deadlock. It is assumed that an observation takes only a finite amount of time
and may be terminated before the process stagnates. Hence the observer records either a sequence of
actions performed in succession—a trace of the process—or such a sequence followed by deadlock—
a completed trace. Two processes are identified if they allow the same set of observations in this
sense.

The trace machine can be regarded as a simpler version of the completed trace machine, were
the last action name remains visible in the display if deadlock occurs (unless deadlock occurs in the
beginning already). On this machine traces can be recorded, but stagnation can not be detected,
since in case of deadlock the observer may think that the last action is still continuing.

Modal characterization

Definition 3.1 The set Lor of completed trace formulas over Act is defined recursively by:
e T €Leor.
e 0€ Ler.
e If p € Lor and a € Act then ap € LoT.
The satisfaction relation = C IP x Lo is defined recursively by:
e p=T forall p e IP.
e pE0ifI(p) =0.
e p |= ay if for some ¢ € P: p —% g and q |= ¢.

Note that a completed trace formula satisfied by a process p represents either a trace (if it has the
form ajas---a,T) or a completed trace (if it has the form ajas - - - a,0). Hence one has

Proposition 3.1 p=crq & Vo€ Ler(pE v & qFE ¢). =

Also note the close link between the constructors of the modal formulas (corresponding to the
three clauses in Definition 3.1) and the types of observations according to the testing scenario: T
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represents the act of the observer of terminating the observation, regardless of whether the observed
process has terminated, 0 represents the observation of deadlock (the display becomes empty), and
ap represents the observation of ¢ being displayed, followed by the observation .

Process graph characterization Let g € G™ and s € NODES(g). Then I(s) :={a € Act | 3t :
(s,a,t) € EDGES(g)} is the menu of s. CT(g) can now be characterized as follows.

Proposition 3.2 CT(g) = {T(w) | # € PATHS(g) A I(end(r)) = 0}. 0

Classification Trivially T < CT (as in Figure 1). [Counterexample 2 shows that the reverse

a a =T a
#cr
b 5 b
#F
ab+a ab

Counterexample 2: Trace and simulation equivalent, but not completed trace equivalent

does not hold: one has T'(left) = T(right) = {e, a, ab}, whereas CT(left) # CT(right) (since
a € CT(left) — CT(right)). Hence the two process graphs are identified in trace semantics but
distinguished in completed trace semantics. Thus T' < CT: on G completed trace semantics makes
strictly less identifications than trace semantics.

Explicit model In completed trace semantics a process can be represented by a completed trace
equivalence class of process graphs, or equivalently by the pair (T, CT) of its sets of traces and
complete traces. The next proposition gives an explicit characterization of the domain CT of pairs
of sets of traces and complete traces of process graphs with multiple roots.

Definition 3.2 The completed trace domain CT is the set of pairs (T, CT) € Act* x Act* satisfying
TeTand CTCT,
c€T—-CT = dJa€ Act:oca € T.

Proposition 3.3 (T,CT) e CT < 3g € G™ : T(g) = TACT(g) =T.
Proof: Let (T,CT) € CT. Define the canonical graph G(T,CT) of (T,CT) by

e NODES(G(T,CT)) =TU{0od | 0 € CT},

e ROOTS(G(T,CT)) ={e}U{d | e € CT} and

e (0,a,p) € EDGES(G(T)) iff p = ga V p = gad.

As T satisfies T2, G(T,CT) is connected, i.e. G(T,CT) € G™. In fact, G(T,CT) is a tree, except
that it may have two roots. Using Propositions .9 and 3.2 it is easy to see that T(G(T,CT)) =T
and CT(G(T,CT)) = CT. O

The pairs obtained from process graphs with single roots are the ones moreover satisfying

e€ CT & T ={¢}.
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Infinite processes Also for completed trace semantics one can distinguish a finitary and an
infinitary variant. In terms of the testing scenario, the latter (CT) postulates that observations
may take an infinite amount of time.

Definition 3.3 Two processes p and g are infinitary completed trace equivalent, notation p =g g,
if CT(p) = CT(q) and T°°(p) = T*(q). Note that in this case also T'(p) = T'(q).

Proposition 2.4 implies that for image finite processes C'T and CT*° coincide, whereas Counterex-
ample [l shows that in general the two are different. In fact, T < T < CT*® and T < CT < CT*,
and the two preceding counterexamples show that there are no further inclusions.

4 Failures semantics
Testing scenario The failures machine contains as its interface to the outside world not only the

display of the completed trace machine, but also a switch for each action a € Act (as in [Figure 3).
By means of these switches the observer may determine which actions are free and which are

Figure 3: The failure trace machine

blocked. This situation may be changed any time during a run of the process. As before, the
process autonomously chooses an execution path that fits with its position in (IP, —), but this time
the process may only start the execution of free actions. If the process reaches a state where all
initial actions of its remaining behaviour are blocked, it can not proceed and the machine stagnates,
which can be recognized from the empty display. In this case the observer may record that after
a certain sequence of actions o, the set X of free actions is refused by the process. X is therefore
called a refusal set and (o, X) a failure pair. The set of all failure pairs of a process is called its
failure set, and constitutes its observable behaviour.

Definition 4 (o, X) € Act* x P(Act) is a failure pair of a process p if there is a process ¢ such
that p =5 ¢ and I(q) N X = (. Let F(p) denote the set of failure pairs of p. Two processes p and
q are failures equivalent, notation p =p ¢, if F(p) = F(q). In failures semantics (F') two processes
are identified iff they are failures equivalent.

Note that T'(p) can be expressed in terms of F'(p): T'(p) = {o € Act* | {0,0) € F(p)}; hence p =p q
implies T'(p) = T'(q).
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Definition 4.1 For p € IP and 0 € T'(p), let Conty(c) = {a € Act | ca € T(p)}, the set of possible
continuations of o.

The following proposition says that the failure set F'(p) of a process p is completely determined by
the set of failure pairs (o, X) with X C Cont,(0o).

Proposition 4.1 Let peP, 0 €T(p) and X C Act. Then (o, X) € F(p) < (o, X N Cont,(c)) € F(p).
Proof: If p —> ¢ then I(g) C Conty(o). O

Modal characterization

Definition 4.2 The set L of failure formulas over Act is defined recursively by:
e T €ELp.
e X € Ly for X C Act.
o If p e Lr and a € Act then ap € LF.
The satisfaction relation = C IP X Lp is defined recursively by:
e pE=T forallpeP.
e pEXifIpNnX =0.
e p = ap if for some g € P: p - g and q |= ¢.
X represents the observation that the process refuses the set of actions X, i.e. that stagnation
occurs in a situation where X is the set of actions allowed by the environment. Note that a failure

formula satisfied by a process p represents either a trace (if it has the form ajay - -+ a, T) or a failure
pair (if it has the form ajas---a,X). Hence one has

Proposition 4.2 p=pq © Vo e Lr(pFE v < qF= ¢). O

Process graph characterization Let g € G™" and 7 € PATHS(g). Then
F(n) i= {(T(x), X) | I(end(r)) N X = 0}
is the failure set of w. F(g) can now be characterized as follows.

Proposition 4.3 F(g) = UrcpaTus(g) F(7)- O

Classification CT < F.
Proof: For “CT < F” it suffices to show that also CT'(p) can be expressed in terms of F(p):

CT(p) = {o € Act” | (0, Act) € F(p)}.

It also suffices to show that the modal language Lo is a sublanguage of Lp: p=0<p = Act.
“CT % F” follows from [Counterexample 3: one has CT'(left) = CT(right) = {ab, ac}, whereas
F(left) # F(right) (since (a,{c}) € F(left) — F(right)). O
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=CT

a
#r

=cs b c
1
F

ab+ a(b+ c) a(b+c)

Counterexample 3: Completed trace and completed simulation equivalent, but not failures equiva-
lent or even singleton-failures equivalent

Explicit model In failures semantics a process can be represented by a failures equivalence
class of process graphs, or equivalently by its failure set. The next proposition gives an explicit
characterization of the domain IF of failure sets of process graphs with multiple roots.

Definition 4.3 The failures domain TF is the set of subsets F of Act* x P(Act) satisfying

F1 (e,0) €F,

F2 (op,0) €F = (0,0) €F,

F3 (0,Y)eFAXCY = (0,X)€F,

F4 (0,X)€eFAVaeY((oa,0)¢F) = (0,XUY)€F.

Proposition 4.4 FeIF & 3g € G"™ : F(g) =F.
Proof: “<”: F1 and F2 follow from T1 and T2 in Section 3, as one has (o,0) € F(g) < o € T(g).
F3 follows immediately from the definitions, as I(¢) N Y =0 AX CY = I(¢)Nn X = 0.
F4 follows immediately from Proposition 4.1}, as Va € Y ((ca,0) ¢ F(g)) iff Y N Conty(o) = 0.
For “=” let F € F. For o € Act* write Contg(o) for {a € Act | (0a,0) € F}.
Define the canonical graph G(F) of F by

e NODES(G(F)) = {(0,X) € F | X C Contr(0)},
e ROOTS(G(F)) = {(¢,X) | {¢,X) € F},
e EDGES(G(F)) = {({0,X), a,(ca,Y)) | (o, X),{ca,Y) € NODES(G(F)) Aa & X }.
By F1, RoOTS(G(F)) # (0. Using F3 and F2, any node s = (a; - - - ap, X) of G(F) is reachable from

a root by the path y : (g,0) % (ay, @) 2 --- oy {ay -+ an_1,0) > {a1 - an, X); hence G(F) is
connected. So G(F) € G™". T have to show that F(G(F)) =F.

“D”: Suppose (o, X) € F. Then, by F3, s := (o, X N Contr(c)) € NODES(G(F)). By construc-
tion one has T'(ws) = o and I(s) N X = (. Hence (0, X) € F () C F(G(F)).

“C”: With induction on the length of paths, it follows immediately from the definition of G(F)
that for m € PATHS(G(F)), if end(w) = (p,Y) then p = T(w) and I(end(w)) = Contr(p) =Y. (¥)
Suppose (o, X) € F(G(F)). Then, by Proposition 4.3, there must be a path = € PATHS(G(F)) with
(0,X) € F(mr). So T(w) = o and I(end(w)) N X = (. Let end(w) := (p,Y) € F. By (*), p =0 and
X NContp(c) CY. By F3 it follows that (o, X N Contr(o)) € F, and F4 yields (0, X) € F. m]

A variant of IF was used as a model of concurrency in HOARE [31].7

"There a process is given as a triple (A, F, D) with A C Act a set of actions that may occur in the process, F' € F
and D a set of so-called divergencies, traces that can lead along a state where an infinite sequence of internal actions
is possible. As this paper considers only concrete, and hence divergence-free, processes, D is always empty here.
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If ROOTS(g) would be allowed to be empty, a characterization is obtained by dropping require-
ment F1. A characterization of the domain of failure sets of process graphs with single roots is
given by adding to F1-4 the requirement

F5 (,X)€F = Vae X :(a,0) ¢F.

That F5 holds follows from the observation that I(RO0OT(g)) = {a € Act | {a,0) € F(g)} for g € G.

Alternative characterizations In DE NICOLA several equivalences, that were proposed in
KENNAWAY [34], DARONDEAU and DE N1coLA & HENNESSY [I7], are shown to coincide with
failures semantics on the domain of finitely branching transition systems without internal moves.
For this purpose he uses the following alternative characterization of failures equivalence.

Definition 4.4 Write p after 0 MUST X if for each ¢ € IP with p %+ ¢ there is an a € I(q) with
a € X. Put p~qif for all 0 € Act* and X C Act: p after c MUST X < q after 0 MUST X.

Proposition 4.5 Let p,g € IP. Thenp~q & p=pq.
Proof: p after 0 MUST X < (0,X) ¢ F(p) [16]. O

Instead of the complement of the failure set of a process p, one can also take the complement
Conty(o) — X of every refusal set X within a failure pair (¢, X) of p. In view of Proposition 4.1, the
same information stored in F'(p) is given by the set of all pairs (o, X) € Act* x P(Act) for which
there is a process g such that p — ¢ and I(q) C X C Cont,(c). In HENNESSY [26], a model for
nondeterministic behaviours is proposed in which a process is represented as an acceptance tree.
An acceptance tree of a finitely branching process without internal moves is essentially the set of
pairs described above, conveniently represented as a finitely branching, deterministic process tree,
of which the nodes are labelled by collections of sets of actions. Thus acceptance trees constitute
an explicit model of failures semantics.

Infinite processes For infinite processes, three versions of failures semantics can be distinguished.

Definition 4.5 Two processes p and q are (finitary) failures equivalent if F(p) = F(q). p and ¢
are infinitary failures equivalent, notation p =% ¢, if F((p) = F(q) and T*°(p) = T*°(gq). They are
finite-failures equivalent, notation p =4 ¢, if F~(p) = F~(q), where F~ (p) denotes the set of failure
pairs (o, X) of p with X finite.

The original failures semantics of BROOKES, HOARE & ROSCOE [13] is F~, i.e. what I call finite-
failures semantics. They “adopt this view of distinguishability because [they] consider a realistic
environment to be one that is at any time capable of performing only a finite number of events.” In
terms of the failures machine this means that at any time only finitely many switches can be set on
free. Finitary failures semantics is the default version introduced at the beginning of this section.
This can be regarded to be the semantics employed in BROOKES & ROSCOE and HOARE
[31]. Infinitary failures semantics was first discussed in BERGSTRA, KLOP & OLDEROG [10]; it was
proposed as a semantics for CSP in RoSCOE [45]. The difference between the testing scenarios for F
and F'* is that only the latter allows observations of infinite duration. Obviously, F/~ <X F <X F*°.
That the latter inclusion is strict follows from [Counterexample 1|; [Counterexample 4 shows that
also the former is strict: one has F~(left) = F~(right), whereas F(left) # F(right). In fact even
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Counterexample 4: HML- and finite-failures equivalent, but not completed trace equivalent

CT(left) # CT(right), as a € CT(left) — CT(right). Thus, although T" < F~, CT < F and
CT>® < F*, CT and F~ are independent, as are CT* and F.

In addition to the three variants of one could also define a version of failures
semantics based on infinite traces and finite refusal sets. Such a semantics would distinguish the
two graphs of Counterexample 1|, but identify the ones of [Counterexample 4. As this semantics
does not occur in the literature, and has no clear advantages over the other variants, I will not
further consider it here.

Proposition 4.6 Let p en ¢ be image finite processes. Then p = g & p=r ¢ p =% ¢q.

Proof: “<” has been established for all processes, and the second “=" follows immediately from
Proposition 2.4 (as p = ¢ = p =7 ¢ = p =7 ¢). So it remains to show that p #r ¢ = p #5 q.
Suppose F(p) # F(q), say there is a failure pair (o, X) € F(p) — F(gq). By the image finiteness of
g there are only finitely many processes r; with ¢ — 75, and for each of them there is an action
a; € I(r;) N X (as otherwise (¢, X) would be a failure pair of g). Let Y be the set of all those a;’s.
Then Y is a finite subset of X, so (5,Y) € F~(p). On the other hand, a; € I(r;) NY for all r;, so

<UaY>¢F_(Q)- O

It is not hard to change the leftmost process in Counterexample 4 to an image finite one with the
same failure pairs. Thus, in the first statement of Proposition 4.6 it is necessary that both processes
are image finite. For the subclass of finitely branching processes a stronger result can be obtained.

Proposition 4.7 Let p,q € IP and p is finitely branching. Then p =5 ¢ & p =F q.

Proof: Suppose p =5 ¢. As p is finitely branching, Conty(o) is finite for all o € T'(p). And as
T(q) = T(p), Conty(c) = Cont,(o), which is finite, for all o € T'(¢). Now for processes p with this
property, F(p) is completely determined by F~ (p), as follows from [Proposition 4.1 |

The second statement of [Proposition 4.6 does not allow such a strengthening, as will follow from
[Counterexample 19.

5 Failure trace semantics

Testing scenario The failure trace machine has the same layout as the failures machine, but
is does not stagnate permanently if the process cannot proceed due to the circumstance that all
actions it is prepared to continue with are blocked by the observer. Instead it idles—recognizable
from the empty display—until the observer changes its mind and allows one of the actions the
process is ready to perform. What can be observed are traces with idle periods in between, and for
each such period the set of actions that are not blocked by the observer. Such observations can be
coded as sequences of members and subsets of Act.
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Example: The sequence {a,b}cdb{b, c}{b,c,d}a(Act) is the account of the following observa-
tion: At the beginning of the execution of the process p, only the actions a and b were allowed by
the observer. Apparently, these actions were not on the menu of p, for p started with an idle period.
Suddenly the observer canceled its veto on ¢, and this resulted in the execution of ¢, followed by
d and b. Then again an idle period occurred, this time when b and ¢ were the actions not being
blocked by the observer. After a while the observer decided to allow d as well, but the process
ignored this gesture and remained idle. Only when the observer gave the green light for the action
a, it happened immediately. Finally, the process became idle once more, but this time not even
one action was blocked. This made the observer realize that a state of eternal stagnation had been
reached, and disappointed he terminated the observation.

A set X C Act, occurring in such a sequence, can be regarded as an offer from the environment,
that is refused by the process. Therefore such a set is called a refusal set. The occurrence of a
refusal set may be interpreted as a ‘failure’ of the environment to create a situation in which the
process can proceed without being disturbed. Hence a sequence over Act U P(Act), resulting from
an observation of a process p may be called a failure trace of p. The observable behaviour of a
process, according to this testing scenario, is given by the set of its failure traces, its failure trace
set. The semantics in which processes are identified iff their failure trace sets coincide, is called
failure trace semantics (F'T).

For image finite processes failure trace semantics is exactly the equivalence that originates from
PHILLIPS notion of refusal testing [42]. (Image infinite processes are not considered in [42].) There
it is called refusal equivalence.

Definition 5
e The refusal relations X, for X C Act are defined by: p N qgiff p=gqgand I(p)N X = 0.

p X, g means that p can evolve into g, while being idle during a period in which X is the set
of actions allowed by the environment.

e The failure trace relations —— for o € (ActUP(Act))* are defined as the reflexive and transitive
closure of both the action and the refusal relations. Again the overloading of notation is
harmless.

e 0 € (ActUP(Act))* is a failure trace of a process p if there is a process ¢ such that p — ¢. Let
FT(p) denote the set of failure traces of p. Two processes p and q are failure trace equivalent,
notation p =pr q, if FT(p) = FT(q).

Modal characterization

Definition 5.1 The set Lpr of failure trace formulas over Act is defined recursively by:
e T € Lpr.
e If p € Lpr and X C Act then X'(p € Lpr.
e If p € Lpr and a € Act then ap € Lpr.
The satisfaction relation = C P X Lpr is defined recursively by:
e p=T forall p e IP.
. p|:)2'<p ifI(p)NX =0 and p = ¢.
e p = ap if for some g € IP: p - g and q |= ¢.
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X © represents the observation that the process refuses the set of actions X, followed by the obser-
vation ¢. A modal failure trace formula satisfied by a process p represents exactly a failure trace
as defined above. Hence one has

Proposition 5.1 p=pr q < Vo€ Lrr(pE ¢ & qFE ¢). =

Process graph characterization Let g € G™ and 7: s9 — §1 —2 --- —2 5,, € PATHS(g).
Then the failure trace set of w, FT(r), is the smallest subset of (Act UP(Act))* satisfying

(Act — I(sg))ay(Act — I(s1))ag - an(Act — I(sy,)) € FT(m),
oXp € FT(r) = op € FT(m),

oXp € FT'(r) = oXXp € FT(n),

oXp€e FT(r) NY C X = oYp € FT(n).

FT(g) can now be characterized as follows.

Proposition 5.2 FT'(g) = Ureparus(g) £71(7)- O

Proposition b.2 yields a technique for deciding that two process graphs are failure trace equivalent,
without calculating their entire failure trace set.

Let g,h€G™ 7: 59 % 51 25 --- 2% 5, € PATHS(g) and 7' ¢y Dy b2y By e PATHS(h).
Path 7' is a failure trace augmentation of 7, notation m <pp 7', if FT(w) C FT(x'). This is the
case exactly when n = m, a; = b; and 1(t;) C I(s;) for i = 1,...,n. From this the following can be
concluded.

Corollary 5.1 Two process graphs g,h € G™ are failure trace equivalent iff
e for any path 7 € PATHS(g) in g there is a ' € PATHS(h) such that 7 <pp 7’
e and for any path m € PATHS(g) in h there is a ' € PATHS(g) such that 7 <pp 7.

If g and h are moreover without infinite paths, then it suffices to check the requirements above for
maximal paths. u

Classification F < F'T.
Proof: For “F < FT” it suffices to show that F(p) can be expressed in terms of F'T(p):

(0,X)e F(p) & oX € FT(p).

“F ¥ FT” follows from [Counterexample §; see Bection 7 for details. O

Infinite processes As for failures semantics, three variants of failure trace semantics for infinite
processes can be defined. Besides the default version (F'T') there is an infinitary version (FT°°),
motivated by observations that may last forever, and a finite version (F'T~), motivated by an
observer that may only set finitely many switches on free at any time.

Definition 5.2 0109+ € (Act UP(Act))™® is an infinite failure trace of a process p € IP if there
are processes pi,pa, ... such that p - p; —= ---. Let FT>(p) denote the set of infinite failure
traces of p. Two processes p and g are infinitary failure trace equivalent, notation p =%, ¢, if
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a(b+ cd) + a(f + ce) a(b+ce) +a(f + cd)
Counterexample 5: Failures and ready equivalent, but not failure trace or ready trace equivalent
FT*(p) = FT*(q) and FT(p) = FT(q). They are finite-failure trace equivalent, notation p =5 g,

if FT~(p) = FT~(q), where FT(p) denotes the set of failure traces of p in which all refusal sets
are finite.

Clearly, FT~ < FT < FT*; Counterexamples [I| and f] show that the inclusions and strict. One
also has F~ < FT—, F < FT and F*®° < FT; here strictness follows from [Counterexample §.

Proposition 5.3 Let p en ¢ be image finite processes. Then p =, ¢ <& p =7 ¢ & p =% q.
Proof: “p =, ¢ <= p =r71 q < p =% q” holds for all processes.

Note that the definition of FT(p) is exactly like the definition of T'(p), except that the failure
trace relations are used instead of the generalized action relations; the same relation exists between
FT>(p) and T*(p). Moreover, a process p € P is image finite in terms of the failure trace relations
on IP iff it is image finite in terms of terms of the (generalized) action relations on IP, as defined in
Definition 1.3. Hence “p =p7 q¢ = p =%r ¢” follows immediately from [Proposition 2.4.

“p=pr q=p=pr ¢": Suppose FT(p) # FT(q), say FT(p) — FT(q) # 0. Let o be a failure trace
in FT(p) — FT(q) with at least one infinite refusal set. I will show that there must be a failure
trace in F'T'(p) — FT(q) with strictly fewer infinite refusal sets than o. By applying this result a
finite number of times, a failure trace p € FT'(p) — FT(q) is found without infinite refusal sets,
showing that FT (p) # FT (q).

So let o = 01 X09 € FT(p) — FT(q) with X an infinite refusal set. Clearly o109 € FT(p). By
the image finiteness of ¢ there are only finitely many pairs of processes r;, s; with ¢ — r; — s;,
and for each of them there is an action a; € I(r;) N X (as otherwise 01 Xo2 would be a failure
trace of g). Let Y be the set of all those a;’s. Then Y is finite. As Y is a subset of X, one has
01Y o9 € FT(p). On the other hand, a; € I(r;) NY for all r;, so 01Y oy & FT(q). O

Unlike the situation for failures semantics, in the first statement of [Proposition 5.3 it is not necessary
that both processes are image finite.

Proposition 5.4 Let p,q € IP and p is image finite. Then p =5, ¢ p =r7 q.
Proof: More difficult, and omitted here. a

The second statement of [Proposition 5.3 does not allow such a strengthening, as will follow from
[Counterexample 12.
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6 Ready trace semantics

Testing scenario The ready trace machine is a variant of the failure trace machine that is
equipped with a lamp for each action a € Act. Each time the process idles, the lamps of all actions

Figure 4: The ready trace machine

the process is ready to engage in are lit. Of course all these actions are blocked by the observer,
otherwise the process wouldn’t idle. Now the observer can see which actions could be released in
order to let the process proceed. During the execution of an action no lamps are lit. An observation
now consists of a sequence of members and subsets of Act, the actions representing information
obtained from the display, and the sets of actions representing information obtained from the lights.
Such a sequence is called a ready trace of the process, and the subsets occurring in a ready trace
are referred to as menus. The information about the free and blocked actions is now redundant.
The set of all ready traces of a process is called its ready trace set, and constitutes its observable
behaviour.

Definition 6
e The ready trace relations % for o € (Act UP(Act))* are defined recursively by:

1. p ﬂ&) p, for any process p.

2. p — ¢ implies p %é q.

3. p ﬂé) g with X C Act whenever p = ¢ and I(p) = X.
4. p%L) qélL)r impliespei& T.

g
The special arrow %— had to be used, since further overloading of -2+ would cause confusion
with the failure trace relations.

e 0 € (ActUP(Act))* is a ready trace of a process p if there is a process g such that p AN g. Let
RT(p) denote the set of ready traces of p. Two processes p and g are ready trace equivalent,
notation p =gy ¢, if RT(p) = RT(q). In ready trace semantics (RT) two processes are
identified iff they are ready trace equivalent.

In BAETEN, BERGSTRA & KLoP [6], PNUELI and POMELLO ready trace semantics was
defined slightly differently. By [Proposition 6.1| below, their definition yields the same equivalence
as mine.
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Definition 6.1 Xpa1Xia9---apX, € P(Act) X (Act xP(Act))* is a normal ready trace of a process
p if there are processes pi, ..., pn such that p — p; — .-« 2 p, and I(p;) = X; for i = 1,...,n.
Let RTn(p) denote the set of normal ready traces of p. Two processes p and g are ready trace

equivalent in the sense of [6, 43, 44] if RTn(p) = RTn(q)-

Proposition 6.1 Let p,q € IP. Then RTn(p) = RTn(q) < RT(p) = RT(q).

Proof: The normal ready traces of a process are just the ready traces which are an alternating
sequence of sets and actions, and vice versa the set of all ready traces can be constructed form the
set of normal ready traces by means of doubling and leaving out menus. O

Modal characterization

Definition 6.2 The set Lgr of ready trace formulas over Act is defined recursively by:
e T € Lpr.
o If p € Lrr and X C Act then X € Lgr.
e If p € Lrr and a € Act then ap € Lgr.
The satisfaction relation = C IP X L is defined recursively by:
e p=T forall p e IP.
e p=XpifI(p) =X and p = ¢.
e p |=ay if for some ¢ € P: p —% g and q |= ¢.

X represents the observation of a menu, followed by the observation ¢. A ready trace formula
satisfied by a process p represents exactly a ready trace in Definition 6. Hence one has

Proposition 6.2 p=prq © Yo € Lrr(pE v < qF ). O

Process graph characterization TLet g € G™ and 7: s9 —= 81 — +++ 2 5, € PATHS(g).
The ready trace of w is given by RTn(7) := I(s¢)a1l(s1)az - anl(sy).
RTx(g) can now be characterized by:

Proposition 6.3 RTxn(g) = {RTn(w) | ®# € PATHS(g)}. O

Moreover, RT(g) is the smallest subset of (Act UP(Act))* containing RTx(g) and satisfying
oXp € RT(g) = op € RT(9) N\oXXp € RT(g).

Classification FT < RT.

Proof: For “FT < RT” it suffices to show that F'T(p) can be expressed in terms of RT(p):

o =0109---0, € FT(p) (0; € Act UP(Act)) &
Jp=pip2---pn € RT(p) (p;i € Act UP(Act)) such that for i = 1,...,n either
o; = p; € Act or i, p; C Act and o; N p; = 0.

“FT ¥ RT” follows from [Counterexample 6; see Section 7 for details. O



BBK87b
ready trace
FTvsR
readiness

24 The linear time — branching time spectrum I

=F
#R
b c =FT

#RT

ab+ ac ab+a(b+c) +ac

Counterexample 6: Failures and failure trace equivalent, but not ready or ready trace equivalent

Explicit model In ready trace semantics a process can be represented by a ready trace equiva-
lence class of process graphs, or equivalently by its ready trace set, possibly in the normal form of
Definition 6.1 The next proposition gives an explicit characterization of the domain IR of ready
trace sets in this form of process graphs with multiple roots.

Definition 6.3 The ready trace domain RT is the set of subsets RT of P(Act) x (Act x P(Act))*
satisfying

RT1 3X(X € RT),

RT2 oX € RTAa € X & Y (0XaY € RT).

Proposition 6.4 RT € RT < 3g € G™ : RTn(g) = RT.
Proof: “<” is evident. For “=” let RT € RT. Define the canonical graph G(RT) of RT by

e NODES(G(RT)) = RT,
e ROOTS(G(RT)) = {X C Act | X € RT},
e EDGES(G(RT)) = {(0,a,0aY) | 0,0aY € NODES(G(RT))}.

By RT1, roOTS(G(RT)) # 0. Using R2, G(RT) is connected. So G(RT) € G™". Moreover, for
every path m € PATHS(G(RT)) one has RTy(w) = end(w). Hence RTyN(G(RT)) = RT. O

If ROOTS(g) would be allowed to be empty, a characterization is obtained by dropping requirement
RT1. A characterization of the domain of ready trace sets of process graphs with single roots is
given by strengthening RT1 to I'X (X € RT), where 3! X means “there is exactly one X such that”.

Infinite processes An infinitary version of ready trace semantics (RT°) is defined analogously
to infinitary failure trace semantics. A finite version is not so straightforward; a definition will be
proposed in the next section.

Definition 6.4 o109+ € (Act UP(Act))™ is an infinite ready trace of a process p € IP if there

g g
are processes pi, pa2, ... such that p s P1 ¥ ---. Let RT*(p) denote the set of infinite ready
traces of p. Two processes p and ¢ are infinitary ready trace equivalent, notation p =% ¢, if

RT*(p) = RT*°(q) and RT(p) = RT(q).

Clearly, RT < RT°; Counterexample 1 shows that the inclusion is strict. Moreover FT° < RT"°.

Proposition 6.5 Let p en ¢ be image finite processes. Then p =rr ¢ < p =%, .
Proof: Exactly as the corresponding part of Proposition 5.3. O

Counterexample 12 will show that in Proposition 6.5 both p and ¢ need to be image finite.
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7 Readiness semantics and possible-futures semantics

Testing scenario The readiness machine has the same layout as the ready trace machine, but,
like the failures machine, can not recover from an idle period. By means of the lights the menu of
initial actions of the remaining behaviour of an idle process can be recorded, but this happens at
most once during an observation of a process, namely at the end. An observation either results in
a trace of the process, or in a pair of a trace and a menu of actions by which the observation could
have been extended if the observer wouldn’t have blocked them. Such a pair is called a ready pair
of the process, and the set of all ready pairs of a process is its ready set.

Definition 7 (0,X) € Act* x P(Act) is a ready pair of a process p if there is a process ¢ such
that p -2 ¢ and I(q) = X. Let R(p) denote the set of ready pairs of p. Two processes p and ¢ are
ready equivalent, notation p =g ¢, if R(p) = R(q). In readiness semantics (R) two processes are
identified iff they are ready equivalent.

Modal characterization

Definition 7.1 The set L of readiness formulas over Act is defined recursively by:
e T € Lp.
e X € L for X C Act.
e If p € L and a € Act then ap € Lp.
The satisfaction relation = C IP x Lg is defined recursively by:
e pE=T forall p e IP.

o p= X if I(p) = X.
e p = ap if for some g € IP: p - g and q |= ¢.

X represents the observation of a menu. A readiness formula satisfied by a process p represents
either a trace (if it has the form ajas---a,T) or a ready pair (if it has the form ajay---a,X).
Hence one has

Proposition 7.1 p=pq & Vo € Lr(pE v < qFE ¢). O

Process graph characterization Let g € G™ and 7 € PATHS(g). The ready pair of 7 is given
by R(w) := (T'(rn),I(end(r))). R(g) can now be characterized by:

Proposition 7.2 R(g) = {R(n) | # € PATHS(g)}- O

Classification F < R < RT, but R and FT are independent.
Proof: For “F < R” it suffices to show that F(p) can be expressed in terms of R(p):

(0, X) € F(p) & TFY CAct:{(0,Y)ER(p) AN XNY =0.
For “R < RT” it suffices to show that R(p) can be expressed in terms of RT'(p):

(0,X)€ R(p) & oX € RT(p).
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“R ¥ FT” (and hence “R ¥ RT” and “F ¥ FT”) follows from [Counterexample §, in which
R(left) = R(right) but FT(left) # FT(right). The first statement follows with Proposition 7.2.
Both graphs have 9 paths starting from the root, and hence 9 ready pairs. These are easily seen
to be the same at both sides; in the second graph only 4 ready pairs swapped places. The second
statement follows since a{b}ce € FT(left) — FT(right).

“R A FT” (and hence “R A F” and “RT A FT”) follows from [Counterexample 6, in which
FT(left) = FT(right) but R(left) # R(right). The first statement follows from [Corollary 5.1, since
the new maximal paths at the right-hand side are both failure trace augmented by the two maximal
paths both sides have in common. The second one follows since (a, {b, c}) € R(right) — R(left). O

Explicit model In readiness semantics a process can be represented by a ready equivalence
class of process graphs, or equivalently by its ready set. The next proposition gives an explicit
characterization of the domain IR of ready sets of process graphs with multiple roots.

Definition 7.2 The readiness domain R is the set of subsets R of Act* x P(Act) satisfying

Rl 3X((, X) € R),
R2 3X({(o,X U{a}) € R) & IY((0a,Y) € R).

Proposition 7.3 Re R < 3g € G™ : R(g) =R.
Proof: “<” is evident. For “=” let R € R. Define the canonical graph G(R) of R by

e NODES(G(R)) =R,
e 100TS(G(R) = {{6, X) | (&, X) € R},
e EDGES(G(R)) = {({0, X),a,(0a,Y)) | (0,X),(ca,Y) € NODES(G(R)) Aa € X }.

By R1, roOTS(G(R)) # 0. Using R2, G(R) is connected. Hence G(R) € G™". Moreover, for every
path = € PATHS(G(R)) one has R(w) = end(r). From this it follows that R(G(R)) = R. 0

If ROOTS(g) would be allowed to be empty, a characterization is obtained by dropping requirement
R1. A characterization of the domain of ready sets of process graphs with single roots is given by
strengthening R1 to 3! X ((e, X) € R), where 3!X means “there is exactly one X such that”.

Possible-futures and acceptance-refusal semantics Readiness semantics was proposed by
OLDEROG & HOARE [40]. Two preliminary versions stem from ROUNDS & BROOKES [46]: in
possible-futures semantics (PF) the menu consists of the entire trace set of the remaining behaviour
of an idle process, instead of only the set of its initial actions; in acceptance-refusal semantics a
menu may be any finite subset of initial actions, while also the finite refusal sets of are
observable.

Definition 7.3 (0, X) € Act* x P(Act*) is a possible future of a process p if there is a process g
such that p = ¢ and T'(q) = X. Let PF(p) denote the set of possible futures of p. Two processes
p and q are possible-futures equivalent, notation p =pp ¢, if PF(p) = PF(q).

The modal and process graph characterizations of possible-future semantics are straightforward,
but a plausible testing scenario has not been proposed. Trivially R < PF. That the reverse does
not hold, and even that PF £ RT, will follow from [Counterexample 1(]. Counterexample 7 shows
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that F'T' A PF. There PF(left) = PF(right) but FT (left) # FT(right). As for the first statement,
both graphs have 18 paths starting from the root, and hence 18 possible futures. These are easily
seen to be the same at both sides; in the second graph only 2 possible futures swapped places. The
second statement follows since a{b}a{b}cd € FT(left) — FT(right). Thus possible-future semantics
is incomparable with failure trace and ready trace semantics.

=pF
#FT
#s

a(b+ a(b+ cd) + ace) + a(acd + a(ce + b)) a(a(b+ cd) + ace) + a(acd + a(ce + b) + b)

Counterexample 7: Possible-futures equivalent, but not failure trace or simulation equivalent

Definition 7.4 (0, X,Y) € Act* x P(Act) x P(Act) is an acceptance-refusal triple of a process p
if X and Y are finite and there is a process g such that p -2+ ¢, X C I(¢) and Y N I(q) = (. Let
AR(p) denote the set of acceptance-refusal triples of p. Two processes p and q are acceptance-refusal
equivalent, notation p =4p q, if AR(p) = AR(q).

The modal and process graph characterizations are again straightforward. A motivating testing
scenario would be the same as for readiness semantics, except that at any time only finitely many
switches can be set on free, and only finitely many lamps can be investigated in a finite amount of
time. Clearly p =gr ¢ = p =R ¢, for

AR(p) = {{0,X,Y) | 3o, Z) € R(p) | X,Y finite AX C ZAY NZ =0}

That this implication is strict follows from [Counterexample 4. It is not difficult to see that for
finitely branching processes acceptance-refusal equivalence coincides with ready equivalence: (o, X)
is a ready pair of a process p iff p has an acceptance-refusal triple (o, X,Y) with X UY = Cont,(o)

(cf. Definition 4.1)).

Infinite processes Note that if in the sets X and Y are allowed to be infinite the
resulting equivalence would be ready equivalence again. Namely (o, X) is a ready pair of a process
p iff p has such an acceptance-refusal triple (o, X, Act — Y). Thus acceptance-refusal semantics can
be regarded as the finite variant of readiness semantics, and will therefore be denoted R~. The
infinitary variant of readiness semantics (R*°), motivated by observations that may last forever, is
defined analogously to F'*°:

Definition 7.5 p and g are infinitary ready equivalent if R(p) = R(q) and T°(p) = T*(q).

Clearly, R < R°; by Counterexample 1| the inclusion is strict. Moreover, F*° < R>* < RT*°.
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Proposition 7.4 Let p en ¢ be image finite processes. Then p =g ¢ & p =% q.
Proof: “<” has been established for all processes, and the second “=" follows immediately from
Proposition 2.4 (as p=r ¢ = p =1 ¢ = p =F q). O

Proposition 7.5 Let p,q € IP and p is image finite. Then p =45 g < p =R q.

Proof: “<” holds for all process. I will prove “=" assuming that p has the property that for any
o € Act* there are only finitely many ready pairs (o, X) € R(p). This property (call it RIF) is
clearly implied by image finiteness. So suppose p has the RIF property and AR(p) = AR(q). I will
show that R(p) = R(q).

Suppose (0,Y) € R(p). By RIF there are only finitely many ready pairs (o, X;) € R(p). For
each of them choose an action a; € Y — X; or b; € X; — Y. Let U be the set of all those a;’s, and
V the set of the b;’s. Then (o,U,V) ¢ AR(p) = AR(q) and hence (0,Y) & R(q).

It follows that R(q) C R(p), and thus ¢ has the property RIF as well. Now the same argument
applies in the other direction, yielding R(p) C R(q). O

Inspired by the definition of R™, a finite version of ready trace semantics (R7'~) can be defined
likewise. Here I will just give its modal characterization.

Definition 7.6 The set L5 of finite ready trace formulas over Act is given by:
o T €Ly
o If ¢ € Ly and X Cgy, Act then X € Ly and X € L
o If o € L and a € Act then ap € L.
The satisfaction relation = C IP x L is given by the usual clauses for T and a¢, and:
e pEXpif X CI(p) and p = ¢.
° p|:5(:(p ifI(p)NX =0 and p E ¢.
Processes p and g are finite-ready trace equivalent, notation p = q, if Vo € Lpp(p = 0 © q = ¢).

As these formulas are expressible in terms of the ones of Definition 6.2, one has RT~ < RT;
[Counterexample 4] shows that the inclusion is strict. Also FT~ < RT~ and F~ < R~ < RT".

Proposition 7.6 Let p,q € IP and p is image finite. Then p =5 ¢ < p =r7 ¢.

Proof: “«<” holds for all process. “=" follows just as in [Proposition 7.5, using the property that
for any ajas---a, € Act” there are only finitely many normal ready traces XgaiX1as---a, X, €
RTN(p) Od

Unlike the semantics 7' to RT, possible-futures semantics distinguishes between the two processes
of [Counterexample 1} (a,a*) € PF(right) — PF(left). Still, T A PF, as can be seen from the
variant of [Counterexample 1| in which the left-hand process is appended to the endnodes of both
processes. The so obtained systems have the same possible futures, including {(a",a*) | n € IN},
but only the right-hand side has an infinite trace.

For the sake of completeness I include a definition of infinitary possible-futures semantics (PF ),
such that PF < PF® and R>® < PF®. A finite variant of PF has not been explored.

Definition 7.7 (0, X) € Act* x P(Act*) is an infinitary possible future of a process p if there is a
process ¢ such that p =+ ¢ and T(q)UT*°(q) = X. Let PF>(p) denote the set of infinitary possible
futures of p. Two processes p and g are infinitary possible-futures equivalent, notation p =% q, if
PF>(p) = PF>(q).
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8 Simulation semantics

The following concept of simulation occurs frequently in the literature (see e.g. PARK [41]).

Definition 8 A simulation is a binary relation R on processes, satisfying, for a € Act:
e if pRq and p - p/, then 3¢’ : ¢ - ¢’ and p'Ryq’.

Process p can be simulated by ¢, notation p S ¢, if there is a simulation R with pRyq.

p and q are similar, notation p2 ¢, ifpS gand ¢ S p.

Proposition 8.1 Similarity is an equivalence relation on the domain of processes.

Proof: Symmetry is immediate, so it has to be checked that p S p,and pS g A ¢S T = pS 7.
e The identity relation is a simulation with pRp.
e If R is a simulation with pRq and S is a simulation with ¢S7, then the relation R;S, defined by

z(R;S)z iff Jy : xRy A ySz, is a simulation with p(R;S)r. O

Hence the relation will be called simulation equivalence. In simulation semantics (S) two processes
are identified iff they are simulation equivalent.

Testing scenario and modal characterization The testing scenario for simulation semantics
resembles that for trace semantics, but in addition the observer is, at any time during a run of the
investigated process, capable of making arbitrary many copies of the process in its present state and
observe them independently. Thus an observation yields a tree rather than a sequence of actions.
Such a tree can be coded as an expression in a simple modal language.

Definition 8.1 The class Lg of simulation formulas over Act is defined recursively by:
o If I is a set and ¢; € Lg for 7 € I then A\;.; ¢; € Ls.
e If p € Ls and a € Act then ap € Lg.
The satisfaction relation = C IP x Lg is defined recursively by:
e p=Nicrpiifpl=y; foralli e 1.
e p = ayp if for some ¢ € P: p —% g and q |= ¢.
Let S(p) denote the class of simulation formulas satisfied by the process p: S(p) = {¢ € Ls | p = ¢}-
Write p Cg ¢ if S(p) C S(g) and p =g ¢ if S(p) = S(q).
Write T for Ajcp @i, and o1 A @2 for Ajey1 2y i- It turns out that Lr is a sublanguage of Ls.

Proposition 8.2 pS g& pCsq. Hence p2 ¢ & p=sq.
Proof: For “=” I have to prove that for any simulation R and for all ¢ € Lg one has
PRg=(pEe=qF ).

I will do so with structural induction on ¢. Suppose pRq.
— Let p |= ap. Then there is a p' € IP with p - p’ and p' = ¢. As R is a simulation, there
must be a ¢’ € IP with ¢ -+ ¢’ and p'Rq’. So by induction ¢’ |= ¢, and hence q |= ayp.

~pENergi ©Vicllp o) 2B Viel(gE @) © q E Nies oi-
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For “<” it suffices to establish that Cg is a simulation.
Suppose p Cg g and p —— p'. I have to show that 3¢’ € IP with ¢ = ¢’ and p’ Cs ¢'. Let Q' be

{dePlqg—=dNp Zsq}
By Q' is a set. For every ¢’ € Q' there is a formula ¢y € S(p') — S(¢'). Now

a N\ vg€Sp)CSg),
q’EQ’

so there must be a ¢’ € IP with ¢ — ¢’ and ¢’ ¢ @', which had to be shown. O

Process graph characterization Simulation equivalence can also be characterized by means of
relations between the nodes of two process graphs, rather than between process graphs themselves.

Definition 8.2 Let g, h € G. A simulation of g by h is a binary relation R C NODES(g) X NODES(h),
satisfying:

e ROOT(g)RROOT(h).

e If sRt and (s,a,s’) € EDGES(g), then there is an edge (¢,a,t') € EDGES(h) such that s'Rt'.

This definition is illustrated in [Figure §. Solid lines indicates what is assumed, dashed lines what
is required. Tt follows easily that ¢ & h iff there exists a simulation of g by h.

Figure 5: A simulation

For process graphs with multiple roots, the first requirement of generalizes to
e Vs € ROOTS(g) 3t € ROOTS(h) : sRE.

Classification Simulation semantics (S) is finer than trace semantics (T < S), but independent
of OT, F, R, FT, RT and PF.

Proof: “T' < §” follows since Lt is a sublanguage of Lg.

“S % CT” (and hence “S ¥ RT”, “S ¥ PF” etc.) follows from [Counterexample 2. There
left #cr Tight, although left 2 right; the construction of the two simulations is left to the reader.
“S A RT” (and hence “S A T” etc.) follows from |[Counterexample 8. There RT (left) = RT (left),
but S(left) # S(left). The first statement follows from Proposition 6.3 and the insight that it
suffices to check the two ready traces contributed by the maximal paths; these are the same for
both graphs. The second statement follows since a(bcT A bdT) € S(right) — S(left).

“S A& PF” follows from [Counterexample 7, where PF(left) = PF(right) but S(left) # S(left). The
latter statement follows since a(bT Aa(bT AcdT)) € S(left) — S(right). O
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=pw a
b b =7 b N
c d #s c d
abc + abd a(bc + bd)

Counterexample 8: Possible worlds and ready trace equivalent, but not simulation equivalent

Infinite processes In order to make the testing scenario match its formalization in terms of the
modal language Lg even for infinite processes, one has to assume that the amount of copies one
can make at any time is infinite. Moreover, although no single copy can be tested forever, due to
its infinite branching there may be no upperbound upon the duration of an observation.

One might consider an even more infinitary testing scenario by allowing observations to go on
forever on some or all of the copies. However, this would not give rise to a more discriminating
equivalence; ordinary simulation equivalences already preserves infinite traces.

Proposition 8.3 If p S ¢ then T*°(p) C T™(q). Hence T™ < S.
Proof: Suppose R is a simulation with pgRqo and ajaz -+ € T*(pg). Then there are pi, po, ... such

that pg —= p1 —=» ---. With induction on i € IN it follows that there are processes g;1 such that
¢ 25 giv1 and pip1Rgiv1. Hence ajay--- € T(qp)- O

The most radical way to make the testing scenario finitary, is to allow only finitely many copies
to be made in any state of the process. This also puts an upperbound on the duration of any
observation. Observations can now be modelled with simulation formulas in which the index sets I
of the first clause of are always finite. The modal language containing such simulation
formulas can equivalently be defined by splitting the construction A;c; into T and A.

Definition 8.3 The set L% of finitary simulation formulas over Act is defined recursively by:
o T eLs.
o If g, € LG then p A9p € L.
o If p € L and a € Act then ap € L5.
The satisfaction relation |= C IP x L% is defined recursively by:
e p=T forall p e IP.
e plEyAYifplyandpl=1.
e p = ayp if for some ¢ € P: p —% g and q |= ¢.

Let S*(p) denote the set of all finitary simulation formulas that are satisfied by the process p:
S*(p) = {¢ € L | p = ¢}. Two processes p and q are finitary simulation equivalent, notation
p=5% ¢ if §*(p) = 5"(9).

In contrast, the equivalence & of is then infinitary simulation equivalence. Note how-
ever, that contrary to the previous equivalences surveyed, the default version (the one meant when
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leaving out the adjective “finitary” or “infinitary”) is the infinitary one. In general, I use the
superscript * for finitary versions and oo for infinitary versions. However, for the trace oriented
equivalences (Sections 2-7) I leave out the %, and for the simulation oriented equivalences (Sections
8-12) I leave out the oco.

The next proposition, and hence also the essence of Proposition 8.2, stems from in HENNESSY &
MILNER [28]. It states that for image finite processes finitary and infinitary simulation equivalence
coincide.

Proposition 8.4 Let p,q € IP be image finite processes. Then p & ¢ & p =% q.

Proof: Exactly as the proof of [Proposition 8.2, but for “<” one shows that the relation ng " given

by p ng "q iff p Cs q and ¢ is image finite is a simulation, using that, as ¢ is image finite, Q' must
be finite. m|

In fact, this proposition is a special case of the following one, which is proved likewise.

Proposition 8.5 Let S, (p) denote the set of all simulation formulas satisfied by p in which all
index sets have cardinality less than k. Let p,q € P and assume |{¢' | ¢ —— ¢'}| < & for each
o€ Act*. Thenp S q < S.(p) C Sk(q). O

Although only ¢ needs to be image finite in order to obtain p & ¢ < p C% ¢, [Counterexample 12
will show that both p and ¢ need to be image finite in the statement of Proposition 8.4,

A less radical way to finitize the testing scenario for simulation semantics is to allow infinitely
many copies to be made in any state of the process, but put a finite upperbound on the duration of
any observation. Observations can then be modelled with simulation formulas in which the index
sets can be arbitrary, but there is a finite upperbound on the nesting of the construction a¢p of the

second clause of Definition 8.1.
Definition 8.4 Let £ = Un—o L%, where L7 is given by:
o If I is a set and ¢; € L for ¢« € I then A;c; p; € L.
o If o € L% and a € Act then ap € LZH.
Let $“(p) = {¢ € LG | p = ¢} and write p =7 ¢ if 5¥(p) = 5*(q).

Now p =5 g = p =% ¢ = p =5 ¢, and for image finite processes all three equivalences coincide.
For image infinite processes both implications are strict, as illustrated by Counterexamples 9 and 1.

compare the processes with
and without the left branch

e s
LR

Counterexample 9: Finitary equivalent, but not S“-equivalent

In Counterexample 9 S*(with) = S*(without), yet a A\;2, biT € S¥(with) — S¥(without).

In Counterexample 1| S¥(left) = S“(right), yet right % left. For the first statement, let ¢ € L£%.
Then there is an n such that ¢ € L. Now parts of trees that are further than n edges away from
the root play no réle in the satisfaction relation for . Thus, the validity of ¢ remains unchanged
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if in both trees all paths are cut off after n steps. However, the cut versions of both trees are
isomorphic, and hence satisfy the same formulas (cf. [Corollary 12.1). The second statement follows
immediately from [Proposition 8.3.

It follows that 7' < §* < §“ < Sand T' < T < S, whereas T is incomparable with S* and
S¥. Moreover, S*, S¥ and S are incomparable with the semantics ranging from CT or F'~ to RT°.

9 Ready simulation semantics

Testing scenario Of course one can also combine the copying facility with any of the other testing
scenarios. The observer can then plan experiments on one of the machines from the Sections 3 to
7 together with a replicator, an ingenious device by which one can replicate the machine whenever
and as often as one wants. In order to represent observations, the modal languages from Sections
3 to 7 need to be combined with the one from Bection §.

Definition 9 The language L¢g and the corresponding satisfaction relation is defined recursively

by combining the clauses of (for L7) with those of (for Lg). Likewise,

Lrg is obtained by combining Lr and Lg; Lp7s by combining Lpr and Lg; Lrs by combining Lg
and Lg; and Lgrs by combining Lgr and Lg. For p € P and O € {CS,FS,FTS,RS,RTS} let
O(p) ={v € Lo | p E ¢}. Two processes p,q € IP are

e completed simulation equivalent, notation p =¢g ¢, if CS(p) = CS(q);

e failure simulation equivalent, notation p =pg g, if FS(p) = FS(q);

e failure trace simulation equivalent, notation p =prg q, if FTS(p) = FTS(q);

e ready simulation equivalent, notation p =ggs q, if RS(p) = RS(q);

e ready trace simulation equivalent, notation p =grg g, if RTS(p) = RTS(q).

It is obvious that failure trace simulation equivalence coincides with failure simulation equivalence
and ready trace simulation equivalence with ready simulation equivalence (p = X < p = X Ap).
Also it is not difficult to see that failure simulation equivalence and ready simulation equivalence
coincide (p = X < p =Y A Ayex aT, where Y = Act — X). So one has

Proposition 9.1 p =ps ¢ p =r715 ¢ < p =RTS ¢ < P =RS ¢- 0

Relational characterizations The two remaining equivalences can be characterized as follows:

Definition 9.1 A complete simulation is a binary relation R on processes, satisfying, for a € Act:
o if pRg and p % p/, then 3¢’ : ¢ - ¢’ and p'Ry’;
e if pRq then I(p) =0 & I(q) = 0.

Proposition 9.2 Two processes p and ¢ are completed simulation equivalent if there exists a

complete simulation R with pRq and a complete simulation S with ¢Sp.
Proof: A trivial modification of the proof of [Proposition 8.2 O

Definition 9.2 A ready simulation is a binary relation R on processes, satisfying, for a € Act:
e if pRq and p - 9/, then 3¢’ : ¢ —= ¢’ and p'Rq’;
e if pRq then I(p) = I(q).
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Proposition 9.3 Two processes p and ¢ are ready simulation equivalent if there exists a ready
simulation R with pRq and a ready simulation S with ¢Sp.
Proof: A trivial modification of the proof of [Proposition 8.2. O

A variant of ready simulation equivalence was originally proposed by BLoOM, ISTRAIL & MEYER
under the name GSOS trace congruence; they provided a modal characterization, to be dis-
cussed in Bection 1(0. A relational characterization was first given by LARSEN & SKOU under
the name %—bisimulation equivalence. A %-bisimulation is defined just like a ready simulation, ex-
cept that the second clause reads “if pRg and 3¢’ : ¢ = ¢' then 3p’ : p —— p’”. This is clearly
equivalent.

Classification RT < RS,CT <CS and S < CS < RS. CS is independent of F' to RT.
Proof: “RT < RS” follows since Lgr is a sublanguage of Lg7s, using Proposition 9.1.

“CT = CS” and “S < CS R RS” follow since Lo and Lg are sublanguages of L£¢g, which is a
sublanguage of Lrs.

“RT ¥ RS” follows from Counterexample §, using “RS > S”; similarly RT' % CS and CT # CS.
“S % C8” follows from Counterexample 2, using “CS > CT”.

“CS % F” (and hence “CS # RS”) follows from [Counterexample J, in which F(left) # F(right)
but left =¢g right; the construction of the two complete simulations is left to the reader. O

Proposition 9.4 PF is incomparable with C'S and RS.
Proof: “CS A PF” (and hence “RS A PF”) follows from [Counterexample 7, using “CS = S”.

—RS

#PF

abc + a(bc + bd) a(bc + bd)

Counterexample 10: Ready simulation equivalent, but not possible-futures equivalent

“RS % PF” (and hence “CS # PF”) follows from [Counterexample 1(], which shows two graphs
that are ready simulation equivalent but not possible-futures equivalent. Concerning the first claim,
note that there exists exactly one simulation of right by left, namely the one mapping right on the
right-hand side of left. There also exists exactly one simulation of left by right, which relates the
red (or shaded) node on the left to the red (or shaded) shaded node on the right. Both simulations
are ready simulations, as related nodes have the same menu of initial actions. The second claim
follows since (a, {e, b, bc}) € PF(left) — PF(right). 0

Infinite processes For each of the semantics CS, FS, FTS, RS and RTS a finitary variant
(superscripted with a *), motivated by allowing finite replication only, is defined by combining the
modal languages Lc7, Lr, Lrr, Lg and L7, respectively, with £5. Likewise, an intermediate
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variant (superscripted with an w), motivated by requiring any observation to be over within a
finite amount of time, is defined by combining these languages with £%. Finally, a finite variant
(superscripted with a —), motivated by observers that can only engage in finite replication, can
only set finitely many switches on free, and can only inspect finitely many lamps in a finite time,
is obtained by combining the (obvious) modal languages Ly, Lz7, Ly and L5, with L% (there is
no CS ). Exactly as in the case of Proposition 9.1] one finds:

Proposition 9.5 FSY = FTSY = RTS“Y = RS“ and FS— = FTS~ = RTS™ = RS™. Moreover,
FS* = FTS* and RTS* = RS*. O

However, as pointed out in SCHNOEBELEN [47], F'$* and RS* are different: in [Counterexample 11|

compare the processes with
and without the left branch

Counterexample 11: Finitary failure simulation equivalent, but not ready equivalent

one has FS*(with) = FS*(without), but (a,{1,2,...}) € R(with) — R(without).

Clearly one has CS* < CS¥ < CS and RS~ < FS§* < RS* < RSY < RS. The strictness of
these inclusions is given by Counterexamples I, [(1], fl and . In addition one has RT~ < RS,
§* < RS™, RT < RS*, FT < FS*, CT < CS* and S§* < CS* < FS*; as well as RT* < RS,
CT*® <CS, 5 <CSY < RSY and S < CS < RS. Counterexamples against further inclusions
have already been provided.

Proposition 9.6 Let p,q € IP be image finite. Then p =¢cs q < p =g qand p =gs ¢ & p =g q.
Proof: Two trivial modifications of the proof of Proposition 8.4. In the second one, one uses that
ifVp € Lyg(p = ¢ = q = ¢) then surely I(p) = I(q). O

In fact, if it is merely known that only ¢ is image finite it follows already that p Ccs ¢ < p Cfg ¢
and p Cgs ¢ <& p Crg q. However, the following variant of [Counterexample 1| shows that in the
statement of Proposition 9.6 it is essential that both p and ¢ are image finite. In [Counterexample 12
right is image finite—in fact, it is even finitely branching—but left is not. It turns out that
left =% right (and hence left =, right, left =f.g right, left =gr right, left =F right, etc.) but
left #5° right (and hence left #° right, left #% right, left #cs right, left #rs right, etc.).

Counterexample 12: Finitary ready simulation equivalent but not infinitary equivalent

For general (non-image-finite) processes, no relational characterizations of the finite, finitary and
intermediate equivalences are known.
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Testing scenario An alternative and maybe more natural testing scenario for finitary ready
simulation semantics (or simulation semantics) can be obtained by exchanging the replicator for
an undo-button on the (ready) trace machine ([Figure ). It is assumed that all intermediate states

Figure 6: The ready simulation machine

that are past through during a run of a process are stored in a memory inside the black box. Now
pressing the undo-button causes the machine to shift one state backwards. In the initial state
pressing the button has no effect. An observation now consists of a (ready) trace, enriched with
undo-actions. Such observations can easily be translated into finitary (ready) simulation formulas.

10 Reactive versus generative testing scenarios

In the testing scenarios presented so far, a process is considered to perform actions and make choices
autonomously. The investigated behaviours can therefore be classified as generative processes. The
observer merely restricts the spontaneous behaviour of the generative machine by cutting off some
possible courses of action. An alternative view of the investigated processes can be obtained by
considering them to react on stimuli from the environment and be passive otherwise. Reactive
machines can be obtained out of the generative machines presented so far by replacing the switches
by buttons and the display by a green light. Initially the process waits patiently until the observer

Figure 7: The reactive ready simulation machine

tries to press one of the buttons. If the observer tries to press an a-button, the machine can react
in two different ways: if the process can not start with an a-action the button will not go down
and the observer may try another one; if the process can start with an a-action it will do so and
the button goes down. Furthermore the green light switches on. During the execution of a no
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buttons can be pressed. As soon as the execution of a is completed the light switches off, so that
the observer knows that the process is ready for a new trial. Reactive machines as described above
originate from MILNER [37, 38].

One family of testing scenarios with reactive machines can be obtained by allowing the observer
to try to depress more than one button at a time. In order to influence a particular choice, the
observer could already start exercising pressure on buttons during the execution of the preceding
action (when no button can go down). When this preceding action is finished, at most one of the
buttons will go down. These testing scenarios are equipotent with the generative ones: putting
pressure on a button is equivalent to setting the corresponding switch on ‘free’; moreover an action
a appearing in the display is mimicked by the a-button going down, and the disappearance of a
from the display by the green light going off.

Another family of testing scenarios is obtained by allowing the user to try only one button at
a time. They are equipotent with those generative testing scenarios in which at any time only one
switch can be set on ‘free’. Next I will discuss the equivalences that originate from these scenarios.

First consider the reactive machine that resembles the failure trace machine, thus without menu-
lights and undo-button. An observation on such a machine consists of a sequence of accepted and
refused actions, indicating which buttons went down in a sequence of trials of the user. Such a
sequence can be seen as a failure trace where all refusal sets are singletons. Call the resulting
semantics FT'. Clearly, the failure trace set of any process p satisfies

o(XUY)p€e FT(p) & oXYpe FT(p).

Thus, any failure trace o{a1,...,a,}p can be rewritten as (contains the same information as)
o{a1}{az} -+ {an}p. It follows that the singleton-failure trace set F'T"(p) of a process p contains as
much information as its finite-failure trace set FT~(p), so the semantics FT"' coincides with FT~.

In order to arrive at a reactive counterpart to failures semantics, one could suppose that an
observer continues an experiment only as long as all buttons he tries to depress actually go down;
when a button refuses to go down, he will not try another one. This testing scenario gives rise to
the variant F'! of failures semantics in which all refusal sets are singletons.

Definition 10 (o,a) € Act* x Act is a singleton-failure pair of a process p if there is a process
q such that p %5 ¢ and a ¢ I(q). Let F'(p) denote the set of singleton-failure pairs of p. Two
processes p and q are singleton-failures equivalent, p =% q, if T(p) = T'(q) and F'(p) = F(q).

Unlike for F and F—, F!(p) = F'(q) does not always imply that T'(p) = T(q), so one has to keep
track of traces explicitly. These model observations ended by the observer before stagnation occurs.

Singleton-failures semantics (F') is situated strictly between trace (T') and finite-failures se-
mantics (F~). For [Counterexample 4 shows two processes with T'(left) = T(right) but {(a,b) €
F1l(left) — F'(right), and [Counterexample 1 shows two processes with F!(left) = F'(right) (both
contain (a,b) and (a,c)), but {(a, {b,c}) € F(left) — F(right). Furthermore, F' is independent of
CT, S and CS, for in [Counterexample 13 one has CT(left) # CT(right), in [Counterexample §
one has left =} right but left #g right, and in [Counterexample g one has left =cg right but
{a,c) € F'(left) — F'(right).

Adding the undo-button to the reactive failure trace machine gives a semantics FS' character-
ized by the modal language L% to which has been added a modality “Can’t(a)”, with p |= Can’t(a)
iff a ¢ I(p). This modality denotes a failed attempt to depress the a-button. If fact, BLoowm, Is-
TRAIL & MEYER studied the coarsest equivalence finer than trace equivalence that is a congruence
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a,/ |\ =F a a
#or
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ab+a+ac ab + ac

Counterexample 13: Singleton-failures equivalent, but not completed trace or failures equivalent

for the class of so-called GSOS-operators, and characterized this GSOS trace congruence by the
modal language above; its formulas were called denial formulas. As in the modal language Lyg
one has p = XUY &p = X AY, and Can’t(a) is the same as @, it follows that the language of
denial formulas is equally expressive as L,q, and hence FS ! coincides with S~ and RS~.

If the menu-lights are added to the reactive failure trace machine considered above one can
observe ready trace sets, and the green light is redundant. Likewise, adding menu-lights to the
reactive failure scenario would give readiness semantics, and adding them to the reactive failure
simulation machine would yield ready simulation. If the green light (as well as the menu-lights)
are removed from the reactive failure trace machine, one can only test trace equivalence, since
any refusal may be caused by the last action not being ready yet. Likewise, removing the green
light from the reactive failure simulation machine (with undo-button) yields (finitary) simulation
semantics. Reactive machines on which only one button at a time is depressed appear to be unsuited
for testing completed trace, completed simulation and failures equivalence.

11 2-nested simulation semantics

2-nested simulation equivalence popped up naturally in GROOTE & VAANDRAGER as the coars-
est congruence with respect to a large and general class of operators that is finer than completed
trace equivalence.

Definition 11 A 2-nested simulation is a simulation contained in simulation equivalence ().
Two processes p and q are 2-nested simulation equivalent, notation p =sg ¢, if there exists a
2-nested simulation R with pRqg and a 2-nested simulation S with ¢Sp.

Modal characterization A modal characterization of this notion is obtained by the fragment
of the infinitary Hennessy-Milner logic (cf. Definition 12.1)) without nested negations.
Definition 11.1 The class Log of 2-nested simulation formulas over Act is defined recursively by:
o If I is aset and p; € Las for i € I then A\;c; ;i € Las.
o If g € Lys and a € Act then ap € Lgg.
o If o € Lg then -y € Lyg.
Note that Lg C Lgs. The satisfaction relation = C IP x Lyg is defined recursively by:
e pE=Nicrpiifpl= g forall i e 1.
e p = ap if for some g € IP: p - g and q |= ¢.
e pl=pifp e
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Proposition 11.1 p=35q & Vo€ Los(p = < qFE ¢).
Proof: A trivial modification of the proof of [Proposition 8.2. O

Testing scenario In order to obtain a testing scenario for this equivalence one has to introduce
the rather unnatural notion of a lookahead [25] The 2-nested simulation machine is a variant of the
ready trace machine with replicator, where in an idle state the machine not only tells which actions
are on the menu, but even which simulation formulas are (not) satisfied in the current state.

Classification RS < 2§ and PF < 2§.

Proof: For “RS < 25”7 it suffices to show that each 2-nested simulation is a ready simulation.
This follows since p 2 ¢ = I(p) = I(q). PF < 2§ is easily established using that 7" < S. That
both inclusions are strict follows immediately from the fact that RS and PF are incomparable
(Proposition 9.4)). O

Infinite processes Exactly as for ready simulations semantics, 5 versions of 2-nested simulation
semantics can be defined that differ for infinite processes. 2S5~ is the semantics whose modal
characterization has the constructs T, A, ap and —¢' with ¢' € L§. The constructs X and X
for X Cgp, Act are expressible in this logic. F25* additionally has the construct X, and R25™* the
construct X, for X C Act. Finally 25 is characterized by the class of 2-nested simulation formulas
with a finite upperbound on the nesting of the ay construct. The constructs X and X for X C Act
are expressible in L3, and hence also in Lyg.

We have 25~ < F25* < R25* < 25 < 25. The strictness of these inclusions is given by
Counterexamples [, [L1], § and fl. In addition one has RS~ < 25—, FS* < F2S*, RS* < R2S*,
RSY < 25% and RS < 25; as well as PF*® < 25. |Counterexample 1 shows that PF £ 25¢:
28% (left) = 25“(right) (cf. Proposition 12.10)), but (a,a*) € PF(right) — PF (left).

Proposition 11.2 Let p,q € IP be image finite. Then p =55 q < p =5 q.
Proof: An easy modification of the proof of [Proposition 8.4, also using its result. O

12 Bisimulation semantics

The concept of bisimulation equivalence stems from MILNER [37]. Its formulation below is due to
PARK [41].

Definition 12 A bisimulation is a binary relation R on processes, satisfying, for a € Act:

o if pRg and p - p/, then 3¢’ : ¢ - ¢’ and p'R¢’;

e if pRq and ¢ = ¢/, then 3p’ : p - p’ and p'Rq'.
Two processes p and ¢ are bisimilar, notation p £ ¢, if there exists a bisimulation R with pRgq.
The relation < is again a bisimulation. As for similarity, one easily checks that bisimilarity
is an equivalence relation on IP. Hence the relation will be called bisimulation equivalence. In
bisimulation semantics (B) two processes are identified iff they are bisimulation equivalent. Note

that the concept of bisimulation does not change if in the definition above the action relations —
were replaced by generalized action relations —s.
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Modal characterization

Definition 12.1 The class Lg of infinitary Hennessy-Milner formulas over Act is defined by:
o If I is a set and ¢; € Lp for ¢ € I then A\,.; p; € Lp.
o If p e Lp and a € Act then ap € Lp.
o If p € Lp then —~p € Lp.
The satisfaction relation = C IP X Lp is defined recursively by:
e pE=Nicrpiifp =g foralli e 1.
e p = ap if for some g € IP: p —» g and q |= ¢.
°pl—pifp e

Let B(p) denote the class of all infinitary Hennessy-Milner formulas satisfied by the process p:
B(p) ={v € L | p = ¢}. Write p Cp q if B(p) C B(q) and p =p ¢ if B(p) = B(q)-

Proposition 12.1 pCgq <& p=pqg.
Proof: If ¢ € B(q) — B(p) then - € B(p) — B(q). O

Proposition 12.2 p&g& p=pq.
Proof: For “=” I have to prove that for any bisimulation R and for all ¢ € Lp one has

pRg= (pE v & qF ).

I will do so with structural induction on ¢. Suppose pRg.
— Let p = ap. Then there is a p’ € P with p - p' and p' |= ¢. As R is a bisimulation, there
must be a ¢’ € IP with ¢ - ¢’ and p'Rq’. So by induction ¢’ |= ¢, and hence q = ayp.
By symmetry one also obtains ¢ = ap = p = agp.

—pENervioViellp o) ES Viel(g = ¢) © g Nier ¢i

ind,
—pEwepFoEqlt oo gl e
For “«” it suffices to establish that Cp is a simulation (Proposition 12.1] then implies that =p =
Cp= E,}l is a bisimulation). This goes exactly as in the proof of Proposition 8.9. O

Testing scenario The testing scenario for bisimulation semantics, as presented in MILNER [37],
is the oldest and most powerful testing scenario, from which most others have been derived by
omitting some of its features. It was based on a reactive failure trace machine with replicator,
but additionally the observer is equipped with the capacity of global testing. Global testing is
described in ABRAMSKY [1] as: “the ability to enumerate all (of finitely many) possible ‘operating
environments’ at each stage of the test, so as to guarantee that all nondeterministic branches will
be pursued by various copies of the subject process”. MILNER implemented global testing by
assuming that

“(i) It is the weather at any moment which determines the choice of transition (in case of ambiguity
[--]);

(ii) The weather has only finitely many states—at least as far as choice-resolution is concerned;

(iii) We can control the weather.”
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Now it can be ensured that all possible moves a process can perform in reaction on a given
a-experiment will be investigated by simply performing the experiment in all possible weather
conditions. Unfortunately, as remarked in MILNER [38], the second assumption implies that the
amount of different moves an investigated process can perform in response to any given experi-
ment is bounded by the number of possible weather conditions (i.e. In € IN Vp € IP Va € Act :
HgeP|p AN q}| < m). So for general application this condition has to be dropped, thereby
losing the possibility of effective implementation of the testing scenario.

An observation in the global testing scenario can be represented as an infinitary Hennessy-
Milner formula ¢ € Lp. This is essentially a simulation formula in which it is possible to indicate
that certain branches are not present. A formula —¢ says that by making sufficiently many copies
of the investigated process, and exposing them to all possible weather conditions, it can be observed
that none of these copies permits the observation ¢.

Remark: Let [a]¢ denote —a—p. Now the negation in Lp can be eliminated in favour of the
modalities [a] and infinitary disjunction V;c;. A formula [a]p says that in all possible weather
conditions, after an a-move it is always possible to make the observation ¢.

In order to justify the observations of Lp in a generative testing scenario no switches or menu-
lights are needed; the architecture of the completed trace machine suffices. However, in order to
warrant negative observations, one has to assume that actions take only a finite amount of time,
and idling can be detected (either by observations that last forever, or by means of the display
becoming empty). Adding switches and or menu-lights does not increase the discriminating power
of the observers. It would give rise to observations that can be modelled as formulas in languages
Lrp, LRTB, etc., obtained by combining Lr, LrT, etc. with Lp. These observations can already
be expressed in Lp: p =X & plE Apex 0T andp = Xp & p = (Aagx 7aT) A (Naex aT) A .

A different implementation of global testing is given in LARSEN & SKOU [35]. They assumed
that every transition in a transition system has a certain probability of being taken. Therefore
an observer can with an arbitrary high degree of confidence assume that all transitions have been
examined, simply by repeating an experiment many times.

As argued among others in BLoOM, ISTRAIL & MEYER [12], global testing in the above sense is
a rather unrealistic testing ability. Once you assume that the observer is really as powerful as in the
described scenarios, in fact more can be tested then only bisimulation equivalence: in the testing
scenario of Milner also the correlation between weather conditions and transitions being taken by
the investigated process can be recovered, and in that of Larsen & Skou one can determine the
relative probabilities of the various transitions.

Process graph characterization Also bisimulation equivalence can be characterized by means
of relations between the nodes of two process graphs.

Definition 12.2 Let g,h € G. A bisimulation between g and h is a binary relation R C NODES(g) X
NODES(h), satisfying:

e ROOT(g)RROOT(h).

e If sRt and (s,a,s’) € EDGES(g), then there is an edge (t,a,t') € EDGES(h) such that s'Rt'.

e If sRt and (t,a,t') € EDGES(h), then there is an edge (s,a,s’) € EDGES(g) such that s'Rt’.
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This definition is illustrated in [Figure §. Solid lines indicates what is assumed, dashed lines what
is required. It follows easily that g < h iff there exists a bisimulation between g and h.

Figure 8: A bisimulation

For process graphs with multiple roots, the first requirement of Definition 12.9 generalizes to
e Vs € ROOTS(g) 3t € ROOTS(h) : sRt.
e Vit € ROOTS(h) s € ROOTS(g) : sRE.

Classification 25 < B.

Proof: “25 < B” follows since Lgg is a sublanguage of Lp.

“28 # B” follows from [Counterexample 14, which shows two graphs that are 2-nested simulation
equivalent, but not bisimulation equivalent. Concerning the first claim, as in [Counterexample 10|
there exists exactly one simulation of left by right, which relates the red (or shaded) node on the left
to the red (or shaded) node on the right. Unlike in Counterexample 10|, this simulation is 2-nested,
for the two subgraphs originating from the two red (or shaded) nodes are simulation equivalent, as
are the graphs left and right themselves. Likewise, the simulation mapping right on the right-hand

side of left is also 2-nested. The second claim follows since a—b—cT € B(left) — B(right). O
a
=25
b b
#B
c
abc + a(bc + b) a(bc + b)

Counterexample 14: 2-nested simulation equivalent, but not bisimulation equivalent

Thus bisimulation equivalence is the finest semantic equivalence treated so far. The following shows
however that on G graph isomorphism is even finer, i.e. isomorphic graphs are always bisimilar. In
fact, a graph isomorphism can be seen as a bijective bisimulation. That not all bisimilar graphs
are isomorphic will follow from [Counterexample 1§.
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Proposition 12.3 For g,h € G, g = h iff there exists a bisimulation R between g and h, satisfying
o If sRt and uRv then s =u &t =wv. (*)

Proof: Suppose g = h. Let f : NODES(g) — NODES(h) be a graph isomorphism. Define R C
NODES(g) x NODES(h) by sRt iff f(s) =t. Then it is routine to check that R satisfies all clauses of
and (*). Now suppose R is a bisimulation between g and h satisfying (*). Define
f : NODES(g) — NODES(h) by f(s) =t iff sR¢. Since g is connected it follows from the definition
of a bisimulation that for each s such a ¢ can be found. Furthermore direction “=" of (*) implies
that f(s) is uniquely determined. Hence f is well-defined. Now direction “<” of (*) implies that f
is injective. From the connectedness of h if follows that f is also surjective, and hence a bijection.

Finally, the clauses of imply that f is a graph isomorphism. O

Corollary 12.1 If ¢ =2 h then g and h are equivalent according to all semantic equivalences
encountered so far. O

Non-well-founded sets Another characterization of bisimulation semantics can be given by
means of ACZEL’s universe V of non-well-founded sets [4]. This universe is an extension of the Von
Neumann universe of well-founded sets, where the axiom of foundation (every chain zg 3 21 3 ---
terminates) is replaced by an anti-foundation aziom.

Definition 12.3 Let B denote the unique function M : IP — V satisfying

M(p) = {(a, M(q)) | p = ¢}
for all p € IP. Two processes p and q are branching equivalent (my terminology) if B(p) = B(q).

It follows from Aczel’s anti-foundation axiom that such a function exists. In fact the axiom amounts
to saying that systems of equations like the one above have unique solutions. In [4] there is also
a section on communicating systems. There two processes are identified iff they are branching
equivalent.

A similar idea underlies the semantics of DE BAKKER & ZUCKER [9], but there the domain of
processes is a complete metric space and the definition of B above only works for finitely branching
processes, and only if = is interpreted as isometry, rather then equality, in order to stay in well-
founded set theory. For finitely branching processes the semantics of De Bakker and Zucker coincides
with the one of Aczel and also with bisimulation semantics. This is observed in VAN GLABBEEK
& RUTTEN [22], where also a proof can be found of the next proposition, saying that bisimulation
equivalence coincides with branching equivalence.

Proposition 12.4 Let p,q € P. Then p& ¢ < B(p) = Blq).
Proof: “<”: Let B be the relation defined by pBgq iff B(p) = B(q); then it suffices to prove that B
is a bisimulation. Suppose pBq and p —% p’. Then (a, B(p')) € B(p) = B(q). So by the definition
of B(q) there must be a process ¢’ with B(p') = B(q') and ¢ - ¢'. Hence p'Bgq’, which had to be
proved. The second requirement for B being a bisimulation follows by symmetry.

“=”: Let B* denote the unique solution of M*(p) = {{a, M*(r')) | Ir : r & p AT %5 r'}.
As for B it follows from the anti-foundation axiom that such a unique solution exists. From the
symmetry and transitivity of & it follows that

p&q = B'(p) =B"(q). (1)
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Hence it remains to be proven that B* = B. This can be done by showing that B* satisfies
the equations M(p) = {(a, M(q)) | p — ¢}, which have B as unique solution. So it has to
be established that B*(p) = {{a,B*(q)) | p —= ¢}. The direction “D” follows directly from the
reflexivity of . For “C”, suppose (a, X) € B*(p). Then Ir : r & p, r — ' and X = B*(r').
Since € is a bisimulation, 3p’ : p — p’ and 7' < p'. From (fl)) it follows that X = B*(r') = B*(p').
Therefore (a, X) € {{a, B*(¢)) | p — q}, which had to be established. O

Infinite processes The following predecessor of bisimulation equivalence was proposed in HEN-
NESSY & MILNER [27, 28].

Definition 12.4 Let p,q € IP. Then:
e p ~q ¢ is always true.
e pr~y,y1qifforallae Act:
e p - p' implies 3¢’ : ¢ — ¢’ and p’ ~,, ¢';
o ¢ ¢ implies Ip': p - p' and p’ ~, ¢'.

e p and q are observationally equivalent, notation p ~ g, if p ~,, g for every n € IN.

Hennessy and Milner provided the following modal characterization of observational equivalence
on image finite processes.
Definition 12.5 The set Lyn of Hennessy-Milner formulas over Act is defined recursively by:
e T € Lym.
If o, € Lyn then o A € L.
e If o € Ly and a € Act then ap € L.

o If ¢ € Ly then —p € Ly
The satisfaction relation = C IP X Ly is defined recursively by:
e p=T forall p e IP.
e pEpAYifplpandp =9y
e p = ap if for some g € IP: pi>qandq|=<p.
* p=—pifp i .
The modal logic above is now known as the Hennessy-Milner logic (HML). Let HM (p) denote the set

of all Hennessy-Milner formulas that are satisfied by the process p: HM(p) = {p € Lam | p E ¢}-
Two processes p and q are HML-equivalent, notation p =5 ¢, if HM (p) = HM (q).

Theorem 2.2 in HENNESSY & MILNER [27, 28] says that ~ and =, coincide for image finite
processes. This result will be strengthened by Proposition 12.6. Below I provide a modal charac-
terization of ~ that is valid for arbitrary processes.

Definition 12.6 Let £% = U;>q L, where L is given by:
o If I is a set and ¢; € L% for ¢ € I then A\,; p; € L.
o If o € L% and a € Act then ap € L.
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o If o € L% then —p € L.
Let BY(p) = {p € L% | p E ¢} and write p =% ¢ if B¥(p) = B“(q).

Proposition 12.5 p~, g & Vo € LE(p = ¢ © q = ¢) for all n € N. Hence p ~ g & p =% q.
Proof: Induction Base: Formulas in £} do not contain the construct ay. Hence for such formulas
1) the statement p = 1 is independent of p. Thus Vp,q € P :Vp € LE(p = ¢ & q FE ¢).
Induction Step: Suppose p ~,11 q- I now use structural induction on ¢.
— Let p |= ap with ap € L%™. Then there is a p’ € P with p % p' and p’ = ¢ € L. As
P ~ni1 ¢, there must be a ¢’ € IP with ¢ - ¢’ and p’ ~,, ¢. So by induction ¢’ = ¢, and
hence q |= ap.
By symmetry one also obtains ¢ = ap = p = agp.
—pE Nierpi & Viel(p = o) E5Vicl(g = ¢i) € q = Aier ¢in

ind,
—rEverFeESqltpeqk e
Now suppose Yo € L% (p = ¢ & ¢ = ¢) and p - p'. Considering the symmetry in the
definitions involved, all T have to show is that 3¢’ € IP with ¢ — ¢’ and p’ ~,, ¢'. Let Q' be

{¢ €Plg——q Ap #nd'}).
By Q' is a set. For every ¢’ € Q' there must, by induction, be a formula ¢, € L%

with p' = g but ¢' [ g (use negation if necessary). Now p = a Ayeor 0y € L% and therefore
q F aNyeg g~ So there must be a ¢’ € P with ¢ 25 ¢' and ¢’ ¢ @', which had to be shown. O

Comparing their modal characterizations (=g of € and =% of ~) one finds
p&q = p~qg = p=pq.

Theorem 2.1 in HENNESSY & MILNER says, essentially, that for image finite processes
the relation ~ satisfies the defining properties of a bisimulation (cf. Definition 17). Inspired by
this insight, PARK proposed the concise formulation of bisimulation equivalence employed in
Definition 13. It follows immediately that if p,q € IP are image finite, then p € ¢ < p ~ ¢q. The
following strengthening of this result is due to HOLLENBERG [32].

Proposition 12.6 Let p,q € IP and p is image finite. Then p& q¢ & p =5 q.
Proof: Write pBq iff p =5 g and p is image finite. It suffices to establish that B is a bisimulation.
— Suppose pBq and ¢ = ¢'. T have to show that 3r € P with p - r and HM (r) = HM(¢').
Let R be
{reP|p-rANHM(r)# HM(q")}.

As p is image finite, R is finite. For every r € R take a formula ¢, € HM (¢') — HM(r) (note
that if v € HM (r) — HM(q') then —¢p € HM(q') — HM(r)). Now

a )\ ¢r € HM(q) = HM(p),
reER

so there must be a 7 € IP with p —%5 7 and r |= Arer @r. The latter implies » ¢ R, i.e.
HM (r) = HM(q"), which had to be shown.
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— Suppose pBq and p - p'. T have to show that 3¢’ € P with ¢ = ¢’ and HM (p') = HM(¢').
Let S be
{seP|p-—"sAHM(s) # HM(p)}.

As p is image finite, S is finite. For every s € S take a formula ¢, € HM (p') — HM (s). Now

a )\ s € HM(p) = HM(q),
sES

so there must be a ¢’ € IP with ¢ — ¢’ and ¢’ |F A,cg ¢s- By the previous item in this proof,
Ir € P with p - r and HM (r) = HM (q'), hence r |= Nses ¢s- The latter implies r ¢ S, so
HM(r) = HM(p'). Thus HM (p') = HM(q'), which had to be shown. O

By [Counterexample 12, a result like the one above does not hold for (ready) simulation semantics.
For the sake of completeness, two more variants of bisimulation equivalence can be considered.
Let FB* be characterized by the Hennessy-Milner logic augmented with formulas X, and RB* by
the Hennessy-Milner logic augmented with formulas X, for X C Act.
Then B~ < FB* < RB* < BY < B, and for image finite processes all five equivalences coincide.
The strictness of these inclusions is given by Counterexamples 4, 11, 9 and 1:

Proposition 12.7 CT £ B~, and hence FB* A B™.

Proof: Counterexample 4 shows two processes with CT'(left) # CT(right). It remains to be shown
that HM (left) = HM (right), i.e. that for all ¢ € Lum: left = ¢ < right = ¢. Using
it is sufficient to restrict attention to formulas ¢ which are of the form a(A;c; 0T A Aje; —b;T)
with I and J finite sets of indices. It is not difficult to see that each such formula that is satisfied
on one side is also satisfied on the other side. O

Proposition 12.8 R A FB*, and hence RB* £ FB*.

Proof: [Counterexample 11, shows two processes with R(with) # R(without). It remains to be
shown that FB*(with) = FB*(without). The argument is the same as in the previous proof, but
this time focusing on formulas of the form a()? A NiertT AN Njes —jT) with I and J finite sets of
numbers and X a possibly infinite set of numbers (= actions). O

Proposition 12.9 S¥ £ RB*, and hence RB“Y A RB*.

Proof: [Counterexample 9 shows two processes with S“(with) # S“(without). It remains to be
shown that RB*(with) = RB*(without). The argument is the same as in the previous proofs—this
time using formulas a({b} A Ajc; biT A Ajc; —bjT) with I and J finite sets of numbers. O

Proposition 12.10 7 A B%, and hence B A B“. In addition, PF A BY.

Proof: Counterexample 1| shows two processes with T°°(left) # T°(right). As remarked at the
End of Section 7, also PF(left) # PF(right). It remains to be shown that left =% right, i.e. that
for all n € IN: left ~y, right. In order to establish p ~, g for two trees p and ¢, the parts of p and
q that are further than n edges away from the root play no role, and can just as well be omitted.

As the cut versions of left and right are isomorphic, by Corollary 12.1| surely left ~,, right. O

In addition one has 25— < B~, F25* < FB*, R25* < RB*, 25“ < B“ and 25 < B.
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13 Tree semantics

Definition 13 Let g € G. The unfolding of g is the graph U(g) € G defined by
e NODES(U(g)) = PATHS(g),
e ROOT(U(g)) = ROOT(g), i.e. the empty path, starting and ending at the root of g,
e (m,a,7") € EDGES(U(g)) iff #’ extends m by one edge, which is labelled a.

Two processes p and q are tree equivalent, notation p =g ¢, if their unfoldings are isomorphic, i.e. if

~

U(G(p)) 2 U(G(p)). In tree semantics (U) two processes are identified iff they are tree equivalent.

It is easy to see that the unfolding of any process graph is a tree, and the unfolding of a tree is
isomorphic to itself. It follows that up to isomorphism every tree equivalence class of process graphs
contains exactly one tree, which can be obtained from an arbitrary member of the class by means
of unfolding.

Proposition 13.1 Let g € G. Then U(g) < g. Hence g =y h = g€ h.
Proof: As is easily verified, {(7, end(w)) | # € PATHS(g)} is a bisimulation between U(g) and g. O

Tree semantics is employed in WINSKEL [50]. No plausible testing scenario or modal characteriza-
tion is known for it. Proposition 13.1| shows that B < U. That B ¥% U follows from Counterexample

15.
A
7U

a+a a

Counterexample 15: Bisimulation equivalent, but not tree equivalent

Although above tree equivalence is defined entirely in terms of action relations, such a defini-

tion is in fact misleading, as action relations abstract from an aspect of system behaviour that tree
a

semantics tries to capture. The problem can best be explained by considering the process Q

that can proceed from its initial to its final state by performing one of two different a-transitigns.
In tree semantics, such a process should be considered equivalent to the leftmost process of Coun-
terexample 15, and hence different from the rightmost one. However, action relations only tell
whether a process p can evolve into ¢ by performing an a-action; they do not tell in how many
ways this can happen. So in labelled transition systems as defined in this paper the mentioned
process is represented as _ 2 _ _and hence considered tree equivalent to the rightmost process of
Counterexample 15. The mishap that ensues this way will be illustrated in Fection 17

Tree semantics on labelled transitions systems as in is a sensible notion only if
one knows that each transition in the system can be taken in only one way. In general, more
satisfactory domains for defining tree equivalence are labelled transition systems in which the
transitions (p, a, q) are equipped with a multiplicity, telling in how many different ways this transi-
tion can be taken, or process graphs g = (NODES(g), ROOT(g), EDGES(g), begin, end, label) in which
NODES(g) and EDGES(g) are sets, ROOT(g) € NODES(g), begin, end : EDGES(g) — NODES(g) and
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label : EDGES(g) — Act. The functions begin, end and label associate with every edge a triple
(s,a,t) € NODES(g) X Act x NODES(g), but contrary to the situation in the identity of
an edge is not completely determined by such a triple. On such process graphs, the notions PATHS,
unfolding and tree equivalence are defined exactly as for the process graphs of Definition 1.3.

14 Possible worlds semantics

In VEGLIONI & DE NicorA [49], a nondeterministic process is viewed as a set of deterministic
ones: its possible worlds. Two processes are said to be possible worlds equivalent iff they have
the same possible worlds. Two different approaches by which a nondeterministic process can be
resolved into a set of deterministic ones need to be distinguished; I call them the state-based and
the path-based approach. In the state-based approach a deterministic process h is obtained out of a
nondeterministic process g € G by choosing, for every state s of g and every action a € I(s) a single
edge s —— s'. Now h is the reachable part of the subgraph of g consisting of the chosen edges. In
the path-based approach on the other hand, one chooses for every path = € PATHS(g) and every
action a € I(end(r)) a single edge end(m) - s’ to continue with. The chosen edges may now be
different for different paths ending in the same state. The difference between the two approaches
is illustrated in Counterexample 16. In the state-based approach, the process in the middle has

N b b
path __path
b Pw =pPw
#r =y
C

Counterexample 16: State-based versus path-based possible worlds equivalence

two possible worlds, depending on which of the two b-edges is chosen. These worlds are essentially
abc and ab®. In the path-based approach, the process in the middle has countably many possible
worlds, namely ab™c for n > 1 and ab™.

In [49], Veglioni & De Nicola take the state-based approach: “once we have resolved the under-
specification present in a state s by saying, for example, s — s, then, we cannot choose s — 0
in the same possible world.” However, they provide a denotational characterization of possible
worlds semantics on finite processes, namely by inductively allocating sets of deterministic trees to
BCCSP expressions (cf. Bection 17), which can be regarded as path-based. In addition, they give
an operational characterization of possible world semantics, essentially following the state-based
approach outlined above. They claim that both characterizations agree. This, however, is not
the case, as [Counterexample 17 reveals a difference between the two approaches even on finite
processes. In the path-based approach the process displayed has a possible world acd + bee (i.e. a
process with branches acd and bee), which it has not in the state-based approach. As it turns out,
the complete axiomatization they provide w.r.t. BCCSP is correct for the path-based, denotational
characterization, but is unsound for the state-based, operational characterization. To be precise:
their operational semantics fails to be compositional w.r.t. BCCSP.
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Counterexample 17: State-based versus path-based possible worlds equivalence for finite processes

Counterexample 16 shows that a suitable formulation® of the state-based approach to possible
worlds semantics is incomparable with any of the semantics encountered so far. The processes left
and middle are state-based possible worlds equivalent, yet abbc € T'(middle) —T (left). Furthermore,
the processes right and middle are tree equivalent, yet in the state-based approach one has abbc €
PW (right) — PW (middle).

Below I propose a formalization of the path-based approach to possible worlds semantics that,
on finite processes, agrees with the denotational characterization of [49].

Definition 14 A process p is a possible world of a process q if p is deterministic and p Cgrg ¢. Let
PW (q) denote the class of possible worlds of g. Two processes g and r are possible worlds equivalent,
notation ¢ =pw r, ift PW(q) = PW(r). In possible worlds semantics (PW) two processes are
identified iff they are possible worlds equivalent. Write ¢ Cpy 7 iff PW(q) C PW (r).

It can be argued that the philosophy underlying possible worlds semantics is incompatible with the
view on labelled transition systems taken in this paper. The informal explanation of the action
relations in implies for instance that the right-hand process graph of Counterexample §
has a state in which a has happened already and both bc and bd are possible continuations. In the
possible worlds philosophy on the other hand, this process graph is just a compact representation
of the set of deterministic processes {abc, abd}. None of the two processes in this set has such a
state.

This could be a reason not to treat possible worlds semantics on the same footing as the other
semantics of this paper. However, one can give up on thinking of non-deterministic processes as
sets of deterministic ones, and justify possible worlds semantics—at least the path-based version of
Definition 14—by an appropriate testing scenario. This makes it fit in the present paper.

Testing scenario A testing scenario for possible worlds semantics can be obtained by making
one change in the reactive testing scenario of failure simulation semantics. Namely in each state
only as many copies of the process can be made as there are actions in Act, and, for a € Act, the
first test on copy p, of p is pressing the a-button. If it goes down, one goes on testing that copy,
but is has already changed its state; if it does not go down, the test on p, ends.

Modal characterization On well-founded processes, a modal characterization of possible worlds
semantics can be obtained out of the modal characterization of ready simulation semantics by
changing the modality A;c; i into A,cx ap, with X C Act. Possible worlds of a well-founded

8Let two processes be possible worlds equivalent iff each possible world of the one is ~-equivalent to a possible
world of the other, where ~ is any of the equivalences treated in this paper. will imply that the choice of
~ is immaterial.
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process p can be simply encoded as modal formulas in the resulting language. Probably, this
modal characterization applies to image finite processes as well. For processes that are neither
well-founded nor image finite this characterization is not exact, as it fails to distinguish the two
processes of Counterexample 1.

Classification RT < PW < RS. PW is independent of S, CS and PF.

Proof: “PW < RS”? follows by the transitivity of Cgg.

“RT < PW?” holds as o is a ready trace of p € IP iff it is a ready trace of a possible world of p.
“S A PW” (and hence “RS A PW?”) follows from [Counterexample 8 There S(left) # S(right),
but PW (left) = PW (right) = {abc, abd}.

“PF £ PW” follows since PF A RS.

“CS ¥ PW?” follows since CS # RT, and “PF ¥ PW?” since PF ¥ RT.

Finally, “RT % PW?” follows from Counterexample 18, taken from [49]. There the first process
denotes two possible worlds, whereas the second one denotes four. O

—RT

FPwW

a(bd + ce) + a(cf + bg) a(bd + ce + cf + bg)

Counterexample 18: Ready trace equivalent, but not possible worlds equivalent

Infinite processes The version of possible worlds semantics defined above is the infinitary one.
Note that RT>° < PW. Exactly as above one even establishes p Crs ¢ = p Cpw ¢ = p CF g, i.e.
RT*> <* PW <* RS. Finitary versions could be defined by means of the modal characterization
given above. I will not pursue this here.

15 Summary

In Sections 2-14 fifteen semantics were defined that are different for finitely branching processes.
These are abbreviated by T, CT, F', F, R, FT, RT, PF, S, CS, RS, PW, 25, B and U. For each of
these semantics O, except U, a modal language Lo (a set of modal formulas ¢) has been defined:

Lr pu=T]ay (¢ € Lr) the (partial) trace formulas
Lot =T ayp (¢ € LoT) |0 the completed trace formulas
L1 pu=T|ay' (¢ € L) |a (a € Act) the singleton-failure formulas
Lr ¢u=T|ay (¢ € Lr)|X (X C Act) the failure formulas
Lr ox=T|ayp (¢ € Lg) | X (X C Act) the readiness formulas
Lrr ¢==T|ay (¢ € Lrr) | X' (X C Act, ¢' € Lrr) the failure trace formulas

9The counterexample against “PW < RS” given in is incorrect. The two processes displayed there are not
ready simulation equivalent.
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Lrr ou=T | ayp' (¢ € Lrr) | X¢' (X C Act, ¢’ € Lrr) the ready trace formulas
Lpr ¢ u=ay' (¢' € Lpr) | Nier pi N Njes ~¢5 (@i ¥ € L) the possible-futures formulas
Ls @u= ago' (¢" € L) | Nicr pi (pi € Lg) the simulation formulas
Los ¢u=ayp (¢ € Les) | Nicr i (wi € Les) | 0 the completed simulation formulas
Lrs ¢ ==ay9 (¢ € Lrs) | Nicr @i (i € Lrs) | X (X C Act) the ready simulation formulas
Lpw Nacx @9 (9o € Lpw, X C Act) | X (X C Act) the possible worlds formulas

Los @u=ayp (¢ € Las) | Nicri (vi € Las) | ¢' (¢’ € Lg) the 2-nested simulation formulas
L p=u=ay9 (¢ €Lp)| Nicryi (i € L) | ¢ (¢ € L) the bisimulation formulas.
All these languages can be regarded as sublanguages of Lpg, the infinitary Hennessy-Milner logic,
namely by considering the constructs not in Lp as abbreviations:

T := Nicp #i X = Naex aT X =XAN¢ 0:=Act
1A P2 1= /\ie{l,2} i X = Ngexal ANAggx —aT X :=XN¢ a:=-aT

On any labelled transition system IP, the satisfaction relation = C IP x Lp is given by:

pEapifforsomeg€P:p == qAqlEg; pENerpiifVieliplEyi; pE-wifp e
For each semantics O € {T,CT,F, F,R,FT,RT,PF,S,CS,RS,PW,2S, B} this definition spe-
cializes to the sublanguage Lo. Now a modal characterization of O-equivalence!® is given by:

p=0q © YoeLopEpeqkEoy).

In the cases O € {T, CT,F,F,R,FT,RT} O-equivalence was defined by p =0 ¢ & O(p) = O(q)-
Writing Opoda1(p) for {¢ € Lo | p = ¢}, it can be observed that the formulas in Oyyoqa1(p) are
mild syntactic variations of the elements in O(p). Thus, the modal characterization is a rather
trivial restatement of the original definition of the equivalence. The modal characterization of PF
is fairly easy to check. This is left to the reader. In the cases O € {S, CS, RS, 25, B} the modal
characterization of = has been proven equivalent to a relational characterization in Propositions
B.2, b2, b.3, and [[2.3. It is a matter of taste which one is taken to be the official definition.
The same applies to the modal characterizations of the O-preorders!®, given by

PCoqg © VoeLlopEv=qEy).

For each of the semantics T, CT,F\,F,R,FT,RT,S,CS,RS,PW,B a testing scenario has
been proposed in which the modal formulas satisfied by a process p are interpreted as the possible
observations that can be made on a suitable machine interacting with p. In particular, the formula
ap represents the observation of “a” appearing in the display of a generative machine (or the a-
button going down on a reactive machine) followed by the observation ¢. The formula X represents
the display of the generative machine becoming empty, while X is the set of actions that are allowed
to happen by the environment/observer, i.e. the ones whose switches are set “free”. In particular,
0 represents the display becoming empty while all actions are free (in the absence of switches).
On a reactive machine, a represents the a-button refusing to go down, and X means that none
of the a-buttons for a € X go down when they all receive pressure. X represents the menu lights
for the actions in X being lit while the machine is idling. T represents the act of the observer
terminating his observations, and A;c;¢; represents the observations that can be made on |I|

1011 case @ = PW the modal characterization is known to be valid for well-founded processes only.
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copies of the investigated process in its current state, obtained by means of a replication facility.
Finally —¢ represents the observation that ¢ cannot be observed—an observation which occurs
when copies of the investigated process are exposed to all possible weather conditions, and in
none of them the observation ¢ is made. A testing scenario for a particular semantics is obtained
by allowing machines that are equipped with (only) those features corresponding with its modal
characterization.

I write O < N if semantics O makes at least as much identifications as semantics N, i.e. if
=0 D =u. Clearly, if Lo is a sublanguage of Ly it must be that @ < N. This immediately
yields'! the following theorem, whose proof has also appeared in the various subsections entitled
“classification”.

Theorem 1 T <CT X F<R<RT, TXF'<F<XFT<RT <PW <RS§<25<B=U,
R<PF <25 T=<S<CS=<RSand CT <CS.

Theorem 1 is illustrated in [Figure 1l There, however, singleton-failures semantics and completed
simulation semantics are missing, since they did not occur in the literature, and appear to be
of minor interest. The theorem applies to any labelled transition system (IP,—). Whether the
inclusions are strict depends on the choice of (IP,—). In the subsections “classification” a number
of counterexamples have been presented, showing that on G all semantic notions mentioned in
are different and O < A holds only if this follows from that theorem. Moreover, all
relevant examples use finite processes only.

Let H be the set of finite connected process graphs. Here is used in the sense of Definition
1.2; a process graph g € G is finite iff PATHS(g) is finite, which is the case iff g is acyclic and has
only finitely many nodes and edges. Now the next theorem follows.

Theorem 2 Let O,N € {T,CT,F,F,R,FT,RT,PF,S,CS,RS,PW,2S,B,U}. Then O £ N,
and even O Ay N, unless O < N follows from (and the fact that < is a partial order).

The following theorem says that the inclusion hierarchy of the preorders 7, CT, F', F, R, FT,
RT, PF, S, CS, RS, PW, 2S and B is the same as the inclusion hierarchy of the corresponding
equivalences (there is no preorder for U).

Theorem 3 Let O,N € {T,CT,F,F,R,FT,RT,PF,S,CS,RS,PW,2S,B}. Then O <* N iff
O=<N.

Proof: Clearly, if Lo is a sublanguage of L it must be that p Cyr ¢ = p Co ¢, i.e. O <* N. This
yields “if” (except for RT <* PW <* RS, which have been established in Section 14). “Only if”
is immediate (cf. Section 1.4). O

When the restriction to finitely branching processes is dropped, there exists a finitary and an
infinitary variant of each of these semantics, depending on whether or not infinite observations
are taken into account (I do not consider the finitary version of PW or the infinitary version
of F' though). These versions are notationally distinguished by means of superscripts “*” and
«“ 9

oo”, respectively; the unsubscripted abbreviation will refer to the infinitary versions in case of
simulation-like semantics (treated in Sections 8-12) and to the finitary versions for the decorated

" The statements involving PW and U do not follow this way, but have been established in Sections E and @
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Figure 9: The infinitary linear time — branching time spectrum

trace semantics (treated in Section 2-7). The modal characterizations summarized above apply to
the default (= unsubscripted) versions. Modal characterizations of 7%, CT>, F* R* resp. FT>®
and RT®, are obtained by allowing traces, resp. failure traces or ready traces, of infinite length as
modal formulas; a modal characterization of PF'* is obtained by replacing the reference to T" by one
to T*°. Modal characterizations of S*, C'S*, etc. are obtained by requiring the index sets I to be
finite. For the simulation-like semantics also an intermediate variant is considered—superscripted
with “w”—based on the assumption that observers can investigate arbitrary many copies of a
process in parallel, but have only a finite amount of time to do so. Modally, this corresponds
to the restriction to modal formulas with a finite upperbound on the number of nestings of the
ap construct. For the semantics that incorporate refusal sets, the finitary versions come in two
variants, depending on whether the refusal sets are required to be finite (superscript “—”) or not
(the default assumption). A similar distinction is made for semantics where menus of actions can
be observed: in R~, RT~ and RS~ the modal formula X is replaced by A,cy 7aT A AgezaT,
where the sets of actions Y and Z are required to be finite. Finally, whereas failure simulation
semantics, modally characterized by

Lrs ¢u=ag (¢ € Lrs) | Nier i (pi € Lrs) | X (X C Act)  the failure simulation formulas,
coincides with ready simulation semantics, its finitary version (F.S*) can be distinguished from RS*.
The intermediate notions FS¥ and RS“ coincide again, as do FS~ and RS™. By analogy, new
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semantics F'B* and RB* can be defined by adding the modality X resp. X to L. These modalities
would be redundant on top of L% or Lp. A similar situation occurs for 2-nested simulation.

All semantics encountered are displayed in Figure 9, in which the <-relation is represented by
solid and dotted arrows.

Theorem 4 For all semantics O and N defined so far, the formula @ < N holds iff there is a path
O — --- — N (consisting of solid and dotted arrows alike) in [Figure . Furthermore, semantics

connected by dotted arrows coincide for image finite processes.

Proof: That T < S has been established in [Proposition 8.3; that CT* <X CS, RT* < RS and
PF> < 28 follows in the same way. R>® < PW =< RS has been established in Fection 14. All
other implications O < N follow from the observation that the modal language Lo is included in
Ly The latter statement has been established in Propositions R.4, (.6, p.3, p.5, {4, .3, [-8, B4,
p.g, and (except that the case of possible-futures semantics is left to the reader). In order
to show that on G there are no inclusions that are not indicated in Figure §, is suffices, in view of
[[Cheorem 2, the already established parts of [Theorem 4, and the fact that < is a partial order, to
show that CT' £ B~, R A FB*, S¥ £ RB*, T® £ BY, PF £ B¥ and T A PF. This has been
done in Propositions [2.7, [2.§, [2.9 and [[2.10], and at the end of Bection 7. O

Again, the inclusion hierarchy for the preorders is the same as for the equivalences.

Theorem 5 For all semantics @ and N defined so far, the formula O <* N holds iff there is a
path O — --- — N (consisting of solid and dotted arrows alike) in [Figure 9

Proof: That p Cs ¢ = p CF ¢ has been established in [Proposition 8.3; that p Ccs ¢ = p 5y g,
P Crs = p L% qgand p Cys g = p Cp ¢ follows in the same way. In it has been
established that p Crs ¢ = p Cpw g = p TRy ¢. All other implications p Cp ¢ = p Car ¢ follow
from the observation that the modal language Lo is included in Ly. The “only if” part is an

immediate consequence of [heorem 4. O

16 Deterministic and saturated processes

If the labelled transition system IP on which the semantic equivalences of are defined is
large enough, then they are all different and O <p N holds only if this is indicated in Figure 9.
However, for certain labelled transition systems much more identifications can be made. Is has been
remarked already that for image finite processes all semantics that are connected by dotted arrows
coincide. In this section various other classes of processes are examined on which parts of the linear
time — branching time spectrum collapse. All results of this section, expect for Propositions

and [16.9, will be used in the completeness proofs in Section 17.
Recall that a process p is deterministic iff p -5 gAp 1 =g =r.

Remark: If p is deterministic and p -2+ p' then also p’ is deterministic. Hence any domain of
processes on which action relations are defined, has a subdomain of deterministic processes with
the inherited action relations. (A similar remark can be made for image finite processes.)

Proof: Suppose p’ SN g and p’ £, r. Then P LN q and p LN T,80 q=T. O
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Theorem 6 (PARK [41]) On a domain of deterministic processes all semantics in the infinitary
linear time — branching time spectrum coincide.

Proof: Because of it suffices to show that g =7 h = g =y h for any two deterministic
process graphs g,h € G. Note that a process graph g € G is deterministic iff for every trace
o € T(g) there is exactly one path m € PATHS(g) with T'(7) = 0. Now let g and h be deterministic
process graphs with ¢ =7 h. Then the relation ¢ C PATHS(g) x PATHS(h) that relates m € PATHS(g)
with «' € paTHS(h) iff T(7) = T'(n') clearly is an isomorphism between U(g) and U(h). O

Thus, if two processes p and ¢ are both deterministic, then p =7 ¢ & p :}7 QS peqgep=yyg.
In case only one of them is deterministic, this cannot be concluded, for in Counterexamples [J and
L[5 the right-hand processes are deterministic. However, in such cases one still has p :}; g peg.
In fact, a stronger statement holds: if g is deterministic, then p Ck ¢ & p€ q.

Lemma 16.1 If p C} ¢ then I(p) = I(g).
Proof: Let p Cl. ¢, i.e. T(p) C T(g) and F'(p) C F!(q). Thena € I(p) & a€T(p) =>a€T(q) &
aeI(g) and a ¢ I(p) & (e, 0) € F'(p) = (e,0) € F'(q) < a ¢ I(q). 0

Proposition 16.1 If ¢ is deterministic then p CL g & p< ¢.
Proof: Let R be the binary relation on IP defined by pRyq iff ¢ is deterministic and p E}p g, then it
suffices to prove that R is a bisimulation. Suppose pRq and p —=+ p/. Then a € I(p) = I(q). So
there is a process ¢' € IP with ¢ — ¢'. As q is deterministic, so is ¢’. Now let (o,b) € F'(p’). Then
Jr:p 25 rAb¢ I(r). Hence p % r and (ao,b) € F'(p) C F'(q). So there must be a process
s with ¢ %% s A b ¢ I(s). By the definition of the generalized action relations 3t : ¢ — t 2 s,
and since ¢ is deterministic, ¢ = ¢’. Thus (0,b) € F'(q'). From this it follows that F!(p') C F'(¢').
Similarly one finds T'(p') C T(q'), hence p' Ck ¢'.

Now suppose pRq and ¢ —= ¢'. Then a € I(q) = I(p). So there is a process p’ € P with
p —= p'. Exactly as above it follows that ¢’ is deterministic and p’ C}, ¢ O

Call a process p deterministic up to =, for = an equivalence relation or preorder, if there exists a
deterministic process p’ with p = p’. Now the above proposition implies that determinism up to <
coincides with determinism up to =}, and even with determinism up to C}.. In contrast, any process
is deterministic up to =7, as the canonical graphs constructed in the proof of Proposition 2.3 are
deterministic. Furthermore, determinism up to =y is just determinism, for g € G is deterministic
iff U(g) is, and determinism is preserved under isomorphism.

The following notion of determinacy was proposed in ENGELFRIET [18].

Definition 16.1 Let = be an equivalence relation on IP. A process p € IP is =-determinate if
pi>q/\pi>7“:>qzr.

Note that =-determinacy is determinism. Furthermore, if O < N then =p-determinacy is implied
by =ar-determinacy. Besides =p-determinacy, =p-determinacy and & -determinacy, Engelfriet
also considers =j-determinacy, where =; is given by p =y ¢ iff I(p) = I(g). Clearly = is coarser
than any of the equivalences of Bection 15: p =7 ¢ = p =1 ¢. Moreover, =; is even coarser than

most of the preorders: p CL ¢ = p =7 g, as established in [Lemma 16.1.
Engelfriet established the following three results:
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(1) ¢ -determinacy and =j-determinacy are the same. Hence =-determinacy is the same for all
equivalences = of Section 1§, except U. Therefore, he just calls this determinacy.

(2) For determinate processes, bisimulation equivalence and trace equivalence (and hence all equiv-
alences in between) are the same.

(3) Determinacy is preserved under failures equivalence (and hence under < ). Even stronger, if ¢
is determinate and p Cr g, then p is determinate and p < ¢. (In [I8], JF is written Cy.)

Using [Proposition 16.1] T show that both =;-determinacy and € -determinacy coincide with deter-
minism up to €, from which (1), (2) and (3) follow.

Proposition 16.2 Let p € IP. The following are equivalent:
(a) pis € -determinate
(b) p is =;-determinate
(c) p is deterministic up to =g
(d) p is deterministic up to < .
Proof: “(a) = (b)” is immediate as =; is coarser than .

“(b) = (c)”: Suppose p is =r-determinate. Let G(T'(p)) be the canonical graph of the trace
set of p as defined in the proof of Proposition 2.3. By construction, G(T'(p)) is deterministic and
T(p) = T(G(T(p))). It remains to be shown that p =r G(T(p)).

As p is =j-determinate, one has (0, X),{(0,Y) € R(p) = X = Y. Hence (0,X) € R(p) iff
o € Tlp) NX = {a € Act | oa € T(p)}, i.e. R(p) is completely determined by T'(p). As also
G(T(p)) is =r-determinate (for it is even deterministic), also R(G(T(p))) is completely determined
by T(G(T(p))): (o, X) € R(G(T(p)) iff ¢ € T(G(T(p))) A X ={a € Act | oa € T(G(T(p)))}- Tt
follows that R(p) = R(G(T'(p)))-

“(c) = (d)” has been established in [Proposition 16.1.

“(d) = (a)”: Suppose p € ¢ and ¢ is deterministic. Let p — p’ and p = p”. Then
3¢ g - dApeqd andTg" g -5 ¢ Ap"© ¢". As q is deterministic, ¢’ = ¢". Hence p' & p'.
It follows that p is & -determinate. O

Now (1) is part of [Proposition 16.2. (2) is a generalization of [Cheorem 6, that is now implied by it:
Suppose p and ¢ are determinate and p =7 ¢. By [Proposition 16.] there are deterministic processes
p' with p € p' and ¢/ with ¢ ¢'. Hence p’' =1 ¢, so by [Theorem 6 p’  ¢'. Thus p< g, yielding (2).
(3) holds even for F'! instead of F. For let ¢ be determinate and p C} ¢. Then there is a
deterministic process ¢’ with ¢ ¢ ¢’. Hence p Ck ¢'. By [Proposition 16.1 p ¢ ¢/, so p is determinate
and p € q.

Note that a process p is deterministic iff for 7, 7’ € PATHS(G(p)) one has T'(7) = T(7') = = = «'.
For this reason, determinism could have been called trace determinism, and the notions of ready
trace determinism and completed trace determinism can be defined analogously.

Definition 16.2 A process p is ready trace deterministic if for m,n' € PATHS(G(p)) one has
RT(w) = RT(x") = m = «'. It is completed trace deterministic if for m,n' € PATHS(G(p)) one
has T(x) = T(x') A (I(end(r)) = 0 < I(end(r')) =0) = = = ="

A process p € P is ready trace deterministic iff there is are no p’,q,r € IP and a € Act such
that p' is reachable from p, p' - ¢, p' —= r, I(q) = I(r) and ¢ # r. For trace determinism
the condition I(q) = I(r) is dropped, and for completed trace determinism it is weakened to
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I(q) = 0 < I(r) = 0. Note that if p is ready (or completed) trace deterministic and p — p’ then
so is p’. Now the following variants of can be established.

Proposition 16.3 If g and h € G are ready trace deterministic then g =gy h < g =y h.
Likewise, if ¢ and h € G are completed trace deterministic then ¢ =¢r h < g =y h.

Proof: Let g and h be ready trace deterministic process graphs with ¢ =g7 h. Then the relation
i C PATHS(g) X PATHS(h) that relates m € PATHS(g) with 7' € PATHS(h) iff RT (7) = RT (') clearly
is an isomorphism between U(g) and U(h). The proof of the second statement goes likewise. O

For completed trace deterministic processes, the equivalences =7 and =¢7 are different, as can be
seen from [Counterexample 2. For ready trace deterministic processes, the equivalences =7, =cr,
=L, =F, =Fr, =R, =RT, =5 and =¢g are all different, as can be seen from Counterexamples [, i, B,
and [[3 [Cheorem @ and [Proposition 16.3 do not generalize to the corresponding preorders, for in
Counterexample 19 one finds two deterministic processes middle and right with middle Ccr right
but middle Zp right, and in Counterexample J one finds two ready trace deterministic processes
right and left with right Crr left but right Z g left. However, the following variants of these results
can be obtained.

Proposition 16.4 If g is ready trace deterministic then p Crr ¢ < p CRrs q.

Likewise, if q is completed trace deterministic then p Cor g < p Ces g,

and if ¢ is (trace) deterministic then p C7 ¢ < p Cg g.

Proof: Let R be the binary relation on IP given by pRgq if g is ready trace deterministic and
p Cgrr q. For the first statement it suffices to prove that R is a ready simulation. Clearly pRg
implies I(p) = I(g). Now suppose pRq and p — p’. Let X be I(p'). Then aX € RT(p) C RT(q).

So there is a process ¢' € IP with ¢ =% ¢’ and I(¢') = X. Now let ¢ € RT(p'). Then 3r : p' 7 1.
X X
Hence p $% r and aXo € RT(p) C RT(q). So there must be a process s with g * s. By the

definition of the ready trace relations 3t : ¢ — ¢ *25 s AT (t) = X, and since ¢ is ready trace
deterministic, ¢ = ¢’. Thus o € RT(¢'). From this it follows that RT(p') C RT(q'), implying p'Rq'.

This finishes the proof of the first statement. The proofs of the other two statements go the
same way (but involving a trivial case distinction for the completed trace deterministic one). O

Together, Propositions and 16.4 imply that on a domain of deterministic processes only three

of the preorders of are different, namely C7, Cor and Cl, coinciding with Cg, Ecg
and C g, respectively. That these three are indeed different is shown in [Counterexample 19.

Cr (1,1 Cor A
Zer Zr

0 a a+b

o

Counterexample 19: The trace, completed trace, and failures preorders are all different on deter-
ministic processes

Definition 16.3 A process p is cross saturated if p =5 g ——rAp -5 s —> t = q —> 1.
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Thus a process graph g € G is cross saturated iff for any 7,7’ € PATHS(g) and a € Act such that
a € I(end(w)) and T(7') = T'(7)a one has (end(r), a, end(n’)) € EDGES(g).

Proposition 16.5 If g and h € G are cross saturated then g =g h & g & h.

Proof: Let g and h € G be cross saturated and suppose that R(g) = R(h). Define the relation
R C NODES(g) x NODES(h) by sRt iff there are m € PATHS(g) and p € PATHS(h) with end(w) = s
end(p) =t and R(n) = R(p). It suffices to show that R is a bisimulation between g and h.

As I(rOOT(g)) = I(ROOT(h)) one clearly has ROOT(g) RROOT(h).

Now suppose sRt and (s,a,s’) € EDGES(g). Let m and p be such that end(w) = s, end(p) =t and
R(7) = R(p), and let 7’ be the extension of = with (s,a,s’). Now a € I(end(r)) = I(end(p)).
Choose p' € paTHS(h) with R(p') = R(n') (using that R(g) = R(h)). Then T(p') = T(x') =
T(m)a = T(p)a, so (t,a,end(p’')) € EDGES(h). Moreover, s'Rend(p').

The remaining requirement of follows by symmetry. ]

Proposition 16.6 If h € G is cross saturated then g Cr h < g Cggs h.
Proof: Exactly as above. |

Definition 16.4 A process p is saturated if (o, X) € R(p) {0, Y U Z) € R(p) = (0, X UY) € R(p).

Proposition 16.7 If p is finitely branching and ¢ is saturated then p Cr ¢ < p Cg ¢. Thus if
both p and ¢ are finitely branching and saturated then p =p ¢ < p =g ¢.

Proof: Suppose p is finitely branching, ¢ is saturated and p Cp ¢. Let (0,Y) € R(p). Then Y is
finite. In case Y = () one has (0, Act) € F(p) C F(q), implying (o, 0) € R(q), as desired. So assume
Y # 0. Then, for alla € Y, (oa,0) € F(p) C F(q) so 3Z, C Act with (¢,{a} U Z,) € R(q). Hence,
using with Z = (), one obtains (6,Y U U,cy Za) € R(q). As (0, Act —=Y) € F(p) C
F(q) it must be that (o, X) € R(q) for some X CY. Now gives (0,Y) € R(q). O

Definition 16.5 A process p is RT-saturated if

ocXp € RTn(p) NoY € RTn(p) = o(X UY)p € RTn(p)-

Proposition 16.8 If p is finitely branching and ¢ is RT-saturated then p Cpr g < p Err q- Thus
if both p and ¢ are finitely branching and RT-saturated then p =pr ¢ < p =gr ¢.

Proof: Suppose p is finitely branching, ¢ is RT-saturated and p Cpr ¢. With induction on
k € IN I will show that whenever Xpa1Xias---a,X,, € RT(p) then there are Y; C X; for i =
k+1,...,n such that Xoa1X1a9---apXgagi1Ygr10512- - anY, € RT(q). The case k = n, together
with Proposition 6.1, completes the proof of the proposition.

Induction base (k =0): Let Xga1X1as---a, X, € RT(p). Write X for Act — X

Then Xgai1Xias---anX, € FT(p) C FT(q). Hence there are Y; C X; for i = 0,...,n such that
Yoa1Yiae---a,Y, € RT(q). AspCprrq=pCr qg= I(p) C I(q), we have Y = Xj.

Induction step: Take k > 0 and suppose the statement has been established for k£ — 1.

Let Xpa1X1a2---anX, € RT(p). Then, by induction, there are Y; C X; for i = k,...,n such
that Xoa1X1a9---ag—1Xg—105Yxak11Ygr10542 - a,Y, € RT(q). Moreover, for every b € Xy,
Xoa1X1a9---a Xib € RT(p), so, again using the induction hypothesis, there must be a Z, C X
such that Xpa1 Xy -+ Xg 1a5Zpb € RT(q), and hence Xga1 X1 - X 1ax(Z, U {b}) € RT(q). As
X, is finite and Yi U Upex, (Zp U {b}) = X, the RT-saturation of ¢ gives

Xoaq -+ - ag Xgag11Yg+10k+2 - anYn € RT(g), which had to be established. O
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17 Complete axiomatizations

17.1 A language for finite, concrete, sequential processes

Consider the following basic CCS- and CSP-like language BCCSP for finite, concrete, sequential
processes over a given alphabet Act:

inaction : 0 (called nil or stop) is a constant, representing a process that refuses to do any action.
action : @ is a unary operator for any action a € Act. The expression ap represents a process,
starting with an a-action and proceeding with p.

choice :  + is a binary operator. p + ¢ represents a process, first being involved in a choice
between its summands p and ¢, and then proceeding as the chosen process.

The set T(BCCSP) of (closed) process expressions or terms over this language is defined as usual:
e 0 € T(BCCSP),
e ap € T(BCCSP) for any a € Act and p € T(BCCSP),
e p+q € T(BCCSP) for any p,q € T(BCCSP).

Subterms a0 may be abbreviated by a. Brackets are used for disambiguation only, assuming
associativity of 4+, and letting a bind stronger than +. If P = {p1,...,p,} is a finite nonempty
multiset of BCCSP expressions, then X P abbreviates p; + - - - + p,. This expression is determined
only up to associativity and commutativity of +. Let 30 := 0. An expression ap’ is called a
summand of p if, up to associativity and commutativity of +, p can be written as X P with ap’ € P.

On T(BCCSP) action relations —*+ for a € Act are defined as the predicates on T(BCCSP)
generated by the action rules of [Table 1 Here a ranges over Act and p and ¢ over T(BCCSP).

p—p qg-——q
p+q—p pt+qg—d

ap —p

Table 1: Action rules for BCCSP

A trivial structural induction shows that p — p’ iff ap’ is a summand of p. Now all semantic
equivalences of Sections 2-14 are well-defined on T(BCCSP), and for each of the semantics it is
determined when two process expressions denote the same process.

The following theorem says that, apart from U, all these semantics are compositional w.r.t.
BCCSP, i.e. all semantic equivalences are congruences for BCCSP.

Theorem 7 Let p,q,7,s € T(BCCSP) and let O be any of the semantics of except U.
Then
P=o0qg Nr=ps8 = ap=paqg N p+r=pq-+s.

Proof: Each of the semantics O has a modal characterization, given by p =0 ¢ & O(p) = O(q),
where O(p) is the set of modal formulas of the appropriate form satisfied by p. Let Ot (p) :=
{ap | ap € O(p)} be the set of such formulas which are of the form ap. For each choice of O one
easily verifies that O(p) is completely determined by O (p), i.e. O(p) = O(q) & O (p) = O (q).
One also verifies easily that O1(0) = 0, OF(ap) = {ap | ¢ € O(p)} and Ot (p+q) = O (p)UOT ().
From this the theorem follows immediately. O
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For each such choice of O one easily verifies that moreover O(p) C O(q) & OT(p) € OF(q). From
this it follows that all the preorders of are precongruences for BCCSP:

Theorem 7b Let p,q,r,s € T(BCCSP) and let O be any of the semantics of but U.
Then

pEog Nr=os = apLloag N p+rLoq+s. 0

Tree semantics, when defined merely in terms of the action relations on T(BCCSP), fails to be
compositional w.r.t. BOCCSP. The expression a0 + a0 has only a single outgoing a-transition,
namely to the expression 0. Thus, by Definition 13, a0 + a0 =y a0. Likewise b(a0 + a0) =y ba0.
However, b(a0 + a0) + b0 #y ba0 + ba0, as the first process has two outgoing b-transitions and
the second process only one. If follows that tree equivalence as defined above is not compositional
w.r.t. 4.

T(BCCSP) can be turned into a labelled transition system with multiplicities by assuming a
different transition p — ¢ for every different proof of p — ¢ from the action rules of [Table 1. On
such a transition system tree equivalence is compositional w.r.t. BCCSP.

A straightforward structural induction shows that any process p € T(BCCSP) is finite in the
sense of Definition 1.3. Hence the process graph G(p) is finite as well. The next proposition estab-
lishes that moreover, up to bisimulation equivalence, any finite process graph can be represented by
a BCCSP expression. In fact, all finite process graphs displayed in this paper have been annotated
by their representing BCCSP expressions.

Definition 17.1 Let (-) : TH — T(BCCSP) be a mapping satisfying (g)) = Z{a{h) | g > h}.

A straightforward induction on the length of the longest path of finite process graphs teaches that
such a mapping exists and is completely determined up to associativity and commutativity of +.

Proposition 17.1 Let g € H. Then there is a p € T(BCCSP) with G(p) € ¢. In fact, G({g))) & ¢.
Proof: Tt suffices to show that the relation {h, G({h)) | h € H} is a bisimulation. Suppose h — h'.
Then a{h") is a summand of (h), so () —— (h'), and by Proposition 1.1 G({h)) —— G({h')).
Vice versa, let G({h)) —— h". Then, by Proposition 1.1}, h" = G(p') for some p’ € T(BCCSP) with

() = p'. Thus ap’ must be a summand of (k). By p' = (") for some h' € H
with h —> h'. As h' is related to h" = G({h')), also this requirement is satisfied. O

Corollary 17.1 Let p € T(BCCSP). Then p < (G(p))-
Proof: By the above G({(G(p))) € G(p). Now apply [Corollary 1.1. ]

Corollary 17.2 Let g,k € H and let O be any of the semantics of Bection 1. Then
gEoh e (g)Co(h) and g=o0he (g)=o (h).

Proof: Let g Cp h. By the above G({g))) £ g Co h < G({h)). Now apply Corollary 1.1].
For “<” let {g) Co (h). By [Corollary 1.1 and Proposition 17.1 g & G({g)) Co G({(h)) € h. O
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17.2 Axiomatizing the equivalences

n [Table 9, complete axiomatizations can be found for twelve of the fifteen semantic equivalences of
this paper that differ on BCCSP. Axioms for singleton-failures, 2-nested simulation and possible-
futures semantics are more cumbersome, and the corresponding testing notions are less plausible.
Therefore they have been omitted. The axiomatization of tree semantics (U) requires action rela-
tions with multiplicities. Although rather trivial, I will not formally establish its soundness and
completeness here. In order to formulate the axioms, variables have to be added to the language
as usual. In the axioms they are supposed to be universally quantified. Most of the axioms are
axiom schemes, in the sense that there is one axiom for each substitution of actions from Act for
the parameters a,b,c. Some of the axioms are conditional equations, using an auxiliary operator
I. Thus provability is defined according to the standards of either first-order logic with equality
or conditional equational logic. I is a unary operator that calculates the set of initial actions of a
process expression, coded as a process expression again.

Theorem 8 For each of the semantics O € {T, S, CT, CS, F, R, FT, RT, PW, RS, B} two
process expressions p,q € T(BCCSP) are O—equivalent iff they can be proved equal from the axioms
marked with “+” in the column for O in . The axioms marked with “v” or “w” are valid in
O-semantics but not needed for the proof.

U| B|RS\IPW|RT\FT| R| F |CS|ICT| S| T
(z+y)+2z = z+ (y+2) o U S S o o e o I o O o I o
sty = y+uo N N o N o e e e e N
z4+0 ==z + |+ +|+ |+ |+ |+ |+ |+ |+ ]+
T+rT =T + |+ |+ |+ |+ |+ |+ |+ |+ + ]+
Iz)=1(y) = a(z+y) = alz+y)+ay +|v|v|v|Vv|Vv |V |V ]|V |V
albz + by +2z) = a(bz + 2) + a(by + 2) +| v v ]|v]|v v v
I(z)=1(y) = azx+ay = a(z+y) +|+| v ]|V v v
ax +ay = azr+ay+ a(z +vy) + v v v
a(bz+u) + a(by+v) = a(bz+by+u) + a(by+v) + |+ v v
az+a(y+2) = ax+a(z +y)+aly + 2) + w v
a(z+by+2z) = alz+by+2)+alby + 2) +|v]|v]|v
a(br +u) +a(cy +v) = a(br+cy+u+v) + v
alz+y) = alz+y)+ay + | v
ar +ay = a(z +y) +
1(0) = 0 A+ |+ [+ + ||+ ]+
I(az) = a0 A+ |+ |+ |+ + |+ + ]+ ]+
Iz +y) = I(z)+I(y) 4+ ]+ ]+ ]+ + ]+

Table 2: Complete axiomatizations for the equivalences

Proof: “If” (soundness): In the light of it suffices to show that the closed instances of
the indicated axioms are valid in the corresponding semantics. This is straightforward.
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“Only if” (completeness): Let Tp be the set of axioms marked with “4+” in the column for O.
Write Tp - p = q if the equation p = ¢ is provable from T. I have to show that

p=0q = ToFp=gq (2)
for any p,q € T(BCCSP). For the cases O € {B, S, RS, CS} I will show that
pCoq = Totlg=q+p 3)

for any p,q € T(BCCSP), from which (2) follows immediately. This will be done with structural
induction on p and ¢. So assume p Cp ¢ and (3) has been proven for all pairs of smaller expres-
sions p', ¢’ € T(BCCSP). Provided T contains at least the first four axioms of Table J, one has
ToFq=q+piff To+ q= g+ ap for every summand ap’ of p.

Take © = B, so p Cp ¢. Let ap’ be a summand of p. Then p - p, so 3¢’ : ¢ — ¢’ and
p' =p ¢'. By induction Tg - p' = p' + ¢’ = ¢/, using [Proposition 12.1. Furthermore, aq’ must be a
summand of g, so Tg - ¢ = g+ aq’ = q + ap’ and therefore Tz - q = q + p.

Take @ = S, so p Cg ¢q. Let ap’ be a summand of p. Then p - p/, so 3¢’ : ¢ = ¢’ and
p' Cs ¢'. By induction Ts ¢ = ¢ +p', 50 Ts F aq’ = a(¢’ +p') = a(¢’ +p') + ap’ = aq’ + ap'.
Furthermore, aq’ must be a summand of ¢, so Ts g =g+ aq = g+ ap’ and thus Ts - ¢ = g + p.

Take @ = RS, so p Crs q. Let ap’ be a summand of p. Then p % p', so 3¢ : ¢ —— ¢’ and
p' Crs ¢« Now I(p') = I(q') and hence Trs + I(p') = I(q’). By induction Trs - ¢' = ¢’ + p', so
Trs Faq =a(qd +p') =a(¢ +p') +ap’ = aq' + ap’. Furthermore, ag’ must be a summand of g, so
Trstq=q+aq = q+ap’ and thus Trs - q = g + p.

Take @ = CS, so p Ces g. Let ap’ be a summand of p. Then p - p/, so 3¢’ : ¢ — ¢' and
p' Ces ¢ In case I(p') = 0 it must be that I(¢') = 0 as well, and hence Tes - p' = ¢ = 0.
Otherwise, Tes F p' = bp” + r and by induction Teg - ¢' = ¢' +p', so Tes Faq’ = a(¢' + ') =
a(ld +bp" +r)=a(d +bp" + 1)+ albp” +71) =a(¢ +p') + ap’ = ag’ + ap’. Furthermore, aq’ must
be a summand of ¢, so in both cases Tos - ¢ = g + a¢' = g+ ap’ and thus Tes - g = ¢+ p.

Take O = PW. Suppose p =pw ¢. The axiom a(bz + by + z) = a(bz + z) + a(by + 2)
allows to rewrite p and g to BCCSP expressions p' = Yjcra;p; and ¢’ = ¥jcya;q; with p; and g;
deterministic. For expressions of this form it is easy to establish that p’ =py ¢’ & p' € ¢/. Using
the soundness of the axiom employed, and the completeness of Tg C Tpw for &, it follows that
Trwbp=p'=q¢ =gq

For F' and R (as well as B) a proof is given in BERGSTRA, KLOP & OLDEROG by means of
graph transformations. A similar proof for RT can be found in BAETEN, BERGSTRA & KLoP [6]
This method, applied to semantics O, requires the definition of a class H* of finite process graphs

that contains at least all finite process trees, and a binary relation SN C H* x H* — a system of
graph transformations—such that the following can be established:
1. 8, used as a rewriting system, is terminating on IH*, i.e. any reduction sequence gg A g1 G
leads (in finitely many steps) to a normal form, a graph that cannot be further transformed,
2. if -5 h then (a) g =0 h and (b) To F (g) = (h)
3. and two normal forms are bisimilar iff they are O-equivalent.
Now the completeness proof goes as follows: Suppose p =¢ ¢. As PATHS(G(p)) and PATHS(G(q))
are finite, U(G(p)) and U(G(q)) belong to H*, and by requirement 1 they can be rewritten to
normal forms ¢g and h. Using [Corollary 1.1, Proposition 13.1 and requirement 2(a) above

g=0U(G(p)) & G(p) =0 G(q) € U(G(q)) =0 h.
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Thus, with requirement 3, g < h; and [Corollaries 17.1 and 17.7 yield

re (G e UGm)), (e,  UG)e(G@heq
Requirement 2(b) and the completeness result for bisimulation semantics proved above finally give
Totp=(U(GP)) = (9) = (h) = (U(G(a)) = q.

I will now apply this method to T, RT, CT, R, F and FT. In the cases of T, RT and CT, H* is
taken to be !, the class of finite process trees.

Take © = T. Let - be the graph transformation that converts g into h, notation g 5 h, iff
g is a finite tree with edges (s,a,t) and (s,a,u) with ¢ # u, and h is obtained by identifying t
and u. Formally speaking, the nodes of h are those of g, except that ¢ and u are omitted and
a fresh node v has been added instead. Often v is taken to be the (equivalence) class {¢,u}.
Define the function ' : NODES(g) — NODES(h) by t' = v, v/ = v and w’ = w for w # t,u. Now
EDGES(h) = {(p',a,4¢') | (p,a,q) € EDGES(g)} and ROOT(h) = ROOT(g)’. This graph transformation
is illustrated in Figure 10.

S
a
v

Figure 10: Graph transformations

If g is a finite tree and g L h then so is h. Moreover, h has fewer nodes than g. Hence L is
terminating on IH!®¢. The normal forms are exactly the finite deterministic trees. Now requirement
3 has been established by [Theorem 6 Requirement 2(a) is trivial, and for 2(b) observe that any
application of 2 corresponds to an application of the axiom ax + ay = a(z + y).

Take O = RT. Let % be the same graph transformation as «7:), except that it only applies if
I(t) = I(u). This time the normal forms are the ready trace deterministic trees, and requirement
3 has been established by [Proposition 16.J. Again requirement 2(a) is easy to check, and for
2(b) it suffice to observe that any application of ~* corresponds to an application of the axiom
I(z) = I(y) = az+ay = a(z+vy).

Take O = CT. Let <+ be the same graph transformation as '\7;, except that it only applies if
I(t) = 0 < I(u) = 0. This time the normal forms are the completed trace deterministic trees, and
again requirement 3 has been established by [Proposition 16.3. Once more requirement 2(a) is easy
to check, and for 2(b) observe that any application of 5 corresponds to an application of the law
(I(x) =0 & I(y)=0) = az+ay = a(r+y). This law falls outside conditional equational
logic, but it can be reformulated equationally by considering the two cases I(z) = 0 = I(y) and
I(xz) # 0 # I(y). In the first case it must be that Tp - z = 0 = y and hence the law follows from
the third and fourth axiom of [Table 3. In the second, observe that I(p) # 0 iff p has the form bg+r
with b € Act. Hence the law can be reformulated as a(bx + u) + a(cy +v) = a(bz + cy +u +v).

A process graph g € G is called history unambiguous if any two paths from the root to
the same node give rise to the same trace, i.e. if for 7, 7' € PATHS(g) one has end(w) = end(w') =
T(w) = T(n"). The history or trace T'(s) of a node s in such a graph g is defined as T'(7) for 7 an
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arbitrary path from the root of g to s. Observe that trees are history unambiguous. In the next
two completeness proofs (the cases R and F) IH* is taken to be the class H" of finite, history
unambiguous, connected process graphs. For g € H and t,v € NODES(g) let ¢t ~ v abbreviate

Vs € NODES(g), a € Act : (s,a,t) € EDGES(g) < (s,a,v) € EDGES(g).

Take O = R. Let <5 be the graph transformation with g L hiff g has edges (t,b,u) and (v, b, w)
with ¢ ~ v, and h is obtained by adding a new edge (¢, b, w). This graph transformation is illustrated
in [Figure 10. Note that by applying & twice, one can also add the edge (v,b,u) (indicated with
a dashed arrow in [Figure 10]) if it isn’t there already. If g is a finite, history unambiguous process
graph and ¢ & h then so is h. Moreover, h has more edges than g. As there is an upperbound to
the number of edges of graphs that can be obtained from a given graph g € H"™ by applying £
(namely n x [ X n, where n is the number of nodes in g, and ! the number of different edge-labels
occurring in g), ~> is terminating on H™* (requirement 1). It is easy to see that & does not add new
ready pairs. This gives requirement 2(a). For 2(b) observe that an application of A corresponds to
a number of applications of a(bx + u) +a(by+v) = a(bz+by+u)+a(by+v). Finally, requirement
3 follows from Proposition 16.5 and the following

CLAIM: The normal forms w.r.t. <5 are cross saturated.
PROOF OF THE CLAIM: Let g € IH" be a normal form w.r.t. L. With induction to the length of
T'(u) I will show that, for u, w € NODES(g),

if T'(u) = T'(w) then u ~ w. (4)

This implies that g is cross saturated, for if m,7’ and a are as in below Definition
16.3, there must be an edge (end(w),a,u) in g. Now T'(u) = T(m)a = T(end(r")), so also
(end(m),a,end(n')) € EDGES(g).

Induction base: If length(T(u)) = 0, one has u = w = ROOT(g) and the statement is trivial.
Induction step: Let T'(u) = T(w) # ¢, and let (¢,b,u) € EDGES(g). By symmetry, it suffices to
show that (¢,b,w) € EDGES(g). As g is connected and history unambiguous, there must be an edge
(v, b,w) with T'(¢t) = T'(v). By induction t~wv. As g is in normal form it must have an edge (¢, b, w).

k
2

Figure 11: Fork

Take O = F. Let fork be the graph transformation with g fork h iff g has edges (s,a,t) and
(s,a,u), Y C I(u) such that h is given by

e NODES(h) = NODES(g) U {v}
e ROOT(h) = ROOT(g)

e EDGES(h) = EDGES(g) U {(s,a,v)}
U{(v,b,w) | (¢t,b,w) € EDGES(g)} U {(v,b,w) | (u,b,w) € EDGES(g) Ab€E Y}
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and |R(h)| > |R(g)|. This graph transformation is illustrated in Figure 11. Note that for any
path m € PATHS(h) not ending in v, a path 7’ € EDGES(g) can be found with T'(7") = T'(r) and
end(n') = end(r), namely by circumventing the possible portion through v along ¢ or . Thus, such
paths do not give rise to new ready or failure pairs. For any path © € PATHS(h) ending in v there
is a path 7' € EDGES(g) with T'(7') = T'(7) and end(7r’) = t. As I(t) g I(v), also such paths do not
give rise to new failure pairs Hence one has R(h) = ) U {(T YUY)} and F(h) = F(g).
Note that if g € H™ and g fork h, then also h € IHh“ Let L be & Ufork As gfor h=g=rh
and g L h= g =r h = g =F h, requirement 2(a) is satisfied. For 2(b) observe that an application

of 22F corresponds to an application of the axiom ax + a(y + 2) = ax + a(x + y) + a(y + 2).

The requirement |R(h)| > |R(g)| says that the transformation 1 may only take place if it actually
increases the ready set of the transformed graph. Note that if ¢ &, h then T(g) =T(h). As there is
an upperbound to the number of ready pairs of graphs g with a given trace set (namely |7 (g )| x 2t
where [ is the number of different edge-labels occurring in g), a reduction sequence gg 4 g1 g ..
on H"™ can contain only finitely many occurrences of I After the last such occurrence it leads
in finitely many steps to a normal form, because L s terminating on H". Hence also L s
terminating on TH"™ (requirement 1).

Suppose g is a normal form w.r.t. <> and (0,X) € R(g) N{0,Y UZ) € R(g). Then g has nodes
tand u with T'(t) =T(u) =0, I(t) = X and Y C I(u). As ¢ must be a normal form w.r.t. «Ii, it
satisfies () and hence ¢ ~ u. As g is connected, there are edges (s, a,t) and (s,a,u) in g. As g must
also be a normal form w.r.t. gf)k, (0,X UY) € R(g). Thus normal forms w.r.t. ~ are saturated as
well as cross saturated, and hence requirement 3 follows by [Propositions 16.7 and 16.5.

Take O =FT. Let «Z: (symmetric fork) be the graph transformation consisting of those instances
of % where YV = I(u), but with the requlrement |R(h)| > |R(g)| relaxed to J'RTN( )| > |RTn(g)|.
Let H* be IH!®, and define & by g g it g5 n and h = U(h'). Thus X5 is the variant of ~>
in which the target is unfolded into a tree. Let KT be L U Y. As there is an upperbound to the
number of normal ready traces of graphs with a given finite trace set, ~> is terminating on IH*
(requirement 1). The normal forms are exactly the finite RT-saturated ready trace deterministic
process trees, so requ1rement 3 follows from Propositions [[6.3 and [[6.8. It follows immediately from
that g A h = g =pr h. Hence Proposition 13.1] gives g 44 h = g =pr h. Moreover,
g ~ h = g =p7 h = g =pr h, which yields requirement 2(a). For 2(b) observe that an application
of«si corresponds to an application of the axiom az + ay = azx + ay + a(z +vy), and as h< U(h)

gives T I () = (U (h)) for h € H. 0

In the fifth and seventh axioms of may be replayed by

n n n n n n

a Z(bz.’ljz + biyi) =a Z(bz.’liz + biyi) +a Z b;y; and a Z biz; +a Z biyi =a Z(bzxz + bzyz)
i=1 i=1 i=1 i=1 i=1 i=1

These laws derive the same closed substitution instances. Thus none of the axiomatizations require

the operator I, or conditional equations. However, the laws above are axioms schemes which have

instances for any choice of n € IN. Even if Act is finite, the axiomatizations involving these laws

are infinite.

Theorem 9 Suppose Act is infinite. For each of the semantics O € {T, S, CT, F, R, FT, RT,
RS, B, U} two BCCSP expressions with variables are O-equivalent iff they can be proved equal
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from the axioms marked with ‘+’ or ‘w’ in the column for O in . It follows that the axioms
marked with ‘v’ are derivable.

Proof: For O € {T, CT, F, R, FT, RT, B} this has been established in GROOTE [23]. His proof
for F, R, F'T and RT can be applied to S and RS as well. The proof for U is rather trivial, but
omitted here. i

Groote also showed that if Act is finite, does not hold for F, R, FT and RT. But for
B and CT it suffices to assume that Act is nonempty, and for T it suffices to assume that Act has
at least two elements. I do not know which cardinality restriction on Act is needed in the cases of
S and RS. A complete axiomatization for open terms for completed simulation or possible worlds
semantics has so far not been provided.

17.3 Axiomatizing the preorders

In [Table 3, complete axiomatizations can be found for the eleven preorders corresponding to the
equivalences axiomatized in (there is no preorder for tree semantics (U)). This time prov-
ability is defined according to the standards of either first-order logic with inequality or conditional
inequational logic, i.e. it may be used that C is reflexive and transitive and satisfies the precongru-
ence properties of [[heorem 7H. For any semantics O the O-preorder and O-equivalence are related
by p=0qg< pLCo gAqCp p. Thus either p = ¢ is taken to be an abbreviationof pCE gAgC p
or the conditional axioms p = ¢ = pC qgand p CE g A g C p = p = ¢ are considered part of the
axiomatizations. In the latter case, the axioms of also constitute complete axiomatizations
of the equivalences.

The three axioms in in which the inequality is written “C” represent strengthenings of
the corresponding axioms in [Table 3. The axioms in which the inequality is written “J” are merely
slick reformulations of the corresponding axioms in [Table 2, and could be replaced by them. Unlike
in [Lable 2, the characteristic axiom for the readiness preorder (the ninth) is now a substitution
instance of the characteristic axiom for the failures preorder (the tenth).

Note that the characteristic axiom for the ready simulation preorder (the fifth) derives all closed
instances of I(z) = I(y) = az C a(z + y), which gives the fifth axiom of [Table 3. Hence all closed
instances of the characteristic axiom for the ready trace preorder (the seventh) are derivable from
the fifth and eighth axioms. It follows that conditional (in)equations, involving the operator I, or
unbounded sums, are no longer needed in the axiomatizations of ready simulation and failure trace
semantics.

Theorem 10 For each of the semantics O € {T, S, CT, CS, F, R, FT, RT, PW, RS, B} one
has p Co ¢ for p,q € T(BCCSP) iff p C ¢ can be proved from the axioms marked with “+” in the
column for O in [Table . The axioms marked with “v” are valid in O-semantics but not needed
for the proof.

Proof: “If” (soundness): In the light of it suffices to show that the closed instances
of the indicated axioms are valid in the corresponding semantics. This is straightforward.

“Only if” (completeness): Let T, be the set of axioms marked with “+” in the column for O.
Write T, F p T g if the inequation p T g is provable from T¢,. I have to show that

pCoq = TopHpCyq (5)
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B |RS|PW|\RT|\FT| R | F|CS|CT| S| T
(z+y)+z = o+ (y+2) + |+ |+ |+ |+ |+ ||+ |+ ]+
T4y = y+z Fl+ |+ |+ ]|+ ]+ +]+
z+0 ==z +|+|+|+|+ ]|+ |+ |+ ]|+ +
r+r = x + |+ |+ |+ |+ |+ |+ |+ +]|+ ]+
ar C az +ay + |+ |+ + |+ |+ | V|V |V ]|V
albz + by +2) = albz + z) + alby + 2) +|v|v]|v|v v v
I(z) = I(y) = ar+ay = a(z+vy) +|v|v]|v v v
ar+ay 3 alz+vy) + v v v
a(br +u) +alby +v) 3 a(bz + by + u) + | v v v
ar +a(y+2z) 3 a(z +vy) + v v
ar T azr+vy + |+ | V|V
a(br +u) +alcy +v) = a(bz +cy+u+v) + v
z L z+y + |+
ax +ay = a(z +vy) +
100) = 0 4+ |+ |+ + |+ +]+
I(az) = a0 S [T (I N [ R [ (I R
Iz +y) = I(z)+1(y) R R R R

Table 3: Complete axiomatizations for the preorders

for any p,q € T(BCCSP). The case O = B follows from Proposition 12.1| and [Theorem §. For the
cases O € {S, CS, RS} (f) will be established with structural induction on p and g. So assume
p Co g and (f]) has been proven for all pairs of smaller expressions p’,q' € T(BCCSP).

Take O = §, so p Cg ¢g. Using the axiom = C x + y one finds that T F p C ¢ if for every
summand ap’ of p there is a summand aq’ of ¢ such that T§ - ap’ C ag’. So let ap’ be a summand
of p. Then p - p/, so 3¢’ : ¢ — ¢ and p' Cg ¢'. Note that aq’ is a summand of ¢. By induction
TéHP T soTéFap' Cag'.

Take O = CS, so p Ccg g. Using the axiom az C az + y one finds that Thg Hp C g if I(p) # 0
and for every summand ap’ of p there is a summand aq’ of ¢ such that Tj5g F ap’ C ag’. In case
I(p) = 0 it must be that I(g) = 0 as well, and hence T¢ig - p = ¢ = 0. Otherwise, let ap’ be a
summand of p. Then p - p/, so 3¢ : ¢ — ¢’ and p’ Ces ¢'. Note that ag’ is a summand of q.
By induction T(5g F p' C ¢/, so Tig - ap’ C aq’.

Take O = RS, so p Crg ¢. Using the first five axioms of one finds that T Fp C g if
I(p) = I(q) and for every summand ap’ of p there is a summand aq’ of ¢ such that T}¢ F ap’ C ag'.
As p Crs ¢ one has I(p) = I(q). Let ap’ be a summand of p. Then p = p/, so 3¢’ : ¢ — ¢’ and
p' Crs ¢'. Note that ag’' is a summand of ¢. By induction Tjg Fp' C ¢, so The - ap’ C aq'.

Take O = PW. Suppose p Cpw ¢. The axiom a(bx + by + z) = a(bx + z) + a(by + 2)
allows to rewrite p and ¢ to BCCSP expressions p' = jcra;p; and ¢ = ¥jc a;q; with p; and g;
deterministic. For expressions of this form it is easy to establish that p’ Cpw ¢' < p' Cgrs ¢'. Using
the soundness of the axiom employed, and the completeness of Trs C Tpw for Cgg, it follows that
Trwbkp=p'Cq¢ =gq.

The remaining completeness proofs go by a variant of the method of graph transformations,
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where requirement 3 is replaced by
if g and h are normal forms, then g Co h < g Cur h.

Here N should be a semantics finer than O, for which the completeness theorem has already been
established, and for which T, C T¢. The reasoning now goes exactly as in the proof of [Theorem §:
Suppose p Cp g. Rewrite U(G(p)) and U(G(q)) to normal forms g and h. Then

9 =0 U(G(p)) € G(p) Co G(g) € U(G(q)) =0 h.
Thus, with requirement 3, g C s h. yields (g) Car {(h), and one obtains
Top=(U(G@)) =(9) C (h) =(U(G) =q

For each of the six remaining completeness proofs, the class IH* and the graph transformations
are the same as in the proof of [heorem §. Thus requirements 1 and 2(a) are fulfilled. As (the
closed instances of) the axioms for the respective equivalences from are easily derivable
from the ones for the corresponding preorders from [Table 3|, requirement 2(b) is fulfilled as well.
Requirement 3, which used to follow from and Propositions [16.3}, [16.5, 16.7 and [16.8),
now follows from Propositions [16.4, [(6.6], [[6.7 and [[6.8. O

17.4 A language for finite, concrete, sequential processes with internal choice

Let BCSP be the language that extends BCCSP with a binary operator @, modelling internal
choice. Like p+ ¢, the expression p @ g represents a process, first being involved in a choice between
its summands p and ¢, and then proceeding as the chosen process. However, whereas + represents
a choice that can be influenced by the environment of the process (an ezternal choice), @ represents
one that is due to internal nondeterminism of the specified system. BCSP can be regarded as a
basic fragment of the language CSP of HOARE [31].

The set T(BCSP) of (closed) terms over BCSP, or (closed) BCSP-ezpressions, and its subset
T1(BCSP) of initially deterministic BCSP-expressions, are defined by:

e 0 € T;(BCSP) C T(BCSP),

aP € T1(BCSP) for any a € Act and P € T(BCSP),
p+q € T1(BCSP) for any p,q € T1(BCSP),

P+ Q € T(BCSP) for any P,Q € T(BCSP),

P& Q € T(BCSP) for any P,@Q € T(BCSP).

Again, subterms a0 may be abbreviated by a. Brackets are used for disambiguation only, assuming
associativity of + and @, and letting a bind stronger than + and @. Semantically, BCSP-expressions
represent nonempty, finite sets of initially deterministic BCSP expressions: for P,Q € T(BCSP) let

[0] :={0}  [aP]:={aP} [P+Q]:={p+qlpel[P], ¢c[Q]} [P&Q]:=[PJU[Q].

On T1(BCSP) action relations —= for a € Act are defined as the predicates on T;(BCSP) generated
by the action rules of [Table 4. Here a ranges over Act, P over T(BCSP) and p and q over T1(BCSP).
This makes T;(BCSP) into a labelled transition system. Hence, in the light of all
semantic equivalences of Sections 2-12 and 14 are well-defined on T(BCSP), and for each of the
semantics it is determined when two BCSP-expressions denote the same process.
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p € [P] p—p q->q
aP 5 p p+qg—p pt+qg—4q

Table 4: Action rules for BCSP

The following theorem says that all these semantic equivalences are congruences for BCSP.
Even stronger, all the preorders of this paper are precongruences for BCCSP.

Theorem 11 Let P,Q,R,S € T(BCSP) and let O be any of the semantics of Sections 2-12, 14.
Then

P=0Q AR=0S = aP=0paQ AN P+R=0Q+S A P®R=0Q® S,
PCoQ A RCoS = aPCoaQ AN P+RCoQ+S A PORCoQ®S.

Proof: Each of the preorders O has a modal characterization, given by P Cp Q < O(P) C O(Q)
where O(P) = U,¢[p) O(p) for P € T(BCSP) and O(p) = {¢ € Lo | p = ¢} for p € T1(BCSP).
Now O(P & Q) = O(P) U O(Q). This immediately yields the compositionality of O w.r.t. &:
PCoQARCoS=PORLCorQ@®S,andhence P=p QAR=0S=>PO®OR=0pQdS.

Note that every formula in the infinitary Hennessy-Milner logic is logically equivalent to a
disjunction of formulas of the form A;c;aipi A \jes —ajpj. Let O'(P) be the class of formulas in
O(P) of that form. It follows that P Cp Q@ < O'(P) C O'(Q) for P,Q € T(BCSP).

For p,q € T1(BCSP) one has p+q = Ajer aipi A \jes —ajp; iff I can be written as I; U I such
that p = Ajer, @ipi AN\jes —ajj and g E Nier, aipi A \jes ~ajpj. Moreover, for each semantics O
of this paper, if A;c; aipiAA e —ajp; € Lo and I' C I, then Ajcp aipiN\jes majpj € Lo'2. Thus,
for P,Q € T(BCSP) and A;c; aivi A\ e ~ajpj € Lo, one has A;jer aipi A\ jes —ajp; € O'(P+Q)
iff I = Iy U I such that A;ep, aipi A \jey —ajo; € O'(P) and Ajep, aivi A Njey majp; € O'(Q)-
This immediately yields the compositionality of O w.r.t. +.

The compositionality of O w.r.t. a is straightforward. O

bl

If P € T(BCSP), then G([P]) is a finite process graph with multiple roots. Vice versa, any
finite process graph with multiple roots g € G™" can be represented by a BCSP-expression {g)) €

T(BCSP), such that G({g)) € g. Just extend by {9) = D;croors(g) (9r)-

Axioms In[Table §, complete axiomatizations in terms of BCSP can be found for the same eleven
semantics axiomatized in terms of BCCSP in Tables f| and []. The first two sections of the table
apply to the equivalences and the first and last section to the preorders. These axioms are mild
variations of the ones in Tables [f and B, and have been found by exploiting a close correspondence
in semantic validity between BCSP and BCCSP expressions. First of all, using the definitions
just given, the soundness of the axioms in the first section of is easily established. Using
these, any closed BCSP expression can be rewritten in the form @j.; p; with p; closed BCCSP
expressions. Now the following lemma reduces the validity of (in)equations over BCSP to that of
(in)equations over BCCSP.

n m n m
Lemma 17.1 @pi Co @qj & Zapi Co Zaqj for p;, ¢; € T(BCCSP).
=1 j=1 =1 j=1
Proof: ¢ € O(DiLpi) & ap € O, api). O

'?At least when replacing the modality X of R, RT, PW and RS by A, ey T AN

aEZ
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B |RS|\PW|\RT\FT| R | F|CS|CT| S| T
(z@y) D2z = 2@ (YD 2) R I S I S I S e S I S I S I S I S I S
s@y = yda R R e R
t®r = x S e e N A R s
(z+y)+2z = z+ (y+2) +l+ |+ |+ |+ |+ |+ ]+ ]+ ]+ ]+
Tty = y+u R A R R
240 =z R R A R A
(z@y)+2z = (+2)D(y+2) R I S I S I S e S I S I S I S I S I S
a(z®y) = az + ay R R e R
S (bizi+biyi) = > (bizit+biyi) © i1 biyi +lvi|vi|v|v]|v]|v]|v]|v]|yV
br+by+z = (bx+2)® (by+ 2) +|v|v]|v]|v v v
E?:l b;z; ® Z?:l biy; = Z?:l(bixi + biy;) + |+ |V ]|V v v
rt+x = x + v v v
(bx +u) ® (by +v) = (bx + by +u) ® (by +v) + | + v v
t®y+z) =r0(@@+y &(y+2) + v v
z+by+z = (x+by+2)® (by+2) +|v|v ]|V
(br+u)®(cy+v) = br+cy+u+v + v
z+y = (z+y) Dy + | v
Dy = zr+y +
z C 2y S A
br+by+z = (bz+2)® (by+ 2) +|v|v]|v]|v v v
E?:l biz; ® E?:l biy; = E?Zl(bia:i + b,'yz') + | v |V |V v v
r+r = x + v v v
(br+u)®(by+v) J bz+by+u + | v v v
z@®y+z) Jz+y + v v
ar C az+vy + | v|v |V
(bx+u)®(cy+v) = br+cy+u+wv + v
r L z+y + | v
T®Y = T+y +

Table 5: Complete axiomatizations in terms of BCSP

Most of the axioms in the last two sections of can be recognized as restatements of the
axioms of Tables f] and [, using the insight of [Lemma 17.1. However, in BCSP it is not so clear how
the set of initial actions of a process should be defined, and the obvious adaptations of the axioms
involving the operator I would not be sound. Therefore the alternatives to those axioms discussed
near the pnd of Section 17.2 are used. Moreover, in BCSP the axiom z + z = z is not sound for
readiness semantics. Substituting a @ b for z, one derives a @ (a +b) ® b = a ® b, of which only the
left-hand side has a ready pair (¢, {a,b}). However, in the setting of BCCSP all closed instances
of £ + £ = z are derivable from the law az + ax = az, which corresponds with the BCSP axiom
z @ z = z. Following Lemma 17.1], the characteristic axiom for failure trace equivalence should be
z®y =z®y® (r+y). This axiom is derivable from z +z = z, and all closed instances of z+z = z
are derivable from z ®y = 2 ® y @ (z + y) and the axioms in the first section of [Table §.



axioms BCSP
axioms
axioms preorders
lem-reducing BCSP
thm-open completeness
lem-reducing BCSP
axioms BCSP

Complete axiomatizations 71

Let Up be the set of axioms marked with “4” in the column for O in the first two sections of
Table 5, and U¢ be the set of axioms marked with “+” in the column for O in the first and last
section of [Cable §. Write S I @ if the formula @ is provable from the set of axioms S.

Theorem 12 For O € {T, S, CT, CS, F, R, FT, RT, PW, RS, B} and P,Q € T(BCSP) one
has P =0 Q & Uo - P=Qand PCo Q & U - PC Q.

Proof: “<” (soundness): In the light of it suffices to show that the closed instances of
the indicated axioms are valid in the corresponding semantics. In fact, one may restrict attention
to the instances where expressions @;-; p; with p; closed BCCSP expressions are substituted for
the variables. It is not difficult to check, for each of these axioms, that such instances of it are
derivable from the instances of it where simple closed BCCSP expressions are substituted for the
variables (but taking x @y =z @ y ® (z + y) instead of z + z = = to be the characteristic axiom
for failure trace semantics). That the instances of the latter kind are valid in the corresponding
semantics follows immediately from and the soundness of the axioms for BCCSP.

“First =" (completeness of the azioms for the equivalences): Let T{, be the set of axioms marked
with “+” in the column for O in [Table 3, but using a }"" ; byz; +a X" 1 by = a 11 (biz; + biy;)
and a7 (biz; + biyi) = ad ;i (bizi + biy;) + ad i byy; instead of the axioms involving the
operator I. As establishes completeness for closed terms only, it holds for T, as well.

Cram: If T, = p = 37 ag; for p,q; € T(BCCSP), then, modulo applications of the first
three axioms of [Table 3, p has the form p = }"7* ; ap;.

PROOF OF THE CLAIM: As all axioms in T}, are equations, I may use induction on the proof of
p= ZT:1 ag; in equational logic. The case that p = Z;"Zl ag; is a closed instance of an axiom of
T¢, proceeds by inspection of those axioms. The cases of placing an equation in a context, as well
as reflexivity, symmetry and transitivity, are trivial.

n m n m
Cram: Tp, + Zapi = Z agj = UopkF @pi = @ g; for any p;,q; € T(BCCSP).
i=1 j=1 i=1 j=1

PROOF OF THE CLAIM: I use induction on the proof of 3>, ap; = >3- ag; from Ty, in equa-
tional logic. The case that }7i"; ap; = >77L; ag; is a closed instance of an axiom of T¢, proceeds
by inspection of those axioms, taking into account the remark about z @y =z ® y @ (z + y) right
before this theorem. The case of a closed instance of an axiom of T}, in a context is straightfor-
ward, also using that all closed instances of axioms of T}, are derivable from the ones of Up, taking
into account the remark about = + x = z right before this theorem. The cases of reflexivity and
symmetry are trivial. Transitivity follows from the previous claim.

COMPLETENESS PROOF: Suppose P =¢p @ for certain P,Q € T(BCSP). Using the axioms
in the first section of one obtains Up = P = @j_;pi and Up F @ = D)L, ¢; with
pi,q; € T(BCCSP). By the soundness of these axioms one has @;=; pi =0 @/~ ¢;- Therefore
Yiciapi =0 a®ispi =0 a@jL¢; =0 Y- aq; by the soundness of a(z ® y) = ar +ay and
[Cheorem 11|, and hence Ty, = 37 ap; = Y7L, ag; by the completeness of Tg,. Now Up - P = Q
follows by the claim above.

The second “=" (completeness of the axioms for the preorders) goes likewise, except that in
the proof of the second claim, in order to handle the axioms ax C ax +y and = C = + vy, one uses
the axiom = C z @ y of Uy,. Furthermore, ax T ax + y is derivable from Uf, and z C z + y from
Ur. O
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18 Ceriteria for selecting a semantics for particular applications

Must testing Assume the testing scenario of trace semantics: we are unable to influence the
behaviour of an investigated system in any way and can observe the performed actions only. Not
even deadlock is observable. In this case there appears to be no reason to distinguish the two
processes of [Counterexample 3, ab + a(b + ¢) and a(b + ¢). They have the same traces, and
consequently allow the same observations. Likewise, one might see no reason to distinguish between
the two processes of Counterexample 2, ab + a and ab; also these have the same traces. However,
when buying process ab, it may come with the guarantee that, in every run of the system, sooner
or later it will perform the action b, at least if the action a is known to terminate. Such a guarantee
cannot be given for ab+ a. The distinction between ab and ab+ a alluded to here can be formalized
with the concept of must testing, originally due to DE N1cOLA & HENNESSY [17}: ab must do a b,
whereas ab + a must not.

For finite processes, must testing could be formalized as follows. For ¢ C Act* we say that a
finite process p € P must pass the test ¢ if CT(p) C ¢. To test whether a process will sooner or later
perform a b-action take t to be all sequences of actions containing a b. To test whether a process
will always perform a b immediately after it does an a, take ¢ to be all traces in which any a is
immediately followed by a b. Now write p CI2U* ¢ if for all tests ¢ C Act* such that p must pass ¢,
g must pass t as well. It is easy to see that, for finite processes p and ¢, p TP ¢ iff ¢ Cor p.

All testing scenarios O sketched earlier in this paper can be regarded as forms of may testing:
it is recorded whether an observation ¢ € L» may be made for a process p, and one writes p Cp ¢
if any observation that may be made for p, may also be made for g¢.

In the context of a testing scenario O with O = CT, a plausible form of must testing can be
defined as well, and for finite processes plausible formalizations yield that p CH"" ¢ iff ¢ Co p.

For infinite processes there are several ways to formalize must testing, and analyzing the result-
ing preorders falls outside of the scope if this paper.

Deadlock behaviour A process is said to reach a state of deadlock if it can do no further ac-
tions.!® The process ab + a for instance may deadlock right after performing an a-action, whereas
the process ab may not. One could say that a semantics O respects deadlock behaviour iff O = CT.
Counterexample 4 then shows that none of the semantics on the left in respects deadlock
behaviour; only the left-hand process of [Counterexample 4 can deadlock after an a-move. Respect-
ing deadlock behaviour may be a requirement on semantics in applications where either deadlock
is important in its own right, or where (implicitly) a form of must-testing is considered.

Full abstraction Many testing scenarios mentioned in this paper employ the notion that an
action can happen only if it is not blocked by the environment, that is, only if both the investigated
process and the environment are ready to participate in it. Modelling both the investigated process
and the responsible part of the environment as process graphs gives rise to the following binary
intersection operator that allows an action to happen only if it can happen in both of its arguments.

Definition 18.1 Let N be the binary operator on process graphs defined by
e NODES(g N h) = NODES(g) X NODES(h),

'31n settings were successful termination is modelled (cf. ) a state of deadlock is only reached if moreover
the process cannot terminate successfully.
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e ROOTS(g N h) = ROOTS(g) X ROOTS(h),
e ((s,t),a,(s',t") € EDGES(g) iff (s,a,s’) € EDGES(g) A (t,a,t') € EDGES(h).

In order to obtain a connected process graph, unreachable parts need to be removed.

This operator is also called synchronous parallel composition and is denoted || in HOARE [3I]. It
p—7p,qa-—4
pNg——p'Ng

Trace semantics turns out to compositional for the intersection operator, i.e. if g =r ¢’ and
h =r k' then gNh =7 ¢'NAK'. For T(gNh) =T(g) NT(h). So are failures and readiness semantics:

can be added to BCCSP or BCSP by employing the action rule

(0,X)e F(gnh) & FHo,Y)€EF(g), (0,Z)e F(h): X =Y UZ

(0,X)e R(gNh) & Fo,Y)€ R(g), (0,Z) e R(h): X =Y NZ.

In fact, it is not hard to see that all semantics of this paper are compositional for N, except for CT'
and CS, and their (in)finitary versions. The two processes of Counterexample 3, ab + a(b+ ¢) and
a(b+c), are completed trace equivalent, even completed simulation equivalent, yet after intersecting
them with ac only the first one has a completed trace a.

In applications where the intersection operator is used, one may require a suitable semantics to
be compositional for it. This rules out CT and CS. If also deadlock behaviour is of importance,
F' appears to be the coarsest semantics to be considered, as least among the ones reviewed in this
paper. As a matter of fact, it is the coarsest semantics even among the ones not reviewed here.

Definition 18.2 An equivalence relation is called fully abstract w.r.t. a property if it is the coarsest
equivalence with that property, i.e. if it has the property, and any other equivalence having that
property is finer.

An equivalence is said to fully abstract w.r.t. another equivalence ~ and some operators, if it is
the coarsest equivalence finer than ~ that is compositional w.r.t. those operators.

An equivalence = on G is fully abstract w.r.t. an equivalence ~ and a set L of operators on G iff
(1) it is compositional w.r.t. the operators in L, and
(2) for any two process graphs g,h € G with g % h there exists a context C[-] of operators from
L such that C[g] # C[h].
In fact, for every equivalence relation ~ on G and every set L of operators on G there exists a
unique equivalence relation ~ that is fully abstract w.r.t. ~ and the operators in L, namely the
one defined by g = h iff C[g] ~ C[h] for every context C[-] of operators from L.

Theorem 13 Failures equivalence is fully abstract w.r.t. =¢7 and N, i.e. w.r.t. deadlock behaviour
and intersection.

Proof: (1) has already been established. For (2), let g #r h. W.lo.g. let (o, X) € F(g) — F(h).
Let k be the process graph that is shaped like the failure pair (¢, X), i.e. the process that performs
the actions of ¢ in succession, after which it offers a choice between the actions of X, and nothing
else. Then o € CT(gNk) — CT(hNEk). O

Variants of are abundant in the literature. See e.g. [11]
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Renaming For every function f : Act — Act one can define a unary renaming operator on G
that renames the labels of all transitions in its argument according to f. In case f is injective,
all semantics of this paper are compositional for the associated renaming operator, as is trivial to
check. Non-injective renaming operators are useful to express a degree of abstraction. Imagine a
process that can do, among others, actions a; and as. At some level of abstraction, the difference
between a; and ay may be considered irrelevant. This can be expressed by applying a renaming
that relabels both a; and as into the same action a. Naturally, if two processes are equivalent before
applying such a renaming operator, one would expect them to still be equivalent afterwards, i.e.
after abstracting from the difference between a; and ao. It is for this reason that one might require
semantics to be compositional for (non-injective) renaming. As it happens, all semantics between
F'! and B~ fail this requirement. For the two processes of [Counterexample 4 are HML-equivalent
(=p), but after renaming all actions b; into b (for ¢ = 1,2,...) the resulting processes are not even
singleton-failures equivalent (=1). For only the first one has a singleton-failure pair {a, b). This can
be considered an argument against the semantics on the left of Figure 3.

Counterexample 20 shows that also F2S5*, R2S*, FB* and RB* are not compositional for
renaming. In this counterexample b is a shorthand for X9, b;, in the sense that whenever a transition
P LN q is displayed, all the transitions p N q for i > 1 are meant to be present. With some effort

Counterexample 20: F25*, R25*, FB* and RB* are not compositional for renaming

one checks that both processes satisfy the same formulas in L7 ;. However, after renaming all
actions b; into b they are no longer 25 -equivalent: only the first process satisfies a—(bcT). For all
other semantics of it is rather easy to establish that they are compositional for renaming.

Other compositionality requirements Many formal languages for the description of concur-
rent systems, including CCS [37], SCCS [39], CSP and ACP [7], are De Simone languages (cf.
3]). This means that their operators (the De Simone operators) can be defined with action rules
of a particular form (the De Simone format). Because De Simone languages are used heavily in
algebraic system verification, semantic equivalences that are compositional for such languages are
often desirable.

Theorem 14 The semantics T, T, F', F*°, R, R*, FT, FT*, RT, RT*, PF, PF>~,6 §* §¥, S,
FS*, RS*, RS“, RS, 25¥, 25, B“ and B are compositional w.r.t. all De Simone languages.
Proof: Omitted. O

For all the other semantics of [Figure 9, which are displayed there in red (or shaded), there are
counterexamples against such a result. Tree semantics fails to be compositional w.r.t. the + of
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BCCSP, unless the action relations are upgraded with multiplicities, but that takes us outside of
De Simone format. The semantics F!, F~, R~, FT~, RT, RS, 25, B~, F25*, R2S*, FB* and
RB* fail to be compositional w.r.t. renaming, and CT, CT°, CS, CS¥, CS fail to be compositional
w.r.t. intersection. These are all De Simone operators. Finally, [Counterexample 21| shows that PW
is not compositional for the synchronization operator x of SCCS [39]—also a De Simone operator.
This operator can be used to create a context, in which the two possible worlds equivalent processes
of Counterexample § are converted into the two processes below. These are no longer possible

by by
bil )b bi[ b2 FPw
bo by
C4 d4 C4 d4
(abc + abd) x 3(1.4 + 2.4) a(bc+bd) x 3(1.4 4+ 2.4)

Counterexample 21: Possible worlds semantics is not compositional for synchronization

worlds equivalent, for only the one on the right has a possible world as(bics + beds). The same
counterexample can also be created with the inverse image operator of CSP [31].

In BAETEN, BERGSTRA & KLOP [6] a unary priority operator was defined on process graphs.
This operator, which is not a De Simone operator, assumes a partial ordering < on Act, i.e. there
is one priority operator for each such ordering. The operator acts on graphs by removing all
transitions (s,a,t) for which there is a transition (s,b,u) with b > a (and unreachable parts are
removed as well). Thus, in a choice between several actions, only the actions with maximal priority
may be executed. It is known that RT, RS, B and U are compositional for the priority operators.
I think that RT*°, PW, RS*, RS¥, RB* and B“ are too. However, none of the other semantics of
Fig 9 is. Thus, in applications where priority operators are used and algebraic reasoning makes
compositionality essential, only semantics like RT', RS and B are recommendable.

Depending on the application, compositionality for other operators may be required as well,
leading to various restrictions on the array of suitable semantics. More on which semantics are
compositional for which operators can be found in ACETO, FOKKINK & VERHOEF and the
references therein.

The Recursive Specification Principle A recursive specification is an equation of the form
X = t with X a variable and ¢ a term (in a language such as BCCSP) containing no other
variables than X. (In the literature often recursive specifications are allowed to involve more
variables and more such equations, but I do not need those here.) A recursive specification X = ¢
over BCCSP is guarded if every occurrence of X in t occurs in a subterm at’ of t with a € Act.
Recursive specifications are meant to specify processes. A process p is said to be a solution of
the recursive specification X = t, using the semantics O, if the equation evaluates to a true
statement when substituting p for X and interpreting = as =p. The recursive specification principle
(RSP) says that guarded recursive specifications have unique solutions. It has been established
for bisimulation semantics by MILNER [39] (using the language SCCS), and holds in fact for most
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semantics encountered in this paper. In process algebra, two processes are often proven semantically
equivalent by showing that they are solutions of the same recursive specification (cf. [5]). For this
purpose it is important to work with a semantics in which RSP holds. In the infinitary semantics
between T and PW this is in fact not the case. For in those semantics the two different processes
of Counterexample 1| are both solutions of the guarded recursive specification X = aX + a. For
the finitary semantics this counterexample does not apply, because the two processes are identified,
whereas in simulation semantics (of finer) these two processes fail to be solutions of the same
recursive specification.

Other considerations In general it depends on the kind of interactions that are permitted
between a process and its environment (i.e. the testing scenario) which semantics is sufficiently
discriminating for a particular application. When a range of appropriate semantics is found, also
considering the criteria discussed earlier in the section, the question rises which of these semantics to
actually use (e.g. in making a formal verification). A natural choice is the coarsest of the appropriate
semantics, i.e. the one which is fully abstract w.r.t. the requirements it has to meet in order to be
adequate in the context in which the investigated processes will be operating. In this semantics
more equations are valid than in any other. If the goal is to prove that two processes are equivalent,
this may succeed when using the fully abstract semantics, whereas it may not even be true in a
finer one. Sometimes it is argued that the complexity of deciding equivalence between processes is
too high for certain semantics; using them would give rise to too hard verifications. However, this
can not be an argument for rejecting a semantics in favour of a finer one. For doing the verification
in the finer semantics is actually a method of establishing equivalence in the coarser semantics. In
other words, when O < N, establishing p =¢ ¢ cannot be harder than establishing p =,r ¢, as
establishing p =,/ ¢ is one of the ways of establishing p =¢ ¢. If deciding O-equivalence has a higher
complexity than deciding N-equivalence, the hard cases to decide must be the equations p =¢ ¢
for which p =xr ¢ is not even true. It is especially for those applications that (J-semantics has a
distinct advantage over N -semantics. This argument has been made forcefully in VALMARI [48].
In practice, it may not always be certain in what ways the environment can interact with inves-
tigated processes, and hence what constitutes their observable behaviour. Moreover, the processes
under investigation may be transferred to more powerful environments long after their initial use.
One of the ways this could happen is through the introduction of more operators for which the
underlying semantics has to be compositional. A big disadvantage of semantics that are fully ab-
stract with respect to non-stable notions of observability (or non-stable sets of operators) is that
whenever a verification is carried out in a such a semantics, and one decides that the context in
which the verified system will be working is such that actually a little bit more can be observed
that what was originally accounted for, the verification has to be completely redone. Moreover,
the correctness of the investigated systems keeps depending on the completeness of the underlying
testing scenario. In such cases it is preferable to carry out verifications in the finest semantics
for which this is convenient. This gives stronger equivalence results, which have a greater change
of surviving in conditions where the environment gets more powerful than originally anticipated.
Especially using bisimulation is safe bet, as it respects the internal structure of processes to such
a degree that it is hard to imagine ever running into an environment that distinguishes bisimilar
processes. In BLoOM, ISTRAIL & MEYER [12] it is argued that ready simulation semantics already
respects the limits of observable behaviour, so this may be a good alternative. It should be pointed
out, however, that most applications involve abstraction from internal actions (not treated in this
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paper), and hence require variants of the semantics treated here that accommodate such abstrac-
tions. In this setting, the question of which semantics represents the limit of observable behaviour
is much harder.

19 Distinguishing deadlock and successful termination

Often researchers feel the need to distinguish two ways in which a process can end: successfully
(by completing its mission) or unsuccessfully (for instance because its waits for an input from the
environment that will never arrive). This distinction can be formally modelled in the context of
labelled transition systems by considering triples (IP, —,+/) in which (IP, —) is a labelled transition
system as in and 4/ C IP is a predicate on processes expressing which ones can
terminate successfully in their current state. It may or may not be required that the processes
p € P with /(p) have no outgoing transitions. Likewise, in the setting of process graphs, one
studies tuples (NODES(g), ROOT(g), EDGES(g),+/(g)) with /(g) C NODES(g). Now any labelled
transition system over an alphabet Act equipped with such a successful termination predicate, can
be encoded as an ordinary labelled transition system over an alphabet Act U {y/} with / ¢ Act.
Namely, instead of labelling the processes/states where successful termination occurs with 4/, one
can view successful termination as a kind of action, and add ,/-labelled transitions from those
processes/states to fresh endstates. Now any semantic equivalence defined on ordinary labelled
transition systems extends to labelled transition systems with a successful termination predicate
by declaring two processes equivalent iff they are equivalent in the encoded transition system. In
fact, in the same way all equivalences and preorders of this paper extend to labelled transition
systems equipped with arbitrary predicates P C IP. Below, three of the thusly defined equivalences
are characterized explicitly in terms of /.

Definition 19.1 Let (IP, —,+/) be a labelled transition system with successful termination.
o € Act* is a terminating trace of a process p if there is a process ¢ such that p ——+ ¢ and /(q).
Let L(p) denote the set of terminating traces of p (and let T'(p) and CT(p) be defined as before).

Now two processes p and ¢ are trace equivalent iff T'(p) = T'(q) and L(p) = L(g). They are completed
trace equivalent iff T'(p) = T'(q), CT(p) = CT(q) and L(p) = L(q). They are bisimulation equivalent
iff there exists a binary relation R on IP with pRgq, satisfying, for a € Act:

e if pRg and p -5 p/, then 3¢’ : ¢ - ¢' and p'Rq’;
e if pRg and ¢ - ¢/, then 3p’ : p = p’ and p'Rq;
o if pRq, then /(p) < V/(q)-

Language semantics The nondeterministic automata studied in automata theory (cf. HOPCROFT
& ULLMAN [33]) can be regarded as process graphs with a termination predicate (except that in
automata theory the focus is on finite automata). The states s € NODES(g) with 1/(s) are called
accepting or final states, and a string o € Act* is said to be accepted by the automaton g iff o € L(g).
The set L(g) of all strings accepted by ¢ is called the language accepted by g. In automata theory
two automata are considered equivalent iff they accept the same language. Therefore language
equivalence can be defined as follows.

Definition 19.2 Two processes p and ¢ in a labelled transition system with successful termination
are language equivalent, notation p =, ¢, if L(p) = L(q). Write p Cp, ¢ iff L(p) C L(q).
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Clearly, language semantics makes more identifications than trace semantics (i.e. L < T'). It could
be appended to the bottoms of Figures [[] and fl The reason for not treating it earlier in this paper
is that it cannot be defined uniformly in terms of action relations. For either the definition depends
on the predicate 4/, which is not a part of ordinary labelled transition systems, or, when encoding
the 4/-predicate by a transition label 4/, the definition treats — different from the other action
relations.

Complete axiomatizations A variant of the language BCCSP of that distinguishes
between deadlock and successful termination is the language BCCSPy,., obtained from BCCSP by
replacing the constant 0 by two constants § and ¢, representing deadlock and successful termination,
respectively. On T(BCCSP;,) action relations — for a € Act are again defined as the predicates on
T(BCCSPs,) generated by the action rules of [Table 1. Furthermore, the predicate v/ C T(BCCSPs,)
is generated by the rules of Table 6. Now the complete axiomatizations of apply to BCCSPg,

V(p) V(g)
V) Vip+a) V(p+aq)

Table 6: Rules for the termination predicate

as well, provided that the occurrences of 0 are changed into ¢, an axiom I(g) = ¢ is added, and the
characteristic axioms for CS and CT also get variants in which by + z resp. cy + v is replaced by
¢. Language equivalence can be axiomatized by adding the axiom ad = d to the axioms for trace
equivalence. This axiom corresponds with a transformation on finite process trees that removes
states from which it is impossible to reach a state of successful termination. On the normal forms
w.r.t. this transformation, language equivalence and trace equivalence coincide.

Successful termination as default Naturally, ordinary transition systems can be regarded as
transition systems with successful termination by taking the termination predicate to be empty. On
such transition systems, language equivalence turns out to be the universal relation, axiomatized by
the equation z = y. Alternatively, ordinary transition systems can be regarded as transition systems
with successful termination by letting 4/ be the set of processes without outgoing transitions, i.e.
by regarding all termination to be successful. In this context, on a transition system (IP, —) on can
define any of the semantics O of this paper as in Bection 15, or by taking successful termination into
account as in the present section. Denote the latter version of @ by @V, Then two processes are OV-
equivalent iff they are O-equivalent after appending a +/-transition to every endstate. Comparing
semantics that take termination into account as well as semantics that abstract from it yields
in first approximation a “double” version of [Figure g, of which a tiny fragment is displayed in
Fig )(a). However, for processes p for which all termination is successful one has CT'(p) = L(p).
Hence the semantics TV, CTV and CT coincide. One also verifies easily that R coincides with
RV, FT with FTV, RT with RTV, RS with RSV, B with BV, etc. However, F and FV differ,
as demonstrated by [Counterexample 23. There F(left) = F(right) but (a,{c,/}) € FV(left) —
F\/(rz’ght). Also PF differs from PF° and 25 from 257, for in [Counterexample 14 one has left =25
right but, after appending a +/-transition to every endnode, a—b,/0 € ﬁg/s(left) - E?Q/S(right). Thus
Fig )(a) collapses to Figure 1(b). In GROOTE & HUTTEL normed processes are studied:
processes that never loose the possibility to terminate eventually. A process p is normed iff for
each process g reachable from p, there is a process r reachable from ¢ that terminates (i.e. has
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(a) first approximation (b) general case (c) normed processes

Figure 12: The linear time — branching time spectrum for successfully terminating processes

no outgoing transitions) (and all termination is considered successful). For normed processes p,

T(p) is completely determined by L(p). Hence [Figure 13(b) collapses further to Figure 19(c). This
explains why in LV coincides with CT and is finer than 7.

Sequencing and sequential composition The sequential composition of processes p and q (cf.
31, 7)), denoted p - ¢, is the process that first executes p, and upon successful termination of p
executes g. This operator is defined only on domains of processes on which successful termination
is somehow represented. Sequencing on the other hand is defined on domains of processes that
do not distinguish between deadlock and successful termination: let p;q denote the process that
first executes p until it can do no further actions, and then ¢ [I2Z]. On process graphs, g;h can be
constructed by appending (at its root) a disjoint copy of h to every endnode of g. On process graphs
with successful termination, g - h on the other hand can be constructed by appending a disjoint
copy of h to every node s of g with 4/(s). In case 1/(s) is possible even if s is not an endnode, the
graph h needs to be transformed first in such a way that its root has no incoming edges [7].

F
_
=F

a+ab+a(b+ ¢ a+a(b+c)

Counterexample 22: Failures semantics is not compositional for sequencing

[Counterexample 22 shows that failures semantics is not compositional for sequencing. There
left =p right, but left;c #r right;c. The same counterexample, with all endnodes successfully
terminating, shows that singleton-failures semantics is not compositional for either sequencing or
sequential composition. Likewise, Counterexample 14 shows that PF and 25 are not compositional
for sequencing, and [Counterexample 4 shows that none of the semantics between T' and B~ are. All
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of the semantics studied in this paper, except for F'', are compositional for sequential composition.
As sequencing is the same as sequential composition on processes where all endstates, and only
those, are considered to be successfully terminating, this implies that all the semantics OV, except
for F'V, are compositional for sequencing. If ¢ is an action that does not occur in p or ¢, then
pic =0 q;c P :2,)/ g. (Think of ¢ as 4/.) From this it follows that for all semantics O, except
F1, OV is fully abstract w.r.t. © and sequencing, at least for processes that can not execute every
action in Act.

Concluding remarks

In this paper various semantic equivalences for concrete sequential processes are defined, motivated,
compared and axiomatized. Of course many more equivalences can be given than the ones presented
here. The reason for selecting just these, is that they can be motivated rather nicely and/or play
a role in the literature on semantic equivalences. In ABRAMSKY & VICKERS |2]| the observations
which underly many of the semantics in this paper are placed in a uniform algebraic framework,
and some general completeness criteria are stated and proved. They also introduce acceptance
semantics, which can be obtained from acceptance-refusal semantics (Bection 7) by dropping the
refusals, and analogously acceptance trace semantics. I am not aware of any reasonable testing
scenario for these notions.

In I remarked that a testing scenario for simulation and ready simulation semantics
can be obtained by adding an undo-button to the scenario’s for trace and ready trace semantics.
Likewise, SCHNOEBELEN [47] investigates the addition of an undo-button to the testing scenarios
for completed trace, readiness, failures and failure trace semantics, thereby obtaining 3 new equiv-
alences CTy, Ry and Fy. Undo-failure trace equivalence coincides with finitary failure simulation
equivalence, just like undo-trace and undo-ready trace equivalence coincide with finitary simula-
tion and finitary ready simulation equivalence. For image finite processes Ry coincides with Fl.
Furthermore R < Ry < RS*, F X Fy X F§*, CT X CTy 2 CS* and §* 2 CTy <X Fy < Ry.

An interesting topic is the generalization of this work to a setting with silent moves and/or with
parallelism. In both cases there turn out to be many interesting variations. The generalization to a
setting with invisible actions will be tackled in [2I] Some work towards generalizing the spectrum
to a setting with parallelism can be found for instance in and [19].
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