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TESTING EQUIVALENCES FOR PROCESSES

R. DE NICOLA and M.C.B. HENNESSY
Department of Computer Science, University of Edinburgh, Edinburgh EH8 9YL, United Kingdom

Abstract. Given a set of processes and a set of tests on these processes we show how to define
in a natural way three different equivalences on processes. These equivalences are applied to a
particular language CCS. We give associated complete proof systems and fully abstract models.
These models have a simple representation n terms of trees.

Introduction

In recent years various programming languages with concurrent featurcs have
been proposed [2. 3, 16, 19, 22, 29]. This coincides with the increasing complexity
of hardware that can be manufactured at reasonable cost. Indeed, if advantage is
to be taken of the advances in hardware dcsign and fabrication, where multiprocessor
machines are now commonplace, then much work needs to be done on the theory
of parallelism to model and analyse such hardware and the related software.

One outstanding and pressing problem is a suitable semantic theory. If one writes
a program in PascAL or FORTRAN, then, apart from considerations of efficiency,
one is only interested in the input-output behaviour of the program, which can be
considered as a function from the input domain to the output domain. So a semantic
theory, suitable for PASCAL, is simply a theory of functions: those functions computed
by PascaL programs. The same remark holds true in general for any language for
sequential programming, even though with more complicated languages the nature
of the input and output domains of the functions may be rather difficult to discover.

If the language has concurrent features, then it is well known that one cannot
represent its behaviour as a function. At least if one does represent it as a function,
then much information is lost. However, if we are to build a semantic theory, then
a counterpart to functions is needed: if we model programs written in such languages
what are the objects in the model?

Various suggestions have been made in the literature {23, 21, 17, 25]. For example,
in [23], communication trees are put forward but unfortunately they need to be
factored by certain equivalences. Moreover, the behaviour which they describe seems
too detailed in certain respects [5, 21]. In this paper we put forward another model,
called representation trees, which is very similar to the models discussed in [18, 25,
21]. However, we show that they can be motivated in a very simple and appealing
manner.
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The behaviour of programs, or processes, can be investigated by a series of tests.
For example with sequential programs we can associate a test with a pair consisting
of a predicate on the input domain and a predicate on the output domain. It is very .
easy to see how the input-output function of a program can be characterised by a
set of such tests. For more general programming languages more general kinds of
tests are needed. Indeed, the nature of the programming language should suggest
the type of test suitable for investigating the behaviour of programs. For example,
if the language contains real time constructs, the tests should be able to take time
into consideration.

In general one can think of a set of processes and a set of relevant tests. Then
two processes are equivalent (with respect to this set of tests) if they pass exactly
the same sct of tesis. The first section of this paper is an attempt at formalising this
natural notion of equivalence. It turns out that a satisfactory formalisation must
take the possibility of divergence into consideration. In view of this, the natural
equivalence can be broken down into two preorders on processes. The first is
formulated in terms of the ability to respond positively to a test, the second in terms
of the inability not to respond positively to a test. In the latter case the process p
will be considered ‘less than® the process g if whenever p must respond positively
to a particular test, ¢ must also respond positively. Both these preorders have their
counterparts in sequential programs, the first being partial correctness, the second
total correctness. The natural equivalence between processes is obtained by taking
the equivalence associated with the conjunction of these two preorders (which is a
third preorder).

The remainder of the paper is devoted to applying these notions to a particular
language CCS [23]. This is a primitive language for describing communicating
processes but has the advantage of a simple and well-defined operational semantics.
We take as the set of tests those tests which can be described in CCS, and examine
the substitutive relation generated by the three preorders. (Two processes are
substitutively related if they are related in every context.) In Sections 3 and 4 we
give three sound and complete proof systems for these relations. These systems
consist essentially of a set of axioms for manipulating processes and a form of
induction. The completeness theorem leads naturally to fully-abstract denotational
models for the language (Section 5), i.e., models in which processes are distinguished
il and only if they are distinguished by the associated set of tests. These models are
constructed in a very abstract way from the syntax of the language. Moreover, in
Section § we show that they can be represented as collections of certain kinds of
trees. Roughly speaking the tree associated with a process will contain the following
information:

(i) the possible sequences of actions that a process can perform,

(11) to each such sequence a finite set of subsets of actions is associated. This set,
calied the acceptance set, represents the possible futures of a process after a particular
sequence of actions.
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After performing a sequence of actions a process can do various internal moves
to end up in a state represented by an element of the acceptance sets. Such an
element, a subset of actions, represents the actions which the process can perform
in that state. We have in fact three different models, the differences arising from
how we handle divergence and consequently how we order those trees. Although
these models are specifically for the language CCS, it is hoped that they can easily
be adapted to handle other languages such as CSP [16], ADA [19], DP [3].

In the finai section we relate our work with other active research in this area. In
particular, the equivalences generated by the three preorders =, are related to
observational equivalence [23], failures equivalence [18] and weak equivalence [21].
A close relationship with the last one is established and is used to introduce a
simpler class of tests which characterise our models. Our tree representations are
most closely related to those in [18, 25] and in future work v.¢ hope to illuminate
the similarities and the differences.

1. General setting

This section is devoted to setting up a rzther general framework within which we
may discuss testing of processes and the tabulation of the possible outcomes.

1.1

We assume a predefined set of states, States, and we let s range over States. A
computation is any nonempty sequence of states. Let Comp denote the set of
computations, ranged over by ¢. Note that a computation may be finite or infinite.

Let €,  (ranged over by o, p respectively) be sets of predefined observers and
processes. Observers may be thought of as agents who perform tests. The effect of
observers performing tests on processes may be formalised by saying that for every
2 and p there is a nonempty set of computations Comp(o, p). If ce Comp(o, p),
then the result of o testing p may be the computation ¢. To indicate that a process
passes a test we choose some subset of States, denoted Success, to be successful
states. Then a computation is successful if it contains a successful state. On the other
hand, a computation will be called unsuccessful if it contains no successfu! state.
To develop a useful theory we need one further ingredient. The semantic theory of
sequential computations, developed in [26, 28], was greatly facilitated by hypothesis-
ing the existence of ‘partial objects’. For example, the symbol £ is often used to
denote a partial program whose behaviour is totally undefined. It will also be
convenient for us to consider such partial objects. To this end we assume the
existence of a unary post-fixed predicate on states, 1. Informally, s means that s
is a partial-state. whose properties are underdefined. We can now define divergence,
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a unary postfixed predicate on computations, which we denote by 1':
cft if (i) c is unsuccessful, or
(ii) ¢ contains a state s, such that s and is not preceded by a successful
state.
By convention a state precedes itself. We also use |} to denote the negation of .
The usual notion on input-output can be viewed as a simple instance of the general
setting, as can be seen from the following example.

Example. Let 2 denote a set of nondeterministic programs for computing over the
natural numbers, with the property that they either compute forever or they halt
with some natural number as output. For each pair of natural numbers (n, m) we
have an observer O({(n, m)). This observer, when applied to a program p, will attempt
to discover if p will give output m on input n. Thus Comp(O{n, m), p) will consist
of all computations of the form

(i) a computation generated by p on input n, followed by

(i1) if this computation halts examine the output. If it is m, then go to a successful
state sg. If it is not m, go to a deadlocked state sy,.

For this simple example we did not need the predicate 1 (or, more precisely, s1
for no state s5) and there was only one successful and one deadlocked state. In more
complicated cases such as CCS, the main example of the paper, the full generality
of the notation will be required.

1.2

We may now tabulate the effect of an observer o testing a process p by noting
the types of computations in Comp(o, p). For every o€ €, pe 2 let R(o, prci{T, 1}
(the result set) be defined as follows:

(i) Te R(o, p) if Ice Comp(o, p) such that ¢ is successful.

(ii) LeR(o, p) if 3ce Comp(o, p) such that cf}.

Note that we do not differentiate between an experiment which deadlock . i.c.,
the computation is finite without reaching a successful state and an experiment
which diverges, i.e., the computation goes on forever without ever reaching a
successful state: they both contribute L to the result set. The existence of partially-
defined states introduces an additional auxiliary notion of divergence, i.e., when a
computation reaches a partially-defined state before reaching a successful state.
This also introduces L into the result set. Thus, in effect we can distinguish between
processes which cannot fail a test (the result set is { T}) and processes which may
pass a test (the result set is {1, T}). This will be elaborated upon shortly,

A natural equivalence between processes immediately suggests itself:

p~° g if, for every o€ €, R(o, p) = R(o, q).

However, it will be more fruitful to consider instead preorders, i.e., rzlations which
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are transitive and reflexive. A preorder = generates an equivalence = in a natural
way, == (& n 2). In general, preorders (or partial orders) are easier to deal with
mathematically and we can easily recover the equivalence ~“ by studying a preorder
which generates it. This gives us a certain amount of freedom since in general there
may be more than one preorder which generates any given equivalence. Finally,
preorders are more primitive than equivalences and therefore we may use them to
concentrate on more primitive notions which combine to form the equivalence ~©.
The set {7, 1} may be viewed as the simple two point lattice O:

T

1

So every result set can be viewed as a subset of this lattice. The theory of power-
domains [24, 27], provides us with general methods of ordering subsets of (complete)
partial orders. In [12] it was argued that three different powerdomain constructions
arise naturally and that they correspond to three natural views of nondeterministic
computations. Here we use these three constructions to give three different orderings
on result s.ts. Since the partial order O is so trivial, we can avoid descriptions of
the poweraomain constructions completely and give the resulting orderings on the
subsets of 0.

(D {1}

{T, 1}

{1}

This ordering cerresponds to the Egli-Milner powerdomain of O, and we will denote
itby .

(I {T}

{T, L}={L1}

This ordering corresponds to the Smyth powerdomain of O. The sets {7, L} and
{ L} arc identified and they are less than {T}. This corresponds to the view that
possible divergence is catastrophic. We denote this order by ..

(L {T}={1I 1}

{1}
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This corrzsponds to the dual of the Smyth construction and was called the Hoare
powerdomain in [i2]. The sets {T}, {7, L} are identified and both are greater than
{L}. This ordering corresponds to the view that divergence is unimportant and is
therefore ignored. We denote it by =;.

These three different orderings on result sets generate three different orderings
on processes.

Definition 1.2.1. For given sets of observers and processes 0, # respectively, let
=lc?PxP, i=1,2,3, be defined by

pciqif, VoeO, R(o,p)=,R(o, q).

We denote the related equivalences by = . The following results are trivial to
establish.

Proposition 1.2.2. (a) p ~“qifandonlyifp =\ q.
(b) p={ qifand only if p =iqandpc=t q.

Thus we have reformulated the natural equivalence ~ as the equivalence gener-
ated by a preorder = . This preorder is further broken down into two more primitive

preorders =-, =;. The rclevance of these primitive preorders can be motivated by
the following definition and proposition.

Definition 1.2.3. (a) p may satisfy o if T ¢ R(o, p).
(b) p mustsatisfy 0 if {T}= R(o, p).

Thus p may satisfy o if there is a resulting successtul computation whereas p must
satisfy o if every resulting computation is successful.

Proposition 1.2.4. (a) p =: qif, Vo€ O, p may satisfy o implies
q may satisfy o.

(b) p=f qif. Vo< €, p must satisfy o implies
q must satisfy o.

In the remainder of this paper we apply this general theory to the language CCS
[23]. To do so we need to specify:
# - a set of processes (CCS terms),
(' - a set of observers,
States - a set of states, together with a subset of successful states and the under-
defined-predicate T on states,
Comp - a method of assigning to every observer and process a nonempty set of
computations (sequences of states).
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The three resulting preorders have many interesting mathematical properties. We
will give three complete proof systems for these orders and three fully-abstract
denotational models.

2. CCS

2.1

In this section we review the definition of CCS and its operational semantics. We
use ‘pure’ CCS [23] and our version will be closest to that presented in [13].

Let X be a set of variables, ranged over by x. Let X, be a set of operators of
arity k. We use 2 to denote | {3,| k = 0}. The set of recursive terms over X, RECy,
ranged over by ¢, u, is defined by the following BNF-like notation:

tz=x|op(ty,..., &), ope 3 |rec x.t

The operation rec x... binds occurrences of x in the subterm ¢ of rec x.t. This gives
rise to the usual notions of free and bound variables in a term. Let FV(t) be the
set of free variables in t. If FV(1) =@, we say that ¢ is closed. Let CRECs denote
the set 07 closed terms and we use p, ¢ as meta-variables to range over this set. A
term is fi.tite if it is closed and contains no occurrence of rec x._. Let FREC: denote
the set of finite terms, and we use d, e as meta-variables. Let tJu/x] denote the term
which results from substituting u for every free occurrence of x in t. More generally,
let SUB be the set of substitutions, i.e., mappings from variables to terms. We use
p as a meta-variable over SUB. Let fp denote the result of substituting p(x) for
every free occurrence of x in ¢, for every x in X. A substitution is closed if, for
every x in X, p(x) is closed.

Pure CCS may be defined by choosing a particular set of operators, 2. Let A
denote a set of unary operators, ranged over by a, 8. Let 4 = {@|a € 4}. The operator
& is said to be the complement of a. It will also be convenient to let a denote o.
Let A =Audu{r}, where 7 is a distinguished unary operator not occurring in
AU . A is often referred to as the set of basic actions, and we used p to range
over it. We use A to range over A U A.

Let PER denote the set of partial functions over A, such that S € PER implies

() S(7)=r,

(ii) S(A) defined implies S(A) is defined and S(A) =S(1),

(iii) S(A)=S8(A") implies A =A".

We are now ready to define the operator set for CCS. Let

So={NIL, 02},

3 ={ulueA}u{[S]|SePER},
= ={+1

2,=0, n=3.
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In accordance with [23], x will be used in prefix form, [S] in postfix form and +, |
in infix form. In the future when we refer to terms, closed terms etc., we mean terms
generated by this set of operators.
The operational semantics is given in terms of labelled rewrite rules over closed
terms. For each x € A we define a relation = over closed terms with the intuition that
(i) p=> qif p may evolve to g by reacting to a A-stimulus from the environment,
(ii) p— gif p may evolve to q by performing an internal action, which is
independent of the environment.
In pure CCS the only possible actions are synchronisations and therefore a 7 move
w.!! correspond to a synchronisation of two subprocesses.

Definition 2.1.1. Let % be the least relation over closed terms which satisfies
(i) up= p;
(ii) p, = q implies p,+p,> gq,
p2+p| —“% q,
4 lP?‘“" ‘I‘Pz»
plp = polq:
(iii) p2>q, S(u) defined, implies p[S]=> q[S]:
(iv) py> g1, p2=> g implies p,|p.—= qi]g2:
(v) t[rec x.t/x] q implies rec x.t = g.

We also need the following unary predicate on closed terms.

Definition 2.1.2. Let | be the least predicate on closed terms which satisfies
(i) NIL}, ap|,
(i) pl, ql implies (p+q), (plq), p[SN,
(iii) t[rec x.t/x]| implies rec x.t1.

Let p1 if not pl. So, for example, 27 and rec x.(ap + x)1. Informally p? means
that there is an unguarded recursion or an unguarded occurrence of 2.

7?7

In this section we show how to view CCS as @ particular example of the general
setting explained in Section 1. The set of processes will just be closed CCS-terms,
1e., CREC,, and the principal point to settle is how to describe observers. It seems
reasonable to use the same language to describe both the processes and the observers.
An observer may test a process by communicating with it and CCS was designed
to describe communication. We do, however, need some additional machinery for
indicating the success of a test. Let @ be a distinguished action symbol, not in A.
Wo use w as a special action which ‘reports success’. Now let ¢ be CRECy . .,
1.e., an observer is any term obtained from the augmented operator set.
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Example. The term o= aBwNIL is an observer for testing whether a process can
perform an a action followed by a B action. For example, the process p=
a(BNIL+ yNIL) passes this test because when o and p are put in communication,
success can be eventually reported:

o|p > BwNIL|(BNIL+ yNIL) > «NIL|NIL 2

CCS is ‘applicative’ in naturc and therefore the natural set of states is the set of
all closed terms. So let States = CREC; ,,, (which includes CRECx). Let the set
of successful states, Success, be {p|3p’.p = p’} and we have already defined the
predicate 1. So we view the existence of exposed unguarded recursions in a term
as saying that the term is underdefined.

A computation is any sequence of terms {p,|n =0} (finite or infinite) such that
(i) if p, is the final element in the sequence, then p, — p’ for no p’, and (ii) otherwise
Pn = P

Finally, for o€ 0, pe 2, let Comp(o, p) be the set of computations whose initial
element is the term (o|p).

These definitions immediately give three different preorders on 2, the set of closed
CCS-terms. To emphasise their import we translate Definition 1.2.3 into this setting:

(a) p way satisfy o if (o|p) =>* q for some q such that g =,

(b) p must satisfy o if whenever o|p = 0y|po— 0,|p, = - - - is a computation from
o|p, then (i) 3n =0 such that o, =, and (ii) o, | px? implies o,-— for some k'< k.

Notation. We have used g = as a shorthand for (39'.9 = ¢’) and q %> is used as a
shorthand for its negation. We will also use — to denote —. Let Dead ={p|p{, p =}
and Fail={p|p e Dead, p -:;}. From now on we will drop the occurrences of O when
this leads to no confusion. Thus =¢ will be rendered as =,. We will also use the
usual notation from [23] for CCS terms and their operational semantics. So the
precedence of the operators is given by

(S]>u>|>+

The occurrences of NIL will usually be omitted from a term. So a NIL+ BNIL will
be rendered as & + .

The relation => is defined by p = g if there exist p,, q, such that p —>* p, > q,5*g
and -> will sometimes be used for —*, for the sake of uniformity. Then S(p)=
() |p=>p} and Der, (p)={p’ |p = p'}. Note that p € Der, (p) If 5 is a sequence of
actlon% i.e., se A*, then = is defined in a natural way from => with = coinciding
with =, The predicates f!, | apply only to computations but in future we will also
apply them to terms. So pf' will mean that there is a computation whose initial
element is p and which is either infinite or contains a term q such that g7. We will
also often revert to graphical representations of terms [23] which use only the
operators u, +, NIL, (2.
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The preorders =; defined on closed terms may be extended in the usual way to
arbitrary terms by

t =, u if, for every closed substitution p, tp <; up.
Finally, let =¢ be the relations obtained by closing under contexts:
t =< u if, for every context C[ ], C[t]=, C[u].

These three relations = are the topics of the remainder of this paper and we close
this section with some remarks on them.

Many observers are useless from the point of view of distinguishing processes.
For example, if o contains no occurrence of w, then for every p, R(o, p) = {1}. So
these observers may be ignored. One can ask, in general, what is the smallest set
of observers which generates the preorders = ;. This question is discussed in Section
6.4. By and large, the preorders =, are well behaved. For example, they are preserved
by all the CCS operators except +.

As an example we prove the result for the composition operator |-

Proposition 2.2.1. p =, q implies p|r=,q|r.

Proof. The result follows from the following remarks:
i=3: For any o€ O, (p|r) may satisfy o if and only if p may satisfy (r|o).
i=2: For any o€ O, (p|r) must satisfy o if and only if p must satisfy (t]0).
i =1: Follows from the two previous cases. []

In general, =, i =1, 2, are not preserved by the operator +. For example, a = 7a
but A +a Z, A +7a: if o denotes Aw, then A + a must satisfy o whereas A + ra |0 —

a|Aw € Dead. However, =, and =$ coincide but for uniformity we will treat the
three cases together.

Definition 2.2.2. Let p=/ q if, for every closed term r, r+pc, r+q.

We extend =, to arbitrary terms as usual and let =; denote the related
equivalences.

Theorem 2.2.3. = uifand only if 1< u.

The only difficulty with this theorem is to prove that = is preserved by contexts
involving the recursion operator. This requires some technical concepts which we
have not yet developed. So we will postpone the proof until Section 4.1.

2.3

In this section we give some examples and counter-examples. These will mainly
concern only the equivalence =,, which in the sequel we will abbreviate by =.
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Example 2.3.1. Forany X, Y,

AX+AY =" AX+AY+A(X+Y).

Using the representation of terms by trees of [23] these may be described as

P q
The reader may like to convince him- (or her-)self that for any observer o, p may
satisfy o if and only if g may satisfy o0 and p must satisfy o if and only if g must

satisfy o. In the next section we will give a set of axioms for transforming terms
which preserve =" and we will show how to transform p into g.

Example 2.3.2. Forany X, Y, Z,

AXFAX+Y+2Z)="AX+A(X " Y)+A( X+ Y+ 2).

However, we can distinguish very similar pairs of trees.
Example 2.3.3. (a) p=Aa+A(a+B+y)=Aa+A(a+ B+ y)+AB=q. This follows
since p must satisfy A@w whereas q|Adw — B|aw € Dead.

(b) p=Aa+A(B+7y)=Aa+AB+A(B+7vy)=gq. since p must satisfy A(aw + jw)
whereas g|A(aw + Jw) — B|(dw + Jw) € Dead.

We now consider some examples with internal moves.

Example 2.3.4. Consider the two trees

24
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It turns out that p = q although it is quite difficult to see. Now consider the two trees

(14

These trees have a much simpler ‘7-structure’ and it is relatively easy to see that
they are not equivalent. For example, no matter what internal move ¢’ makes it can
always perform either a 8 or an a. However, p’ can make an internal move to
become yNIL which can perform neither. So g’ must satisfy (G + Bw) whereas p’
myist satisfy (dw + Bw).

The axioms given in the next section enable us to transform any term into a term

with a ‘7-structure’ similar to that of p’, qg'. We will see that p may be transformed
into p’ and q transformed into q'.

Example 2.3.5. (a) a(BX +8Y) =" aBX +aBY. In terms of trees:

These two examples show that =" tends to abstract away from ‘when choices are
made’.



Testing equivalences for processes

95

Example 2.3.6. aX +78Y =" r(aX +BY)+ 78Y.
a T T T
{x} B « P B

This waolll 2 Frt b ncen Af Anve mmaea ncafnil aviame With it 10 oy tenmalnens tanmas
LI WIII 111 1d\l UT VLIV Ul VUl RIVIV UdVIUL GAIVIIID. YVILI I "7V 1Ay uamidiunil Wi
so that they represent processes in which all choices are either purely external or
purely internal.

Example 2.3.7. (a) 7X +7Y =3 7X. In graphical terms this may be rendered as

T T -
= '
X

The presence of 7 on the left-hand side is important. For example, a + 8 23 7a.
This follows since « + B must satisfy Bw whereas 7a|Bw — a|Bw € Dead.
(b) AX+AY =7 A(X +Y). In graphical terms we have

£ 0

Thus the relation = ignores all the tree structure of terms. We will also see that
7X == X, so that =, is a very weak relation.

3. Proof systems

3.1

In this section we examine axiom systems for the three relations =; defined in
the previous section for CCS. The basic axioms are given in Table 1 (see p. 98).

Most of them are given in terms of *“=", and they are designed to be used in
conjunction with the following rules:

X =Y implies XY, Yc X
XcY, YEX implies X=Y.
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The axioms (Al)-(A4), (S1)-(S3), (Cl), (£21), (£22) are essentially taken from
[23, 13]. The summation notation used in (Cl) is justified by the axioms (A1)-(A4).
As in [23], Y..., t: denotes NIL. The notation ¢{+{2} is meant to denote that the
term {2 is opticnal as a summand. The axioms of particular interest are (N1)-(N4),
which replace the 7-laws of [23]. Indeed, these new axioms imply these 7-laws.
Let A, denote the set of axioms in Table | other than (El), (F1). Let A, be the
set A, toget’her with (E1) and A; be the set A, together with (F1). We write t =, u
(t =, u) if t=u (t = u) can be derived from the axioms A, These axioms are rather
low-level but we can derive many more complicated derived axioms. A list of some
important ones are given in Table 2 (see p. 99). The remainder of this section is

devoted to deriving these axioms aild re-examining the examples of the previous
section.

(DI)—1X+02c=X+0 from (N4).
Conversely
X+0cX+1X+0 from (022)
=r(X+X)+ 0 from (N2)
=X+ from (Al).
(D2)—We use induction on the size of I:
(i) [I|=1.
Then
uX =uX+uX from (Al)
=u(rX +7X) from (N1)
=urX from (Al).
(ii) I=Ju{o}.
Then

Y X+ TXn)

icJ

()
=p.(7' Y TX,~+'TX0)
icJ
( ,

using induction with u =7

i
J

=ul Y X,-)+;.¢X0 from (N1)
=Y uXi+uX,
icJ
using induction.
(D3)—p( X+ N+ 2cu(X+X)+ N from (22)
=uX +4 from (Al).
Conversely,
uX+2cuX+u(X+2)+0 from (022)
=u(r X+7(X+02))+ 1N from (N1)
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=u(t X+X+0)+ N from (D1)
cu(r(X+X)+02)+02 from (N2)
=u(tX+02)+0 from (A1)
=u(X+2)+0 from (D1).

(D4)—X+7¥Y=X+7Y+7Y from (Al)
crn(X+Y)+7Y from (N2).

Conversely,
(X+Y)+rYe X+Y+7Y from (N4)

cX+7Y

(DS5)—This is Example 2.3.1 of the previous section:

pX+uY =u(rX+17Y) from (N1)

= u(rX +7(X +7Y)) from (D4)

=u(t X+7(7(X+Y)+7Y)) from (D4)

=u(t X+7(X+Y)+7Y) from (N1)

=uX+u(X+Y)+uY from (D2).

(D6)—Example 2.3.2:
(W) p=17:

IX+1(X+Y+2Z)

=r(X+Y+Z+rX)+7(X+Y+2Z) from (D4)

=r(X+Y+Z+7 X+1(X+Y)+1(X+Y+2)
=7(r(X+Y+2)+ X+7(X+Y)+r(X+Y+2Z)

=71 X+Y+Z)+7X+7(X+Y)

from (N2), (Al).

from (D4), (Al)
from (D4), (Al)
from (D2), (Al).

(i) w=A:
AX+AMX+Y+2Z)=A(rX+T(K+Y+2Z)) from (N1)
=AM X+1(X+Y) '
+7(X+Y+2)) from (i)

=AX+AMX+Y)+AMX+Y+Z) from (N2).

Note that in (D5) to prove equality between terms which contain no occurrence of
7, we first introduce 7's, then use some 7-laws, and then eliminate 7. The same
method is used in (D6), where it is seen that (D2) can be used to translate 7
properties into A properties.
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Table 1. Basic axioms.

X+X=X (AD
X+Y=Y+X (A2)
XHY+Z)=(X+Y)+2Z (A3)
X+NIL=X (A4)
uX+uY=pu(rX+1Y) (N1)
X+7Ycr(X+Y) (N2)
pX+ 1 (uY+Z)=1(uX+pY+2Z) (N3)
XcX (N4)
NIL[S]= NIL (S1)
(X +Y)[S]= X[S]+ Y[S] (S2)
S(u)X[S] if S(u) defined
= S3
wX1S] {NIL otherwise (83)
Let t denote Y u,t;,{+ 2}, u denote Y yu;{+02}.
i<l joJ
tlu=2#f(talu)+2 '}f,-(‘l“j)“’ Y T(‘il“;)
ie 1 g d (TR S
+{2|2 is a summand of t or u} (cn
Q[Ss]=n (£21)
nNcX (£22)
t[rec x.t/ x]=rec x.t (REC1)
X+rY¥c X (El)
XcrX+7Y (F1)
(D7)—An instance of (D2).
(D8)—X+7( X+ YV)=7(X+X+Y)+r(X+Y) from (D4)
=7(X+Y) from (Al).
(DY) —u(X+7Y)+uY=u(r(X+7Y)+7Y) from (N1)
=u(r(7(X+ Y)+7Y)+7Y) from (D4)

=u(r(X+Y)+7Y+7Y)

from (N1)
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Table 2. Derivable axioms.

X+0=X+0 (D1)

ﬂ(_Z' 7X,.) = _Z’ uX;, I#0 (D2)

wX+0=pu(X+02)+0 (D3)

X+1¥Y=7(X+Y)+7Y (D4)

pX+pY=pX+uY+u(X+Y) (D5)

X +u(X+Y+Z)=uX+u(X+Y)+pu(X+Y+2) (D6)

wutX = uX (D7)

X+ X+Y)=7(X+Y) (D8)

w{X++uY=u(X+7Y) (D9)

.Q+p,(z X-.‘-.Q)=.Q+ wX;, I#0 (D10)

iel iel

X+02=0 (E2)

X+rYc X (E3)

X+02=X (F2)
=u(r(X+Y)+7Y) from (A1)
=u(X+17Y) from (D4).

These last three derived rules are the 7-laws from [15, 23].
(D10)—We use induction on the size of I If |I|=1, then (D10) coincides with
(D3). Otherwise we may write Y., X; as Xo+ Y where Y=Y, , X;. Then

iel

N+Y uXi+uXe=2+u(Y+02)+uX, by induction
ield
=0+ u(r(Y+02)+1X,) from (N1)
=+u(Y+ X,+02) from (D1).

(E2)—This is derived from the set of axioms A,.

2= X + 4 is an instance of (£22).

Conversely,
X+ X+1X+ 2 from (£22)
=1X+ 7 from (D8), (Al)

=1 from (E1).
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(E3)—This is again derived from A,.
tTX+rY=mX+7Y fron. (D7)
=X from (El).
(F2)—A derived rule from A,.
X+0c X follows from (022), (Al).

Conversely,
XX+ 70 from (F1)
=X+ from (N4).

Most of the examples of the previous section have already been covered by these
derivations. We examine two exceptions.

Example 3.1.1. Derivable in A;:

afX +aBY = a(BX +78Y) from (N1)
=a(BX+7BX +BY +78Y) from (D8)
=a(r(BX+BY)+7(BX+BY)) from (N3) twice
=at(BX+BY) from (Al)
=a(BX+BY) from (D7)
=aB(7X+7Y) from (N1).

Finally, we examine the set of axioms A, in detail:
XcrX+1X from (F1)
=7X from (Al).

Together with (Ti4) this shows that X = 7X is a derived axiom. Using this in (N1)
we obtain uX +uY =u(X+Y)
Indeed the axioms (N1)-(N4), (F1) may be replaced by

X=7X
uX+uY=u(X+Y)
XzX+Y.

However, our presentation has the advantage that it shows the duality between the
two sysiems A, and A, and how they are obtained from (Al).

32

In this section we examine complete proof systems.
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In [23] it was pointed out that Turing machines can be simulated in pure CCS.
Moreo er, this simulation may be carried out in such a way that a Turing machine
TM will diverge on a blank input tape if and only if its translation [TM] is such
that [TM] =/ £, i =1, 2 or 3. Consequently, there cannot be any recursively enumer-
able complete axiomatisation of any of the relations =;, i=1, 2, 3. We will give
complete systems which are not recursively enumerable. These are of considerable
interest in themselves. For example, they show that the axioms A; are complete for
finite terms and if we add a sufficiently powerful form of induction, we get complete-
ness for arbitrary {closed) terms. It is the required form oi'induction which introduces
the nonrecursive enumerability.

An arbitrary term r may be considered as a finite notation for an infinite tree.
This tree is obtained by ‘unwinding’ the recursive terms via

rec x.u — ufrec x.u/x]

We are interested in the set of finite trees which approximate this unwinding of .
These may be defined in the following way: Let < be the least relation between
terms which satisfies (£22), (RECI) and

(1) t,<u, 0<i<k implies op(t,,..., ) <op(u,,..., u.) for every ope 3,,

(2) t<u,

(3) t<u u<rimplies t<r.

The relation < will be referred to as the lcast pre-congruence (w.r.t. 2) generated
by the axioms (£22), (REC1). Let FIN(1)={d|d € FRECy |d < t}.

These sets of finite approximations have been studied at length in [11, 10, 4]. For
example, FIN(¢) is directed with respect to the relation < [11]. The unwindings of
terms may be defined in the following way:

(i) °=0,
(ii) (rec x.t)""'=1tl(rec x.1)"/x],

(iii) op(fy,.... )" ' =op(ry*,. .., (1),

Lemma 3.2.1. If d € FIN(t), then there exists an n=0 such that d <t".

Proof. For the proof, see [11].- [

We are now ready to give the proof system. This is given in terms of a set of rules
of the form
S
S
where S, S’ are sets of statements. Such a rule is to be interpreted as: if every
statement in S, the set of premises, can be derived, then any staternent in S, the
set of conclusions, may be derived.
(R1) (Equality)

t=u ICu, uct
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(R2) (Fartial Order)

(R3) (Substitutivity)

tCu . t=u

(ii)

Ip=up rec x.t1=rec x.u

(i)

Lcu, l<sisk
op(t,,...,h)=op(u,. ..., u)

(R4) (General Induction)

(ii1)

for every ope X,

dcu,Vd e FIN(t)

tZSu

We write A~ tcu if t=u can be derived from the set of axioms A using the
rules (R1)-(R4). Note that (R4) is an infinitary rule since it has an infinite number
of premises. Recursively enumerable proof systems can be obtained by replacing it
by a finitary form of induction, such as Fixpoint Induction or Scott Induction [28].
indeed, these may be derived from (R4). As a simple example we derive Fixpoint
induction:

tlu/x]cu
rec x.rcu

(FP)

Lemma 3.2.2. If A contains the axioms (22), (REC1), then (FP) is a derived rule in
the system with rules (R1)-(R4) and axioms A.

Proof. Let r denote rec x.r. We first show that A+ r"c u for every n=0.
(i) n=0: A~ r°cu follows from (£22).
(i) n=k+1: We assume A+ rfcu.
Then

Ar =gt x]
ctfu/x] by repeated application of (R3) and induction on k
Su from the premises.

Also note that if 1 < u, then A~ 1= u since A contains the axioms which generate <.
Now let d € FIN(r). Then, from Lemma 3.2.1, A+ d < r" for some n and therefore

A+ dzu. Since this is true for every d € FIN(r), we may apply (R4) to obtain
Av-rcu O

Lemma 3.2.3. If A contains the axioms ({22), (REC1), then the rule (R3)(ii) is
derivable. '
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Proof. We assume that A+ t=u. Let p be the substitution defined by
p(x)=recx.u
py)=y, y#x
Then applying the first part of (R3) we get A+ tp=up, i.e.,
A+ t[rec x.u/x]= u[rec x.u/x]
crec x.u, using (RECI).

Now applying (FP) we get A+ rec x.t= rec x.u. [

We have, however, decided to include this rule as part of (R3) for the sake of clarity.
We now state the main results of this paper.

Theorem 3.24. Fori=1,2,3, A - tcu (t=u) implies t =5 u (1 =} u).
Theorem 3.2.5. Fori=1, 2, 3, and closed terms p, q, p=; q implies A, p=q.

The next section is entirtly devoted to the proofs of these results.

4. Proof of completeness theorems
4.1

In this section we derive the soundness results, i.e., Theorem 3.2.4. The main
difficulty lies in justifying (R4) and to do so we need some lemmas relating the
behaviour of terms to the behaviour of their finite approximants. Before tackling
this problem we concentrate on proving the axioms and the remainder of the rules

sound. We write 1 <, u if 1= u can be derived from the set of axioms A; using rules
(R1), (R2) and (R3)(i), (iii).

Lemma 4.1.1. (a) p=; q implies S(p) < S(q).
(b) pl, p=: qimplies (i) S(q)< S(p),
(ii) q = impliesp —.

Proof. (a) Obvious.
(b) (i) Suppose A € S(q), A £ S(p). Then p must satisfy (A + 7o) whereas ql(x+
rw) — q'|NIL for some gq’, which can never lead to a successful state.
(ii) Suppose g —, p +. Then, for any A not appearing in p or g, A +p must
satisfy Aw whereas A + g|Aw — g'|Aw, which again can never lead to a successful
state. [

Lemma 4.1.2. If ope X, ;= u, 1<j<k, then op(t,,..., 1) S, op(uy,..., U).
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Proof. It is sufficient to prove it for closed terms. We examine each of the operators
in turn, the cases NIL, £ being trivial.

(a) peiq=>plrsiqlni=1,2,3.

(i=1) It is sufficient to show r'+(p|r) may satisfy o implies r+(q|r)
may satisfy o.

From the hypothesis (r'+(p|r))|o —=* p,, p, € Success. If this computation does
not involve the subterm p|r, then we have immediately r'+(q|r)|o—* p} for some
p\ e Success. Otherwise, (p|r)|o—* p,. Therefore, p|(r|o) —* p| for some pje
Success. Since p =, g, ql(r|0) —* q| € Success since (r|o) is an observer. There-
fore, (q|r)|o —* q, for some g, € Success.

(i=2) It is sufficient to show r'+(p|r) must satisfy o implies r'+q|r must
satisfy ¢.

We distinguish two cases.

Case 1. p|r must satisfy o.

This implies p must satisfy r|o and, since p =, g, q must satisfy r|o. This implies
q|r must satisfy o. It follows that r'+ gq|r must satisfy o since every computation
from (r'+ q|r)|o which starts with an action or communication from r' is also a
computation from (r'+p|r)|o.

Case 2. —1p|r must satlsfy 0.

If p|r >, then r+ p|r must satisfy o implies p|r must satisfy 0. So we may assume
plr<>. Therefore, A + p must satisfy Aw +r where A does not appear in p, r. Since
p = g, A+ g must satisfy Aw +r. i.e., g|r-+. Now by a simple cas: analysis on r'
we can establish that r'+ q|r must satisfy o.

(i=1) Follows from the previous two cases.

(b) pc, g implies up =, uq, i=1, 2, 3.

We show the case i =2 only. The case i =3 is similar and the case i =1 follows as
usual.

It is sufficient to prove up must satisfy o implies uq must satisfy o.

(1) p = 7. Inthis case p must satisfy 0 and, since p , q, g must satisfy o. Therefore,

pq must satisfy o.

(i1) u = A. In this case, p must satisfy o' for 0 "such that o SN o.Since p=.q. q
must satisfy o'. By analysing whether or not o =0 ' it is sufficient to show that
Ag must satlsfy o.

(¢) p=, g implies p[S]=, 4[S]. i =1, 2, 3. We show the case i =3 only.

It 1s s.ufﬁu»m to show p[S] may satisfy o implies q[S] may satisfy o. The partial.
permutation is defined on .1 only but we may extend it by S(w) = w. Define $' by
S(u)=pu"if S(u')=u. Then §' is well defined and p[S] may satisfy o if and only
i{ p may satisfy o[S’]. The result now follow» by applving the fact that p=, q.

(d) pe. g implies p+rc, g+ i=1,2, 3.

(i=3) It is necessary to show r’'—p —r may satisfy o implies r + g+ r may
satisfy o.
This 1s left to the reader.
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(i=2) We show r'+p+r must satisfy o implies r'+q+r must satisfy o. If
plo =, then, from Lemma 4.1.1(b), q|o+> and it immediately follows that
r'+q+r must satisfy o. Otherwise we have r'+p must satisfy o. Since p </ g,
r'+ q must satisfy o and therefore r'+ g + r must satisfy o.

(i=1) Follows from the previous two cases. [

Note that the proof of this lemma was facilitated by the generality of the observers.

Lemma 4.1.3. If Der,(p)=Der,(q) for every p€ A, and p| if and only if q|, then
P=igi=123,

The proof is left to the reader. '

Lemma 4.1.4. If t—u (t = u) is an instance of an axiom from A, i =1, 2 er 3, then
ts] u (t=; u).

Proof. It is sufficient to consider closed terms. If it is an instance of (Al)-(A4),
(S1)-(S3), (CN, . 21) or (REC1), then we can apply the previous lemma. Consider
an instance of the axiom (E2), 7p + rg= p. and supposc 7p+ 7q must satisfy o. It
follows that 7p must satisfy o and therefore p must satisfy 0. The soundness of (FI)
is similar. So the only remaining axioms are (N1)-(N4).

(N1) Let p, g denote r+ up, +up,, r+ u(rp,+ 7p,) respectively. Then it is easy
to see that 3ce Comp(o, p) sit. cft if and only if 3c'e Complo, g) s.t. 'l and
o|p = if and only if o|q =>. This is sufficient to establish that p =, q.

(N2) Let p, q denote r+p,+7p., r+7(p,+p,). Let ce Comp(o, q). Then either
¢'e Comp(o, p) where ¢’ differs from ¢ in at most the first two terms or else ¢ is of
the form (o|q,0|p,+p.). Then (o|p, o|p.) e Comp(o, p) and these remarks are
sufficient to establish that p=, q.

(N3) Let p, q denote r'+pup,+ T(wps+r), Ftr(upitppt r) respectively. It is
trivial to show that o|p =>if and only if 0|g = and Comp(o, p) contains an infinite
computation if and only 1f Compl(o, p) does. Now suppose o|p = 5 where sT or
S€ Fcul Then either o] q = s or else s is of the form o | (up>+r). In the latter case,
0lq = o'|(up,+pp:+r).ie., LeR(o, p). A similar analysis will show that o|q =,
s? o s € Fail implies Le R(o, p). It follows that p =, g.

(N4) Similar to (N2). [

Proposition 4.1.5. (a) t =, u implies t =
(b) t =, u implies t =, u.

Proof. The proof follows from the previous lemma and Lemma 4.1.2. The soundness
of rules (R1), (R2) is immediate. []

We now concentrate on justifying (R4).
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Lemma 4.1.6. p<gq impliesp=/ q.

Proof. From the previous proposition, = satisfies (£22) and (REC1) and the three
implications in the definition of <. Since < is the least such relation, it follows that
p<gq implies pc; q. [

Lemma 4.1.7
(a) pL q, d<q implies Je<p such that e = d.
(b) p5 g, p<p' implies p'> q' for some q' such that g<q'.

Proof. In each case the proof is by induction on the proof of p=¢q. [
Lemma 4.1.8. d =, p implies that, for some ec FIN(p), d &, e.

Proof. By induction on the number of times (RECI) is used in the proof of
dc,p. O

Proposition 4.1.9. (a) p may satisfy o implies d may satisfy o for some d € FIN(p).
(b) p must satisfy o implies d must satisfy o for some d € FIN(p).

Proof. (a) From the hypothesis, p|o —* r = r’. Since 22 < r', we may apply Lemma
4.1.7(a) to find some e < r such that e =. By repeated application of this lemma we
have some d' < p|o such that d'—* e. Now d' must be of the feria d,|d,, where
d,<p, d,<o. By applying part (b) of this lemma sufficiently often we oubtain
di|o—* r s i d, may satisfy o.

(b) The proof is easy using the notion of head normal form. Since this has yet

to be done, we relegate the proof to Appendix A. []

Proposition 4.1.10. If d =, q for every d < FIN(p), then p S, q.
Proof. Apply the previous proposition. []
Corollary 4.1.11. Fori=1,2,3, A, 1<u (t=u) implies t < u (1 =, u).

Proof. It is a simple matter to show that the previous propositicn justifies (R4) for
=, for closed terms and therefore open terms. The remaining rules were treated in
Proposition 4.1.5 apart from (R3)(ii) which can be derived from (R4) as was peinted
out in Lemma 3.2.3. [

Corollary 4.1.12 (Theorem 2.2.3). t=, uifand only if t <! u.

Proov. If 1<} u, then obviously r =, u. Conversely, suppose 1 =, u. Then for any
context (' ] we can apply (R3) to prove that C[t]=; C[u). This can be proven
by structural induction on C[ ]. It follows that C[t]=, C[u]. Therefore, r={u. O
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Corollary 4.1.13 (Theorem 3.24). Fori=1,2,3, A;-tcu (t=u) implies t = u,

4.2

The proof of completeness depends very heavily on the existence of normal forms.
We consider four kinds and this section is devoted entirely to them.

If 2 is a set of sets let A(¥)={x|xe X, for some se ¥}. £ implies a set S if
there exists a set §’'e £ such that §'c S< A(¥). £ is said to be saturated if S€¢ £

whenever % implies S. For example, {{a}, {q, b}} is saturated whereas {{a}, {b}} is
not. We only use saturated ¥ which are finite and contain finite sets. For such £

being saturated is equivalent to the following two conditions:
() X, Ye2£implies Xu Ye Y,

(ii) X, Ye¥ XcZcY implies Ze %

Definition 4.2.1 (normal form (nf)). (i) If &£ is a nonempty finite saturat:d set of
finite subsets of AU 4, then ¥, , 7Y, Ap, is in mnf provided each term p, is
(a) in 7nf, or
(b) in Anf and p, 1.
(i) 2, Ap.{*+ 12} is in Anf if each term p, satisfies (a) or (b) above, and
(c) wheiicver 2 is a summand it is also a summand of each p,.
(111} p is in normal form (nf) if it is in mf or Anf.

Note that from the definition if p is a nf and pfl, then p is a Anf. Also every
normal form is a finite term and if p is a normal form and p —* L p', then p’ is
also a normal form.

Examples. (i) A(a+B)+ 2 is not in nf because (c) is not satisfied and the subterm
(o +B) is not in mf.

(ii) TA.7a+7A,78 is not in nf because {{A }{A.}} is not saturated. There is no
subterm corresponding to the set of labels K = {A,, A,}. The normal form correspond-
ing to this term will be 7A,7a + 7A, 78 + 7(A,7a + A27B).

(iii) rasB+ t(ary+ A7B) is not in normal form. If » is a normal form and for
any A, p—* > p,, p—>* 25 p,, then p, and p, must be identical. This example violates
this requirement. Because of this property we can use a suggestive notation: for a
normal form p we may let p, denote the unique subterm (if it exists) such that
p—* pa.

fiv) NIL is a Anf. In the definition we merely let L=. Similarly, TNIL is a mf
and 2 is a Anf. Note that here we have again used the brackets { } to denote that
2 is an optional summand in a Anf.

Definition 4.2.2 (strong normal form (snf)). (i) 2 is a snf.
(ii) if p is a nf other than (2, then p is a saf whenever
(a) each p, is a snf, ‘ ‘
(b) p does not contain 2 as a summand.
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If we look upon terms as trees, then a snf is a normal form which only contains
0 as a leaf. We will use the notation 7snf, Asnf in the obvious way.

Definition 4.2.3 (weak normal form (wnf)). (i) £ is a wnf.
(ii) if p; is a wnf for each A€ L, then Y, _, Ap, + {2 is a wnf.

Later we will see that a wnf corre~sponds to a prefix-closed set of strings from 4 U A.

Definition 4.2.4 (head normal form (hnf)). (i) ¥, , Apx is a Ahnf.
(ii) ¥, , 7Y ... Apx is a 7hnf if the set £ is saturated and nonempty.

Note that if p is a hnf, then pJ}. So, for example, 2 is not a hnf. Our first task
is to show that every finitc closed term can be transformed to a normal form using
the axioms from A,.

Lemma 4.2.5. If p in nf, then there exists a Anf n such tha: p+Q =, n and n?.

Proof. (a) Suppose p =), ., 7Y, AP
Then

pt02 =% 7Y AMps+2)+Q2 using(D3).
Le / Ae Ll

By induction there exists a Anf n, such that p, + 2 =, n,. Therefore,

ptQ2 =% 3% An,+12
| Ay L

=, ¥ An,+ using (D1).

Ael

(b) The proof for Anf is similar. [

Lemma 4.2.6. If p, q are in nf, then there exists a normal form n such that ™+ 71q =, N
Moreover, n is a mnf or else n1}.

Proof. We use induction on the size of p and ¢. There are four cases depending on
what kind of nf p and q are.

Case (i) pis} 7p, q is ¥ 7q;. Then 7p+7q =, Y 7p,+3 7q; using (D2).

Let r denote the right-hand side. Now r may not be in normal form for various
reasons. For example, it may be that r —* N r, r—* LN r.» such that r,, r, are not
syntactically identical. Let N(r) be the number of such pairs. We show, by induction
on N(r) that r can be transformed into an r’ such that N(r') =§. )
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If ry, r, is such a pair, then the axioms (Al)-(A4) may be used to rewrite r as
follows:

£

r=,7(Ar,+r))+r(Ar,+r5)+r
= An+(An+r)+An+ r(Ary+ry)+r using (D8)
= 7An+ AR+ )+ r(Ar AR+ ) +r using (N3) twice
=, mA(Tr + 7))+ r)+ (A (7ry+ 7))+ r)+ ' using (N1) twice.

Now, by induction, 7r, - 7r; has a normal form n of the required form. Therefore
r=,r7(An+r))+r(An+ry)+r.

If s denotes the right-hand side, then N/s) < N(r). So by induction we may now
assume that r is such that N(r)=0. Therefore, r may now be written as
Y1+ TEa 1, Ana. Moreover, each r, is in mf or is in Anf and diverges. So if this
term is not in nf, it must be that ¥ is not saturated. Let K be suchthat L, < K < A(.%).
We show by induction on the size of K that r =, r+73,_. An,.

If K = L; then the claim is immediate. Otherwise, K may be written as K, U {A,},
Ao belonging to some L, € . We may assume r =, r+73,_ x, An, and let r, denote
Lok, Ay Then

ro:, r+ar+7(r'+2aen,) using (Al)-(A4)
=,r+7r +7(r'+Aen, )+ 7(ri+r'+A¢n,) using (D5)
=, r+7r+7(r' -+ Aon, )+ 7(r '+ Aon, )+ 7(r + Aon,)  using (D6)
=,r+7(r,+Aon,) asrequired.

Therefore, by induction we may assume that

r=,r+1 Y An, foreverysuch K.
A« K
Now by systematically applying this result, r may be transformed into a term of
the form },., 7%, ., An, where & is saturated, and this term is in mf.
Case (ii) pisY A;p,, g is ¥ 7q. Then 7p+ rq =, 7p + q using (D2) and we proceed
as in part (i).
Case (iii) pis ¥ A,p, q is ¥ A,q, Then 7p+ 7q is an instance of (i).
Case (iv) pis Y, ,Ap+ Q. Then 7p+1q=p+q by (DI), (D3).
From Lemma 4.2.5 there exists a Anf n suchthatg+ 2 =, n.Letnbe 2+, _x An,.
Then
ptn=0+ Y Ap,+ ¥ Anm+ Y A(pyat7q,) using(NI).
K

Acl/ AeK/L Ae LK

By induction there exists a normal form r such that r, =, 7p, + 79,. Therefore,

ptn=,0+ Y Ap+2)+ Y A(n,+02)

A~ LK AcK/L

+ Y '/\(r,\+.Q) using (D3).

Ac Lo K

~
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We now apply Lemma 4.2.5 to obtain the required normal form. O
Lemma 4.2.7. If p, q are in nf, then there exists a nf n such that p+q =, n.

Proof. We use induction on the size of p, g. There are four cases depending on the
form of p, q.

Case (a) pis Y, ., Apy+ 12 Then p +q =, 7p+ 74, using (D1), and we may apply
Lemma 4.2.6.

Case (b) p and q are in mf. Then p+¢q =, 7p+ 79, using (D2) and we may again
apply Lemma 4.2.6.

Case (c) pis Y, ., AP q is X,., 7¢. Then p+q =, 7(p+q,)+ 7q using (D4).

By induction, p+ q, may be transformed into a norma! form »n and, by Lemma
4.2.6, Tn+ 7q may be transformed into a normal form.

Case (d) The only remaining case is when pis Y ,., Apy, 4 is X, x Aqx. Then

pra=, X Apt XL Aq+ YL Alspyt7q,) using (NI).

Ae LN K AcK\ L AcKA~L

From the previous lemma each 7p, + 7¢q, can be transformed into a nf of the required
form. [

Corollary 4.28. If p, are in nf, | <i<k, then there exists a nf n such that
Y. .-x 7P, =1 n, and n is either in taf or else n{ and is in Anf.

Proof. The proof follows by induction on k.
Basis. k =1.If p,isin Anfand p,{}, then 7p, is already in mf. Otherwise, p, =, p\,

using {D1) or (D2).
Induction Step. k=m+1.
o= L Tt

k l<ism

71

-
=, n,+rp;, byinduction.
If n, is in mf, we can apply Lemma 4.2.6. Otherwise, n,+ 7p, =, n,+ p;, using
(D1) and we may apply Lemma 4.2.7. []
Corollary4.2.9. Ifp.areinnf 1< i<k, thenthereexistsanfr suchthaty,, .., p, =, n

Proof. The proof fcliows by induction on k. [

Proposition 4.2.10. For every finite closed term d there exists a normal form nf(d)
such that d =, nf{d).

Proof. By applying rules {S1)-(S3), (C1) and (£21) we may eliminate all occurrences
of { and [S]. So without loss of generality we may assume that d does not contain
these operators and may be written as ¥, A, d, +Y

et

o d Te,)'
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Now by induction we may assume all d, ¢; are in nf. Using (D7) if necessary
each Ad; may be considered to be in nf. So by Corollary 4.2.9 there exists a normal
form n, such that n, =, ¥, _, Ad. Similarly by Corollary 4.2.8 there exists a normal

ferm n_such that n, =, Y ,_, 7e,. Therefore apply Corollary 4.2.9 again and we get
a norm+! form n such that

d=,n+n=,n 0O

This proposition enables us to derive similar results on strong and weak normal
forms.

Propositiorn 4.2.11. For every finite closed term d there exists a strong normal form
snf(d) such that d =, snf(d).

Proof. By the previous proposition we may assume that d is in normal form.

(a) d is ¥ Ad\{+0}. If 2 is a summand, then d =, 2 from (E2). Otherwise, by
induction we may assume that each d, is in snf. Then, using (D7), d =, Y {Ad, |d,
in 7snf or d, 1} +¥ {A7d, |d, is in Anf and d,{}.

(b) If d is in mf, the proof is similar. [

Propositir: 4.2.12. For every finite closed term d there exists a weak normal form w
such thard + 02 =, w.

Proof. We may assume 4 is in nf.
(a) d is ¥ Ad,{+£2}. Then
d+Q2 =Y Ad, + 12
= Y Ad,+2)+ N2 using (D3).

By induction each (d, + £2) has a weak normal form and the result thus follows.
(b)y disy, , 7Y, . Ad, Then

d+Q= Y d,+Q using(DI).

Ac ALY)

We may now apply part (a). O]

Corollary 4.2.13. For every finite closed term d there exists a weak normal form wnf(d)
such that d =, waf(d).

Proof. Apply the previous proposition and (F2). (]

Weak normal forms may also be considered as prefix-closed sets of strings from
Au A If se(Au d)* then we also use s to denote its representation as a term: the
representation of ¢ the empty string is {2 and that of As is At where 1 is the term
representing s.
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Lemma 4.2.14. If d is a weak normal form, then there exists a prefix-closed set of
strings s, \<i<n, such thatd =, 2+Y s,

Proof. We use induction on d.

(1) d is 2. Immediate.

(i) dis ¥,., Ad, + . By induction d, =, 2+Y, , s, where {s,|i€ I,} is prefix-
closed. Therefore,

i= £ a(3 ara)en

ie I,

=Y A(Z s,-+(2)+ Y A2+ 0

Ac L icly Ae L
since A(X+02) =, AM(X+02)+ A2
= Y ¥ A5+ Y A+ 02 from(D10). O
Al

Ae Ll ic 1y

It remains to consider head normal forms which unfortunately niust be treated
in much the same way as normal forms. Rather than giving the entire proofs of the
lemmas we merely state the required results.

Lemma 4.2.15. If p, are in head normal form, | < i < k, then there exist head normal
forms h,, h, such that

Y o=, hy, Y opo=h
-k t- i~k

Proof. Similar to the proofs of Lemmas 4.2.6-4.2.7 and Corollaries 4.2.8-4.29. (]

In the next proposition we use p = ¢ to denote that **p = q" can be derived from
the axioms A, using all the rules (R1)-(R4). Unfortunately, =, is not sufficient
since we need to be able to rewrite recx.r as ([recx.t/x]. We have
t{rec x.1/x]=, rec x.1 but not the converse. However, rec X1 = t[rec x.1/x).

Proposition 4.2.16. If pl}. then there exists a head normal form hnf (p) such that
p =hnf( p).

Proof. We use induction on the size of Der.(p). So we may assume the result for
every p’ such that p— p'. If pJ. then p| and we now use induction to prove this.
(1) Ap’. By definition this is in hnf.
(i1) 7p’. Then p’{. By induction p’ has a hnf, hnf( p’). If hnf(p’) is in Ahnf, then
hnf( p) 1s in 7hnf. Otherwise

p = vhnf(p’)
~hnf(p’)  using (D2).
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(iii) p,+p,. Then p,|, p,l and so by induction both hnf(p,) and hnf( p,) exist.
Therefore

P+ p>=hnf(p,)+hnf( p,)
=h for some hnf h, using the previous lemma.

(iv) p’[S]. Then p’] and so by induction hnf( p') exists. We may now use (S1)-(S3)
to transform hnf( p')[S] into hnf.

(v) rec x.i. Then t[rec x.t/x]{ Ind by induction there exists a hnf h such that
h = t[rec x.t/x]. The result now . ows since rec x.t = t[rec x.t/x].

(vi) pi|p,. Then p,{, p»l and by induction hnf( p,), hnf( p,) exist. There are three
cases depending on their form.

(a) hnf(p,) is Y Ap,, hnf(p,) =Y yq,. Then applying (C1) we get

P:=Z A(p, ihnf(Pz))+Z Y(hnf(Pl)lqy)+ Z_ T(Pa I‘h)-

=¥

4

Since p,|p.— pr|q, whenever A =7 we may assume by induction that each of
these terms have hnfs. The result now follows from Lemma 4.2.14.

(b) hnf(p,) is in Ahnf, hnf(p,) is in thnf.

(c) Both hnt( n,) and hnf( p,) are in 7hnf.
These cases are similar to (a). O

4.3

In this section we apply the normal form results to prove completeness of the
proof systems. We first need some lemmas.

Lemma 4.3.1. (a) If p=.,qand p—, then p=; g. !
(b) Ifp=.qand pft, thenpc/ q. |

Proof. Now p =, q implies p =; g so the only nontrivial case is i =2.
(a) r+ p must satisfy 0 => p must satisfy o since p —
=> q must satisfy o.
It follows by a case analysis on whether r — or not that r+ g must satisfy o.
(b) Trivial. (1

Lemma 4.3.2. If'd is in nf and p in hnf, then d =, p implies d, =, p, whenever both d,
aad p, exist.

Proof. (a) i=3.
d, may satisfy o
=> d may satisfy Ao,
= p may satisfy Ao
=> p, may satisfy o.
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(b) i=2.
d, must satisfy o
=> d must satisfy Ao
=> p must satisfy Ao
=> p, must satisfy o.
(c) i=1. Follows from (a) and (b). O

Lemma 4.3.3. (a) df} impliesd =, d+ ().

(b) p>> p' implies p =, p+pup'.

(c) p=>p impliesp+0 =, p+s+1D.
Proof. (a) We may assume d is in nf. If d1}, then d must have a Anf and the result
is immediate. )

(b) By induction on the proof that p = p'. The proof may be found in [23], using
the axioms (D7), (D8), (D9).

(¢) By induction on the length of the derivation p rf:>p
(i) s=e. Immediate
(i1) s=As’. There are two cases: .

Case 1. p-= p' for some p’ such that p’ =. Then

p+Q =, p+Ap'+Q using(b)
=, p+A(p +0Q)+ 02 using (D3)
=, p+A(p'+02+s')+4£ byinduction
=, p+Ap'+As’+ £ using (D10)
=, p+As'+ L

Case 2. p—= p’ for some p' such that p':—i>. By induction, p'+Q =, p'+ 2 +s.
Therefore

p+!2=,p¥7p’+~!2 using (b)
=, p+r(p'+02)+42 using (D3)
= pt+r(p'+02+5)+ 42 byinduction
=, p+7(p' +02+s)+s+8 using (DY)
=, pts+id C]

Definition 4.3.4. (a) If p, g are in hnf, let p <, g if (p, ¢) satisfies any one of the
conditions below:
(i pisd ., Apy gis ), ; Aq.
i) pisY, , 78, Apngis Y TS .« Aqy, Where < Y.
(i) pis as in (i), g is Y., . Agy, where K¢ . '
(b) If p, g are in hnf, let p <, ¢ if, in addition to satisfying part (a), S(p) < S(q).
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Note that if p <, q and (p, q) satisfy condition (a)(ii), then A(¥) = A(Z). If they
satisfy condition (a)(iii), we have that K = A(%).

Lemma 4.35. Ifp,qarein hnfand p= q, then p <,q for i=1 or 2.

Proof. (a) i=2. From Lemma 4.1.1, S(p) = S(q).
(i) Suppose both p, g are in Ahnf and p->. Then p must satisfy Aw. So g must

satisfy Ao, ie., g 2>, Therefore S(p)=S(q) and (p, q) satisfies condition (i).

(11) Suppose both p, g are in 7hnf as in condition (ii). We show % < %. Because
Z is saturated, it is sufficient to show that K € % implies L< K for some Le %.

Suppose on the contrary that there exists a K € % such that Lc K, forno Le %.
Let o be the observer ¥ {Aw|A € S(p), A€ K,}. Then p must satisfy o whereas
q| o —* re Fail which contradicts p =, q. Since £ is saturated, it follows that ¥ < .

(iii) Suppose p, q are as in condition (iii) and suppose K # A(¥’) for any ¥'c &.
Then (VLe £)(Ire L) A ¢ K).

Let o be the observer ¥ {Aw|A € S(p), A€ K}. Then p must satisfy o whereas
q|o € Fail. This is a contradiction.

Now from Lemma 4.1.1(b) if p=3 q and p is in Anf, then q is alsu in Anf. It
therefore follows that cases (i), (ii) and (iii) are exhaustive and p <, q.

(b) i="'.Since p =, q implies p =, q, { p, q) satisfies the conditions from part (a).
Since p £, q implies p =; g, it follows trom Lemma 4.1.1 that S(p)< S(q). O

Lemma 4.3.6. If p, q are in hnf, p <, q, and p, =, q, for every A € S(q), then p =, g,
i=1,2.

Proof. (a) i=1.Thensince S(p)=S(q), p=, r, where r denotes p[q,/p, A € S(p)].
Now since p <, q, (p, q9) must satisfy either (i), (ii) or (iii) of Definition 4.3.4(a).
(i) Then ris q.
(ii) Then

rcigt T Y Ag,
Lo /X Ael

,9+ Y Aqy, K=A(%/¥K), using(N4).
Ac K

Now each A in K must appear in a summand of g and therefore we may apply
(D8) to prove

g+ L Agy =14

A K
(i) Let & =¥/ ¥, where ¥'={K}. Then
r=, L TY At Y 7Y Ag,

Le ¥ A€l LeX Ael

c, X TY Agyt Y Aq, K'=A(¥X) using (N4)

Le? Ael AeK’



116 R. de Nicola, M.C.B. Hennessy

=, ¥ 7Y Ag, using (D8) since K'c A(Z")

Lc?'  AclL

£, Y  Aqy=4gq using(N4).
Ne ACYT)
(b) i=2. Similar to part (a). When (p, q) satisfy case (ii) of Definition 4.3.4(b)
we apply (E3). If they satisfy case (iii), we apply (E3) and then (N4). J

We are now ready to prove the main part of the completeness theorem.
Proposition 4.3.7. d = p implies A,—-dcp,i=1,2,3.

Proof. The proof is divided into three parts, according to the value of i. We use
induction on the size of d.

(a) i=3. From Corollary 4.2.13 we may assume d is in wnf. We will then show
that d =, p. In fact, d can be rewritten as {2 +} s, by repeated use of (D10) and so
it will be sufficient to prove s;+ 2+ p =, p+ {2 for every j. However, it is relatively
easy to see that p =5 and therefore we need only to apply Lemma 4.3.3(c).

(b) i=2. From Proposition 4.2.11 we may assume d is in snf. If d{}, then from
Lemma 4.3.3(a) and (E2), d =, 2 and the result is immediate. So we may assume
d{}. This in turn implies p{}. (Consider the observer 7w.) So we may assume from
Proposition 4.2.15 that p is in hnf. Then from Lemmas 4.3.2, 4.3.1 we may assume
that d, =, p, for every A € S(p). By induction, d, =, p,. Applying the previous two
lemmas we get d =, p.

(c) i=1.If dff, then d =, d + 2 and so by Proposition 4.2.12, d has a weak
normal form. The result now follows from part {a). If d {}. the proof is similar to
part (b). T[]

Theorem 4.3.8 (Theorem 3.2.5). Fori=1, 2, 3 and closed terms p, q, p = q implies
A+ pcg

Proof. We know that p =, q. In order to apply (R4) to derive pc q it is sufficient

to show that A, +- d = g for every d in FIN(p). Now d < p and therefore, by Lemma
4.1.6,d =, p. So d =, g. By the previous proposition,

A dog. ]

4.4

In this section we redo the completeness theorems for finite terms. This will give
more insight into the nature of normal forms and we will use the additional
information when proving the representation theorems of Section 5.

Let NF,, NF., NF, denote the set of normal forms, strong normal forms and
weak normal forms respectively. These sets may be ordered in a way similar to
Definition 4.3.4.
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Definition 4.4.1. For d, d'e NF, let d <;d’ be defined by
(a) i=3:

d<,d if S(d)cS(d),
(b) i=2:

d<,d' if dis 2 orif (d, d’) satisfies Definition 4.3.4(a).
(c) i=1l:

d<,d if d<,d and d <,d'.

We have similar results for <, on normal forms of finite terms as on head normal
forms of finite and inlinite terms.

Proposition 4.4.2. For d,d'e NF,:
(a) d=, d' impliesd <, d’,
(b) ifd, =, d), whenever both d, and d’, are defined and d <;d’, then d =;d’.

Proof. Si.nilar to Lemmas 4.3.5 and 4.3.6. [

Definition 4.4.3. For d, d'e NF,, let d <, d’ if
(i) d <l d's
(ii) d, <,d’ whenever both d, and d), are defined.

Theorem 44.4. Ford, d'e NF, d =, d’ impliesd <,d’.

Proof. By induction on the size of both d and d'. From Lemmas 4.3.2 and 4.2.1 we
may assume that d, =, d} whenever both d, and d, exist. By induction, d, <, d).
The result now follows from Proposition 4.4.2(a). [

Note that we can also use Proposition 4.4.2(b) to show that d <; d’ impliesd =, d’".
We also have the converse.

Corollary 4.4.5. Ford,d’e NF,, d=,d’ impliesd <, d'.

Proof. By the soundness theorem (Corollary 4.1.14), d =;d’ implies d =, d'. Now
apply the previous theorem. [

It is this corollary which justifies the use of the same normal form for the terms
in NF, This result will be used in the next section.
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5. Denotational semantics

We have presented pure CCS as the set of recursive terms over a set of operators.
This enables us to give a denotational semantics in a very straightforward way,
using the techniques of (28, 11, 10, 9]. To save space we assume familiarity with
notions such as 3-partial order or 2-po, 2-cpo, finite element, algebraic cpo, ideal
completion, etc. Details may be found in the above references.

5.1

Let D be a 3-cpo. The set of D-environments, ENVp, ranged over by e is the

set of mappings from variables in X to D. As usual we let e(d/ x) be the environment

{ ‘V'a.lun ic 4 Thoa tarm
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in D by defining

V,,:RECy — ENV, —» D
as follows:

(i)  Vplop(h,..., t)le=opp(Vpltle..., Vplule)
(i) ,,[[recxt]]e“ YAd. Vpt]e(d/x)
where Y denotes the least fixpoint operator.
We now turn our attention to pure CCS, a particular example of the above.

Definition 5.1.1. (a) A 3-cpo D is sound with respect to = if Vp[t] < Vp[u] implies
r=Su.
(b} A X-cpo D is complete with respect to =5 if + =5 u implies V[1] < Vip[u].
(c) A 3-cpo D is fully abstract with respect to = if it satisfies both (a) and (b).

Let I, be the initial 3-cpo in the category of 3-cpos which satisfies the set of
axioms A, i = 1,2, 3. For the construction of I,,see[1, 4, 11]. I, is the ideal completion
of the 2-po generated by the axioms A,

Theorem 5.1.2. Fori=1, 2, 3, I, is fully abstract with respect 1o =

Proof. For convenience in this proof we write t <, u if 17 [1] <17 [u].

(a) Soundness. We first p'uve it for closed terms. So suppose p <,q. Let d <p.
Then d <, p and therefore d <, q. Since [, is algebraic there exists a finite term e
such that d <, e, e <gq. By the construction of [, it follows that d =, e. From the
soundness theorem for the proof system d =} ¢ and so d & q. Since this is true for
every d € FIN(p) it follows that p=1 q.

Now suppose 1 <, u. Then we must show 1p =7 up for every closed substitution
p. However, 1 <, u implies tp <, up and therefore we may apply the first part.

(b) Completeness. If A, +— 1< u, then t <, u. This follows because by construction
<, satisfies the axioms, since I, is algebraic it is preserved by (R4) and it is trivial
to see that it is preserved by the other rules. Therefore, if p = g it follows that
p -, q since we can apply the completeness theorem for the proot system.
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More generally, suppcese t = u. We must show te <; ue for every environment e.

An environment e is finite if each e(x) is finite. Since 77, is continuous in its second

oS Anwe aFaaVN A3 WRVAALRAAReRSad AR: AvS STV

argument, it is sufficient to show te <; ue for every finite e. However, by construction
every finite element a of I; is denoted by a finite term #(a) in FRECy, i.e
V:1tca)] = a. Then the result follows since ¥ [t]e = ¥ [1p.], where p, is the closed
substitution defined by p.(x)=t(e(x)). O

This theorem is simply a restatement of the soundness and completeness theorems
for the proof systems. It is, however, of considerable interest since the models I,
have simple representations as trees.

5.7

In this section we consider the representations of I; as particular kinds of trees.

If L is a set of labels, let PCT, denote the set of (finite or infinitely branching)
trees whose branches are labelled by labels from L in such a way that for every
A € L every node has at most one outgoing branch iabelled by A.

Every node in such a tree, tr, can be uniquely identified by a string from L. We
denote the node in tr identified by s as tr(s). We let N(tr) denote the set of strings .
which ideatify every node in tr. N(tr) is prefixed closed, i.e., s€ N(tr) and s = s,5;
implies s, N(tr). There is in fact an isomorphism between PCT, and the set of
prefixed closed strings from L. We prefer, however, the more graphical notation oi
trees. We also let S(tr(+)) denote the set of labels on the branches from the node
tr(s), and tr(s), denote the successor tree of tr(s) along the unique branch A from
tr(s), if it exists. Our model will consist of trees from PCT, whose nodes are labelled
in a special way.

Definition 5.2.1. Let RT denote the set of trees in PCT,, 5 such that

(a) every node is either open (represented by ©) or closed (represented by ®).

(b) every closed node tr(s) is labelled by a saturated set of subsets of S(tr(s)),
denoted by /(tr(s)), and the following conditions hold:

(i) if a node has an infinite number of successors, it is open,

(i1) if a node is open, every successor is open,

(1) if &/ (tr(s)) is empty, then tr(s) is the root,

(iv) if «/(tr(s)) is not empty, then A € S(tr(s)) implies A€ s/(tr(s)) such that
I\ S 44.

The sets /(tr(s)) are called acceptance sets. By definition they are finite collections
of finite subsets of actions. Note that we distinguish between the empty acceptance
set @ and the acceptance set containing the empty subset, {#}. Thus the two trees

o) o{)}

are different. In fact one will represent NIL, the other 7NIL.
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Definition 5.2.2. Let SRT denote the set of trees tr in RT such that every open node

in tr is a leaf.

2 35 &

Definition 5.2.3. Let WRT denote the set of trees in RT all of whose nodes are open.

Note that WRT is in fact isomorphic to PCT,_; since both are isomorphic to
the set of prefix closed sets of strings over 4 U 4. Examples of trees are given in
Figs. 1 and 2. For convenience we omit (tr(s)) if it is 0.

It will be convenient in the remainder of this section to rename RT, SRT, WRT
by the less suggestive RT,, RT,, RT; respectively. All of the examples are finite
trees, i.e., have a finite number of nodes. These will play an important role and we
et FRT; denoie the set of finite trees from RT.

Definition 5.2.4. (a) For tr, tr'e RT, let tr <;tr' if N(tr)c N(tr).
(b) For tr, tr'e RT, let tr <, tr' if, for every se N(tr'), tr(s) closed im
(1) tr'(s) is closed,
(i) A(tr(s)) =2 A(tr'(s)),
(iii) A(tr'(s)) =@ implies S(tr'(s)) € L(tr(s)) or H(tr(s))=0 and S(tr(s)) =
S(tr'(s)).

(c) For tr,tr'e RT, let tr <, tr' if tr <, tr’ and tr <, tr’.

lia

niiag*
T 9 ) waVSw L S A 1)

Referring to Figs. 1 and 2 we have p, <, q,, p» <, 4> and p, <, ¢;. Note that if
A(tr(s)) # 0, then A (tr(s)) = A(tr'(s)) implies S(tr(s)) 2 S(tr'(s)). This follows from
condition (iv) in the definition of RT. Therefore, if tr <, tr’, we have that S(tr'(s)) <
S(tr(s)) whenever tr(s) is closed and tr'(s) exists. If tr <, tr', then tr <; tr' and so
Stiris)) < S(tr'(s)) for every se N(tr) and S(tr'(s)) whenever tr(s) is closed.

Proposition 5.2.5. (RT, <;) is an algebraic cpo with finite elements FRT,, i =1, 2, 3.

Proof. {a) i =2. The least elcment is the trivial tree with an open leaf. It should be
obvious that <, is a partial order. Let {t,|ie I} be a directed set in RT>. Define ¢
as follows:
(i) N()={s|se N(t,) for almost all ie I}.

Note that N(r) is prefix closed.

(ii) For s N(1) let 1(s) be open if 1,(s) is open for almost all i€ I.

(iif) Otherwise 1(s) is closed. In this case 3k € I s.t. t,(s) is closed. Since {1,|ie I}
is directed, this means that 1,(s) is closed for almost all i e I.

(iv) If t(s) is closed let

A(t(s)) = At,(s))|t:(5) is closed}.

It is easy to check that 1€ RT,. Moreover, Vse N(t) there exist k, such that
S(1(s))= S(1, (s)) and S(t(s)) = (1, (s)). This is sufficient to show that t is the
lub of {r,]ie I}. We leave it to the reader to check that FRT,; generates RT..
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@ B

Y é a

(1) representation of p, = a(7y2 + 7(yf2+ 8))+ B(af) + N).

{{a}, {8} {e, B}}
a B8
{{B, v} {a}

A

(ii) representation of p,= rar(BN2+ y)+ 1Bra+ rlar(BN + y) + Bra).

{{a}, {B}.{a, B}}
{ivh {H{a}, {a, y}}
Y « b4

(iii) represemation of p; = rar, + 16r,+ v(ar, + Br,) where r, =ty and r, = raf2 + 1(a) + y12).

Fig. 1.

o B
{6, yhi {{al, {e. B}

y B «Q B

(i) representation of ¢, = a(7(y+8)+ B(7a+ 7(a+ BN)).

B Y

B y

(ii) representation of ¢.= at(B+ y).

{{a} {a, BH

{{a, vH

Y

(iii) representation of g; = rary+ r{ary + B(7(af2 + y12))).
Fig. 2.
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(b) i=1. Itis trivial to check that <, is a pariial order and therefore <, is also
a partial order, with the least element defined in (a). The least upper bound of a
directed sequence is defined as in (a). Simple calculaticns will show that FRT, are
finite elements and generate RT,.

The case i =3 is similar. []

The representation theorem depends on a strong correspondence between normal
forms and finite trees in RT, which we now describe.

Let ¢ :NF— FRT be defined by structural induction as follows:

(a) If nis Y, , An, +£2, then ¢(n) is the tree whose root is open and i joined
to the subtree ¢(n,) by a branch labelled A, for every A € L.

(b) If nis ), , An, then ¢(n) is as in (a) except that the root is closed and is
labelled by (), the empty set at subsets.

(¢c) Ifnis), , 7%, . An, then &(n)is as in (b) except that the root is 'abelled
by 7.

Lemma 5.2.6. (a) Vne NF, ¢(n)eRT,i=1,2,3.
(b) n <,n"implies p(n) <, p(n'),i=1,2,3.

Proof. (a) is proven by structural induction on n.
(b) If n <, n', then, from Definition 4.4.3, n, <;n, whenever both are defined.

By induction we may assume that ¢(n,) <, d(n)). The proof is now completed by
a case analysis on why n <, n’. [

fn the opposite direction we can define a mapping ¢ : FRT — NF by induction
on the depth of the tree:
(a) If tr(¢) is open, then
d(tr) =Y {Ad(tr(e),)|A € S(tr{e))}+ L
(bi If tr(¢) s closed and «itr(¢)) =0, then
i) =Y {Aditr(e), ) |A € Stre M},
() I tr(e) is closed and (tr(#)) # @, then

dite) =N eV Adtre) VA e LY|Lc sur(e Ny

Lemma 5.2.7. (a) tre RT, implies éi(tr) ¢ NF,, i =12, 3.
(b)Y tr <, tr' implies dr(tr) < ('),
(¢c) & and ¥ are inverses.

Proof. (a) and (¢) are easily proven by structural induction.

(by I tr - tr', then a case analysis will show that d(ir) <, ¢(tr'). By induction,
crte b ) o diftr' (e, ) whenever both tr( ), tr'(e), are detined. It then follows that
Gt - i),
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We now turn our attention to the construction of the models I, We assume the
reader is familiar with the details of such constructions, which may be found in
[10, 11, 4]. I, may be described as (FREC,/=;)™, where FREC;/<; denotes the
2-partial order over finite terms generated by =, and ( )* denotes the ideal
completion. We now use the results of Section 4.4 to show that FRECy/c; has a
simple representation using normal forms.

For ope 3 define op;: NFf — NF, i=1, 2, 3 by

(a) op:i(n,,....m)=nf(op(n,,...,n)),

(b) opaAn,,..., n,)=snf(op(n,....,n)),

(¢) opi(ny,...,n)=wnf(op(n,,...,n)).

It follows from Corollary 4.4.5 that op, is monotonic, i.e., it preserves <,

Proposition 5.2.8. Wiih thiese operators, (NF,, <,) isisomorphic to FREC /<, as 2-pos.

Proof. Let id: NF, — FREC be the identity and ¢;: FRECy — NF; be defined by
e;=nf, e;=snf and &;=wnf. Then obviously id preserves the order and the
operators. From Corollary 4.4.5, if d =, d’, then £,(d) <,&,(d). The same result
shows that ¢, preserves the operators. Therefore (id, ¢;) is an isomorphism pair. [

In a similar fashion we can consider FRT, as 2-pos. For ope X, define
op!: FRT! — FRT, by

opi(try, ..., try) = ¢(op,(P(try), ..., P(try))).

Proposition 5.2.9. With these operators (FRT, <;) is a X-po and is isomorphic to
(\NFH <|)-

Proof. The proof follows from Lemmas 5.2.6 and 5.2¢. 0O
We are now able to state the final result of the paper.

Theorem 5.2.10. Fori=1, 2, 3, RT, is a 3-cpo which is isomorphic to I, and therefore
Sully-abstract w.r.t. =,

Proof. We have already shown that RT; is an algebraic cpo with FRT; as finite
elements. To define the continuous functions op; : RT! — RT; it is sufficient to define
it for the finite elements. This we have already done and so we may consider RT;
as a X-cpo. Moreover, an algebraic X-cpo is uniquely determined (up to isomorph-
ism) by the X-po induced on its finite elements. From Propositions 5.2.9 and 5.2.8
we may conclude that I, is isomorphic to RT,. The result now follows from Theorem
5.1.2. O

The weakness of this representation theorem is that we have not given a natural
definition of the operators of CCS which apply directly to the trees in RT,. We have



124 R. de Nicola, M.C.B. Hennessy

P 1 ihem indirecilv by definine theii o niorimal Conncnc noed arcienn thntonmarnhicm
dennea tnem Inairectly oy aclining incim Oii Norimadi 10TINS afQ USIng tic ivUImuUIpIisin
lntrssnnm mrimmral Frcme nnd tha fnita traac 17 DT nwovar thaca definitinne mav
DCLWCTII NUOTINal 1UNHID aliu UiV W UV 1 AN o TIUWLV VLI, WIVOVY UWIIIILIUS sy
hoa faund in 71
UV 1VUWIING 1IN Ll _I

6. Alternative characterisations

In this section we relate the equivalences for processes generated by the three
preorders introduced in this paper with equivalences presented in other work,
notably observational equivalence [23], weak equivalence [21] and failures
equivalence [18]. In particular we concentrate on Kennaway's weak equivalence
which allows a deeper insight of our =,. For ali compansons we consider only
strongiy convergent agenis, i.e., finite or infinite agents which do not coniain

- : - f
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equivalences do not involve any notion of divergence [23, 21] or an approach ver

eq:: .valences =, are deﬁned in [23 p. 99] ) So the observanon equwalence of (CS
distinguishes many more terims than we do. The main reason for =~ being finer (more
discriminating) than =, seems to be the recursive nature of its definition. In some
sense in arder to decide if two agents are observationally equivalent one needs to
check that they can perform the same sequences of actions and that the subagents
reached after each sequence still have equivalence behaviour. Some of the resulting
distinctions are concerned only with the internal structure of processes and an

mlel'esung cnuque of weak equnvalence gwen in [5]. There the author gives anot'ner
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6.2

In [21], Kennaway introduces a new notion of equivalence (= weak equivalence)
foar L Tasidaie INIQODY LIl o alason th ool lacad nee AAIlaende nion soliane fresim
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An interesting result is that, though = has the same recursive structure as = and

recursiveness seems to give a deeper insight into the structure of agents, =, and =
turn out to coincide for strongly convergent agents. To simplify the comparison we
work entirely in CCS. We adapt Kennaway's definition to CCS agents and then
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prove that this definition can be reduced to an equivalent non-recursive one. Finally,
we nrove that on strongly convergent CCS agent = and =, coincide.

We start with some definitions based on those of Section 2.

Let A be the set of visible actions, A =4 U A. L will range over finite subsets of
A. We let SCCREC; denote the set of all strongly convergent closed CCS agents
and let P, Q, R range over subsets of SCCREC ;.

Let

!nit(p)={aeA|p ='>}, Traces(p)={seA*lp ‘3}

and extend the relation | to { s for every s in A* in a natural way:
(i) pleifpl,
(i) p{ asif pJ and p = p’ implies p’' | s.

As might be expected, fI's denotes the negation of {s.

paftere=p

p after a = { plp :'->p}

p after as = ( p after o) after s
and

P aftere=P
P after a - -\ { pafter a|p € P}
P after as =|_J{ pafter a |p € P} after s.

These preliminary definitions allow us to state the following important concepts.
p must L if and only if for all p’ such that p =>p Ja € L such that p’ =, p must
L if and only if p must L for all pe P.

We are now ready to adapt Kennaway's equivalence to CCS.

Definition 6.2.1. P =, Q is always true.
P=,,, QifandonlyifV finite L& A, Pmust L & Q must L, and
Va € A, P after a =, Q after a.
P=Q ifand only if, Yn=0, P=, Q.

We first give an alternative characterisation of == which does not involve any
recurrence.

Theorem 6.2.2. P= Q if and only if ¥Vsec A* ¥ finite L = A,

(P after s) must L. < (Q after s) must L.
Proof. (<) We prove *hat P= Q implies 3s¢ A*, 3L < A such that (P after s)
must L and (Q after s) mpst L.

If P# Q, then there exists an n>>0 such that P #, Q. We prove the claim by
induction on n.
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Induction basis. P =, Q implies there exists some L such that P must L and Q
myst L. it follows trivially that (P after £¢) must L and (Q after ¢) ny{st L.

Inductive step. We have P #,,, Q if and only if

(i) P#, Q,or

(ii) Ja € A such that P after a #, Q after a.
In case (i) the claim follows from the induction basis. In case (ii) we have by the
inductive hypothesis that for some a € A, s€ A%,

(P after o) after s must L and (Q after a) after s myfst L,

i.e., (P after as) must L and (Q after as) mfst L.
(=) Suppose there exists some s€ A* and some finite L < A such that (P after
s) must L and (Q after s) mdst L. We prove by induction on s that P# Q.
Induction basis: s = €. Since P after £ = P, it follows that P #, Q, i.e,, P# Q.
Inductive step: s = as’. Then (P after ) after s’ must L whereas (Q after o) after
s’ mist L. By induction, P after a # Q after « andso P# Q. [l

This result allows us to derive an easy corollary.

Corollary 6.2.3. If p and q are stronglvy convergent, then p = q implies traces( p) =
traces(q).

Proof. Suppose 3s such that setraces( p) and s traces(Q). Let a be such that
p > (« exists since P is strongly convergent). Then (p after s) m){st {a} whereas
vacuously (g after s) must {a}, i.e., p=q. [

Given the alternative characterisation of Kennaway's equivalence for CCS we
can relate it to the equivalence generated by the preorder <.
We first prove the following lemma.

Lemma 6.2.4. Ifp and q are strongly convergent and p =, q. then traces( p) = traces(q).
Proof. Suppose there exist s such that s€ traces(p) and s £ traces(q). If s denotes
@, leto, =Ttw+ @ (tw+- -+ 1w +a,)...). Thensince g 4 s forall s ¢ A¥,
g must satisfy o, while p mpst satisfy o,, which contradicts the fact that p =, q.
We can now prove the main theorem of this section which states the equivalence
of == and =.. In fact, because of the previous lemma it is immediate that =, and
-, coincide for strongly convergent terms. Consequently we will also have that, in
this case, = coincides with =,.

Theorem 6.2.5. If p and q are strongly convergent, then p =, q if and onlv if p= gq.

Proof. (=>) We prove p 7 ¢ implies p #. g. From Theorem 6.2.2 we have that p £ ¢
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previous lemma implies p #,q In case g = ¢’ and q¢' 5 for all ae L, if s=
aa;...a, let 0, denote Tw+a(tw+a(...a, (ro+a,(}, , aw)...). Then,
since p | s for all s€ A*, p must satisfy 0, while g myst satisfy o, and so p >, q.

(&) We prove p =, q implies p =< q. We have that p > q implies there exists an
observer v such that p must satisfy o and q myst satisfy o or vice versa. Suppose
q mafst satisfy o. This would imply:

(a) there exists a finite derivation
glo=go|0og— q,lo,— - — g, )0,

such that g,|0, + and o, + for everyt O<i=<nor

‘I\A AA

(D) tnere exists an iniinite derivation

‘l|0=‘Iu,,.l"o"¢1'||0|—’ e ""qk|0k—’

Let s denote the sequence of actions performed by g in these derivations. In case
(a) we have b Corollary 6.2.3 that s e traces(p). Since p must satisfy o, ( p after )
p

must Init(o,). it follows that p < g since (g after s) m){st Init(o,). In case (b),
must satisfy o implies that s(k) £ traces{ ;) fo r some finite prefix, s(k), of s. Once
more by Corollary 6.2.3 it follows that p=<q. [

As an immediaie consequence of Theorems 6.2.2 and 6.2.5 we have an alternative

Vs, VL( p after s) must L if and only if
(q after s) must L

This corollary and the observers used in the proofs of Theorem 6.2.5 and Lemma
6.2.4 suggest that we oniy need specific observers in order to distinguish between

processes.
I e
L.CL
(L= NI Y awl 1w+ B,
t.=NIL| ), aw|rw+ B0,
T
and

pPESq It Voe(, p must satisfy o implies g must satisfy o.

/e have the following theorem

le’]

Theorem 6.2.7. For strongly convergent terms p, q,

" o~ sy

P =241
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Proof. The result in one direction is trivial since 0,< 0.

To prove the converse we need to show that p = q implies there exists an o€ 0,
such that p must satisfy o and g mpfst satisfy o or vice versa. But the claim follows
from the previous corollary and from part (=) of the proot of Theorem 6.2.5, since
the observers used in the proof of Lemma 6.2.4 and Theorem 6.2.5 belong to 0
(0,,0,€ ). [

6.3

A mathematical model of processes, called the refusal set model was introduced
in [18] and developed further in [21] as refusal-acceptance-machines. Basically, the
refusal set model defines a process as a set of pairs (s, X) where s is a string of
actions and X is a nonempty set of sets of actions, the refusal sets. Such a pair
means that the process may perform the sequence of actions s and may then refuse
any set of actions in X. This is quite similar to our SRT with our acceptance sets
being the complement of the refusal sets. There are seemingly minor but important
differences. For example, it is crucial for us to have the empty set as an acceptance
set in order to handle 7 and it is not clear what the corresponding refusal set is. An
ordering is defined on this mode!l which is somewhat similar to <, defined on SRT
(at least the version of the ordering in [21]). There is, however, a crucial difference
between <, and their order. There are two reasons why p <<, q. The first is that
intuitively p is more nondeterministic than ¢, the second that some undefined
component of p (specified by £ or an open leat) has been improved upon in gq.
The second component seems to be absent from their ordering. Nevertheless, this
ordering turns out to be a complete partial order and various operators are shown
to be continuous. (A notable omission from the relevant theorem [21, Theorem 4.1]
i> theis version of “hiding’, direct image.) These operators form the basis of a
language for processes and the model is then a denotational model in the sense of
[28]. A direct comparison with our work is somewhat hampered by the very ditferent
set of operators. Moreover, the handling of divergence with refusal sets seems to
raise various problems. For a detailed discussion of this point, see [6]. However,
we can modify the refusal set model to distinguish between 7p and p. With some
other adjustments it should be possible to get a strong relationship between SRT
and a version of the refusal set model. As regards equivalences (two processes are
“failures equivalent’ if they are denoted by the same refusal set) it is easy to prove
that failures equivalence and =, coincide for strongly convergent terms. We can
prove in fact that (s, X) ¢ failures( p) if and only it p after s mdst X, and the result
then follows from the new characterisation ot > . in Corollary 6.2.6.

6.4

In Section 6.2 we have given an alternative characterisation of = for strongly
convergeiit terms which is independent from the notion of observers. This kind of
characterisation can be given for all the preorders =, over arbitrary terms. In this
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section we give this alternative characterisation for =; and use it to define directly
<, i.e., preorders which are preserved by all CCS operators and which are also
independent of the notion of observers.

Definition 6.4.1
pEiq if traces(p)ctraces(q),
pEiq if Yse A* Vfinite Lc A, p | s implies
(i) gy s, and .
(i1) (p after s) must L implies (g after s) must L,
PEiq if pEiqand psiq

Before proviag the main characterisation theorem we need two more lemmas.

Lemma 64.2. If pc.q, then, for all s€ A*, p |} s implies
D qls

(i1) setraces(q) implies s € traces( p).

Proof. (i) Suppese there exists s =« ... a, such that p { s and g T} 5. Then if we
choose 0):: Tw+ @ (7w + -+ +d, (7w +d,7w)...) we have p must satisfy o} and
q mst satisfy o,, i.e., pZ.q.

(i1) Suppos¢ there exist s=a,...a, such that pl s, setraces(q) and
s £ traces( p). Then if we choose o3=10 + @\ (t0+- - -+a, (to+a,)...) we have
p must satisfy o> and g mpst satisfy o3, ie, pZ.qg U

i.emma 6.4.3. If (g after s) m)fst L for some L< A, then s € traces(q).

Proof. Suppose s#traces(q), then g after s =) and we have by definition @ must
L for every finite Lc A. [

Lemma 6.4.4. If p{ s and p= q, then s traces(q) implies s € traces( p).

Proof. Suppose there exists some s such that s € traces(q), p { s and s ¢ traces(p).
By the previous lemma, (p after s) must L for every finite L< A. Since ¢ s we
have that | {Init{¢), ¢'€ q after s} is finite. Consequently, we can find an «a such
that g <». Then (q after s) mast {«} while { p after s) must {«}, which contradicts
the fact that p=ig. U

We are now ready to prove the main characterisation theorem.

Thenrem 6.4.5

p=.q ifandonlyif p=iq fori=1,2,3.
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Proof. Because the way =, and = have been defined we need only to prove the

i=3: For s€ A* let 0, = sw. Then setraces(p) if and only if p may satisfy o..
The claim is an easy corollary of this fact.

i =2: (a) We prove first p Z5 q implies p Z, q.

If pz} g, then 3s, L such that p { s and (g 1 s or for some finite L< A (p after
s) must L and (q after s) mpst L). If p | s and g 1 s by Lemma 6.4.2 we have
pZ.q. If p{ s and q | s but for some finite L, (p after s) must L and (q after s)
myst L, then by Lemma 4.6.3 we have that s€ traces(q). Therefore, if we define, as
in part (=) of the proof of Theorem 6.2.5, oi=tw+a(ro+- -+
@, (to+@,Y. ,aw)...) we have p must satisfy o3 and g myfst satisfy o:.

(b) We sketch the proof of p 2, q implies pZ q.

It follows the same line as part (<) of the proof of Theorem 6.2.5. We need also
to take into account the possibility q n;n’st satisfy o because qlo=
golog— - q,,!n,, and g,/ 0,7 and o, +> for all 0 < n, i.e., there exists some s such
that g = g, 0 = 0, and q s or o I 5. However, since p must satisfy o, we have
p ! s and either p 3% or o |} 5. In the former case, Lemma 6.4.4 implies p 23 q: in
the latter case we have g T} s which also implies pzigsince ps. O

The proofs of Lemma 6.4.2 and Theorem 6.4.5 suggest we need only specific
observers to distinguish between processes. Let (', €; be the set of observers
generated by the following grammars:

1=NIL|7w| ¥ aw|to+ Bt
[ & ’
and

152w at.

Finally, let ¢, =C-.u ;.

Theorem 6.4.6

p=.q ifandonlyif pci g, i=1,2,3.
Proof. We need to prove the claim only for i =2, 3. The “only if” part is immediate
since (,< (, where € is the set of observers used to generate =,. We only need to
prove the ‘if* part.
i =3: The claim directly follows from the corresponding case of Theorem 6.4.5.
2: Notice 0+, 03 and o} all belong to (.. We have p 2. ¢ implies p 2% g which
implies, as shown in the proofs of Theorem 6.4.5 and Lemma 6.4.2, that p must
satisfy 0 and g mpst satisfy o for some o C,. {7

We conclude by deriving a characterisation of =} in the same vein as that for &,
given 1n Theorem 6.4.5. We first need the following lemmas.
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Lemma 64.7. If p =, q, then

T . .
n s smanlioe

{i) P — iinpues p gg q
(ii) p+ impliestp=3 q

(i) p+>, g+ imphes » =5 q.

Proof. (i) Suppose r~ p must satisfy o. Then, since p —, p must satisfy o. Therefore
q must satisfy o ./nich n.: turn implies that r + g must satisfy o. It follows that p =5 q.

(ii) Suppose r+ 7p must satisfy 0. Then once more p must satisfy o which leads,
as in case (i) to the result that r+ ¢ must satisfy o.

(iii) Suppose r+ p must satisfy o. If p|o +, then from the characterisation of =,
in Theorem 6.4.5 it follows that q|o -. It follows that in this case r+ g must satisfy
0. On the other hand, if p|o =, then p must satisfy o. Since we are assuming that
p S, q it follows that ¢ must satisfy o and therefore r+ g must satisfy o. [

Lemma 6.48. If p=.q and (pl, q—) implies p—, then p =5 q.
Proof. If p—, then the result follows from the previous lemma. If pf. then the
result is trivially true. Therefore, we may assume that p{}, g +> and p . From part
(iii) of the previcus lemma it follows once more that p=34q. [

Theorem 6.4.9. (i) P=; qifand only if traces( p) < traces(q).
(i) p=Sqgifandonlyif
(a) pl and q = implies p —,
(b) for all s€ A* and finite L< A, p || s implies
W qls,
(ii) (p after s) must L implies (g after s) miust L.

Proof. (i) Follows from the fact that =; preserves all of the operators of CCS.
(ii) In one direction it follows from Lemma 4.1.1 and Theorem 6.4.5. In the
opposite direction it follows from the same theorem and the previous lemma. [

7. Conclusion

We first of all recapitulate on the results of the paper. We started with a rather
general notion of equivalence between processes based on a simple tabulation of
the possible effects of interactions between observers and processes. This equivalence
was in turn decomposed into three ditferent preorders in a natural way. The
remainder of the paper is an investigation of these preorders in the language CCS.
For each of these we gave a complete proof system based on a set of axioms and
a rule of induction. These proof systems lead in a natural way to fully abstract
denotational models. These are constructed as term models but in Section 5 we
showed that they have very intuitive representations as particular kinds of trees.
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Moreover, in the final section, we gave alternative characterisations of the various
preorders and of the largest precongruences contained in them which are indepen-
dent from the notion of observers.

Much remains to be done. For example, the representations of the fully-abstract
models need to be more fully investigated. These new equivalences should also be
investigated for the more general version of CCS which allows value-passing. More
generally, we should be able to produce models for CSP [16], Distributed Processes
[3] and such languages which are more intuitive than the model in [8], for example.
The axioms systems presented in this paper may also lead to more convenient calculi
for proving equivalence of processes and more generally the correctness of processes.
It would be interesting to examine the various example proofs in [23] to see if our
axioms lead to simpler proofs.
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Appendix A. Proof of Proposition 4.1.9(b)

Suppose p must satisfy o. Consider the computation tree from o{p where the
leaves are labelled by terms o'|p’ such that o' . Every term has a finite number
of successors. Therefore this tree is finite. We use induction on the size of the trec.
Furthermore, because of Lemma 4.1.8 it is sufficient to show that there exists a
such that d ¢, p and d mast satisfy o. If p{}, then 0 = and the required d is (2. So
we may assume pl} and therefore in hnf. Furthermore, we may assume o . There
are two cases according to the form of p:

Case (1) p=Y, ,Ap.. Let L' denote the set of AclL such that
00— 20,2 where o, + for < k=n If L'=0, then the required d is
V., A2 So we may assume L'#(). For each A ¢ L' let D(A) denote the set of o
such that 0 > 0, - - - = 0, = 0’ where o, +> for 1= k=< n. Then, for every o'€
D(A), p, must satisfy o’. By induction on the size of the computation tree there
exists a finite term d(A, 0') such that d(A, 0 ) must satisfy o’ and d(A, o) =, p,. The
required d is Y {Ad (A, 0) A e L' o'e DIMDYON ., A8

Case (i) p=Y, , 7 ,Ap,. Let p; denote ¥, , Ap,. Then for every Le L', p,
must satisfy o. By induction on the size of computation tree there exists a d; such
that d; must satisfy o, and d, =, p;. The required d is Y, , 7d;,. [
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