
August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

Chapter 1

Automata on Distributed Alphabets

Madhavan Mukund

Chennai Mathematical Institute
H1 SIPCOT IT Park, Padur PO

Siruseri 603103, India
E-mail: madhavan@cmi. ac. in

Traditional automata theory is an extremely useful abstraction for reasoning
about sequential computing devices. For distributed systems, however, there
is no clear consensus on how best to incorporate various features such as spa-
tial independence, concurrency and communication into a formal computational
model. One appealing and elegant approach is to have a network of automata
operating on a distributed alphabet of local actions. Components are assumed to
synchronize on overlapping actions and move independently on disjoint actions.
We describe two formulations of automata on distributed alphabets, synchronous
products and asynchronous automata, that differ in the degree to which dis-
tributed choices can be coordinated. We compare the expressiveness of the two
models and provide a proof of Zielonka’s fundamental theorem connecting reg-
ular trace languages to asynchronous automata. Along the way, we describe a
distributed time-stamping algorithm that is basic to many interesting construc-
tions involving these automata.

1.1. Introduction

Automata theory provides an extremely useful abstract description of sequential
computing devices. A typical computer programmanipulates variables. The state of
the program is the set of values currently assigned to these variables. A computation
is a sequence of steps that transforms a program from an initial state to a desired
final state.

When we model programs in automata theory, we typically hide the concrete
structure of states in terms of the variables used and their values and, instead, assign
abstract names to these states. In the same way, we hide the specific nature of the
transformations from one state to another and replace them by abstract actions.

In this article, we shift focus from traditional sequential computation to dis-
tributed computation. Our aim is to model programs that run on multiple comput-
ing devices and have to interact with each other in order to achieve their objective.
In this setting, we need to model how programs interact and the way in which they

1

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

2 Madhavan Mukund

exchange information during these interactions.
There is no clear consensus on how best to incorporate various features such as

spatial independence, concurrency and communication into a formal computational
model. One appealing and elegant approach is to have a network of automata
operating on a distributed alphabet of local actions. The components are assumed
to synchronize on overlapping actions and move independently on disjoint actions.

In the most simplistic model, synchronizations serve only to coordinate the
actions of independent components and no information is exchanged between com-
ponents. We call such networks synchronized products.

A more elaborate model, proposed by Zielonka [1], is one in which processes
share the information in their local states when they synchronize. This facility
greatly enhances the computational power of the model. These automata, called
asynchronous automata, have close connections with Mazurkiewicz trace theory, a
language-theoretic formalism for studying concurrent systems [2].

The article begins with a quick introduction to transition systems and automata.
We then define direct product automata, which are the building blocks of synchro-
nized products. After establishing some characterization and closure properties of
these models, we move on to asynchronous automata and their connection to trace
languages. We describe a distributed time-stamping algorithm for these automata
that is fundamental for many automata-theoretic results in trace theory. Using this
tool we prove Zielonka’s theorem that every regular trace language is recognized by
an asynchronous automaton whose structure reflects the independence structure of
the trace language.

1.2. Transition systems, automata and languages

As a computation evolves, the internal state of the computing device is transformed
through a sequence of actions. We model this using labelled transition systems,
in which we abstractly represent the various possible states of the system and the
moves that the system makes from one state to another, labelled by an appropriate
action.

Labelled transition systems Let Σ be a set of actions.

• A transition system over Σ is a triple TS = (Q,→, Qin) where Q is a set
of states, → ⊆ Q × Σ × Q is the transition relation and Qin ⊆ Q is the
set of initial states. We usually write q

a
−→ q′ to denote that (q, a, q′)∈→.

As usual, a transition system is deterministic if the transition relation →
satisfies the property that whenever q

a
−→ q′ and q

a
−→ q′′, q′ = q′′.

• A (finite-state) automaton over Σ is a quadruple A = (Q,→, Qin, F) where
(Q,→, Qin) is a transition system with a finite set of states over a finite
set of actions Σ, and F ⊆ Q is a set of final states. An automaton is
deterministic if the underlying transition system is.

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

Automata on Distributed Alphabets 3

Runs Let A = (Q,→, Qin, F) be an automaton over Σ and let w = a1a2 . . . an be
a word in Σ∗. A run of A on w is a sequence of states q0q1 . . . qn such that q0 ∈ Qin

and for each i ∈ [1..n], qi−1
ai−→ qi. (For natural numbers m ≤ n, we write [m..n]

to denote the set {m,m+1, . . . , n}.) This run is said to be accepting if qn ∈ F .
The automaton A accepts or recognizes w if it admits at least one accepting run

on w. The language of A, L(A) is the set of all words over Σ that A recognizes.

1.3. Direct product automata

A large class of distributed systems can be modelled as networks of local transi-
tion systems whose moves are globally synchronized through common actions. To
formalize this, we begin with the notion of a distributed alphabet.

Distributed alphabets A distributed alphabet over Σ, or a distribution of Σ,
is a tuple of nonempty sets θ = 〈Σ1,Σ2, . . . ,Σk〉 such that

⋃
1≤i≤k Σi = Σ. For

each action a ∈ Σ, the locations of a with respect to the distribution θ is the set
locθ(a) = {i | a ∈ Σi}. If θ is clear from the context, we write just loc(a) instead of
locθ(a).

Direct product automaton Let 〈Σ1,Σ2, . . . ,Σk〉 be a distribution of Σ. For
each i ∈ [1..k], let Ai = (Qi,→i, Qi

in, Fi) be an automaton over Σi. The direct
product automaton (A1 ‖ A2 ‖ · · · ‖ Ak) is the automaton A = (Q,→, Qin, F) over
Σ =

⋃
1≤i≤k Σi, where:

• Q = Q1 ×Q2 × · · ·×Qk.
• Let 〈q1, q2, . . . , qk〉, 〈q′1, q

′
2, . . . , q

′
k〉 ∈ Q.

Then 〈q1, q2, . . . , qk〉
a

−→ 〈q′1, q
′
2, . . . , q

′
k〉 if

– For each j ∈ loc(a), qj
a

−→j q′j .
– For each j /∈ loc(a), qj = q′j .

• Qin = Q1
in ×Q2

in × . . .×Qk
in.

• F = F1 × F2 × . . .× Fk.

Direct product language Let 〈Σ1,Σ2, . . . ,Σk〉 be a distribution of Σ. L ⊆ Σ∗

is said to be a direct product language if there is a direct product automaton
A = (A1 ‖ A2 ‖ · · · ‖ Ak) such that L = L(A).

Direct product languages can be precisely characterized in terms of their pro-
jections onto the local components of the system.

Projections Let 〈Σ1,Σ2, . . . ,Σk〉 be a distribution of Σ. For w ∈ Σ∗ and i ∈
[1..k], the projection of w onto Σi is denoted w↓Σi and is defined inductively as
follows:

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

4 Madhavan Mukund

• ε↓Σi = ε, where ε is the empty string.

• wa↓Σi =

{
(w↓Σi)a if a ∈ Σi

(w↓Σi) otherwise

Shuffle closure The shuffle closure of L with respect to 〈Σ1,Σ2, . . . ,Σk〉,
shuffle(L, 〈Σ1,Σ2, . . . ,Σk〉), is the set

{w ∈ Σ∗ | ∀i ∈ [1..k], ∃ui ∈ L,w↓Σi = ui↓Σi }

As usual, we write just shuffle(L) if 〈Σ1,Σ2, . . . ,Σk〉 is clear from the context.

Proposition 1.1. Let 〈Σ1,Σ2, . . . ,Σk〉 be a distribution of Σ and let L ⊆ Σ∗ be a
regular language. L is a direct product language iff L = shuffle(L).

Proof Sketch: (⇒) Suppose that L is a direct product language. It is easy to see
that L ⊆ shuffle(L), so we show that shuffle(L) ⊆ L. Since L is a direct product
language, there exists a direct product automaton A = (A1 ‖ A2 ‖ · · · ‖ Ak) such
that L = L(A).

Let w ∈ shuffle(L). For each i ∈ [1..k], there is a witness ui ∈ L such that

w↓Σi = ui↓Σi . Since ui ∈ L, there is an accepting run q ∈ Qi
in

ui↓Σi−→ i qf ∈ Fi in Ai.
Since this is true for every i, we can “glue” these runs together and construct an
accepting run for A on w, so w ∈ L(A) = L.

(⇐) Suppose that L = shuffle(L). We prove that L is a direct product lan-
guage. For i ∈ [1..k], Li = L ↓Σi is a regular language, since homomorphic
images of regular languages are regular. For each i ∈ [1..k], there exists a de-
terministic automaton Ai such that Li = L(Ai). It is then easy to see that
L = L(A1 ‖ A2 ‖ · · · ‖ Ak). !

Proposition 1.2. Direct product languages are not closed under boolean
operations.

Example 1.3.
Let θ = 〈{a}, {b}〉 and let L = {ab, ba, aabb, abab, abba, baab, baba, bbaa}. Then L is
clearly the union of {ab, ba} and {aabb, abab, abba, baab, baba, bbaa}, both of which
are direct product languages. However, L is not itself a direct product language
because L /= shuffle(L). For instance, abb ∈ shuffle(L) \ L.

1.4. Synchronized products

We can increase the expressiveness of product automata by removing the restriction
that the final states are just the product of the local final states of each component.
Instead, we permit an arbitrary subset of global states to be final states.

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

Automata on Distributed Alphabets 5

Synchronized product automaton Let 〈Σ1,Σ2, . . . ,Σk〉 be a distribution of
Σ. For each i ∈ [1..k], let TSi = (Qi,→i, Qi

in) be a transition system over Σi.
The synchronized product automaton of (TS1, TS2, . . . , TSk) is an automaton A =

(Q,→, Qin, F) over Σ =
⋃

1≤i≤k

Σi, where:

• Q = Q1 ×Q2 × · · ·×Qk

• Let 〈q1, q2, . . . , qk〉, 〈q′1, q
′
2, . . . , q

′
k〉 ∈ Q.

Then 〈q1, q2, . . . , qk〉
a

−→ 〈q′1, q
′
2, . . . , q

′
k〉 if

– For each j ∈ loc(a), qj
a

−→j q′j .
– For each j /∈ loc(a), qj = q′j .

• Qin = Q1
in ×Q2

in × . . .×Qk
in.

• F ⊆ Q1 ×Q2 × . . .×Qk.

Synchronized product language Let 〈Σ1,Σ2, . . . ,Σk〉 be a distribution of Σ.
L ⊆ Σ∗ is said to be a synchronized product language if there is a synchronized
product automaton A such that L = L(A).

Example 1.4. The language defined in Example 1.3 is a synchronized product
language. The synchronized product automaton for this language is shown in Fig-
ure 1.1. The set of global final states F is {〈q1, q′1〉, 〈q2, q

′
2〉}.

q0 q1 q2 q′0 q′1 q′2
a a b b

Fig. 1.1. A synchronized product automaton for Example 1.3

Proposition 1.5. A language is a synchronized product language if and only if it
can be written as a finite union of direct product languages.

Proof Sketch: (⇒) Let A = (Q,→, Qin, F) be a synchronized product such that
〈TS1, TS2, . . . , TSk〉 are the component transition systems over 〈Σ1,Σ2, . . . ,Σk〉.
For each f = 〈f1, f2, . . . , fk〉 ∈ F , extend TSi to an automaton Af

i = (TSi, fi)
and construct the direct product Af = (Af

1 ‖ Af
2 ‖ · · · ‖ Af

k). Then, L(A) =⋃
f∈F L(Af).
(⇐) Conversely, let L be a finite union of direct product languages {Li}i∈[1..m],

where each Li is recognized by a direct product Ai = (Ai
1 ‖ Ai

2 ‖ · · · ‖ Ai
k). For

j ∈ [1..k], let Ai
j = (Qi

j ,→
i
j , Q

ij
in, Fj) be the jth component of Ai. We construct a

synchronous product Â = (Â1 ‖ Â2 ‖ · · · ‖ Âk) as follows. For each component j,
we let Q̂j be the disjoint union

⊎
i∈[1..m]Q

i
j and define the set of initial states of

component j be
⋃

i∈[1..m] Q
ij
in. The local transition relations of each component are

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

6 Madhavan Mukund

given by the union
⋃

i∈[1..m]→
i
j . The crucial point is to define the global set of final

states as (F 1
1 ×F 1

2 × · · ·×F 1
k)∪ (F 2

1 ×F 2
2 × · · ·×F 2

k)∪ · · ·∪ (Fm
1 ×Fm

2 × · · ·×Fm
k).

This ensures that the synchronized product accepts only if all components agree on
the choice of Li. !

Proposition 1.6. Synchronized product languages are closed under boolean
operations.

Proof Sketch: Let L1 and L2 be synchronized product languages. Then, by
definition, L1 = L′

11 ∪ L′
12 ∪ · · · ∪ L′

1k1
and L2 = L′′

21 ∪ L′′
22 ∪ · · · ∪ L′′

k2
, where

{L′
11, L

′
12, . . . , L

′
1k1

} and {L′′
21, L

′′
22, . . . , L

′′
2k2

} are both sets of direct product lan-
guages. It is immediate that L1∪L2 is the union of these two collections, so L1∪L2

is a synchronized product language.
To show closure under complementation, we prove that any synchronized prod-

uct language is recognized by a deterministic synchronized product automaton.
If we assume this, we can complement a synchronized product language by ex-
changing final and non-final states. In other words, if L is a synchronized
product language recognized by a deterministic synchronized product automaton
A = (Q,→, Qin, F), then L̄, the complement of L, is recognized by the automaton
Ā = (Q,→, Qin, Q \ F).

Let us assume we are working with respect to a distribution 〈Σ1,Σ2, . . . ,Σk〉 of
Σ. Every synchronized product language L over Σ is a finite union L1∪L2∪· · ·∪Lm

of direct product languages. We establish our claim by induction on m.
If m = 1, we have already seen that we can construct the direct product au-

tomaton A = (A1 ‖ A2 ‖ · · · ‖ Ak) recognizing L, where for i ∈ [1..k], Ai is a
deterministic automaton recognizing L↓Σi .

Now, let L = L1 ∪ L2 ∪ . . . ∪ Lm where L1 is a direct product language and
L′ = L2 ∪ . . . ∪ Lm is a synchronized product language. We can assume that L1 is
recognized by a deterministic direct product automaton A = (QA,→A, QA

in, FA) =
(A1 ‖ A2 ‖ · · · ‖ Ak) and L′, by the induction hypothesis, is recognized by a deter-
ministic synchronized product B = (QB,→B, QB

in, FB) defined with respect to tran-
sition systems 〈TS1, TS2, . . . , TSk〉. For each i ∈ [1..k], let Ai = (Qi,→i, Qi

in, Fi)
and TSi = (Q̂i,⇒i, Q̂i

in). Define a new deterministic transition system T̃ Sii with
states Qi × Q̂i, initial states {(q1, q2) | q1 ∈ Qi

in, q2 ∈ Q̂i
in} and transitions of the

form (q1, q′1)
a

−→ (q2, q′2) iff (q1, a, q′1) ∈ →i and (q2, a, q′2) ∈ ⇒i. Clearly, each
T̃ Si is a deterministic transition system. We now construct a deterministic syn-
chronized product automaton recognizing L from 〈T̃ S1, T̃ S2, . . . , T̃ Sk〉 by setting
F̃ = ((F1 × Q̂1)× (F2 × Q̂2)× · · · (Fk × Q̂k))∪ {〈(q1, f1), (q2, f2), . . . , (qk, fk)〉 | qi ∈
Qi, 〈f1, f2, . . . , fk〉 ∈ FB}. !

Synchronized product automata are still not as expressive as we would like.

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

Automata on Distributed Alphabets 7

Example 1.7. Let θ = 〈{a, c}, {b, c}〉. Then,

L =
[[
shuffle({ab}) + shuffle({aabb})

]
.c
]∗

is not a synchronized product language.

Proof. If L is a synchronized product language, then L can be expressed as a
finite union L1 ∪ L2 ∪ · · · ∪ Lk of direct product languages. Let us write 0 for
the word abc and 1 for word aabbc. Consider the following set of k+1 words of
length k with at most one 1: Ak = {00 . . .0, 10 . . .0, 010 . . .0, . . . , 00 . . .01}. By the
pigeonhole principle, there must be two words u, v ∈ Ak that belong to the same
direct product component Lj , j ∈ [1..k].

There are two cases to consider.

• Suppose that u and v differ at only one position. Then, without loss of gen-
erality, it must be the case that u = 00 . . .0 has no 1’s. Let v have a 1 at po-
sition m, m ∈ [1..k]. Construct a new word w = (abc)m−1(abbc)(abc)k−m.
It is easy to see that w ↓{a,c}= u ↓{a,c} and w ↓{b,c}= v ↓{b,c} . So,
w ∈ shuffle(Lj) and hence w ∈ Lj ⊆ L by Proposition 1.1, which is a
contradiction.

• Suppose that u and v differ at two positions. Then u has a 1 at position m
and v has a 1 at position m′ for some 1 ≤ m < m′ ≤ k. Construct a word
w = (abc)m−1(aabc)(abc)m

′−m−1(abbc)(abc)k−m′

. Once again, it is easy to
see that w↓{a,c}= u↓{a,c} and w↓{b,c}= v↓{b,c} . So, w ∈ shuffle(Lj) and
hence w ∈ Lj ⊆ L by Proposition 1.1, which is a contradiction.

!

1.5. Asynchronous automata

To construct a distributed automaton that can recognize the language from Exam-
ple 1.7, we have to further enhance the structure of distributed automata.

In direct products and synchronized products, when an action a occurs, all com-
ponents that participate in a must move simultaneously. However, each component
is free to choose its local move independent of all other components. In other words,
no information is exchanged between components at the time of synchronization.

For instance, if we try to recognize the language of Example 1.7 in our existing
model, we have no way of preventing the c-move enabled after one a in the first
component from synchronizing with the c-move enabled after two b’s in the second
component.

To overcome this limitation, Zielonka proposed an enriched definition of the
transition relation for each letter a [1]. As usual, let loc(a) denote the components
that participate in a. Then, an a-state is a tuple that belongs to the product∏

i∈loc(a) Qi. Let Qa denote the set of all a-states. We define the a-transition
relation ∆a to be a subset of Qa × Qa. In other words, whenever an a occurs, all

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

8 Madhavan Mukund

the components that participate in a share information about their current local
states and jointly decide on new local states for themselves. These automata are
called asynchronous automata.∗

Asynchronous automaton Let 〈Σ1,Σ2, . . . ,Σk〉 be a distribution of Σ. For each
i ∈ [1..k], let Qi be a finite set of states. For each action a ∈ Σ, let ∆a ⊆ Qa×Qa be
the transition relation for a, whereQa =

∏
i∈loc(a) Qi. The asynchronous automaton

defined by this data is the following.

• Q = Q1 ×Q2 × · · ·×Qk

• Let 〈q1, q2, . . . , qk〉, 〈q′1, q
′
2, . . . , q

′
k〉 ∈ Q. Then 〈q1, q2, . . . , qk〉

a
−→

〈q′1, q
′
2, . . . , q

′
k〉 if

– For loc(a) = {i1, i2, . . . , ij}, (〈qi1 , qi2 , . . . , qij 〉, 〈q
′
i1
, q′i2 , . . . , q

′
ij
〉) ∈ ∆a.

– For each j /∈ loc(a), qj = q′j .

• Qin = Q1
in ×Q2

in × . . .×Qk
in.

• F ⊆ Q1 ×Q2 × . . .×Qk.

In other words, though each component has a set of local states as before, the
transition relation for each action is global within the set of components where it
occurs. A synchronized product automaton can be modelled as an asynchronous
automaton by setting ∆a to be the product

∏
i∈loc(a)

a
−→i.

Here is an asynchronous automaton for the language of Example 1.7.

Example 1.8. The states of components 1 and 2 are {q0, q1, q2} and {q′0, q
′
1, q

′
2},

respectively. There is only one initial and one final state, which is 〈q0, q′0〉 in both
cases.

The transition relations are as follows:

• ∆a = {(q0, q1), (q1, q2)}
• ∆b = {(q′0, q

′
1), (q

′
1, q

′
2)}

• ∆c = {(〈q1, q′1〉, 〈q0, q
′
0〉), (〈q2, q

′
2〉, 〈q0, q

′
0〉)}.

In other words, the two components can reset their local states via c to q0 and
q′0 only if they are jointly in the state 〈q1, q′1〉 or 〈q2, q′2〉. There is no move, for
instance, from 〈q1, q′2〉 via c back to 〈q0, q′0〉.

1.6. Mazurkiewicz traces

A distributed alphabet induces an independence relation on actions—two actions
a and b are independent if they occur on disjoint sets of processes. In all three
∗The term asynchronous refers to the fact that components process their inputs locally, without
reference to a shared global clock. The “exchange of information” at each move is instantaneous,
so the communication between automata is actually synchronous!

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

Automata on Distributed Alphabets 9

models of distributed automata that we have considered so far, this means that an
occurrence of a cannot enable or disable b, or vice versa.

Instead of deriving independence from a concrete distribution of the alphabet,
we can begin with an alphabet equipped with an abstract independence relation.
This is the starting point of the theory of traces, initiated by Mazurkiewicz as a
language-theoretic formalism for studying concurrent systems [2].

Independence relation An independence relation over Σ is a symmetric, ir-
reflexive relation I ⊆ Σ× Σ. An alphabet equipped with an independence relation
(Σ, I) is called a concurrent alphabet.

It is clear that the natural independence relation Iloc induced by a distributed
alphabet (Σ, loc), (a, b) ∈ Iloc iff loc(a) ∩ loc(b) = ∅, is irreflexive and symmet-
ric. The following example shows that different distributions may yield the same
independence relation.

Example 1.9. Let Σ= {a, b, c, d}. The three distributions Σ̃= 〈{a, c, d}, {b, c, d}〉,
Σ̃′ = 〈{a, c, d}, {b, c}, {b, d}〉 and Σ̃′′ = 〈{a, c}, {a, d}, {b, c}, {b, d}, {c, d}〉 all give
rise to the independence relation I = {(a, b), (b, a)}.

Given a concurrent alphabet (Σ, I), there are several ways to construct a dis-
tributed alphabet (Σ, loc) so that the independence relation Iloc induced by loc
coincides with I.

We begin by building the dependence graph for (Σ, I). Let D = (Σ×Σ) \ I. D
is called the dependence relation. Construct a graph GD = (VD, ED) with VD = Σ
and (a, b) ∈ ED provided (a, b) ∈ D.

One way to distribute Σ is to create a process pe for every edge e ∈ ED. For
each letter a, we then set loc(a) to be the set of processes (edges) incident on the
vertex a. Alternately, we can create a process pC for each maximal clique C in
GD. Then, for each letter a and each clique C, pC ∈ loc(a) iff the vertex labelled a
belongs to C.

In both cases, it is easy to see that Iloc = I. So, we can go back and forth
between a concurrent alphabet (Σ, I) and a distributed alphabet (Σ, loc) whose
induced independence relation Iloc is I.

Trace equivalence Let (Σ, I) be the concurrent alphabet. I induces a natural
trace equivalence ∼ on Σ∗: two words w and w′ are related by ∼ iff w′ can be
obtained from w by a sequence of permutations of adjacent independent letters.
More formally, w ∼ w′ if there is a sequence of words v1, v2, . . . , vk such that
w = v1, w′ = vk and for each i ∈ [1..k−1], there exist words ui, u′

i and letters ai, bi
satisfying

vi = uiaibiu
′
i, vi+1 = uibiaiu

′
i and (ai, bi) ∈ I.

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

10 Madhavan Mukund

Proposition 1.10.

• The equivalance relation ∼ is a congruence on Σ∗ with respect to concate-
nation: If u ∼ u′ then for any words w1 and w2, w1uw2 ∼ w1u′w2.

• Both right and left cancellation preserve ∼-equivalence: wu ∼ wu′ implies
u ∼ u′ and uw ∼ u′w implies u ∼ u′.

1.6.1. Mazurkiewicz traces

Equivalence classes of words A (Mazurkiewicz) trace over (Σ, I) is an equiv-
alence class of words with respect to ∼. For w ∈ Σ∗, we write [w] to denote the
trace corresponding to w—[w] = {w′ | w′ ∼ w}.

The intuition is that all words in a trace describe the same underlying compu-
tation of a concurrent system. Each word in a trace corresponds to a reordering of
independent events. A more direct way to capture this intuition is to represent a
trace as a labelled partial order.

Traces as labelled partial orders A (Mazurkiewicz) trace over (Σ, I) is a la-
belled partial order t = (E ,≤,λ) where

• E is a set of events
• λ : E → Σ labels each event by a letter
• ≤ is a partial order over E satisfying the following conditions:

– (λ(e),λ(f)) ∈ D implies e ≤ f or f ≤ e
– e! f implies (λ(e),λ(f)) ∈ D, where

! = < \<2 = {(e, f) | e < f and / ∃g. e < g < f}

is the immediate successor relation in t.

b

a

c

a

b b

a

Fig. 1.2. The trace [bacabba] as a labelled partial order

Example 1.11. Let P = {p, q, r, s} and Σ = {a, b, c} where a = {p, q}, b = {r, s}
and c = {q, r, s}. Figure 1.2 shows the trace t = (E ,≤,λ) corresponding to the word
bacabba. The arrows between the events denote the relation !.

If we represent a trace as a labelled partial order, the set of linearizations of this
partial order form an equivalence class [w] of words with respect to I. Conversely,
it is not difficult to show that each equivalence class [w] generates a unique labelled

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

Automata on Distributed Alphabets 11

partial order of which it is the set of linearizations. In fact, the way in which ≤ is
generated from the dependence relation D allows us to construct the labelled partial
order corresponding to a trace from a single linearization.

Trace languages Traces, like words, form a monoid under concatenation, with
the empty trace as the unit. The concatenation operation is easiest to define in terms
of the labelled partial order representation—given two traces t1 = (E1,≤1,λ1) and
t2 = (E2,≤2,λ2), the trace ti · t2 is the trace t′ = (E ′,≤′,λ′) where E ′ = E1 ∪ E2,
λ′(e) = λ1(e) if e ∈ E1 and λ2(e) if e ∈ E2, and ≤′ is generated by !1∪!2∪{(x, y) |
x maximal in E1, y minimal in E2, (λ1(x),λ2(y)) ∈ D}.

A trace language is a set of traces or, alternatively a subset of the trace monoid.
However, we prefer to treat trace languages as string languages which satisfy a
closure condition. We say that L ⊆ Σ∗ is a trace language if L is ∼-consistent—i.e.,
for each w ∈ Σ∗, w is in L iff every word in [w] is in L. Since traces correspond to
equivalence classes of strings, there is a 1-1 correspondence between subsets of the
trace monoid and ∼-consistent languages over Σ∗.

In the string framework, we say a trace language L is recognizable if it is accepted
by a finite-state automaton. Once again, it is not difficult to show that there is a 1-1
correspondence between recognizable subsets of the trace monoid and recognizable
∼-consistent languages over Σ∗ (see, for instance, [3]).

Henceforth, whenever we use the terms trace language and recognizable trace
language, we shall be referring to the definitions in terms of ∼-consistent subsets of
Σ∗ rather than in terms of subsets of the trace monoid.

One of the most fundamental results in trace theory says that every recogniz-
able trace language has a distributed implementation in terms of asynchronous
automata.

Theorem 1.12 (Zielonka). Let L be a recognizable trace language over a concur-
rent alphabet (Σ, I). Then, for every distributed alphabet (Σ, loc) such that Iloc = I,
we can construct an asynchronous automaton A over (Σ, loc) with L(A) = L.

To prove Zielonka’s theorem, we require a distributed timestamping algorithm
that is fundamental for many constructions involving asynchronous automata.

1.7. Distributed time-stamping

Let P = {p1, p2, . . . , pN} be a set of processes which synchronize with each other
from time to time and exchange information about themselves and others. The
problem we look at is the following: whenever a set P ⊆ P synchronizes, the
processes in P must decide amongst themselves which of them has the latest in-
formation, direct or indirect, about each process p in the system. We call this the
gossip problem.

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

12 Madhavan Mukund

A näıve solution to the gossip problem is to label interactions using a counter
whose value increases as time progresses. There are two problems with this
approach.

• The counter values (or time-stamps) grow without bound and cannot be
generated and stored by finite-state automata.

• Each interaction involves only a subset of processes, so time-stamps have
to be generated in a distributed manner.

Our goal is to develop an algorithm to solve the gossip problem that is both finite
state and local.

We model the interactions of the processes in P by a distributed alphabet (Σ, loc)
that contains an action X for each nonempty subset X ⊆ P , with the obvious
distribution function loc(X) = X . A sequence of interactions between the processes
is then a trace over (Σ, loc).

Let t = (E ,≤,λ) be a trace representing a computation of our system. For
convenience, we assume that t always begins with an initial event e⊥ labelled by P ,
in which all processes participate. This models the initial exchange of information
that is implicit in the fact that all processes agree on a global initial state.

Process-wise ordering Let t = (E ,≤,λ) be a trace. For each event e ∈ E , we
write p ∈ e to mean that p ∈ loc(λ(e)) = λ(e). Each process p orders the events in
which it participates. Let us define !p to be the strict ordering

e!p f
def
= e < f, p ∈ e ∩ f and for all e < g < f, p /∈ g.

It is clear that set of all p-events in E is totally ordered by≤p, the reflexive, transitive
closure of !p. It is also easy to observe that the overall partial order ≤ is generated
by {!p}p∈P . If e ≤ f we say that e is below f . Note that the special event e⊥ is
always below every event in t.

p p p

q q q q

r r r r

s s s s

p

q

r

s

e⊥ e1 e2 e3 e4 e5 e6 e7

b

a

c

a

b b

a

Fig. 1.3. Process-wise ordering in a trace

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

Automata on Distributed Alphabets 13

Example 1.13. Let P = {p, q, r, s} and Σ = {a, b, c} where a = {p, q}, b = {r, s}
and c = {q, r, s}. Figure 1.3 has another picture of the trace t = (E ,≤,λ) corre-
sponding to the word bacabba. The dashed box corresponds to the event e⊥, which
we insert at the beginning for convenience.

In the figure, the labelled arrows between the events denote the relations !p,
!q, !r and !s. From these, we can compute < and ≤. Thus, for example, we have
e1 ≤ e4 since e1 !r e3 !q e4, and the events e5 and e7 are unordered.

1.7.1. Ideals

The main source of difficulty in solving the gossip problem is the fact that the
processes in P need to compute the global information about a trace t while each
process only has access to a local, partial view of t. Although partial views of t
correspond to subsets of E , not every subset of E arises from such a partial view.
Those subsets of E which do correspond to partial views of u are called ideals.

Ideals A set of events I ⊆ E is called an (order) ideal if e ∈ I and f ≤ e then
f ∈ I.

The requirement that an ideal be downward closed with respect to ≤ guaran-
tees that the observation it represents is consistent—whenever an event e has been
observed, so have all the events in the computation which necessarily precede e.

Because of our interpretation of e⊥ as an event which takes place before the
actual computation begins, the minimum possible partial view of a word u is the
ideal {e⊥}. Henceforth, we assume that every ideal I we consider is non-empty and
contains e⊥.

Example 1.14. Let us look once again at Figure 1.3. {e⊥, e2} is an ideal, but
{e⊥, e2, e3} is not, since e1 ≤ e3 but e1 /∈ {e⊥, e2, e3}.

The following observations are immediate.

Proposition 1.15. Let t = (E ,≤,λ) be a trace.

• E is an ideal.
• For any e ∈ E, the set ↓e = {f ∈ E | f ≤ e} is an ideal, called the principal

ideal generated by e. The events in ↓e are the only events in E that are
“known” to the processes in e when e occurs.

• An ideal I is said to be generated by a set of events X if I =
⋃

e∈X ↓e. Any
ideal I is generated by its maximal events Imax = {e | e is ≤-maximal in I}.

• If I and J are ideals then I ∪ J and I ∩ J are ideals.

Example 1.16. In Figure 1.3, {e⊥, e1, e2, e3, e5} is the principal ideal ↓e5. The
ideal {e⊥, e1, e2, e3, e4, e5} is generated by {e4, e5}.

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

14 Madhavan Mukund

Views Let I be an ideal. The maximum p-event in I, maxp(I), is the last event
in I in which p has taken part. In other words, for every e ∈ I, if e is a p-event
then e ≤ maxp(I). Since all p-events are totally ordered by ≤, and p ∈ e⊥ ∈ I for
all processes p and for all ideals I, maxp(I) is well defined.

Let I be an ideal. The p-view of I, ∂p(I) is the set ↓maxp(I). For P ⊆ P , the
P -view of I, ∂P (I), is the joint view

⋃
p∈P ∂p(I).

Example 1.17. In Figure 1.3, let I denote the ideal {e⊥, e1, e2, e3, e4, e5, e6}.
maxq(I) = e4 and hence ∂q(I) = {e⊥, e1, e2, e3, e4}. On the other hand, though
maxr(I) = e6, ∂r(I) /= I. Rather, ∂r(I) = I \ {e4}. The joint view ∂{q,r}(I) = I =
∂P(I).

1.7.2. Primary and secondary information

Latest information Let p, q ∈ P and I be an ideal. The latest information p
has about q in I is maxq(∂p(I)), the ≤-maximum q-event in ∂p(I). We denote this
event by latestp→q(I). Observe that latestp→p(I) = maxp(I).

Example 1.18. In Figure 1.3, maxp(E) = e7 whereas maxs(E) = e6. We have
latestp→q(E) = e7, latestp→s(E) = e3 and latests→p(E) = e2.

Primary information Let I be an ideal and p, q ∈ P . The primary information
of p after I, primaryp(I), is the set {latestp→q(I)}q∈P . In other words this is the
best information that p has about every other process in I. As usual, for P ⊆ P ,
primaryP (I) =

⋃
p∈P primaryp(I).

More precisely, primaryp(I) is an indexed set of events—each event e =
latestp→q(I) in primaryp(I) is represented as a triple (p, q, e). However, we will
often ignore the fact that primaryp(I) is an indexed set of events and treat it,
for convenience, as just a set of events. Thus, for an event e ∈ I, we shall
write e ∈ primaryp(I) to mean that there exists a process q ∈ P such that
(p, q, e) ∈ primaryp(I), and so on.

The task at hand is to design a mechanism for processes to compare their primary
information when they synchronize. When two processes p and q synchronize, their
joint view of the current computation is ∂{p,q}(E). At this point, for every other
process r, p has in its local information an event er = latestp→r(E) and q has,
similarly, an event e′r = latestq→r(E). After the current event e, both the p-view
and the q-view will correspond to the principal ideal ↓e ⊆ E . Assuming that r does
not participate in e, maxr(↓e) will be one of er and e′r. So, p and q have to be able
to locally decide whether er ≤ e′r or vice versa. If er < e′r, then er ∈ ∂p(E) ∩ ∂q(E)
while e′r ∈ ∂q(E) \ ∂p(E). Thus, updating primary information is equivalent to
computing whether a primary event lies within the intersection ∂p(E) ∩ ∂q(E) or
outside.

Our first observation is a characterization of the maximal events in the intersec-
tion in terms of primary information.

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

Automata on Distributed Alphabets 15

maxp(I)

maxq(I)

e

er

es

r

s
I

Fig. 1.4. Maximal events in the intersection of two ideals are primary events

Lemma 1.19. The maximal elements of ∂p(I)∩∂q(I) are a subset of primaryp(I)∩
primaryq(I).

Proof. If maxp(I) ≤ maxq(I) then ∂p(I) = ∂p(I) ∩ ∂q(I) and the only maximal
event in this intersection is e = maxp(I) which is latestp→p(I) and latestq→p(I) and
hence in primaryp(I) ∩ primaryq(I). A symmetric argument holds if maxq(I) ≤
maxp(I).

The nontrivial case arises when maxp(I) and maxq(I) are incomparable. Let e
be a maximal event in the intersection. Since e ≤ maxp(I) and e ≤ maxq(I), there
is a “path” from e to maxp(I) in the trace, and another path from e to maxq(I).
So, for some r, s ∈ P , e, we must have an r event er ∈ ∂p(I) \ ∂q(I) and an s
event es ∈ ∂q(I) \ ∂p(I) such that e !r er ≤ maxp(I) and e !s es ≤ maxq(I) (see
Figure 1.4). Notice that e itself is both an r-event and an s-event. Since e ∈ ∂q(I)
but er /∈ ∂q(I) and e !r er, it follows that e = latestq→r(I). By a symmetric
argument, e = latestp→s(I), so e ∈ primaryp(I) ∩ primaryq(I). !

This characterization yields the following result.

Lemma 1.20. Let I be an ideal and p, q, r ∈ P. Let e = latestp→r(I) and f =
latestq→r(I). Then e ≤ f iff there exists g ∈ primaryp(I) ∩ primaryq(I) such that
e ≤ g.

Proof. Clearly e ≤ f iff e ∈ ∂p(I)∩∂q(I) iff e is dominated by some maximal ele-
ment in ∂p(I)∩∂q(I) iff, by Lemma 1.19, there exists g ∈ primaryp(I)∩primaryq(I)
such that e ≤ g. !

To effectively perform the comparison suggested by Lemma 1.20, each process
maintains the partial order between events in its primary information.

Primary graph Let I be an ideal and p ∈ P . The primary graph of p in I is the
set of primary events together with the partial order between them inherited from
the underlying trace.

With primary graphs, it is clear how to perform the comparison indicated in
Lemma 1.20. Processes p and q identify an event g that is common to both their

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

16 Madhavan Mukund

sets of primary information such that e ≤ g in p’s primary graph. In this manner,
p and q can decide for every other process r which of latestp→r(I) and latestq→r(I)
is better. To complete the update, we have to rebuild the primary graph after
updating the primary information of p and q.

Lemma 1.21. The primary graphs of p and q can be locally reconstructed after
updating primary infomation.

Proof. Let e and f be two events in the updated primary information of p and
q (recall that both processes have the same primary information after synchroniza-
tion). If both e and f were inherited from the same process, say p, we order them
in the new graph if and only if they were ordered in the original primary graph
of p.

The interesting case is when e is inherited from p and f from q. In this case,
we must have had e ∈ ∂p(I) \ ∂q(I) and f ∈ ∂q(I) \ ∂q(I). This means that e
and f were not ordered in I, so we do not order them in the updated primary
graph. !

This procedure generalizes to any arbitrary set P ⊆ P which synchronizes after a
trace t. The processes in P share their primary graphs and compare this information
pairwise. Using Lemma 1.20, for each q ∈ P \ P they decide who has the “latest
information” about q and correctly order these events. Each process then comes
away with the same primary graph, incorporating the best information available
among the processes in P .

1.7.3. Labelling events consistently

To make Lemma 1.20 effective, we must make the assertions “locally checkable”—
for example, if e = latestp→r(I) and f = latestq→r(I), processes p and q must be
able to decide if there exists an event g ∈ ∂p(I) ∩ ∂q(I) between e and f . This can
be checked locally provided events in E are labelled unambiguously.

Since events are processed locally, we must locally assign labels to events in E so
that we can check whether events in the primary graphs of two different processes
are equal by comparing their labels. A näıve solution would be for the processes in
loc(a) to jointly assign a (sequential) time-stamp to each new occurrence of a, for
every letter a. The problem with this approach is that we will need an unbounded
set of time-stamps, since u could get arbitrarily large.

Instead we would like a scheme that uses only a finite set of labels to distin-
guish events. This means that several different occurrences of the same action will
eventually get the same label. Since updating primary graphs relies on comparing
labels, we must ensure that this reuse of labels does not lead to any confusion.

However, from Lemma 1.20, we know that to compare primary information, we
only need to look at the events which are currently in the primary sets of each
process. So, it is sufficient if the labels assigned to these sets are consistent across

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

Automata on Distributed Alphabets 17

the system—that is, if the same label appears in the current primary information of
different processes, then this label does in fact denote the same event in underlying
trace.

When a new action a occurs, the processes in loc(a) have to assign it a label
that is different from all a-events that are currently in the primary information of
all processes. Since the cardinality of primaryP(E) is bounded, such a new label
must exist. The catch is to detect which labels are currently in use and which are
not.

Unfortunately, the processes in a cannot directly see all the a-events which
belong to the primary information of the entire system. An a-event e may be part
of the primary information of processes outside a—that is, e ∈ primaryP\a(Eu) \
primarya(Eu).

p p

q q q

r r r r

s s s s s

p

q

r

s

e⊥ e1 e2 e3 e4 e5 e6 e7

c

b

a

d

e
c c

Fig. 1.5. Keeping track of active labels

Example 1.22. Let P = {p, q, r, s} and Σ = {a, b, c, d, e} where a = {p, q}, b =
{q, r}, c = {r, s}, d = {p, s} and e = {q, s}. Figure 1.5 shows the trace t = (E ,≤,λ)
corresponding to the word cbadecc.

At the end of this word, e2 = latestp→r(E), but e2 /∈ primaryr(E), since
primaryr(E) = {(r, p, e4), (r, q, e5), (r, r, e7), (r, s, e7)}.

To enable the processes in a to know about all a-events in primaryP(Eu), we
need to maintain secondary information.

Secondary information The secondary information of p after I, secondaryp(I),
is the (indexed) set

⋃
q∈P primaryq(↓latestp→q(I)). In other words, this is the latest

information that p has in I about the primary information of q, for each q ∈ P .
Once again, for P ⊆ P , secondaryP (I) =

⋃
p∈P secondaryp(I).

Each event in secondaryp(I) is of the form latestq→r(↓latestp→q(I)) for some
q, r ∈ P . This is the latest r-event which q knows about up-to the event latestp→q(I).
We abbreviate latestq→r(↓latestp→q(I)) by latestp→q→r(I).

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

18 Madhavan Mukund

Just as we represented events in primaryp(I) as triples of the form (p, q, e),
where p, q ∈ P and e ∈ I, we represent each secondary event e = latestp→q→r(I)
in secondaryp(I) as a quadruple (p, q, r, e). Recall that we often ignore the fact
that primaryp(I) and secondaryp(I) are indexed sets of events and treat them, for
convenience, as just sets of events.

Notice that each primary event latestp→q(I) is also a secondary event
latestp→p→q(I) (or, equivalently, latestp→q→q(I)). So, following our convention that
primaryp(I) and secondaryp(I) be treated as sets of events, we write primaryp(I) ⊆
secondaryp(I).

maxp(I)

maxq(I)

latestp→r(I) = e e′

f ′

r′

I

Fig. 1.6. Identifying active labels through secondary information

Lemma 1.23. Let I be an ideal and p ∈ P. If e ∈ primaryp(I) then for every
q ∈ e, e ∈ secondaryq(I).

Proof. Let e = latestp→r(I) for some r ∈ P and let q ∈ e. We will show that e =
latestq→r′→r(I) for some r′ ∈ P . We know that there is a path e!f1!· · ·!maxp(I),
since e ∈ ∂p(I). This path starts inside ∂p(I) ∩ ∂q(I).

If this path never leaves ∂p(I) ∩ ∂q(I) then maxp(I) ∈ ∂q(I). Since maxp(I)
is the maximum p-event in I, it must be the maximum p-event in ∂q(I). So, e =
maxr(maxp(I)) = maxr(maxp(∂q(I))) = latestq→p→r(I) and we are done.

If this path does leave ∂p(I) ∩ ∂q(I), we can find an event e′ along the path
such that e ≤ e′ !r′ f ′ ≤ maxp(I), where e′ ∈ ∂p(I) ∩ ∂q(I), f ′ ∈ ∂p(I) \ ∂q(I) and
r′ ∈ e′ ∩ f ′ (see Figure 1.6). It is easy to see that e′ = latestq→r′(I). Since e =
maxr(∂p(I)), e ∈ ↓e′ ⊆ ∂p(I), we have e = maxr(↓e′). Hence e = latestr′→r(↓e′) =
latestq→r′→r(I). !

Corollary 1.24. Let I be an ideal, p ∈ P and e be a p-event in I. If e /∈
secondaryp(I) then e /∈ primaryP(I).

So, a process p can keep track of which of its labels are “in use” in the system by
maintaining secondary information. Each p-event e initially belongs to primarye(I),
and hence to secondarye(I), where we also use e to denote the subset of P that

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

Automata on Distributed Alphabets 19

synchronizes at this event. As the computation progresses, e gradually “recedes”
into the background and disappears from the primary sets of the system. Eventually,
when e disappears from secondaryp(I), p can be sure that e no longer belongs to
primaryP(I).

Since secondaryp(I) is a bounded set, p knows that only finitely many of its
labels are in use at any given time. So, by using a sufficiently large finite set of
labels, each new event can always be assigned an unambiguous label by the processes
which take part in the event.

It is easy to see that secondary information can be updated along with primary
information. If latestp→r(I) is better than latestq→r(I), then all secondary events
of the form latestq→r→s(I) should also be replaced by the corresponding events
latestp→r→s(I).

1.7.4. The “gossip” automaton

Using our analysis of the primary graph and secondary information maintained by
processes, we can now design a deterministic asynchronous automaton to consis-
tently update the primary information of each process whenever a set of processes
synchronize.

For p ∈ P , each local state of p will consist of its primary graph and secondary
information, stored as indexed collections or arrays. Each event in these arrays is
represented as a pair 〈P, %〉, where P is the subset of processes that synchronized at
the event and % ∈ L, a finite set of labels. We shall establish a bound on |L| shortly.

The initial state is the global state where for all processes p, all entries in these
arrays correspond to the initial event e⊥. The event e⊥ is denoted by 〈P , %0〉 for an
arbitrary but fixed label %0 ∈ L.

The local transition functions →a modify the local states for processes in a as
follows.

(i) When a new a-labelled event e occurs after u, the processes in a assign a label
〈a, %〉 to e which does not appear in secondarya(Eu). Corollary 1.24 guarantees
that this new label does not appear in primaryP(Eu).
Let N = |P|. Since each process keeps track of N2 secondary events and at most
N processes can synchronize at an event, there need be only N3 labels in L. (In
fact, in Lemma 1.25 below, we show that it suffices to have N2 labels in L.)

(ii) The processes participating in e now share their primary graphs and update their
primary information about each process q /∈ e, as described in Lemma 1.20.

The gossip automaton does not “recognize” a set of traces. Rather, it updates
the primary graphs and secondary information of all processes appropriately when-
ever an action is added to the trace, such that at any point in the computation, we
can compare the primary information of a set of processes using the information
present in their local states.

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

20 Madhavan Mukund

Lemma 1.25. In the gossip automaton, the number of local states of each process
p ∈ P is at most 2O(N2 logN), where N = |P|.

Proof. A local state for p consists of its primary graph and secondary information.
We estimate how many bits are required to store this.

Recall that for any ideal I, each event in primaryp(I) is also present in
secondaryp(I). So it suffices to store just the labels of secondary events. These
events are stored in an array with N2 entries, where each entry is implicitly in-
dexed by a pair from P × P . We can store the primary graph as an adjacency
matrix with N2 entries.

Each new event e is assigned a label of the form 〈P, %〉, where P was the set of
processes that participated in e and % ∈ L.

We argued earlier that it suffices to have N3 labels in L. Actually, we can make
do with N2 labels by modifying our transition function slightly. When a letter
a is read, instead of immediately labelling the new event, the processes in a first
compare and update their primary, secondary information about processes from
P \ a. These updates concern events which have already been labelled, so the fact
that the new event has not yet been labelled is not a problem. Once this is done,
all the processes in a will have the same primary and secondary information. At
this stage, there are (less than) N2 distinct labels present in secondarya(I). So,
if |L| = N2 the processes are guaranteed to find a label they can use for the new
event. Regardless of which update strategy we choose, % ∈ L can be written down
using O(logN) bits.

To write down P ⊆ P , we need, in general, N bits. This component of the
label is required to guarantee that all secondary events in the system have distinct
labels, since the set L is common across all processes. However, we do not really
need to use all of P in the label for e to ensure this property. If we order P as
{p1, p2, . . . , pN}, it suffices to label e by 〈pi, %〉 where, among the processes in P , pi
has the least index with respect to our ordering of P .

Thus, we can modify our automaton so that the processes label each event by a
pair 〈p, %〉, where p ∈ P and % ∈ L. This pair can be written down using O(logN)
bits. Overall there are N2 such pairs in the array of secondary events, so the this
can be described using O(N2 logN) bits and the primary graph can be represented
by O(N2) bits. Therefore, the number of distinct local states of p is bounded by
2O(N2 logN). !

1.8. Zielonka’s Theorem

It is not difficult to see that any language accepted by an asynchronous automaton
over (Σ, loc) is a recognizable trace language over the corresponding concurrent
alphabet (Σ, Iloc). The distributed nature of the automaton guarantees that it is
a trace language. To see that the language is recognizable, we note that every
asynchronous automaton A = (Q,→, Qin, F) gives rise to a finite state automaton

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

Automata on Distributed Alphabets 21

B accepting the same language as A. The states of B are the global states of A and
the transition relation of B is given by the global transition relation of A. Since the
initial and accepting states ofA are specified as global states, they can directly serve
as the initial and final states of B. It is straightforward to verify that B accepts the
same language as A.

On the other hand, the converse is difficult to show. For a given recognizable
trace language L over a concurrent alphabet (Σ, I), does there exist an asynchronous
automaton A over a distributed alphabet (Σ, loc) such that A accepts L and the
independence relation Iloc induced by loc is exactly I?

Zielonka’s fundamental result is that this is indeed the case [1]. In other words,
asynchronous automata accept precisely the set of recognizable trace languages and
thus constitute a natural distributed machine model for this class of languages.

Fix a recognizable trace language L over a concurrent alphabet (Σ, I), as well
as a distribution loc : Σ → (2P \ {∅}) such that the induced independence relation
Iloc is the same as I. We shall construct a deterministic asynchronous automaton
A = (Q,→, Qin, F) over (Σ, loc) recognizing L.

Let B = (S,Σ, δ, s0, SF) be the minimum deterministic finite state automaton
accepting L, where S denotes the set of states, δ : S×Σ→ S the transition function,
s0 ∈ S the initial state and SF ⊆ S the set of accepting states. As usual, we shall
extend δ to a transition function S ×Σ∗ → S describing state transitions for input
words rather than just single letters. For convenience, we denote this extended
transition function also by δ.

The main hurdle in constructing an asynchronous automatonA from the original
DFA B is the following: On reading an input word u, we must be able to compute
whether δ(s0, u) ∈ SF . As we have seen, u is just one linearization of the trace
[u] = (Eu,≤u,λu). After reading u each process in A only has partial information
about δ(s0, [u])—a process p only “knows about” the events that lie in the p-view
↓maxp(Eu). We have to devise a scheme to recover the state δ(s0, u) from the partial
information available with each process after reading [u].

Another complication is that processes can only maintain a finite amount of
information. So, we need a way of representing arbitrary words in a bounded, finite
way. This can be done quite easily—the idea is to record for each word w, its
“effect” as dictated by our automaton B.

We first recall a basic fact about recognizable languages.

Definition 1.26. Any language L̂ defines a syntactic congruence ≡L̂ on Σ∗ as
follows:

u ≡L̂ u′ def
= ∀w1, w2 ∈ Σ∗, w1uw2 ∈ L̂ iff w1u

′w2 ∈ L̂.

It is well known that L̂ is recognizable if and only if ≡L̂ is of finite index [4].
Now, consider the relation ≡L for the language L we are looking at. We can

associate with each word u a function fu : S → S, where S is the set of states of B,
such that fu(s) = s′ iff δ(s, u) = s′. Thus, fu is a representation of the word u as a

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

22 Madhavan Mukund

“state transformer”. Given two words u,w ∈ Σ∗, it is easy to see that fuw = fw◦fu,
where ◦ denotes function composition.

Since B is the minimum DFA recognizing L, it follows that for any words u,w ∈
Σ∗, u ≡L w if and only if fu = fw.

Clearly the function fw : S → S corresponding to a word w has a bounded
representation. So, if we could compute the function fu corresponding to the input
u, we would be able to determine whether δ(s0, u) ∈ SF , since δ(s0, u) = fu(s0).

However, we still have the original problem arising from the distributed nature
of A. Even if each process p ∈ P were to maintain the entire p-view of Eu, the only
information that we could reasonably hope to extract from the combined view of all
the processes is some linearization of the trace (Eu,≤u,λu). From this labelled par-
tial order, we cannot always recover u uniquely—in general, we can only reconstruct
a word u′ ∼ u. Hence, we can at best hope to recover fu′ for some u′ ∼ u.

Fortunately, this is not a bottleneck. From the definition of a trace language, it
follows that all words that are ∼-equivalent are also ≡L-equivalent.

Proposition 1.27. Let L̂ be a trace language over a concurrent alphabet (Σ, I).
For any u, u′ ∈ Σ∗, if u ∼ u′ then u ≡L̂ u′.

Proof. Suppose u ∼ u′ but u /≡L̂ u′. Then, without loss of generality, we can find
words w1 and w2 such that w1uw2 ∈ L̂ but w1u′w2 /∈ L̂. Since w1uw2 ∼ w1u′w2,
this contradicts the assumption that L̂ is ∼-consistent. !

From our previous observation about B, it follows that whenever u′ ∼ u, u′ ≡L u,
so fu′ = fu. In other words, to determine whether δ(s0, u) ∈ SF , it is sufficient to
compute the function fu′ corresponding to any word u′ ∼ u. Thus, we can write
f[u] to denote the function associated with all linearizations of a trace u.

This, then, is our new goal: for any input word u, we want to compute in A
the function f[u] : S → S using some representative u′ of the trace [u]. This still
involves finding a scheme to combine the partial views of processes in a sensible
way.

We begin by formally defining a projection of a word. A word u ∈ Σ∗ of length
n can be viewed as a function u : [1..n] → Σ assigning a letter to each position in
the word, where [1..n] abbreviates the set [1..n]. In the trace [u] = (Eu,≤u,λu), we
henceforth implicitly assume that Eu = {e⊥, e1, e2, . . . , en}, where e⊥ is the fictitious
initial event that we have assumed for convenience and for j ∈ [1..n], ej is the event
corresponding to the letter u(j).

Projection of a word Let u : [1..n] → Σ whose corresponding trace is
[u] = (Eu,≤u,λu), and let X ⊆ Eu where X \ {e⊥} = {ei1 , ei2 , . . . , eik}, with
i1 < i2 < · · · < ik. Then u[X], the projection of u with respect to X , is the word
u(i1)u(i2) · · ·u(ik). If X \ {e⊥} = ∅ then u[X] = ε, the empty string.

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

Automata on Distributed Alphabets 23

Ideals revisited So far, we have implicitly assumed that all ideals are non-empty.
However, to construct the asynchronous automaton A it will be convenient to work
with the empty ideal as well. So, henceforth, whenever we encounter an ideal I,
unless we explicitly say that I is non-empty we do not rule out the possibility that
I = ∅. Clearly, if I = ∅, the notions maxp(I), primaryp(I) and secondaryp(I) are
not defined and we shall apply these operators only to non-empty ideals. We also
adopt a convention regarding P -views of an ideal. Recall that for P ⊆ P , the P -
view ∂P (I) of a non-empty ideal I is the set of events

⋃
p∈P ↓maxp(I). If P = ∅, we

shall define ∂P (I) = ∅.

We begin with the following fact, which is crucial in our construction of A.

Lemma 1.28. Let u be a word, [u] = (Eu,≤u,λu) the corresponding trace, and
I, J ⊆ Eu be ideals such that I ⊆ J . Then u[J] ∼ u[I]u[J \ I].

Proof Sketch: A basic result in trace theory is that u ∼ w if and only if u↓{a,b}
= w↓{a,b} for every pair of dependent letters (a, b) ∈ D [5].

Suppose (a, b) ∈ D and u[J]↓{a,b} /= (u[I]u[J \ I])↓{a,b} . Then there must be an
occurrence of a and an occurrence of b in u[J]↓{a,b} which have been transposed in
(u[I]u[J \I])↓{a,b} . Assume, as usual, that the events in the trace [u] = (Eu,≤u,λu)
are numbered {e⊥, e1, e2, . . . , en} in correspondence with the positions of the let-
ters in u. Let ea = ei and eb = ej be the events from EJ corresponding to
these occurrences of a and b in u. Without loss of generality, we assume that
i < j.

It must be the case that ea /∈ I and eb ∈ I, since the only rearrangement we
have performed is to send letters not in u[I] to the right. Since (a, b) /∈ I, we can
find a process p ∈ loc(a) ∩ loc(b). But then ea ≤p eb and so ea ≤ eb. Since I is an
ideal, eb ∈ I and ea ∈ ↓eb, we must have ea ∈ I as well, which is a contradiction.

!

Corollary 1.29. Let u be a word, [u] = (Eu,≤u,λu) the corresponding trace, and
I1 ⊆ I2 ⊆ · · · ⊆ Ik ⊆ Eu a sequence of nested ideals. Then u[Ik] ∼ u[I1]u[I2 \
I1] · · ·u[Ik \ Ik−1].

Proof. Applying Lemma 1.28 once, we get u[Ik] ∼ u[Ik−1]u[Ik \ Ik−1]. We then
apply the lemma to each of u[Ik−1], u[Ik−2], . . . , u[I2] in turn to obtain the required
expression. !

1.8.1. Process residues

Let us return to our problem: We want to compute inA, on any input u, the function
f[u] via some u′ ∼ u. We order the processes in P so that P = {p1, p2, . . . , pN}
and construct subsets {Qj}j∈[1..N], where Q1 = {p1} and for j ∈ [2..N], Qj =
Qj−1 ∪ {pj}.

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

24 Madhavan Mukund

Let [u] = (Eu,≤u,λu). Construct ideals I0, I1, . . . , IN ⊆ Eu where I0 = ∅ and
for j ∈ [1..N], Ij = Ij−1 ∪ ∂pj (Eu). Clearly Ij = ∂Qj (Eu) for j ∈ [1..N].

Since Eu = ∂P(Eu) = ∂QN (Eu) = IN and I0 ⊆ I1 ⊆ · · · ⊆ IN , we can write down
the following expression based on Corollary 1.29.

u = u[IN] ∼ u[I0]u[I1 \ I0] · · ·u[IN \ IN−1]

For j ∈ [2..N], Ij \Ij−1 = ∂Qj (Eu)\∂Qj−1
(Eu) is the same as ∂pj (Eu)\∂Qj−1

(Eu).
So, we can rewrite our earlier expression in a more useful form as:

u = u[∂QN (Eu)]

∼ u[∅]u[∂p1
(Eu) \ ∅]u[∂p2

(Eu) \ ∂Q1
(Eu)] · · ·u[∂pN (Eu) \ ∂QN−1

(Eu)] (♦)

The word u[∂pj (Eu) \ ∂Qj−1
(Eu)] is the portion of u that pj has seen but which the

processes in Qj−1 have not seen. This is a special case of what we call a residue.

Residues Let u ∈ Σ∗ be a word whose associated trace is [u] = (Eu,≤u,λu),
I ⊆ Eu an ideal and p ∈ P a process. R(u, p, I) denotes the word u[∂p(Eu) \ I] and
is called the residue u at p with respect to I.

For ideals X and Y , recall that X \ Y = X \ (X ∩ Y), where X ∩ Y is also an
ideal. So any residue R(u, p, I) can equivalently be written as R(u, p, ∂p(Eu) ∩ I).
We will often make use of this fact.

Since u[∂pj (Eu) \ ∂Qj−1
(Eu)] can be rewritten as R(u, pj , ∂Qj−1

(Eu)), we can
reformulate (♦) as follows:

u = u[∂QN (Eu)]

∼ R(u, p1, ∅)R(u, p2, ∂Q1
(Eu))R(u, p3, ∂Q2

(Eu)) . . .R(u, pN , ∂QN−1
(Eu))

Let us give a special name to residues of this form.

Process residues R(u, p, I) is a process residue if R(u, p, I) = R(u, p, ∂P (Eu))
for some P ⊆ P . We say that R(u, p, ∂P (Eu)) is the P -residue of u at p.

Notice that R(u, p, ∅) is also a process residue, corresponding to the empty set
of processes (by our convention that ∂∅(Eu) = ∅.) Further, R(u, p, ∅) = u[∂p(Eu)],
the partial word corresponding to the p-view of Eu.

Example 1.30. Consider our old example—the trace [bacabba] depicted in Fig-
ure 1.3. Let I = {0, e1, e2, e3}. ∂s(Eu) \ I = {e5, e6}, so R(u, s, I) = bb. Moreover,
R(u, s, I) = R(u, s, ∂p(Eu)), so it is the p-residue of u at s.

Suppose that along every input word u, each process p maintains all its P -residues
R(u, p, ∂P (Eu)), P ⊆ P , as functions from S to S. As we remarked earlier, each of
these functions can be represented in a finite, bounded manner. Since each process
needs to keep track of only 2N P -residues, where N = |P|, all these functions can
be incorporated into the local state of the process.

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

Automata on Distributed Alphabets 25

Going back to the expression (♦), we can compute the function fu[∂QN
(Eu)\∅]

corresponding to u[∂QN (Eu) \ ∅] by composing the functions corresponding to
the residues R(u, p1, ∅), R(u, p2, ∂Q1

(Eu)), . . . , R(u, pN , ∂QN−1
(Eu)). Notice that

u[∂QN (Eu) \ ∅] = u. So, we can then decide whether the state δ(s0, u) belongs to
SF by applying the function fu[∂QN

(Eu)] to s0.
Thus, our automaton A will accept u if δ(s0, u) as computed using the process

residues corresponding to the expression (♦) lies in SF . Recall that the accepting
states of A are specified as global states. So, at the end of the word u, we are
permitted to observe “externally”, as it were, the states of all the processes in A
before deciding whether to accept u.

The only hitch now is with computing process residues “on line”, as A reads u.
The problem is the following: Let p ∈ P and P ⊆ P . If we extend u to ua where
p /∈ loc(a), it could well happen that ∂p(Eua) \ ∂P (Eua) /= ∂p(Eu) \ ∂P (Eu), even
though ∂p(Eu) = ∂p(Eua).

Example 1.31. Consider the trace [bacabba] shown in Figure 1.3. After the sub-
word bac, the p-residue at s is bc, corresponding to {e1, e3}. However, when this
word is extended to baca, the p-residue at s becomes ε, though s does not participate
in the final a.

1.8.2. Primary residues

Process residues at p can change without p being aware of it. This means that we
cannot hope to directly maintain and update process residues locally as A reads u.
To remedy this, we define a new type of residue called a primary residue.

Primary residues Let us call R(u, p, I) a primary residue if I is generated by a
subset E of primaryp(Eu).

Clearly, for p, q ∈ P , R(u, p, ∂q(Eu)), can be rewritten asR(u, p, ∂p(Eu)∩∂q(Eu)).
So, by the previous result the q-residue R(u, p, ∂q(Eu)) is a primary residue
R(u, p, ↓E) for some E ⊆ primaryp(Eu). Further, p can effectively determine the
set E given the primary information of both p and q. In fact, it will turn out that
all process residues can be effectively described in terms of primary residues.

Example 1.32. In the word u = bacabba shown in Figure 1.3, R(u, s, ∂p(Eu))
corresponds to the primary residue R(u, s, ↓{latests→q(Eu)}).

Our strategy will now be to maintain primary residues rather than process
residues for each process p. The useful property we exploit is that the primary
residues at p change only when p participates in an event.

Notice that this does not contradict our earlier observation that process residues
at p can change independent of p. Even if a synchronization not involving p happens
to modify the P -residue at p, the new P -residue remains a primary residue of p,
albeit for a different subset of p’s primary events.

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

26 Madhavan Mukund

Further, we show that when p participates in an event, it can recompute its
primary residues using just the information it receives during the synchronization.
At the end of the word u, the expression (♦) written in terms of process residues
that is used to compute δ(s0, u) can be effectively rewritten in terms of primary
residues. These residues will be available with each process in P , thereby enabling
us to calculate δ(s0, u).

When discussing how to update primary information in the previous section,
we have observed that the maximal events in the intersection of two local views
∂p(I)∩ ∂q(I) of an ideal are always primary events for both p and q (Lemma 1.19).
We begin with some consequences of this lemma.

Corollary 1.33. Let u ∈ Σ∗ and p ∈ P.

(i) For ideals I, J ⊆ Eu, let R(u, p, I) and R(u, p, J) be primary residues such
that R(u, p, I) = R(u, p, ↓EI) and R(u, p, J) = R(u, p, ↓EJ) for EI , EJ ⊆
primaryp(Eu). Then R(u, p, I∪J) is also a primary residue and R(u, p, I∪J) =
R(u, p, ↓(EI ∪EJ)).

(ii) Let Q ⊆ P. Then R(u, p, ∂Q(Eu)) is a primary residue R(u, p, ↓E) for p. Fur-
ther, p can effectively compute the set E ⊆ primaryp(Eu) from the information
in primary{p}∪Q(Eu).

(iii) Let q, r ∈ P such that latestp→r(Eu) ≤ latestq→r(Eu). Then R(u, p, ∂r(∂q(Eu)))
is a primary residue R(u, p, ↓E) for p. Further, p can effectively compute the set
E ⊆ primaryp(Eu) from the information in primaryp(Eu) and secondaryq(Eu).

Proof.

(i) We can rewrite R(u, p, I∪J) as R(u, p, ∂p(Eu)∩(I∪J)). But ∂p(Eu)∩(I∪J) =
(∂p(Eu) ∩ I) ∪ (∂p(Eu) ∩ J). Since R(u, p, I) = R(u, p, ∂p(Eu) ∩ I), we know
that ∂p(Eu) ∩ I is generated by EI . Similarly, ∂p(Eu) ∩ J is generated by EJ .
So ↓(EI ∪ Ej) = (∂p(Eu) ∩ I) ∪ (∂p(Eu) ∩ J). Therefore EI ∪ EJ generates
∂p(Eu) ∩ (I ∪ J) and so the residue R(u, p, I ∪ J) = R(u, p, ↓(EI ∪ EJ)).

(ii) Let Q = {q1, q2, . . . , qk}. We can rewrite R(u, p, ∂Q(Eu)) as
R(u, p,

⋃
i∈[1..k] ∂qi(Eu)). From Lemma 1.19 it follows that for each i ∈ [1..k], p

can compute a set Ei ⊆ primaryp(Eu) from the information in primary{p,qi}(Eu)
such that R(u, p, ∂qi(Eu)) = R(u, p, ↓Ei). From part (i) of this Corollary,
it then follows that R(u, p, ∂Q(Eu)) = R(u, p,

⋃
i∈[1..k] ∂qi(Eu)) = R(u, p, ↓E)

where E =
⋃

i∈[1..k] Ei.
(iii) Let J = ∂p(Eu)∪∂r(∂q(Eu)). J is an ideal. By the construction of J , maxp(J) =

maxp(Eu). From the assumption that latestp→r(Eu) ≤ latestq→r(Eu), we have
maxr(J) = latestq→r(Eu). So, ∂p(J) = ∂p(Eu) and ∂r(J) = ∂r(∂q(Eu)). Since
R(u, p, ∂r(∂q(Eu))) = R(u, p, ∂p(Eu) ∩ (∂r(∂q(Eu))) = R(u, p, ∂p(J) ∩ ∂r(J)), it
suffices to find a subset E ⊆ primaryp(Eu) which generates ∂p(J) ∩ ∂r(J).
By Lemma 1.19, ∂p(J) ∩ ∂r(J) is generated by primaryp(J) ∩ primaryr(J).
Since maxp(J) = maxp(Eu), primaryp(J) = primaryp(Eu).

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

Automata on Distributed Alphabets 27

On the other hand, primaryr(J) = primaryr(↓latestq→r(Eu)). By definition,
this is the set {latestq→r→s(Eu)}s∈P .
So the set E ⊆ primaryp(Eu) generating ∂p(J) ∩ ∂r(J) is given by E =
primaryp(J) ∩ primaryr(J) = primaryp(Eu) ∩ {latestq→r→s(Eu)}s∈P and can
be computed from primaryp(Eu) and secondaryq(Eu).

!

Part (ii) of the preceding Corollary makes explicit our claim that every pro-
cess residue R(u, p, ∂Q(Eu)), Q ⊆ P , can be effectively rewritten as a primary
residue R(u, p, ↓E), E ⊆ primaryp(Eu), based on the information available in
primaryp∪{Q}(Eu). In case Q = ∅, R(u, p, ∂Q(Eu)) is given by the primary residue
corresponding to ∅ ⊆ primaryp(Eu).

1.8.3. Computing primary residues locally

We now describe how, while reading a word u, each process pmaintains the functions
fw for each primary residue w of u at p.

Initially, at the empty word u = ε, every primary residue from
{R(u, p, ↓E)}p∈P,E⊆primaryp(Eu) is just the empty word ε. So, all primary residues
are represented by the identity function Id : S → S.

Let u ∈ Σ∗ and a ∈ Σ. Assume inductively that every p ∈ P has computed at the
end of u the function fw for each primary residue w ∈ {R(u, p, ↓E)}E⊆primaryp(Eu).
We want to compute for each p the corresponding functions after the word ua,
whose associated trace is (Eua,≤ua,λua).

For processes not involved in a, these values do not change.

Proposition 1.34. If p /∈ loc(a) then every subset E ⊆ primaryp(Eua) is also a
subset of primaryp(Eu) and the primary residue R(ua, p, ↓E) is the same as the
primary residue R(u, p, ↓E).

Proof. This follows immediately from the fact that ∂p(Eua) = ∂p(Eu) and
primaryp(Eua) = primaryp(Eu). !

So, the interesting case is when p participates in a. We show how to calculate all
the new primary residues for p using the information available with the processes
in loc(a) after u.

Lemma 1.35. Let p ∈ loc(a) and E ⊆ primaryp(Eua). The function fw correspond-
ing to the primary residue w = R(ua, p, ↓E) can be computed from the primary
residues at u of the processes in loc(a) using the information in primaryloc(a)(Eu)
and secondaryloc(a)(Eu).

Proof. Let ea be the event corresponding to the new letter a—that is, Eua \Eu =
{ea}. There are two cases to consider.

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

28 Madhavan Mukund

Case 1: (ea ∈ E)
Since ↓E = ↓ea = ∂p(Eua), the residue R(ua, p, ↓E) = R(ua, p, ↓ea) is the empty
word ε. So the corresponding function is just the identity function Id : S → S.

Case 2: (ea /∈ E)
We want to compute the function fw corresponding to the word w = ua[∂p(Eua) \
↓E]. By Lemma 1.28, we know that

ua[∂p(Eua)] ∼ ua[↓E]ua[∂p(Eua) \ ↓E]. (1.1)

But ua[∂p(Eua)] = u[∂loc(a)(Eu)]a and so we have

ua[∂p(Eua)] = u[∂loc(a)(Eu)]a ∼ u[↓E]u[∂loc(a)(Eu) \ ↓E]a. (1.2)

Since ea /∈ ↓E, ua[↓E] = u[↓E]. Thus, cancelling u[↓E] from the right hand sides
of (1.1) and (1.2) above, we have u[∂loc(a)(Eu) \ ↓E]a ∼ ua[∂p(Eua) \ ↓E]. So,
to compute the function fw, it suffices to compute the function corresponding to
u[∂loc(a)(Eu) \ ↓E]a.

Let loc(a) = {p1, p2, . . . , pk}, where p = p1. Construct sets of processes
{Qi}i∈[1..k] such that Q1 = {p1} and Qi = Qi−1 ∪ {qi} for i ∈ [2..k].

Construct ideals {Ij}j∈[0..k] as follows: I0 = ↓E and for j ∈ [1..k], Ij = Ij−1 ∪
Eu|pj . Clearly, I0 ⊆ I1 ⊆ · · · ⊆ Ik ⊆ Eu.

By Corollary 1.29, u[Ik] ∼ u[I0]u[I1 \ I0] · · ·u[Ik \ Ik−1]. Since u[Ik] =
u[∂loc(a)(Eu)] and u[I0] = u[↓E], from (1.2) above it follows that the word
u[∂loc(a)(Eu) \ ↓E]a which we seek is ∼-equivalent to the word u[I1 \ I0] · · ·u[Ik \
Ik−1]a.

Claim: For each j ∈ [1..k], u[Ij \ Ij−1] is a primary residue R(u, pj , ↓Fj), where
Fj ⊆ primarypj

(Eu). Further, pj can determine Fj from the information in
primarypj

(Eu) and secondaryloc(a)(Eu).
Assuming the claim, for each word wj = u[Ij \Ij−1], we can find the correspond-

ing function fwj : S → S among the primary residues stored by pj after u. The
composite function fa◦fwk

◦fwk−1
◦· · ·◦fw1

then gives us the function corresponding
to the word u[I1 \ I0] · · ·u[Ik \ Ik−1]a, which is what we need.

Proof of Claim: The way that primary events are updated guarantees that each
event e ∈ E was a primary event in Eu, before a occurred, for one of the processes
in loc(a); i.e., E ⊆ primaryloc(a)(Eu). For i ∈ [1..k], let Ei = E ∩ primarypi

(Eu).

First consider u[I1 \ I0].
Let E′ = E \ E1. I1 \ I0 is the same as ∂p1

(Eu) \ ↓(E1 ∪ E′), which is the same
as ∂p1

(Eu) \ (↓E1 ∪ ↓E′). We want to compute u[I1 \ I0] = R(u, p1, ↓E1 ∪ ↓E′).
Each event e ∈ E′ is a primary event of the form latestp1→qe(Eua) for some qe ∈

P . Further, for some i ∈ [2..k], e was also the primary event latestpi→qe(Eu) before
ea occurred. Since p1 has inherited this information from pi, it must have been

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

Automata on Distributed Alphabets 29

the case that latestp1→qe(Eu) ≤ latestpi→qe(Eu). So, by part (iii) of Corollary 1.33,
the residue R(u, p1, ↓e) = R(u, p1, ∂qe(∂pi(Eu))) corresponds to a primary residue
R(u, p1, ↓Ge), where p1 can determine Ge ⊆ primaryp1

(Eu) from primaryp1
(Eu) and

secondarypi
(Eu).

So, by part (i) of Corollary 1.33, R(u, p1, ↓E′) = R(u, p1,
⋃

e∈E′ ↓e) is a primary
residue R(u, p1, ↓G1) where G1 =

⋃
e∈E′ Ge.

R(u, p1, ↓E1) is a primary residue since E1 ⊆ primaryp(Eu). Applying part (i)
of Corollary 1.33 again, R(u, p1, (↓E1 ∪ ↓E′)) corresponds to the primary residue
R(u, p1, ↓F1), where F1 = E1 ∪G1.

Now consider u[Ij \ Ij−1] for j ∈ [2..k].
Ij \ Ij−1 is the same as ∂pj (Eu) \ (↓E ∪ ∂Qj−1

(Eu)) so we want to compute the
residue R(u, pj , ↓E ∪ ∂Qj−1

(Eu)).
By a similar argument to the one for u[I1 \ I0], pj can compute a set

Gj ⊆ primarypj
(Eu) such that R(u, pj , ↓E) corresponds to the primary residue

R(u, pj , ↓Gj).
By part (ii) of Corollary 1.33, pj can compute from primaryQj

(Eu) a set Hj ⊆
primarypj

(Eu) such that R(u, pj , ∂Qj−1
(Eu)) corresponds to the primary residue

R(u, q, ↓Hj).
We now use part (i) of Corollary 1.33 to establish that R(u, pj , ↓E ∪ ∂Qj−1

(E)u)
corresponds to the primary residue R(u, pj, ↓Fj), where Fj = Gj ∪Hj . !

1.8.4. An asynchronous automaton for L

Our analysis of process residues and primary residues immediately yields a deter-
ministic asynchronous automaton A which accepts the language L. Recall that
B = (S,Σ, δ, s0, SF) is the minimal DFA recognizing L.

For p ∈ P , each local state of p will consist of the following:

• Primary and secondary information for p, as stored by the gossip automaton.
• For each subset E of the primary events of p, a function fE : S → S recording
the (syntactic congruence class of the) primary residue R(u, p, E↓) at the end
of any word u.

At the initial state, for each process p, all the primary, secondary and tertiary
information of p points to the initial event e⊥. For each subset E of primary events,
the function fE is the identity function Id : S → S.

The transition functions →a modify the local states of loc(a) as follows:

• Primary, secondary and tertiary information is updated as in the gossip
automaton.

• The functions corresponding to primary residues are updated as described in
the proof of Lemma 1.35.

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

30 Madhavan Mukund

Other than comparing primary information, the only operation used in updating
the primary residues at p (Lemma 1.35) is function composition. This is easily
achieved using the data available in the states of the processes which synchronized.

The final states ofA are those where the value jointly computed from the primary
residues in P yields a state in SF . More precisely, order the processes as P =
{p1, p2, . . . , pN}. Construct subsets of processes {Qi}i∈[1..N] such that Q1 = {p1}
and for i ∈ [2..N], Qi = Qi−1 ∪ {pi}.

Let 'v = {v1, v2, . . . , vN} be a global state of A such that A is in 'v after reading
an input word u.

By Corollary 1.33 (ii), for each i ∈ [2..N], we can compute from {v1, v2, . . . , vi}
a subset Ei of the primary information of pi such that the Qi−1-residue of pi is also
the primary residue of pi with respect to Ei. Let fi denote this primary residue.
In addition, from the state v1, we can extract the function f1 corresponding to the
primary residue R(u, p, ∅).

From the expression (♦), we know that the composite function fN ◦fN−1◦· · ·◦f1
is exactly the function fu associated with the input word u leading to the global state
'v. So, we put 'v in the set of accepting states F of A iff fN ◦fN−1 ◦ · · ·◦f1(s0) ∈ SF .

Notice that it does not matter how we order the states in 'v when we try to
decide whether 'v ∈ F . We keep track of residues in all processes in a symmetric
fashion, and the expression (♦) holds regardless of how we order P . So, if 'v is a
valid (i.e., reachable) global state, the composite function fN ◦ fN−1 ◦ · · ·◦ f1 which
we compute from 'v is always the same, no matter how we order P .

From our analysis of residues in this section, we have the following result.

Theorem 1.36. The language accepted by A is exactly L.

The size of A

Proposition 1.37. Let M = |S| and N = |P|, where S is the set of states of B, the
DFA recognizing L, and P is the set of processes in the corresponding asynchronous
automaton A which we construct to accept L. Then, the number of local states of
each process p ∈ P is at most 2O(2NM logM).

Proof. We estimate the number of bits required to store a local state of a process
p.

From Lemma 1.25, we know that the primary and secondary information that
we require to keep track of the latest gossip can be stored in O(N2 logN) bits.

The new information we store in each local state of p is the collection of primary
residues. Each residue, which is a function from S to S, can be written down as an
array with M entries, each of logM bits; i.e., M logM bits in all. Each primary
residue corresponds to a subset of primary events. There are N primary events and
so, in general, we need to store 2N residues. Thus, all the residues can be stored
using 2NM logM bits.

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

Automata on Distributed Alphabets 31

So, the entire state can be written down using O(2NM logM) bits, whence the
number of distinct local states of p is bounded by 2O(2NM logM). !

1.9. Discussion

We have characterized the languages recognized by direct product automata as
those that are shuffle-closed. On the other hand, we have shown that asynchronous
automata accept precisely the class of recognizable trace languages. A very inter-
esting and difficult open problem is to precisely characterize the class of languages
recognized by synchronized products. A positive result has been obtained for a very
restricted subclass in [6].

The bounded time-stamping algorithm is a fundamental building block for many
important constructions involving asynchronous automata. As we have seen, it is at
the heart of the proof of Zielonka’s theorem. Time-stamping can also be used to de-
fine a subset construction for directly determinizing asynchronous automata [7]. An-
other application of bounded time-stamping is in providing an automata-theoretic
decision procedure for TrPTL, a linear time temporal logic with local modalities
that is interpreted over traces [8].

Zielonka’s theorem was first described in [1]. Subsequently, an equivalent result
in terms of an alternative distributed model called asynchronous cellular automata
was presented in [3]. Our proof is taken from [9] and broadly follows the structure
of the original proof in [1], except that the distributed time-stamping function that
is an explicit intermediate step in our construction is implicit in the original proof
of Zielonka. We believe that clearly separating and identifying the role played
by time-stamping helps to make the proof more digestible. Recently, the residue
based construction described here has been refined in [10] to show that of the
exponentially many primary residues maintained by each process, only polynomially
many are actually distinct. This observation eliminates one exponential in the
overall complexity of the construction.

Zielonka’s theorem can be seen as an algorithm to synthesize a distributed imple-
mentation from a sequential specification. Another way to present the same problem
is to ask when a global state space can be decomposed into local state spaces such
that the product of these local state spaces is isomorphic to the original global
state space. This problem can been solved for direct products and asynchronous
automata—see [11] for an overview of the results.

However, the following distributed synthesis problem is open: Decompose a
global state space into a product of local state spaces that is bisimilar to the orig-
inal state space. A bisimulation [12, 13] is a relation that holds between a pair
of transition systems that can simulate each other very faithfully. This is poten-
tially a more useful formulation of the problem since branching time properties are
preserved by bisimulation.

August 12, 2011 10:54 World Scientific Review Volume - 9.75in x 6.5in da-webpage

32 Madhavan Mukund

Acknowledgments

This material has been used for graduate courses in Automata and Concurrency
at Chennai Mathematical Institute and the Institute of Mathematical Sciences and
the exposition has benefited from the feedback received from the students who
attended these courses. The time-stamping algorithm for asynchronous automata
and the proof of Zielonka’s theorem presented here are both joint work with Milind
Sohoni. I thank Namit Chaturvedi and Prateek Karandikar for pointing out some
subtle and not-so-subtle errors in the original manuscript.

References

[1] W. Zielonka: Notes on finite asynchronous automata, R.A.I.R.O.—Inform. Théor.
Appl., 21 (1987) 99–135.

[2] A. Mazurkiewicz: Basic notions of trace theory, in: J.W. de Bakker, W.-P. de Roever
and G. Rozenberg (eds.), Linear time, branching time and partial order in logics and
models for concurrency, LNCS 354 (1989) 285–363.

[3] R. Cori, Y. Metivier and W. Zielonka: Asynchronous mappings and asynchronous
cellular automata, Inform. and Comput., 106 (1993) 159–202.

[4] J. Hopcroft and J.D. Ullman: Introduction to automata, languages and computation,
Addison-Wesley (1979).

[5] I.J. Aalbersberg and G. Rozenberg: Theory of traces, Theoret. Comput. Sci., 60

(1988) 1–82.
[6] J. Berstel, L. Boasson and M. Latteux: Mixed languages. Theoret. Comput. Sci.

332(1–3) (2005) 179–198.
[7] N. Klarlund, M. Mukund and M. Sohoni: Determinizing asynchronous automata,

Proc. ICALP 1994, Springer LNCS 820 (1994) 130-141.
[8] P.S. Thiagarajan: TrPTL: A trace based extension of linear time temporal logic,

Proc. 9th IEEE LICS (1994) 438–447.
[9] M. Mukund and M. Sohoni: Gossiping, asynchronous automata and Zielonka’s theo-

rem, Report TCS-94-2, Chennai Mathematical Institute, Chennai, India (1994).
[10] B Genest and A Muscholl: Constructing Exponential-Size Deterministic Zielonka

Automata. Proc. ICALP 2006, Springer LNCS 4052 (2006) 565–576.
[11] M. Mukund: From global specifications to distributed implementations. in Synthesis

and Control of Discrete Event Systems, B. Caillaud, P. Darondeau and L. Lavagno
(eds), Kluwer (2002) 19–34.

[12] R. Milner: Communication and Concurrency, Prentice-Hall, London (1989).
[13] D. Park: Concurrency and Automata on Infinite Sequences. Proc. 5th GI-Conference

Karlsruhe, Theoretical Computer Science 104 (1981) 167-183.

