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Introduction to Elementary Net Synthesis

This chapter aims at giving, for the particular class of elementary net systems,
a first account of the principles of region based net synthesis. A brief intro-
duction to elementary net systems (sections 1.1 and 1.2) provides the material
needed in this book. We present in section 1.3 the construction of the satu-
rated net version of a transition system, given by Ehrenfeucht and Rozenberg,
and we explain in section 1.4 their characterization by the regional axioms of
the net realizable transition systems. In fact, we do not confine our attention
uniquely to elementary net systems but we consider also a slight extension
thereof, enabling us to construct in section 1.5 an order-theoretic connection
between transition systems and net systems. This order-theoretic connection
provides a base for studying approximate realizations of transition systems
by net systems. We vary subsequently the goals of net synthesis by consid-
ering first in section 1.6 the synthesis of net systems from transition systems
with potential confusions of states, and next in section 1.7 the synthesis of
net systems from regular languages. We finally explain in section 1.8 the con-
text of Labelled Partial 2-Structures in which regions were discovered and
first applied to elementary net synthesis. The chapter ends with a series of
exercices.

1.1 An Informal Introduction to Elementary Nets

Elementary nets are a model of dynamic systems whose phase space and tra-
jectories can be described in terms of a finite set of boolean properties. A
state is characterized by stipulating for each property whether it holds or
does not hold in that state. A transition is characterized by stipulating for
each property whether it is turned valid, or it is turned invalid, or it is not
affected by that transition. A specific aspect of dynamic systems modelled by
elementary nets is to enable possibly several transitions from a given state. In
an elementary net, properties are represented by places that may be marked
or unmarked according to whether these properties hold or do not hold. By
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convention, places are drawn as circles, containing one token when they are
marked and no token otherwise, and transitions are represented as squares.
An incoming arc from a place to a transition means that the transition cannot
occur unless that place is marked with a token which the transition consumes.
An outgoing arc from a transition to a place means that the transition pro-
duces a token in that place and cannot occur if that place is already marked.

For the sake of an illustration, let us design an elementary net model for
the famous dining philosophers problem [26], or more precisely for a reduc-
tion of this problem to three philosophers. Let us recall the statement of the
problem. Three philosophers ϕ1, ϕ2, and ϕ3 are sitting at a table with a bowl
of spaghetti in the center. Three forks f1, f2, f3 are placed on the table, such
that philosopher ϕi has the fork fi on his right and the fork fi+1 mod 3 on
his left (see Fig. 1.1). A philosopher alternates periods of eating and periods
of thinking. To eat, he needs both the fork to his left and the fork to his
right. Therefore, he tries to grab them one after the other while thinking. A
philosopher who thinks with a fork in each hand stops thinking and starts
eating after a finite delay. A philosopher who eats eventually stops eating,
puts down the forks, and starts thinking again after a finite delay. The basic
problem is to avoid deadlock, i.e., the situation in which every philosopher
has taken one fork. A classical solution is to let all philosophers but one, say
ϕ1, take first the fork to their right, and to let ϕ1 take first the fork to his
left. An augmented problem is to avoid the starvation of any philosopher.

2

3

1

1

2

3

Fig. 1.1. modelling three Dining Philosophers

In order to ease the design, consider first a single philosopher, say ϕ1 with
fork f1 available on his right and fork f2 available on his left. The behaviour
of philosopher ϕ1 may be described in terms of five properties, two pertaining
to fork f1, two pertaining to fork f2, and one pertaining to both forks. Fork f1
may be free (property f1f), or philosopher ϕ1 may hold that fork without
eating (property 1h1), or philosopher ϕ1 may hold that fork and be eating
(property 1e). These properties are mutually exclusive, and if we let f2f and
1h2 be the counterparts of f1f and 1h1 for fork f2, then similarly, f2f , 1h2
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and 1e are mutually exclusive. When fork f1 is free, philosopher ϕ1 can take it
(transition 1t1), thus invalidating property f1f and validating property 1h1.
When fork f2 is free, philosopher ϕ1 can take it (transition 1t2), thus inval-
idating property f2f and validating property 1h2. As a philosopher has two
hands, these two events may occur concurrently, but we will assume that they
cannot occur simultaneously. When philosopher ϕ1 holds the two forks, he
can start eating (transition 1se), thus invalidating properties 1h1, 1h2 and
validating property 1e. When philosopher ϕ1 is eating, he can start thinking
and put down the forks, thus invalidating property 1e and validating proper-
ties f1f and f2f . These intuitions are captured in the elementary net system
shown in Fig. 1.2.

f1f

  1t1

  1h1

 1se

1h2

1e

1t2

f2f

1st

Fig. 1.2. elementary net model N1 for Philosopher ϕ1

The behaviour of this elementary net is described by the initialized transition
system shown in Fig. 1.3. States are sets of marked places representing valid
properties. Labels of arcs are transitions of the net. In the initial state (fig-
ured by a wriggling arrow), the two concurrent transitions 1t1 and 1t2 form a
diamond, i.e., they may be fired one after another in any order and this order
is not reflected in the resulting state.

1t1

{f1f,f2f}

1t2

{1h1,f2f}{f1f,1h2}

1t1 1t2

{1h1,1h2}

1e

1se

1st

Fig. 1.3. behaviour of the elementary net for Philosopher ϕ1
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In order to construct an elementary net model for three dining philosophers,
it suffices now to consider elementary net models N1, N2, N3 for the respective
philosophers ϕ1, ϕ2, ϕ3 and to glue them on places f1f, f2f, f3f as indicated
in Fig. 1.4.

3t3 3t1

se3

3st

1t11st

1se1t22se 2t2

2st2t3

3h3 3h1

1h1

1h22h2

2h3

f3f

f2f

f1f

1e2e

3e

Fig. 1.4. elementary net model N1,2,3 for three dining philosophers

Note the presence of conflicts in the elementary net N1,2,3. Indeed, each one
of places f1f, f2f, f3f has two outgoing arcs, indicating that two philoso-
phers compete for grabbing the corresponding fork. E.g., when fork f1 is free
(property f1f), it may be taken by philosopher ϕ1 (transition 1t1) or by
philosopher ϕ3 (transition 3t1). The behaviour of the elementary net N1,2,3 is
described by an initialized transition system with 36 states and 78 arcs, and
it is too large to be depicted in a drawing. Therefore, we show it as a list of
labelled transitions between states numbered from 0 to 35. The initial state
is numbered 0. Each transition (i, ℓ, j) in the list represents an arc from state
i to state j labelled with ℓ. The list of transitions is the following.

(0,3t1,1)
(0,3t3,19)
(0,2t3,29)
(0,2t2,5)
(0,1t2,23)
(0,1t1,15)
(1,3t3,2)
(1,2t3,30)
(1,2t2,6)
(1,1t2,24)
(2,3se,3)

(2,2t2,7)
(2,1t2,21)
(3,3st,0)
(3,2t2,4)
(3,1t2,22)
(4,3st,5)
(5,3t1,6)
(5,3t3,10)
(5,2t3,12)
(5,1t1,35)
(6,3t3,7)

(6,2t3,8)
(7,3se,4)
(8,2se,9)
(9,2st,1)
(10,3t1,7)
(10,1t1,11)
(12,2se,13)
(12,3t1,8)
(12,1t1,32)
(13,2st,0)
(13,3t1,9)

(13,1t1,14)
(14,2st,15)
(15,3t3,16)
(15,2t3,31)
(15,2t2,35)
(15,1t2,33)
(16,2t2,11)
(16,1t2,17)
(17,1se,18)
(18,1st,19)
(19,3t1,2)

(19,2t2,10)
(19,1t2,20)
(19,1t1,16)
(20,3t1,21)
(20,1t1,17)
(21,3se,22)
(22,3st,23)
(23,3t1,24)
(23,3t3,20)
(23,2t3,26)
(23,1t1,33)

(24,3t3,21)
(24,2t3,25)
(26,3t1,25)
(26,1t1,27)
(27,1se,28)
(28,1st,29)
(29,3t1,30)
(29,2t2,12)
(29,1t2,26)
(29,1t1,31)
(30,2t2,8)
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(30,1t2,25)
(31,2t2,32)
(31,1t2,27)

(32,2se,14)
(33,1se,34)

(33,3t3,17)
(33,2t3,27)
(34,1st,0)

(34,3t3,18)
(34,2t3,28)
(35,3t3,11)

(35,2t3,32)

This example shows that elementary net systems may be much more compact
than their behaviours and it illustrates what is usually called the combinatorial
explosion due to concurrency. The role of elementary net synthesis, which will
be introduced in this chapter, is to reverse the process that leads from an
elementary net system to an initialized transition system, thus providing more
compact representations and exhibiting implicit concurrency.

1.2 Elementary Net Systems and their Firing Rule

An elementary net is defined over a set of places P . Places represent observable
properties that may hold or not hold in a given state. A state or marking is
a map M : P → {0, 1}, namely the characteristic function of the set of
properties valid in that state. A place p ∈ P is marked in M if M(p) = 1,
unmarked otherwise. A marking may be seen equivalently as a set of marked
places, hence as a subset of P . This is the interpretation adopted in this
section. An observable change of state t, or transition, is defined by two disjoint
sets of places •t ⊆ P and t• ⊆ P . The set •t (the pre-set of t) specifies the set
of properties which are changed from valid to invalid. The set t• (the post-set
of t) specifies the set of properties which are changed from invalid to valid.

By convention, places p are drawn as circles containing a black token when
they are marked, and transitions t are drawn as rectangles, with incoming
arcs from each place in •t and outgoing arcs towards each place in t•. An
elementary net with set of places P and set of transitions T may be defined
thus as a graph (P ∪ T, F ) with a set of arcs F ⊆ P × T ∪ T × P where •t =
{p ∈ P | (p, t) ∈ F } and t• = {p ∈ P | (t, p) ∈ F }. As places and transitions
form disjoint sets, such graphs are bi-partite. To stress this, elementary nets
may be defined equivalently as triples N = (P, T, F ) where P and T are finite
disjoint sets (of places and transitions, respectively) and F ⊆ (P×T )∪(T×P )
is the set of flow arcs. Keeping in mind that transitions represent observable
changes of states, two requirements should be stated: every transition t must
be connected to at least one place, and it should not be connected to a place
by flow arcs in both directions. Moreover, in order to represent unambiguously
observable changes of states, different transitions must have different pre-sets,
or different post-sets, or both. Altogether, one obtains the following definition.

Definition 1.1. An elementary net is a triple N = (P, T, F ) where P and T
are finite disjoint sets of places and transitions, respectively, and F ⊆ (P ×
T ) ∪ (T × P ) is a set of flow arcs, such that the following requirements are
satisfied, letting •x = {y | (y, x) ∈ F } and x• = {y | (x, y) ∈ F } for every
x ∈ P ∪ T :
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1. there is no self-loop: for every x ∈ P ∪ T , •x ∩ x• = ∅,
2. there is no isolated transition: for every t ∈ T , there exists p ∈ P such

that (p, t) ∈ F or (t, p) ∈ F , i.e. •t ∪ t• 6= ∅,
3. there are no equivalent transitions: for every t, t′ ∈ T , if •t = •t′ and
t• = t′•, then t = t′.

A marking of N is any subset of P . ♦

As elementary nets are bipartite graphs, the condition •x ∩ x• = ∅ which
excludes self-loops is indeed satisfied for every element x ∈ P ∪ T as soon as
it is satisfied for every transition x ∈ T , or for every place x ∈ P .

Remark 1.2. Since elementary nets were introduced in [33, 34, 31], slightly
different definitions have been given in the literature. In [28], condition (2)
requiring that no transition should be isolated is strengthened by stipulating
that no place is isolated either, the condition excluding self-loops does not
appear, and condition (3) requiring that elementary nets should be transition
simple is strengthened by demanding that they are also place simple (•p = •p′

and p• = p′• entail p = p′). In [32], condition (2) is reinforced by stipulating
that every transition has a non-empty pre-set and a non-empty post-set, and
condition (3) does not appear. These variations are more technical than fun-
damental and they have only marginal influence on the theory of elementary
nets and their synthesis. Here, for simplicity, we have chosen the minimal con-
ditions that fit with the interpretation of elementary nets as representations
of partial 2-structures [21, 22]. We shall examine this connection in Sec. 1.8.

2

c1

n1

h1

f

h2

c2

n2

a1

r1

t1

a2

r2

t2

Fig. 1.5. an elementary net system for mutual exclusion

Example 1.3. For an illustration, consider the elementary net shown in Fig. 1.5.
This elementary net models two process components with mutually exclusive
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access to a shared resource. The set of places is P = {c1, h1, n1, f, c2, h2, n2}
and the set of transitions is T = {t1, r1, a1, t2, r2, a2}. Place f , when it is
marked, indicates that the resource is free. Places ci, hi, ni (for i = 1, 2) rep-
resent the properties of process component i to be candidate to the resource,
to hold the resource, and to have no need of the resource, respectively. Tran-
sition ti (i = 1, 2) models a state change in which process component i, which
was candidate to the resource, takes this resource (which was free). Transi-
tion ri (for i = 1, 2) models a state change in which process component i,
which had the resource, releases the resource (which becomes free). Tran-
sition ai (for i = 1, 2) models a state change in which process component i
applies to the resource. All conditions stated in Def. 1.1 are satisfied: there
are no isolated transitions, no self-loops, and the net is transition simple. The
elementary net shown in Fig. 1.5 is provided with a marking M0 ⊆ P , namely
M0 = {c1, f, c2}, as indicated by the presence of black tokens in the consid-
ered places. 2

An elementary net with an initial marking is called an elementary net system.

Definition 1.4. An elementary net system is a quadruple N = (P, T, F,M0)
where (P, T, F ) is an elementary net, called the underlying net of N , and M0 ⊆
P is the initial marking, such that the following requirements are satisfied:

1. there are no equivalent places: for every p, p′ ∈ P , if •p = •p′ and
p• = p′• and M0(p) = M0(p

′), then p = p′,
2. there are no dead transitions: see Def. 1.10 given later in this section.

Two elementary net systems N = (P, T, F,M0) and N ′ = (P ′, T, F ′,M ′
0) with

the same set of transitions T are isomorphic, noted N ∼= N ′, if there exists
a bijection ϕ : P → P ′ such that •p = •ϕ(p), p• = ϕ(p)•, and M0(p) =
M ′

0(ϕ(p)) for all p ∈ P . ♦

Transitions of elementary net systems specify potential changes of states or
markings, but only the initial marking is given explicitly in the definition of the
net. The actual changes of states may be discovered by applying inductively
from the initial marking M0 the firing rule defined below.

Definition 1.5. Let N = (P, T, F,M0) be an elementary net system. A tran-
sition t ∈ T is enabled in marking M , notation: M [t〉, if •t ⊆ M and
M ∩ t• = ∅. A transition t which is enabled in a marking M can be fired in
M , leading to the marking M ′ = (M \ •t) ∪ t•, notation: M [t〉M ′. ♦

Note that, for any markings M,M ′ and for any transition t, M [t〉M ′ if and
only if M \M ′ = •t andM ′\M = t•. This characterization is a straightforward
consequence of Def. 1.5.

The inductive application of the firing rule to an elementary net system
produces an initialized transition system, called the reachability graph of the
net system.
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Definition 1.6. An initialized transition system A = (S,E,∆, s0) consists of
a set of states S, a set of events E, a set of transitions ∆ ⊂ S×E×S, and an
initial state s0 ∈ S. The language of A (notation L(A)) is the set of all event
sequences e1 . . . en (including the empty sequence ε) such that (si−1, ei, si) ∈ ∆
for all 1 ≤ i ≤ n for some corresponding sequence of states s1 . . . sn. Two
initialized transition systems A = (S,E,∆, s0) and A′ = (S′, E,∆′, s′0) with
the same set of events E are isomorphic, noted A ∼= A′, if there exists a
bijection ϕ : S → S′ such that s′0 = ϕ(s0) and for all s1, s2 ∈ S and e ∈ E,
(s1, e, s2) ∈ ∆ if and only if (ϕ(s1), e, ϕ(s2)) ∈ ∆′. ♦

Definition 1.7. Given an elementary net system N = (P, T, F,M0), the
reachability set of N , noted RS(N), is the least set of markings containing
the initial marking M0 and closed under the firing of transitions. Markings
M ∈ RS(N) are called reachable markings of N . The reachability graph of
N is the initialized transition system RG(N) = (RS(N), T,∆,M0) defined by
letting (M, t,M ′) ∈ ∆ if and only if M ∈ RS(N) and M [t〉M ′. The language
of N , noted L(N), is the language of RG(N). ♦

Definition 1.8. An elementary transition system is an initialized transition
system which is isomorphic to the reachability graph of an elementary net
system. ♦

The firing rule allows to generate from an elementary net system an initialized
transition system that represents its behaviour extensionally. The (converse)
goal of elementary net synthesis is to extract from an initialized transition
system an elementary net system which represents this behaviour intension-
ally.

{c1, f, c2}

{h1, c2} {c1, h2}

{h1, n2} {n1, h2}

{c1, f, n2} {n1, f, c2}

{n1, f, n2}

t1

t2

a1
t2

t1
a2

a1

r2

r2

a2

r1

r1

a1 a2

Fig. 1.6. the reachability graph of the elementary net system for mutual exclusion

Example 1.9. For an illustration, we show in Fig. 1.6 the reachability graph
of the elementary net system for mutual exclusion (see Fig. 1.5). The ini-
tial marking is indicated with a wriggling arrow. It may be checked from the
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reachability graph that a mutually exclusive use of the resource by the two
process components is actually enforced, because the two properties repre-
sented by the respective places h1 (process component 1 has the resource)
and h2 (process component 2 has the resource) never hold jointly. Note that
every transition of the elementary net system for mutual exclusion is initially
live, i.e., it can be fired in some reachable marking. Even better, every transi-
tion is live, i.e. it stays initially live whatever reachable marking is chosen to
replace the initial marking. 2

Definition 1.10. Given a net system N = (P, T, F,M0), a transition t ∈ T is
dead if it cannot be fired in any reachable marking M ∈ RS(N). A net system
without dead transitions is said to be initially live or reduced. ♦

By Def. 1.4, elementary net systems are free from dead transitions. The other
particularities of reachability graphs of elementary net systems will be exam-
ined in Sect. 1.3, where we will refine consequently the current definition of
initialized transition systems.

In the end of the section, we would like to discuss the issue of contacts,
which is special to elementary nets. In an elementary net system, a transition
t may be disabled in a reachable marking M because some input place of t is
not marked in M (•t 6⊆ M) or because some output place of t is marked in
M (t• ∩M 6= ∅). The latter case is known as contact.

Definition 1.11. Given an elementary net system N = (P, T, F,M0) and a
reachable marking M of N , a transition t ∈ T is said to have contact in M
if •t ⊆ M and t• ∩M 6= ∅. N is said to be contact-free if •t ⊆ M entails
t• ∩M = ∅ for every transition t ∈ T and for every reachable marking M .

♦

Example 1.12. Figure 1.7, borrowed from [19], shows two elementary net sys-
tems with isomorphic reachability graphs (see Def. 1.6). The elementary net
system on the left is contact-free. The elementary net system on the right
has contacts. Indeed, transition summer has no input place, but it cannot be
fired because one of its output places already contains a token. After transi-
tion spring has been fired, this token is removed and transition summer can
be fired. 2

Definition 1.13. Given elementary net systems N = (P, T, F,M0) and N ′ =
(P ′, T ′, F ′,M ′

0) with the same set of transitions T = T ′, let N ≈ N ′ if and
only if RG(N) ∼= RG(N ′), i.e., N and N ′ have isomorphic reachability graphs.

♦

Up to the equivalence relation ≈, contacts may always be eliminated from ele-
mentary net systems by introducing complementary places defined as follows.

Definition 1.14. In an elementary net system N = (P, T, F,M0), two places
p and p′ are said to be complementary if p ∈ M0 ⇔ p′ /∈ M0 and •p = p′•

and p• = •p′. ♦
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spring

summer

autumn

winter

spring

summer

autumn

winter

Fig. 1.7. two alternative elementary net systems for the four seasons

It may be shown by induction on the length of firing sequences that, if p and
p′ are complementary places, then p ∈ M ⇔ p′ /∈ M for every reachable
marking M . Therefore, if M is a reachable marking of N and if every place
p of N has a complementary place p′, then whenever (t, p) ∈ F and p ∈ M ,
(p′, t) ∈ F and p′ /∈ M , entailing that •t * M and that transition t has no
contact in M .

Given an elementary net system N = (P, T, F,M0), let N ′ denote the
elementary net system (extending N) which one obtains by adding, for each
place p ofN , the complementary place p′ if it is not already present in P . Then
N ′ is contact-free. For each marking M ∈ RS(N), let M ′ denote the unique
marking ofN ′ such that, for every place p ∈ P , p ∈M ′ iff p ∈M , and for every
(complementary) place p′ /∈ P , p′ ∈ M ′ iff p /∈ M . Then M ′ ∈ RS(N ′) and
the correspondenceM 7→M ′ defines an isomorphism between the reachability
graphs RG(N) and RG(N ′). Therefore, N ≈ N ′ as desired.

Example 1.15. The contact-free elementary net system which is obtained by
adding complementary places to the elementary net system displayed on the
right-hand side of Fig.1.7 is shown in Fig. 1.8. Transition summer cannot be
fired because one of its input places is not marked. 2

Isomorphism of reachability graphs is a strong equivalence on elementary net
systems. A weaker equivalence on elementary net systems, also used inten-
sively, is language equivalence.

Definition 1.16. Two elementary net systems N and N ′ with the same set
of transitions T = T ′ are language equivalent (notation: N ∼ N ′) if L(N) =
L(N ′). ♦

Clearly, N ≈ N ′ entails N ∼ N ′, but not the other way round. The two
elementary net systems shown in Fig. 1.9 have identical languages but non-
isomorphic reachability graphs (see Fig. 1.10). The reachability graph of the
rightmost net system is the minimal automaton recognizing the language
{ε, a, b, ac, bd}.
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spring

summer

autumn

winter

Fig. 1.8. the complemented version of the net system on the right of Fig. 1.7

a b

c d

a b

c d

Fig. 1.9. two alternative net systems for the language {ε, a, b, ac, bd}

s0

s1 s2

s3 s4

a b

c d

s′
0

s′
1 s′

2

s′
3

a b

c d

Fig. 1.10. the reachability graphs of the two nets from Fig. 1.9
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1.3 Regions and Elementary Transition Systems

After two preliminary sections, let us now introduce the main topic of this
book. The basic synthesis problem for elementary net systems consists of de-
ciding whether a given finite initialized transition system is isomorphic to the
reachability graph of some elementary net system. In this case, the transi-
tion system is called an elementary transition system (Def. 1.8) and the net
system is said to be a net realization of the transition system. This problem
is decidable since, for a given initialized transition system A = (S,E,∆, s0),
there can exist only finitely many elementary net systems N = (P, T, F,M0)
with set of transitions T equal to the set of events E. However, enumerating
these elementary net systems N , computing their reachability graphs RG(N),
and checking whether A is isomorphic to some of them, is not a smart way to
solve the problem. Another possibility is to derive from A a unique and op-
timal candidate N = SN(A) for the realization of A (SN means Synthesized
Net) and to check whether A and RG(SN(A)) are isomorphic. We show in
this section that this can actually be done using regions of transition systems
as defined in [21, 22].

The best way to explain intuitions under the notion of regions is to consider
the basic synthesis problem (for elementary net systems) in the special case
where the initialized transition system A = (S,E,∆, s0) taken as input is the
reachability graph of an elementary net system N = (P, T, F,M0), i.e., T = E
and RG(N) = A. The idea is to examine, for each place p ∈ P , the set [[p]]
of markings of N in which place p is marked, to look at the graph theoretical
properties of [[p]] within RG(N), and to reconstruct on the sole basis of these
graph theoretical properties the initial marking and the flow arcs attached to
place p.

Definition 1.17. Let N = (P, T, F,M0) be an elementary net system. For
any place p ∈ P , the set [[p]] = {M ∈ RS(N) | p ∈M } is called the extension
of p in RG(N). ♦

Example 1.18. Consider again the elementary net system for mutual exclusion
(right hand side of Fig. 1.11). Place f of this net is marked when the resource is
free. The extension [[f ]] of place f is figured by the grey slots in the reachability
graph of the net (left hand side of Fig. 1.11). One observes that all occurrences
of the events r1 or r2 (release the resource) enter the extension of place f ,
thus witnessing that r1, r2 ∈

•f . Similarly, all occurrences of the events t1 or
t2 (take the resource) exit from the extension of place f , thus witnessing that
t1, t2 ∈ f•. The occurrences of the remaining events a1 and a2 (apply to the
resource) do not cross the border of [[f ]], thus witnessing that a1, a2 6∈ •f ∪f•.

2

By Def. 1.17, every place p defines a property which is shared by all markings
in its extension and by no other reachable markings. By Def. 1.4, two different
places of an elementary net system must have different extensions. Places p are
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Fig. 1.11. the extension of a place in a reachability graph

therefore faithfully represented by their extensions [[p]], i.e., by sets of states
of RG(N). The next proposition, generalizing over the observations made in
Example 1.18, establishes much stronger relations between the places of an
elementary net system N and their extensions in RG(N).

Proposition 1.19. Let N = (P,E, F,M0) be an elementary net system, and
let RG(N) = (S,E,∆,M0) be the reachability graph of N (hence S = RS(N)).
For every place p ∈ P and for every e ∈ E (transition of N and event of
RG(N)), the following relations are satisfied:

e ∈ •p ⇔
(

s
e
→ s′ ⇒ (s 6∈ [[p]] ∧ s′ ∈ [[p]])

)

e ∈ p• ⇔
(

s
e
→ s′ ⇒ (s ∈ [[p]] ∧ s′ 6∈ [[p]])

)

e 6∈ •p ∪ p• ⇔
(

s
e
→ s′ ⇒ (s ∈ [[p]]⇔ s′ ∈ [[p]])

)

Proof. According to the firing rule of elementary net systems,

M [e〉M ′ ⇔ (M \M ′ = •e and M ′ \M = e•)

Therefore,

(M [e〉M ′ ∧ p ∈ e•) ⇒ (p 6∈M ∧ p ∈M ′)
(M [e〉M ′ ∧ p ∈ •e) ⇒ (p ∈M ∧ p 6∈M ′)

(M [e〉M ′ ∧ p /∈ •e ∪ e•) ⇒ (p ∈M ⇔ p ∈M ′)

which may be reformulated as

p ∈ e• ⇒ (M [e〉M ′ ⇒ (p 6∈M ∧ p ∈M ′))
p ∈ •e ⇒ (M [e〉M ′ ⇒ (p ∈M ∧ p 6∈M ′))

p /∈ •e ∪ e• ⇒ (M [e〉M ′ ⇒ (p ∈M ⇔ p ∈M ′))

As the conditions on the left-hand side are mutually exclusive and cover all
possible cases for each place p, and similarly for the conditions in the right-
hand side, the implication relations may be replaced by logical equivalence
relations:

p ∈ e• ⇔ (M [e〉M ′ ⇒ (p 6∈M ∧ p ∈M ′))
p ∈ •e ⇔ (M [e〉M ′ ⇒ (p ∈M ∧ p 6∈M ′))

p /∈ •e ∪ e• ⇔ (M [e〉M ′ ⇒ (p ∈M ⇔ p ∈M ′))
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This is a close rephrasing of the statement of the proposition, which may be
derived using the relations p ∈ •e ⇔ e ∈ p•, p ∈ M ⇔ M ∈ [[p]], and so
on. 2

Proposition 1.19 states that the flow relations of an elementary net system N
may be reconstructed from its reachability graph. It suffices in fact, for each
place p, to classify the transitions e of N according to whether all occurrences
of the corresponding event e enter jointly, or leave jointly, or do not cross
the border of [[p]], the extension of p in RG(N). Note that a place p contains
a token in the initial marking M0 of N if and only if the initial state M0

of RG(N) belongs to [[p]]. Therefore, N may be entirely reconstructed from
RG(N).

Consider now an initialized transition system A = (S,E,∆, s0) and sup-
pose that A ∼= RG(N) for some elementary net system N = (P,E, F,M0).
Let ϕ : S → RS(N) be the isomorphism between A and RG(N). In view
of Prop. 1.19, for every place p ∈ P , the set of states ϕ−1[[p]] is a region of
A according to the following definition, due to Ehrenfeucht and Rozenberg
[21, 22].

Definition 1.20. A region of an initialized transition system (S,E,∆, s0) is
a subset of states r ⊆ S such that, for each event e ∈ E, one of the following
mutually exclusive situations holds:

e enters region r , noted e ∈ ◦r, which means that

s
e
→ s′ ⇒ (s 6∈ r ∧ s′ ∈ r)

e exits from region r , noted e ∈ r◦, which means that

s
e
→ s′ ⇒ (s ∈ r ∧ s′ 6∈ r)

e does not cross the border of region r , noted e ∈ r⊥, which means that

s
e
→ s′ ⇒ (s ∈ r ⇔ s′ ∈ r)

The whole set of states S and its complement, the empty set, are the trivial
regions. The set of regions of an initialized transition system A is denoted
R(A). For any event e of A, the subsets of regions ◦e = {r ∈ R(A) | e ∈ r◦ }
and e◦ = {r ∈ R(A) | e ∈ ◦r } are called the preset, respectively the poset,
of e. Similarly, for any region r of A, the subsets of events ◦r and r◦ are
called the preset, respectively the poset of r. Finally, for any subset of regions
R ⊆ R(A) and for every state s ∈ S, we let Rs = {r ∈ R | s ∈ r }. ♦

Note that Def. 1.20 applies to arbitrary initialized transition systems, hence
also to non-elementary transition systems, i.e., it applies also to initialized
transition systems that do not have net realizations. A very basic illustration
of Def. 1.20 is given in Fig. 1.12, where the outer rectangle represents the set
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Fig. 1.12. events crossing or not crossing the borders of a region

of states of an initialized transition system, while the inner and grey rectangle
represents a region. Each type of arcs in the figure represents the collection of
all transitions (s, e, s′) labelled with the same event e. All possible cases for
such a collection are shown in the figure. It is easily seen from Def. 1.20 and
Fig. 1.12 that for any region p ∈ R(A), the complement p = S \ p of p is also
a region of A. Moreover, ◦p = p◦ and p◦ = ◦p.

Example 1.21. Consider the initialized transition system shown in Fig. 1.13.
Each one of subsets of states {s0}, {s1, s3}, {s2, s4} is a region. On the con-

s0

s1 s2

s3 s4

a

b

c

d

c

d

Fig. 1.13. a non-elementary transition system

trary, {s1, s2} is not a region: one d-transition enters the set but the other
d-transition leaves the set. The set {s1, s2, s4} is not a region either, since one
d-transition enters this set but the other d-transition does not cross the border
of the set. The set {s1, s2, s3, s4} is a region, and so are the sets {s0, s1, s3}
and {s0, s2, s4}. There are no other non-trivial regions. 2

The notion of regions is graph-theoretic, i.e., regions are preserved under iso-
morphisms of graphs. So, the definition of the regions of a transition system
does not depend on the inscriptions possibly attached to its states. On the
contrary, the definition of the extension of a place in a reachability graph re-
lies entirely on the fact that states are markings. Nevertheless, for any place
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p of an elementary net system N , the extension [[p]] of p in RG(N) is a re-
gion of RG(N). By Prop. 1.19, e ∈ •p ⇔ e ∈ ◦[[p]], e ∈ p• ⇔ e ∈ [[p]]◦, and

e 6∈ •p∪p• ⇔ e ∈ [[p]]
⊥

. Moreover, p ∈M0 ⇔ s0 ∈ [[p]]. This gives precise rules
for reconstructing an elementary net system N from regions [[p]] of RG(N)
induced from places p of N . However, if one considers all regions of RG(N),
and not only the regions that coincide with extensions of places of N , then
by applying the considered reconstruction or resynthesis rules, one generally
obtains a net larger than the original net N .

Example 1.22. Let A = RG(N) be the reachability graph of the elementary
net system N for mutual exclusion (see Fig. 1.11). The regions of A are the
extensions of the places ofN , the complements of the latter, and the two trivial
regions. The net system resynthesized from all regions of A, denoted SN(A),
is depicted in Fig. 1.14. In this figure, X is the place of SN(A) defined from
the region [[x]] of A, for every place x of N , and X is the complementary place.
The original net system N coincides with the restriction of the resynthesized
net system SN(RG(N)) on the subset of places defined from extensions of
places of N . 2

C1

C1

N1

N1

H1 H1 F

F

H2H2

C2

C2

N2

N2

a1

r1

t1

a2

r2

t2

Fig. 1.14. the net system resynthesized from the reachability graph of the net
system for mutual exclusion (Fig. 1.5)

We now apply the rules used to reconstructN from RG(N) to an arbitrary
initialized transition system A, with the objective of synthesizing from the
regions A an elementary net system SN(A) realizing A, or realizing A as



1.3 Regions and Elementary Transition Systems 21

closely as possible. Note that A may not be an elementary transition system,
i.e., it may not be isomorphic to the reachability graph of any elementary net
system. A difficulty arises here because, if one applies the synthesis rules like
was done in Example 1.21 to a non-elementary initialized transition system
A, then the result is generally not an elementary net system that conforms to
Defs. 1.1 and 1.4. For this reason, we must propose extended definitions.

Definition 1.23. A quasi-elementary net is a triple N = (P, T, F ) like in
Def. 1.1, except that isolated or equivalent transitions may be present. A quasi-
elementary net system is a net system N = (P, T, F,M0) like in Def. 1.4,
except that the underlying net (P, T, F ) is only required to be quasi-elementary.
The net firing rule and all notations given for elementary nets and elementary
net systems are extended without any change to quasi-elementary nets and to
quasi-elementary net systems. ♦

In Part I of this book, from now on, net and net system

mean by default quasi-elementary net and quasi-elementary

net system. Thus, ’elementary ’ is never meant unless stated
explicitly.

Definition 1.24. An initialized transition system is a quasi-elementary tran-
sition system if it is isomorphic to the reachability graph of a quasi-elementary
net system. ♦

With the above definitions, we can now define synthesized nets.

Definition 1.25. The canonical net version SN(A) = (P, T, F,M0) of an ini-
tialized transition system A = (S,E,∆, s0), also called the net system synthe-
sized from A, is the quasi-elementary net-system defined by P = R(A), T = E,
F = {(p, e) | e ∈ p◦ } ∪ {(e, p) | e ∈ ◦p}, and M0 = {p ∈ R(A) | s0 ∈ p}.

♦

Remark 1.26. For fluidity of the presentation, we postpone the task of showing
that Def. 1.25 is consistent with Def. 1.23, which requires indirectly by Def. 1.4
that SN(A) should be free from equivalent places and dead transitions. These
properties will be established in Lemma 1.32 and Lemma 1.34, respectively.

2

By Def. 1.25, the places of SN(A) are the regions of A, and the transitions of
SN(A) are the events of A. Recall that the complement p = S \ p of a region
p is also a region, with ◦p = p◦ and p◦ = ◦p. Therefore, in the net system
SN(A), •p = p• and p• = •p. So, every place p has a complementary place p
in SN(A), and SN(A) is contact-free. The trivial regions of A, seen as places
of SN(A), are isolated (because ◦S ∪ S◦ = ◦∅ ∪ ∅◦ = ∅). The trivial place S
is initially marked and keeps marked in all reachable markings. The trivial
place ∅ is initially unmarked and keeps unmarked in all reachable markings.
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Example 1.27. Consider the initialized transition system A shown on the left
of Fig. 1.15. The canonical net version SN(A) of A is shown in the middle
of the figure. This net system is not elementary, since it has one isolated
transition (c) and two equivalent transitions (a and b). The reachability graph
RG(SN(A)) is shown on the right of the figure. 2

s0

s1 s2

a b

c

c

c a b
s′0

s′
1,2

a b

c

c

Fig. 1.15. A, SN(A), and RG(SN(A))

Example 1.28 (Exple. 1.21 continued). The quasi-elementary net system shown
on the left of Fig. 1.16 is the canonical net version of the initialized transition
system A shown in Fig. 1.13. The reachability graph of this net is depicted
on the right of Fig. 1.16, showing (in view of the arguments presented below
in this section) that A is not an elementary transition system. 2

We will prove that for any initialized transition system A, the synthesized net
system SN(A) is an optimal candidate for the exact realization of A, both
in the class of elementary net systems or in the class of quasi-elementary net
systems. In other words, if A is isomorphic to RG(N) for some net system
N , then A ∼= RG(SN(A)). By Def. 1.24, A is a quasi-elementary transition
system in this case. Moreover, if A is an elementary transition system, i.e., if
A ∼= RG(N) for some elementary net system N , then SN(A) is an elementary
net system. We establish in reverse order the second claim (Prop. 1.31) and
the first claim (Th. 1.37). Before this, we need introducing more definitions.

In view of the net firing rule, an initialized transition system which may be
realized by a quasi-elementary net system must be deterministic. Moreover,
an initialized transition system which may be realized by an elementary net
system must be loop-free and simple. Let us give precise meanings to these
terms.

Definition 1.29. An initialized transition system (S,E,∆, s0) is said to be
deterministic if, for every event e, s

e
→ s′ ∧ s

e
→ s′′ ⇒ s′ = s′′ for all states

s, s′, s” where s
e
→ s′ means (s, e, s′) ∈ ∆. We let δ : S × E → S denote the

partial function such that δ(s, e) = s′ if (s, e, s′) ∈ ∆ for some s′ (thus unique)
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Fig. 1.16. a quasi-elementary net system and its reachability graph

and δ(s, e) is undefined otherwise. Notations (S,E,∆, s0) and (S,E, δ′s0) are
used indifferently. An event e is enabled in state s (notation: s

e
→) if δ(s, e)

is defined, disabled otherwise. The map δ is extended inductively to sequences
of events by letting s

ε
→ s (where ε denotes the empty sequence) and s

e·u
−→ s′

for all e ∈ E and u ∈ E∗ such that s
e
→ and δ(s, e)

u
→ s′. For s ∈ S, the set

of sequences u ∈ E∗ for which δ(s, u) is defined is denoted L(s). State s′ is
reachable from state s if s

u
→ s′ for some (possibly empty) sequence u ∈ L(s).

♦

In the rest of this book, initialized transition systems are
always assumed to be deterministic

Definition 1.30. Let A = (S,E, δ, s0) be an initialized transition system. A is
said to be reachable if all states in S are reachable (from s0). If A is reachable,
then it is said to be reduced if, for every event e ∈ E, δ(s, e) is defined for
some s ∈ S. A is loop free if, for every event e, s

e
→ s′ ⇒ s 6= s′. A is simple

if, for every pair of distinct events e and e′, s
e
→ s′ ∧ s

e′

→ s′ ⇒ e = e′. ♦

In the rest of this book, initialized transition systems are
always assumed to be reachable and reduced
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The next proposition states two structural properties of elementary transition
systems that may serve as criteria for rejecting immediately many initialized
transition systems that cannot be realized exactly by elementary net systems.

Proposition 1.31. For any elementary net system N , the reachability graph
RG(N) of N is a loop-free and simple initialized transition system. Con-
versely, if A is a loop-free and simple initialized transition system, then any
net realization N of A is an elementary net system.

Proof. As we consider exclusively initially live net systems (see Def. 1.10),
for any net system N , the reachability graph RG(N) of N is reachable and
reduced. We show that, if N is an elementary net system , i.e., N has neither
isolated nor equivalent transitions, then RG(N) is loop-free and simple. If
M [e〉M for some marking M ∈ RS(N), then •e = M \M = ∅ and similarly
e• = M\M = ∅, hence e is an isolated transition. IfM [e1〉M

′ andM [e2〉M
′ for

some markingM ∈ RS(N), then •e1 = M \M ′ = •e2 and e1
• = M ′\M = e2

•,
hence e1 = e2. Conversely, let A be a loop-free and simple initialized transition
system, and letN be a net system realization ofA. We show thatN has neither
isolated nor equivalent transitions. Assume for contradiction that •e = e• = ∅
for some transition e of N . As A is an initialized transition system, by the
assumptions made in Def. 1.30, the event e is enabled in some reachable
state of A. As A ∼= RG(N), M [e〉M ′ for some marking M ∈ RS(N), and
necessarily M = M ′ since •e = e• = ∅. Therefore M [e〉M . As A ∼= RG(N)
and A is loop-free, we have reached a contradiction. Assume for contradiction
that •e1 = •e2 and e1

• = e2
• for e1 6= e2. LetM ∈ RS(N) such thatM [e1〉M ′,

then necessarily, M [e2〉M
′. As A ∼= RG(N), necessarily s

e1→ s′ and s
e2→ s′ in

A for two states s and s′ corresponding with M and M ′, respectively. As A
is simple, we have reached a contradiction. 2

In view of Prop. 1.31, solving the elementary net synthesis problem for an ini-
tialized transition system A can be done in two steps. In a first step, one checks
whether A is loop-free and simple (these conditions are necessary for the ex-
istence of elementary net realizations of A). In a second step, one searches for
net realizations of A without worrying about isolated or equivalent transitions
(which are proscribed in elementary net systems). Indeed, if A is loop-free and
simple, then any net system realization N of A is an elementary net system.

We focus henceforth our attention on the quasi-elementary net synthe-
sis problem (as opposed to the elementary net synthesis problem) for ini-
tialized transition systems. We show first that Def. 1.25 is indeed consistent
with Def. 1.23, i.e., that for any initialized transition system A conforming to
Def. 1.30, the synthesized net SN(A) is free from equivalent places and dead
transitions.

Lemma 1.32. Two non-trivial regions of an initialized transition system with
the same preset and the same postset are equal.
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Proof. Let A = (S,E, δ, s0) be an initialized transition system. Let r and r′

be two non-trivial regions of A with identical presets and identical postsets.
We show first that s0 ∈ r if and only if s0 ∈ r′. Suppose for the sake of
contradiction that, e.g., s0 ∈ r and s0 /∈ r′. As r is a non-trivial region,
there exists some sequence of events e1 . . . en such that s0

e1...en−→ sn for some
state sn /∈ r. Let e1 . . . en be chosen minimal among such sequences, and
let s0

e1...ei−→ si for all i < n. By induction on i, and by direct application of
Def. 1.20 at each step in the induction, ei ∈ r⊥ and si ∈ r for all i < n.
Similarly, ei ∈ r′⊥ (because r and r′ have identical presets and identical
postsets) and si /∈ r′ for all i < n. Now sn−1

en→ sn, sn−1 ∈ r, and sn /∈ r entail
en ∈ r◦. As r and r′ have identical postsets, en ∈ r′◦, but sn−1

en→ sn and
sn−1 /∈ r′ entail en /∈ r′◦, hence we have reached a contradiction. So, s0 ∈ r if
and only if s′0 ∈ r. Consider any other state s ∈ S. Then s0

e1...en−→ s for some
sequence of events e1 . . . en. By induction on n, and by direct application of
Def. 1.20 at each step in the induction, s ∈ r if and only if s ∈ r′. As s was
chosen arbitrarily, r = r′. 2

Lemma 1.33. Let A = (S,E, δ, s0) be an initialized transition system. If
s

e
→ s′ in A, then Rs[e〉Rs′ in SN(A).

Proof. Recall from Def. 1.20 that Rs = {p ∈ R(A) | s ∈ p}. Assume that
s

e
→ s′ in A. From ◦e = {p ∈ R(A) | s ∈ p ∧ s′ 6∈ p} = Rs \ Rs′ , and e◦ =
{p ∈ R(A) | s 6∈ p ∧ s′ ∈ p} = Rs′ \Rs it follows that Rs[e〉Rs′ in SN(A).

2

Lemma 1.34. If A is an initialized transition system, then SN(A) has no
dead transitions.

Proof. Let A = (S,E, δ, s0), then SN(A) = (R(A), E, F,M0) where M0 =
Rs0

. As A is an initialized transition system that conforms to Def. 1.30, for
every e ∈ E, s0

e1...en−→ s and s
e
−→ s′ in A for some sequence of events e1 . . . en.

By Lemma 1.33 and by induction on n, it follows that every transition e of
SN(A) can be fired in some reachable marking. 2

We need introducing two more definitions before we can establish the main
result of the section, namely that SN(A) is an optimal candidate for the
realization of A by a net system.

Definition 1.35. Let N = (P, T, F,M0) be a net system and let P ′ ⊆ P
be a subset of places of N . The restriction of N on P ′ is the net system
N/P ′ = (P ′, T, F ′,M ′

0) where F ′ = F ∩ (P ′ ×T ∪ T ×P ′) and M ′
0 = M0 ∩P ′.

♦

Definition 1.36. For any initialized transition system A and for any subset
of regions R ⊆ R(A), let SNR(A) denote the restriction of the synthesized
net system SN(A) on places R ⊆ R(A). SNR(A) is called the net system
synthesized from R (and A). ♦
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Theorem 1.37. The canonical net version SN(A) = (P,E, F,M0) of an ini-
tialized transition system A = (S,E, δ, s0), given in Def. 1.25, is the largest
candidate for the exact realization of A in the class of net systems:

1. any net system N = (P ′, E, F ′,M ′
0) realizing A (A ∼= RG(N)) is isomor-

phic to some restriction of SN(A); more precisely, N ∼= SNRN
(A) where

RN is the set of regions of A that correspond with extensions of places of
N through the isomorphism between A and RG(N),

2. whenever A has some net system realization, SN(A) is a realization of A.

Proof. By Proposition 1.19, in view of Def. 1.17, any net system N =
(P ′, E, F ′,M ′

0) realizing A is isomorphic to the restriction of SN(A) on
RN = {[[p]] ∈ R(A) | p ∈ P ′ }, hence (1) is proved. In order to establish (2),
consider any net system realizing A. By (1), this net system is isomorphic to
a restriction of SN(A), let N = (P ′, E, F ′,M ′

0) where P ′ = RN . In view of
this isomorphism, A ∼= RG(N). We want to show that A ∼= RG(SN(A)). As
N is a restriction of SN(A), M ′

0 = Rs0
∩ RN . As A ∼= RG(N) and N is a

restriction of SN(A), by inductive application of Lemma 1.33, any reachable
marking of N is of the form Rs ∩RN for some state s ∈ S. Moreover, for the
same reasons, s

e
→ s′ in A if and only if (Rs ∩RN )[e〉(Rs′ ∩RN ) in N (for all

states s, s′ ∈ S). In order to prove that A ∼= RG(SN(A)), we finally show
that s

e
→ s′ in A if and only if Rs[e〉Rs′ in SN(A) (for all states s, s′ ∈ S). If

Rs[e〉Rs′ in SN(A), then clearly (Rs ∩RN )[e〉(Rs′ ∩RN ) in N , hence s
e
→ s′

in A. If s
e
→ s′ in A, then by Lemma 1.33, Rs[e〉Rs′ in SN(A), hence the proof

is complete. 2

For concluding the section, we indicate a procedure based on Prop. 1.31 and
Th. 1.37 to deal with the elementary net synthesis problem from a finite
initialized transition system A. After checking that the initialized transition
system A is loop-free and simple, which are two necessary conditions of realiz-
ability, one searches for arbitrary net system realizations N of A, knowing by
Prop. 1.31 that they, in fact, are always elementary net realizations of A. Such
realizations, necessarily finite, exist if and only if the canonical net version of
A synthesized from all regions of A is a realization. Therefore, one computes
the set R(A) of all regions of A, and one constructs the net system SN(A)
synthesized from R(A). The initialized transition system A may be realized
by an elementary net system if and only if A ∼= RG(SN(A)). Since A is de-
terministic, this isomorphism can be checked on the fly within time linear in
the size of A and in the number of places of SN(A), i.e. in |R(A)| which may
unfortunately be exponential in the size of A. We prove in Chapter 2 that
the problem of elementary net synthesis is indeed NP-complete. Nevertheless,
we shall see in the next section that, when some net realization exists, the
number of places of this net may be bounded by |S| × ((|S| − 1)/2 + |E|)
where A = (S,E,∆, s0).
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1.4 Admissible Sets of Regions and the Separation

Axioms

In sections 1.2 and 1.3, we have established a two way connection between
initialized transition systems and (quasi-elementary) net systems, comprised
of two operators. The first operator RG(N) builds the reachability graph of a
net system N , thus associating behaviour to structure. The second operator
SN(A) distills an initialized transition system A and produces a net system,
thus extracting structure from behaviour. In general, the reachability graph
of SN(A) is not isomorphic to A (however, it is as close as possible to A,
as will be shown in Sec. 1.5). So, not every initialized transition system may
be represented by a net system, and to make the representation useful, it is
mandatory to identify those initialized transition systems A which may be
given exact net representations, i.e., such that A ∼= RG(SN(A)). Needless to
say, the required characterization should be independent of the operators SN
and RG. In this section, we present to this effect an axiomatic characterization
of elementary transition systems due to Ehrenfeucht and Rozenberg [21, 22].

Given an initialized transition system A isomorphic to RG(SN(A)), the
axioms should explain the structure of A in terms of the net system SN(A),
since precisely, up to an isomorphism, A is generated by applying inductively
the net firing rule from the initial marking of SN(A). In order that the axioms
can be independent of the SN operator, they should not refer directly to the
places of SN(A), nor to the instanciations of the firing rule to the net SN(A).
However, because the places of SN(A) and the regions of A are in bijective
correspondence, the regions of A may be used in the axioms as a substitute
for the places of SN(A).

Assume A ∼= RG(SN(A)). In RG(SN(A)), two different markings M and
M ′ must differ at some place p. Two different states s and s′ of A, thus
associated by the isomorphism to different markings M and M ′ of SN(A),
must therefore differ on membership to the region p of A (the places of SN(A)
are the regions of A). In RG(SN(A)), an event e is disabled at marking M if
and only if some place p in the preset of e in SN(A) is not marked in M , or
some place p′ in the postset of e in SN(A) is marked in M . In A, whenever
an event e is disabled at some state s, thus associated by the isomorphism to
some marking M of SN(A), it must be the case that either s fails to belong
to some region p in the preset of e, or s already belongs to some region p′

in the postset of e. A stronger form of the latter axiom, ignoring the second
member of this alternative, was used in [28].

As a result, the characterization of quasi-elementary transition systems is
comprised of two separation axioms, called State Separation and Event-State
Separation. Both axioms are graph-theoretic, but they are not first order
since they use regions which are a second order concept (regions are sets). As
a matter of fact, a first order graph theoretic characterization of elementary
(or quasi-elementary) transition systems is missing.
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An important outcome of the axiomatic characterization of elementary
(or quasi-elementary) transition systems is to lead to net synthesis algorithm
that differ from the brute force algorithm suggested in the end of Sec. 1.3,
and that yield nets with size polynomial (instead of exponential) in the size of
the transition system taken as input. Given an initialized transition system A,
using the terminology of [19, 20], call an admissible set of regions any subset
of regions R ⊆ R(A) such that A ∼= RG(SNR(A)). Then, a set of regions
R is admissible if and only if it contains witnesses for the satisfaction of all
instances of the separation axioms in A, and the global number of these in-
stances is polynomial in the size of A. Therefore, if an initialized transition
system A has some admissible set of regions, then A ∼= RG(SNR(A)) for some
set of regions R with size polynomial in the size of A. Unfortunately, to check
the separation axioms, one cannot dispense with computing the set R(A) of
all regions of A, which may have size exponential in the size of A.

Regions and the two separation axioms are the corner stones
of the theory and of all algorithms presented in this book.

Let us now turn to statements.

Definition 1.38. Given an initialized transition system A = (S,E, δ, s0), a
subset of regions R ⊆ R(A) is admissible if A ∼= RG(N) for N = SNR(A),
i.e., A is isomorphic to the reachability graph of the net system synthesized
from R.

Example 1.39. The initialized transition systemA shown on the left of Fig. 1.17
is isomorphic to the reachability graph of the net system N = SNR(A) shown
on the right of this figure, where R = {n1, h1, c1, f, n2, h2, c2} is the admissible
set of regions of A defined by the columns of the table displayed immediately
after the figure.

s0

init
s1 s2

s6 s5

s4 s3

s7

t1

t2

a1
t2

t1
a2

a1

r2

r2

a2

r1

r1

a1 a2

c1

n1

h1

f

h2

c2

n2

a1

r1

t1

a2

r2

t2

Fig. 1.17. an initialized transition system with an elementary net realization



1.4 Admissible Sets of Regions and the Separation Axioms 29

∈ n1 h1 c1 f c2 h2 n2

s0 0 0 1 1 1 0 0
s1 0 1 0 0 1 0 0
s2 0 0 1 0 0 1 0
s3 1 0 0 1 1 0 0
s4 0 0 1 1 0 0 1
s5 1 0 0 0 0 1 0
s6 0 1 0 0 0 0 1
s7 1 0 0 1 0 0 1

The rows of the table give the isomorphism ϕ between A and RG(N), e.g.,
ϕ(s0) = {c1, f, c2}. For every state s and region r ∈ R, s ∈ r ⇔ r ∈ ϕ(s). In
other words, ϕ(s) = {r ∈ R | s ∈ r }, i.e., ϕ represents each state by the subset
of regions r ∈ R which it belongs to. In view of Def. 1.20, one can moreover
extract from the above table a representation of the events by ordered sym-

metric differences between representations of states. From s4
t1→ s6 for instance,

we get that •t1 = ϕ(s4) \ ϕ(s6) = {c1, f} and t1
• = ϕ(s6) \ ϕ(s4) = {h1}.

The injectivity of the map ϕ defined by ϕ(s) = {r ∈ R | s ∈ r } is a necessary
condition but not a sufficient condition for a subset R ⊆ R(A) to be an ad-
missible set of regions. The necessary and sufficient condition is stated in the
next proposition. 2

Proposition 1.40. Let A = (S,E, δ, s0) be an initialized transition system
and let R ⊆ R(A) be a subset of regions. Then R is an admissible set of
regions if and only if the following two properties are satisfied (where Rs =
{r ∈ R | s ∈ r }):

1. ∀s, s′ ∈ S Rs = Rs′ ⇒ s = s′.
2. ∀s ∈ S ∀e ∈ E (◦e ⊆ Rs ∧ e◦ ∩Rs = ∅)⇒ s

e
→

Proof. By definition of SNR(A), the initial marking of this net system is
M0 = Rs0

. As SNR(A) is a restriction of SN(A), by Lemma 1.33, s
e
→ s′ ⇒

Rs[e〉Rs′ for any transition of A. Let ϕ be the map defined by ϕ(s) = Rs.
Since all states of A (respectively all markings of SN(A)) may be reached
inductively from s0 (respectively from M0) and since both transition systems
A and RG(SNR(A)) are deterministic, ϕ is an isomorphism between A and
RG(SNR(A)) if and only if it is an injection (∀s, s′ ∈ S Rs = Rs′ ⇒ s = s′)
and for any state s, if an event e can fire in Rs, then this event e is enabled
in s, i.e. ∀s ∈ S ∀e ∈ E (◦e ⊆ Rs ∧ e◦ ∩Rs = ∅)⇒ s

e
→. 2

Corollary 1.41. An elementary or quasi-elementary transition system A =
(S,E, δ, s0) always has a net realization N = (P,E, F,M0) with number of
places |P | less than or equal to |S| × ((|S| − 1)/2 + |E|). 2

Definition 1.42. Given an initialized transition system A = (S,E, δ, s0), we
say that a region r ∈ R(A) separates two states s and s′ of A if s ∈ r ∧ s′ 6∈ r
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or s 6∈ r ∧ s′ ∈ r. We say that a region r ∈ R(A) separates an event e from a
state s of A if either r ∈ ◦e ∧ s 6∈ r or r ∈ e◦ ∧ s ∈ r. We say that a region
r ∈ R(A) separates strongly an event e from a state s of A if r ∈ ◦e ∧ s 6∈ r.

♦

Consider the following three properties of A and R ⊆ R(A):

• State Separation Property (SSP)

∀s, s′ ∈ S s 6= s′ ⇒ ∃r ∈ R r separates s and s′

• Event-State Separation Property (ESSP)

∀e ∈ E ∀s ∈ S ¬(s
e
→)⇒ ∃r ∈ R r separates e from s

• Strong Event-State Separation Property (SESSP)

∀e ∈ E ∀s ∈ S ¬(s
e
→)⇒ ∃r ∈ R r separates strongly e from s

The main results of the section are the following two theorems.

Theorem 1.43. Let A = (S,E, δ, s0) be a loop-free and simple initialized
transition system. A is an elementary transition system if and only the proper-
ties SSP and ESSP are satisfied for the set R = R(A) of all regions of A. For
any subset of regions R ⊆ R(A), the net system N = SNR(A) is an elemen-
tary net realization of A if and only the properties SSP and ESSP are satisfied
for R. Further, the net system SNR(A) is a contact-free net realization of A
if and only the properties SSP and SESSP are satisfied for R.

Proof. The first assertion follows from Prop. 1.31, Th. 1.37 and Prop. 1.40.
The second assertion follows from Prop. 1.31 and 1.40. The third assertion
follows from the fact that the complement S \ r of a region r ∈ R(A) is a
region r ∈ R(A) with ◦r = r◦. 2

Theorem 1.44. Let A = (S,E, δ, s0) be an initialized transition system. A is
a quasi-elementary transition system if and only the properties SSP and ESSP
are satisfied for the set R = R(A) of all regions of A. For any subset of regions
R ⊆ R(A), the net system SNR(A) is a quasi-elementary net realization of A
if and only the properties SSP and ESSP are satisfied for R.

Proof. Similar to the proof of Th. 1.43. 2

Example 1.45. Fig. 1.18 shows two initialized transition systems in which
states s1 and s2 cannot be separated by any region. Fig. 1.19 shows two
initialized transition systems in which event c cannot be separated from state
s by any region. The verification is left as an exercice (Exer. 1.4). 2
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s0

s1 s2

a b

c d

s0

s1 s2

a b

c

c

Fig. 1.18. two transition systems where State Separation fails

s
a b

c
b a

c

c

b a

s
a

c

b

a b

c

Fig. 1.19. two transition systems where Event-State Separation fails

Definition 1.46. We say that the properties SSP, ESSP and SESSP are sat-
isfied in A if they are satisfied for R = R(A), and we let SSP (R), ESSP (R)
and SESSP (R) mean the properties SSP, ESSP and SESSP, respectively,
with a given parameter R. An initialized transition system A is said to be
separated if the properties SSP and ESSP are satisfied in A. A set of regions
R ⊆ R(A) is strongly admissible if the properties SSP (R) and SESSP (R)
are satisfied. ♦

Remark 1.47. A is separated if and only if R(A) is admissible (Def. 1.38),
and then indeed, R(A) is strongly admissible, because every region has a
complementary region. In view of Theorems 1.43 and 1.44, a set of regions
R ⊆ R(A) is admissible if and only if the properties SSP (R) and ESSP (R)
are satisfied. 2

We have obtained a joint characterization of the classes of elementary tran-
sition systems or quasi-elementary transition systems in terms of separation
axioms. The axiomatization, which relies on regions, does not lead to efficient
decision and realization procedures for the basic net synthesis problem. Basi-
cally, given a loop-free and simple, resp. arbitrary, initialized transition system
A, in order to decide whether A has some elementary, resp. quasi-elementary,
net realization, one should decide for every state s whether there exist regions
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separating s from all other states s′ and from all events e disabled at s. The
difficulty is to check these properties without constructing all regions in R(A),
specially when no net realization exists.

Example 1.48. Consider the four season transition system shown in Fig. 1.20.
Each event labels a unique transition, hence every subset of states is a region.

1 2

34

spring

summer

autumn

winter

Fig. 1.20. the four seasons transition system

The net system synthesized from all regions except the trivial regions is shown
in Fig.1.21. R4 = {{1} , {2} , {3} , {4}} is a strongly admissible set of regions.

{1} {2}

{3}{4}

{2, 3, 4} {1, 3, 4}

{1, 2, 4}{1, 2, 3}

{1, 3}

{2, 4}

{1, 4}

{1, 2}

{2, 3}

{3, 4}

spring

summer

autumn

winter

Fig. 1.21. net synthesized from the four seasons transition system

R3 = {{1, 3} , {2, 3} , {3, 4}} is an admissible set of regions. The net systems
N4 and N3 synthesized from R4 and R3 are shown in Fig. 1.22. N4 is contact-
free, while N3 has (many) contact situations. R3 and R4 are two minimal sets
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{1} {2}

{3}{4}

spring

summer

autumn

winter

{1, 3}

{2, 3}

{3, 4}

spring

summer

autumn

winter

Fig. 1.22. two incomparable minimal sets of admissible regions

of admissible regions, i.e. they have no admissible and strict subset. Adding
complementary regions to R3 leads to a strongly admissible set of regions
R6 = {{1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4}}. The net systemN6 is shown
in Fig. 1.8.R4 andR6 are two minimal sets of strongly admissible regions. This
example shows that minimal sets of admissible regions may be incomparable
(w.r.t. set inclusion) and may even have different cardinalities (R4 and R3).
The situation is similar for minimal sets of strongly admissible regions (e.g.,
R4 and R6). 2

As a concluding observation, we would like to underline that the State Sep-
aration axiom is reminiscent of the axiom used in Birkhoff duality to identify
finite atomic Boolean algebras that may be represented as powersets of a set.
The connection between atomic Boolean algebras and sets is comprised of two
operators. One operator PFilt maps each proposition of a Boolean algebra to
the set of prime filters that contain this proposition. Recall that a filter is an
upwards closed set of propositions which is also closed under binary meets.
The other operator Bool maps each subset of a set S identically to itself in
2B, the Boolean algebra of subsets of S equipped with union, intersection and
complementation. A finite atomic Boolean algebra B may be represented as
the powerset of a set if and only if B ∼= Bool(PFilt(B)), if and only if any
two different propositions b and b′ are separated by some prime filter f such
that b ∈ f ⇔ b′ /∈ f . The connection between initialized transition systems
and net systems constructed in this book presents analogies with this classical
connection between Boolean algebras and sets. States of transition systems
play the role of boolean propositions and regions of transition systems play
the role of prime filters. Now, Boolean algebras and sets are essentially static
entities, while transition systems and net systems belong to the realm of dy-
namic systems. This explains why a second separation axiom is needed in our
case, namely the Event-State Separation axiom which has no counterpart in
Birkhoff duality.
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1.5 Canonical Net Versions Yield Optimal Realizations

The connection between initialized transition systems and net systems built
up in sections 1.2 and 1.3 is comprised of two operators, the Reachability
Graph and Synthesized Net construction operators (RG and SN). The set of
initialized transition systems A such that A ∼= RG(SN(A)) defines the kernel
of this connection on the side of transition systems. In Sec. 1.4, we have char-
acterized this kernel by two separation axioms. Initialized transition systems
in which both axioms are satisfied have exact net realizations. Initialized tran-
sition systems in which one or the other separation axiom fails to be satisfied
can only be given approximate net realizations. We will show in this section
that the approximate net realizations provided by the SN operator are opti-
mal in a quite precise sense. For this purpose, we show that the operators RG
and SN establish a Galois connection between initialized transition systems
and net systems, i.e., that A ≤ RG(N)⇔ N ≤ SN(A) for adequate preorder
relations.

Instead of a Galois connection, we could have established a dual adjunction
between initialized transition systems and net systems in the spirit of [28]
or [3]. However, dealing with the issue of optimality is easier in an order-
theoretic setting than in a categorical setting. We have therefore preferred
Galois connections, that require light machinery and are moreover well-known
from computer scientists since they form the basis of abtract interpretation.

The development given in the rest of the section targets three objectives.
First, it provides optimality results needed in subsequent sections of the chap-
ter, where we consider alternative statements of the net synthesis problem.
Second, it provides several different but equivalent views of regions, needed in
the next chapter on elementary or quasi-elementary net synthesis algorithms.
Last but not least, it gives a flavor, on the simple and concrete case of quasi-
elementary nets, of the unified theory of regions that will be presented in Part
II of this book for arbitrary types of nets.

Let us now enter the technical development. Recall that by initialized
transition system, we mean deterministic, reachable and reduced initialized
transition systems (Def. 1.30), while by net system, we mean quasi-elementary
net system (Def. 1.23), thus allowing isolated or equivalent transitions, but
banning out equivalent places and dead transitions. The first step towards
proving that the operators RG and SN establish a Galois connection between
initialized transition systems and net systems is to equip them with preorder
relations.

Definition 1.49. Given two initialized transition systems A = (S,E, δ, s0)
and A′ = (S′, E, δ′, s′0) with the same set of events, let A ≤ A′ if there
exists a map ϕ : S → S′, called a simulation, such that ϕ(s0) = s′0 and
s

e
→ s′ ⇒ ϕ(s)

e
→ ϕ(s′) for all states s, s′ ∈ S and events e ∈ E. ♦

When a simulation map ϕ exists, it is necessarily unique, and we say that it
justifies the simulation relation A ≤ A′. This relation is a preorder, i.e. it is
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reflexive and transitive. If A ≤ A′ and A′ ≤ A, then the two simulation maps
ϕ : S → S′ and ϕ′ : S′ → S are inverse to each other, hence in this case A
and A′ are isomorphic (A ∼= A′).

Definition 1.50. Given two net systems N = (P, T, F,M0) and N ′ = (P ′, T,
F ′,M ′

0) with the same set of transitions, let N ≤ N ′ if there exists a map
ι : P → P ′, called an embedding of N into N ′, such that for all p ∈ P ,
M0(p) = M ′

0(ι(p),
•p = •ι(p) and p• = ι(p)•. ♦

When an embedding map ι exists, it is necessarily injective (because N has
no equivalent places) and unique (because N ′ has no equivalent places), and
we say that it justifies the relation N ≤ N ′. If N ≤ N ′ and N ′ ≤ N , then the
embedding maps ι : P → P ′ and ι′ : P ′ → P are inverse to each other, hence
in this case N and N ′ are isomorphic.

Our goal is to establish the following statement and to examine its implica-
tions.

Theorem 1.51. For any initialized transition system A with set of events E
and for any net system with the set of transitions T = E,

A ≤ RG(N)⇔ N ≤ SN(A)

Th. 1.51 states the existence of a Galois connection between initialized tran-
sition systems and net systems. In order to establish this theorem, we need to
come back to the notion of regions and observe that they may be presented
in many different disguises.

Remark 1.52. A region r of an initialized transition system A = (S,E, δ, s0)
may be specified equivalently in the following ways:

1. explicitly, as a set of states r ⊆ S;
2. by its characteristic function r : S → {0, 1}, i.e., r(s) = 1 if s ∈ r, r(s) = 0

otherwise;
3. by a function r : {init}∪E → {−1, 0, 1}, such that r(init) = r(s0) ∈ {0, 1}

and r(e) = r(s′) − r(s) for any transition s
e
→ s′ in A. This function

is called the signature of the region r. The preset and postset of the
region r may then be retrieved as ◦r = {e ∈ E | r(e) = 1} and r◦ =
{e ∈ E | r(e) = −1};

4. by a function r : S ∪ E → {−1, 0, 1}, such that r(s) ∈ {0, 1} for all s ∈ S
and r(e) = r(s′)− r(s) for any transition s

e
→ s′ in A. 2

Remark 1.53. Given A = (S,E, δ, s0), a map f : S → {0, 1} is a region of A if
and only it has a companion map g : E → {−1, 0, 1} such that

s
e
→ s′ ⇒ f(s′) = f(s) + g(e)

Such a map g, when it exists, is unique. Conversely, a map g : E → {−1, 0, 1}
which is not the constant map g = 0 has at most one companion map f
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(because every event is enabled in some state of A and every state of A can
be reached from s0). The constant map g = 0 has two companion maps,
namely the characteristic functions of the two trivial regions. 2

Example 1.54. Consider again the initialized transition system in Fig. 1.23.
Five forms defining the same region of this initialized transition system are:

s0

s1 s2

s3 s4

a

b

c

d

c

d

r(a) = −1
r(b) = −1
r(c) = +1
r(d) = +1

Fig. 1.23. various representations of a region in a transition system

1. r = {s0, s2, s4};
2. r(s0) = r(s2) = r(s4) = 1, r(s1) = r(s3) = 0;
3. r(init) = 1, r(a) = r(b) = −1, r(c) = r(d) = +1;
4. r(s0) = r(s2) = r(s4) = 1, r(s1) = r(s3) = 0, r(a) = r(b) = −1, r(c) =
r(d) = +1;

5. r = f where f(s0) = f(s2) = f(s4) = 1, f(s1) = f(s3) = 0 and the
companion map of f is g(a) = g(b) = −1, g(c) = g(d) = +1.

2

Definition 1.55. The signature of a place p of a net system N is the signa-
ture of the region [[p]] of RG(N) defined by the extension of this place, i.e.,
[[p]](init) = M0(p), [[p]](e) = −1 if e ∈ p•, [[p]](e) = 1 if e ∈ •p, and [[p]](e) = 0
otherwise. ♦

The following lemma is crucial to the proof of Th. 1.51.

Lemma 1.56. Let A = (S,E, δ, s0) and A′ = (S′, E, δ′, s′0) be initialized tran-
sition systems with the same set of events E. Let A ≤ A′ and let ϕ : S → S′

be the simulation map justifying this relation. Then, for every region r′ of A′,
r = ϕ−1(r′) is a region of A. Moreover, r and r′ have the same signature
(defined in Remark 1.52).

Proof. If r′ is a trivial region of A′, then ϕ−1(r′) is a trivial region of A. In
the converse case, let r′ : {init} ∪ E → {−1, 0, 1} be the signature of the
region r′, and let g′ : E → {−1, 0, 1} be the restriction of this signature on
the set of events E. As r′ is a region, g′ has a companion map f ′ : S′ → {0, 1}.
Define f : S → {0, 1} and g : E → {−1, 0, 1} by setting f(s) = f ′(ϕ(s)) and
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g(e) = g′(e) for all e ∈ E. As f ′ and g′ are companion maps, f and g are also
companion maps, because s1

e
→ s2 ⇒ ϕ(s1)

e
→ ϕ(s2) for all states s1, s2 ∈ S and

events e ∈ E. Therefore, r = f−1{1} = ϕ−1(f ′−1(1)) = ϕ−1(r′) is a region of
A. Finally, r(init) = r(s0) = f(s0) = f ′(ϕ(s0)) = f ′(s′0) = r′(s′0) = r′(init),
and r(e) = g(e) = g′(e) = r′(e) for all e ∈ E, hence r and r′ have the same
signature. 2

Th. 1.51 is established by the following two propositions.

Proposition 1.57. Let A = (S,E, δ, s0) be an initialized transition system
and let N = (P,E, F,M0) be a net system. If A ≤ RG(N) then N ≤ SN(A).

Proof. Let ϕ : S → RS(N) be the simulation map justifying the relation
A ≤ RG(N). By Prop. 1.19, for every place p of N , the extension [[p]] of this
place in RG(N) is a region with the same signature as p. By Lemma 1.56,
ϕ−1[[p]] is a region of A with the same signature as [[p]]. Therefore, the map
ι : P → R(A) defined by ι(p) = ϕ−1[[p]] for all p ∈ P is an embedding map
that justifies the relation N ≤ SN(A). 2

Proposition 1.58. Let A = (S,E, δ, s0) be an initialized transition system
and let N = (P,E, F,M0) be a net system. If N ≤ SN(A) then A ≤ RG(N).

Proof. Let ι : P → R(A) be the embedding map that justifies the relation
N ≤ SN(A) (recall that the places of SN(A) are the regions of A). For any
state s ∈ S, let ϕ(s) be the marking of N defined by p ∈ ϕ(s)⇔ s ∈ ι(p). By
Def. 1.25 and 1.50, p ∈M0 if and only if s0 ∈ ι(p), hence p ∈ M0 if and only
if p ∈ ϕ(s0), i.e., ϕ(s0) = M0. In order to show that ϕ is a simulation map
justifying the relation A ≤ RG(N), it remains to show that ϕ(s) ∈ RS(N)
for all s ∈ S, and that s

e
→ s′ in A entails ϕ(s)[e〉ϕ(s′) in N for all e ∈ E.

As ϕ(s0) = M0 and every state of A can be reached inductively from s0, it
is sufficient to prove that s

e
→ s′ entails ϕ(s)[e〉ϕ(s′). By Lemma 1.33, s

e
→ s′

entails Rs[e〉Rs′ in SN(A). Consider an arbitrary place p of N , then r = ι(p)
is a region of A, and by Remark 1.53, r(s′) = r(s)+r(e). In view of Def. 1.50, p
and ι(p) have the same signature, hence r(s′) = r(s)+F (e, p)−F (p, e) where
F is the flow relation of N . Now r(s) = 1 iff s ∈ ι(p) iff p ∈ ϕ(s), and similarly,
r(s′) = 1 iff p ∈ ϕ(s′). Therefore, ϕ(s′)(p) = ϕ(s)(p) + F (e, p)− F (p, e). As p
was chosen arbitrarily, it follows that ϕ(s)[e〉ϕ(s′) in N . 2

Notation 1.59 For convenience, we let ASN and NRG be equivalent nota-
tions for SN(A) and RG(N), respectively. We let operators SN and RG be
composed from left to right in superscripts, e.g., ASN ·RG means RG(SN(A)).

We enumerate below some direct but important consequences of the Galois
connection between initialized transition systems and net systems stated in
Th.1.51 (A ≤ NRG ⇔ N ≤ ASN in the above notation). All properties
listed are classical properties of Galois connections, reinterpreted in the spe-
cific setting of transition systems and net systems. When symmetric pairs of



38 1 Introduction to Elementary Net Synthesis

properties of transition systems and net systems are stated simultaneously,
we sketch the proof of the properties for net systems (the proofs of the similar
properties for transition systems follow by exchanging A and N , and RG and
SN).

Property 1.60. A ≤ ASN ·RG and N ≤ NRG·SN .

Proof. N ≤ NRG·SN ⇔ NRG ≤ NRG. 2

Interpretation: every initialized transition system A is simulated by the reach-
ability graph of its canonical net version SN(A), and every net system N is
isomorphic to a restriction of the net system synthesized from its reachability
graph RG(N).

Property 1.61. A1 ≤ A2 ⇒ ASN
2 ≤ ASN

1 and N1 ≤ N2 ⇒ NRG
2 ≤ NRG

1 .

Proof. N1 ≤ N2 ≤ NRG·SN
2 ⇒ NRG

2 ≤ NRG
1 . 2

Interpretation: Both operators RG and SN are decreasing: increasing the
set of places of a net decreases its behaviour; increasing a transition system
decreases the set of possible signatures of net places compatible with this
behaviour.

Property 1.62. ASN ·RG is the best upper approximation of A (up to an iso-
morphism) by the reachability graph of a net system.

Proof. A ≤ ASN ·RG, and A ≤ NRG ⇒ N ≤ ASN ⇒ ASN ·RG ≤ NRG. 2

Interpretation: The canonical net version SN(A) of A is optimal amongst the
approximate net realization of A, even if A is not a quasi-elementary transition
system.

Property 1.63. ASN and ASN ·RG·SN , respectively NRG and NRG·SN ·RG, are
isomorphic.

Proof. NRG ≤ NRG·SN ·RG, and N ≤ NRG·SN ⇒ NRG·SN ·RG ≤ NRG.
2

Interpretation: The best upper approximation of A by the reachability graph
of a net system is the reachability graph ASN ·RG of ASN , and iterating net
synthesis from ASN ·RG is useless since it yields again ASN up to an isomor-
phism.

Definition 1.64. A net system N is saturated if no place can be added to
this net system without modifying its behaviour RG(N) (considered up to iso-
morphisms of graphs), i.e., if (N ≤ N ′ ∧ NRG ∼= N ′RG)⇒ N ∼= N ′. ♦

Property 1.65. If N is saturated, then N ∼= NRG·SN .
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Proof. If one lets N ′ = NRG·SN in Def. 1.64, then from N ≤ NRG·SN

(Prop. 1.60) and NRG ∼= NRG·SN ·RG (Prop. 1.63) it follows that N and
NRG·SN are isomorphic. 2

Property 1.66. NRG·SN is a saturated net system.

Proof. Assume that NRG·SN ≤ N ′ and NRG·SN ·RG ∼= N ′RG, then NRG ∼=
NRG·SN ·RG ∼= N ′RG ⇒ NRG ≤ N ′RG ⇒ N ′ ≤ NRG·SN , hence N ′ and
NRG·SN are isomorphic. 2

Interpretation: N is saturated if and only if N and NRG·SN are isomorphic.
Moreover, since ASN andASN ·RG·SN are isomorphic, the canonical net version
ASN of an initialized transition system is saturated, even if A is not a quasi-
elementary transition system.

Property 1.67. A ∼= NRG for some N if and only if A ∼= ASN ·RG.

Proof. A ≤ ASN ·RG; A ≤ NRG ⇒ N ≤ ASN ⇒ ASN ·RG ≤ NRG ∼= A. 2

Interpretation: This is just a different proof of Th. 1.37.
By Th. 1.37 and Prop. 1.40, A ∼= ASN ·RG if and only if A is separated
(Def. 1.46). As a result, there exists a strong relationship between separated
initialized transition systems (with admissible sets of regions) and saturated
net systems (with maximal sets of places). If A is separated, then A ∼= ASN ·RG,
hence A may be reconstructed up to an isomorphism from its canonical net
version ASN , and ASN is saturated since it is isomorphic to ASN ·RG·SN . If
N is saturated, then N ∼= NRG·SN , hence N may be reconstructed up to an
isomorphism from its reachability graph NRG, and NRG is separated since
it is isomorphic to NRG·SN ·RG. Whenever A is loop-free, simple and sepa-
rated, separatedness entails that A ∼= ASN ·RG, hence ASN is an elementary
net system (by Prop. 1.31). Whenever N is an elementary net system, NRG

is loop-free and simple, hence NRG is an elementary transition system (by
Prop. 1.31). Therefore, one can state the following result.

Theorem 1.68. The operators RG and SN restrict to reciprocal bijections
between isomorphism classes of separated initialized transition systems and
isomorphism classes of saturated net systems. They further restrict to recip-
rocal bijections between isomorphism classes of elementary transition systems
and isomorphism classes of elementary net systems. 2

However, the Galois connection which we have built up in
this section cannot be specialized into a Galois connection
between loop-free and simple initialized transition systems
and elementary net systems.
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For instance, as we have already discussed, the initialized transition system
A shown in Fig. 1.15 (on page 22) is loop-free and simple, but the transition
c is isolated in SN(A) while the transitions a and b are equivalent in SN(A).
Searching for an approximate but optimal realization of the considered transi-
tion system by an elementary net system would simply make no sense. So, the
constraints of simpleness and loop-freeness set on elementary transition sys-
tems make no difficulties when the problem dealt with is the exact realization
of a transition system by a net system, but they become a real obstacle when
the problem dealt with is the approximate realization of a transition system
by a net system, which has at least equal importance in practice.

Remark 1.69. The isomorphism ASN ∼= ASN ·RG·SN shows that the regions of
A and ASN ·RG have the same set of signatures. By Lemma 1.56, if ϕ is the
simulation map justifying the relation A ≤ ASN ·RG, then for every region r′ of
ASN ·RG, r = ϕ−1(r′) is a region of A with the same signature. Therefore, by
Prop. 1.19, the set of regions of A is exactly the set of inverse images ϕ−1(r′)
of the regions r′ of ASN ·RG. 2

1.6 Relaxing the State Separation Property

As we saw in Section 1.4, solving the basic net synthesis problem requires
that one checks A (the initialized transition system taken as input) for two
separation properties (SSP and ESSP) whose conjunction entails A ∼= RG(N)
for N = SN(A). Sometimes, the primary objective of the synthesis is to
construct an elementary net system N with the same language as A but
without requiring that A and RG(N) should be isomorphic. This problem
will be considered in full generality in Section 1.7. In this section, we want
to examine what happens when just dismissing the state separation property
(SSP) and building up a net system N = SNR(A) from any set of regions R of
the given transition system A witnessing for the satisfaction of the event-state
separation property (ESSP). Dismissing SSP while maintaining ESSP reflects
the desire to save on places of the synthesized nets while still conforming to
the behaviour of A. Indeed, as we shall see, the axiom ESSP is satisfied in A
if and only if L(A) = L(N) and A ≤ RG(N) for some net system N , if and
only if L(A) = L(SNR(A)) for some set of regions R of A (where L(A) and
L(N) are the languages of A and N). Technically speaking, the problem is to
synthesize a net system realizing the quotient of the transition system A by
some equivalence on states compatible with labelled transitions. We examine
this problem first for quasi-elementary net systems and next for elementary
net sytems. Let us recall some classical definitions and results about quotients.

Definition 1.70. Given an initialized transition system A = (S,E, δ, s0), an
equivalence relation ≡ on the set of states S is said to be compatible with
labelled transitions if s1

e
−→ s2 and s1 ≡ s′1 entail s′1

e
−→ s′2 and s2 ≡ s′2 for



1.6 Relaxing the State Separation Property 41

some state s′2. Given an equivalence relation ≡ on S compatible with labelled
transitions, the quotient of A by ≡ (notation: (A/ ≡)) is the initialized tran-
sition system ((S/ ≡), E, (δ/ ≡), [s0]) where S/ ≡ is the set of equivalence
classes [s] of states s ∈ S, [s0] is the equivalence class of the initial state and
(δ/ ≡)([s], e) = [δ(s, e)] for every state s ∈ S. ♦

If ≡ is an equivalence relation on S compatible with labelled transitions, then
s ≡ s′ entails L(s) = L(s′), where L(s) is the language generated by A from
state s.

Definition 1.71. Given A = (S,E, δ, s0) and A′ = (S′, E, δ′, s′0), a label pre-
serving morphism of initialized transition systems ϕ : A → A′ is a map
ϕ : S → S′ such that ϕ(s0) = s′0 and s

e
→ s′ ⇒ ϕ(s)

e
→ ϕ(s′) for every transi-

tion s
e
→ s′ of A. ♦

If ϕ is a label preserving morphism, then for any state s ∈ S, L(s) ⊆ L(ϕ(s)).
As initialized transition systems are always (assumed to be) deterministic,
reachable and reduced, there can exist at most one label preserving morphism
from A to A′. In the terminology of Section 1.5, the map ϕ of Def. 1.71 is a
simulation map and it justifies the relation A ≤ A′, which we strengthen to
A →֒ A′ in case when the map ϕ is moreover injective.

Definition 1.72. A label preserving morphism ϕ from A to A′ is a saturating
morphism if ϕ(s)

e
→ ⇒ s

e
→.

If ϕ is a saturating morphism fromA to A′, then for any state s ∈ S, L(s) ⊇
L(ϕ(s)), hence L(s) = L(ϕ(s)). Therefore, if ϕ is a saturating morphism,
then L(A) = L(A′) and whenever ϕ(s) = ϕ(s′), states s and s′ are language
equivalent (L(s) = L(s′)).

If L(A) = L(A′), then any label preserving morphism from A to A′ is a
saturating morphism.

As initialized transition systems are always reachable and reduced, saturat-
ing morphisms are surjective. Therefore, if a saturating morphism is injective,
then it is an isomorphism.

Given A = (S,E, δ, s0), for any equivalence relation ≡ on S compatible
with labelled transitions, the map (·/ ≡) that sends each state s ∈ S to its
equivalence class [s] is a surjective morphism. Conversely, if ϕ is a saturating
morphism from A = (S,E, δ, s0) to A′ = (S′, E, δ′, s′0), then the equivalence
relation ≡ on S defined as s ≡ s′ iff ϕ(s) = ϕ(s′) is compatible with labelled
transitions and the associated quotient A/ ≡ is isomorphic to A′. In view of
this, by extension, we say that A′ is a quotient of A (notation A ⊲ A′) if there
exists a saturating morphism ϕ : A → A′. Equivalently, we say that A may
be folded to A′ and that ϕ is a folding morphism.

Example 1.73. Fig. 1.24 shows two initialized transition systemsA (on the left)
and A′ (on the right) such that A may be folded to A′. The map ϕ(s0) = s′0
and ϕ(s1) = ϕ(s2) = s′1,2 is indeed a saturating morphism from A to A′. The
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equivalence ≡ induced by ϕ identifies s1 and s2 and discriminates all other
pairs of states. This equivalence is compatible with labelled transitions, and
A′ is isomorphic to the quotient A/ ≡. 2

s0

s1 s2

a b

c

c

s′0

s′
1,2

a b

c

Fig. 1.24. A ⊲ A′

Example 1.74. Fig. 1.25 shows two initialized transition systemsA (on the left)
and A′ (on the right) such that A cannot be folded to A′. The map ϕ(s0) = s′0,
ϕ(s1) = ϕ(s2) = s′1,2, ϕ(s3) = s′3, ϕ(s4) = s′4 and ϕ(s5) = ϕ(s6) = s′5,6

is a label preserving morphism, but it is not a saturating morphism since,

e.g., s′1,2
d
→ but not s1

d
→. Indeed, ϕ identifies states s1 and s2 which are not

language equivalent. 2

s0

s1 s2

s3 s4

s5 s6

a b

c d

d c

s′0

s′1,2

s′3 s′4

s′5,6

a b

c d

d c

Fig. 1.25. A 6⊲ A′

By dismissing the states separation property SSP, the theory of regions
may be adapted to the realization of initialized transition systems by net
systems up to an equivalence on states compatible with labelled transitions.



1.6 Relaxing the State Separation Property 43

Proposition 1.75. Let A = (S,E, δ, s0) be an initialized transition system
and let N be a net system with set of transitions T = E.

1. The following three conditions are equivalent
a) A ⊲ RG(N),
b) A ≤ RG(N) and L(A) = L(N),
c) N ∼= SNR(A) for some set of regions R ⊆ R(A) such that ESSP (R)

holds in A.
2. The following conditions are equivalent

a) A →֒ RG(N),
b) N ∼= SNR(A) for some set of regions R ⊆ R(A) such that SSP (R)

holds in A.
3. The following conditions are equivalent

a) A ∼= RG(N), i.e., N is a net system realization of A,
b) N ∼= SNR(A) for some set of regions R ⊆ R(A) such that SSP (R)

and ESSP (R) hold in A, i.e., R is a set of admissible regions of A.

In order to establish Prop. 1.75, we need introducing some notation, which is
done in the next definition.

Definition 1.76. Let ηA : A → RG(SN(A)) be the map defined by ηA(s) =
{r ∈ R(A) | s ∈ r }. For any set of regions R ⊆ R(A), let ηA,R : A →
RG(SNR(A)) be the map defined by ηA,R(s) = Rs = {r ∈ R | s ∈ R}. ♦

The map ηA represents each state s of A by the marking of the synthesized
net SN(A) comprised of the regions which s belongs to. The map ηA is a
simulation map and it justifies the relation A ≤ RG(SN(A)) (see Def. 1.49).
The map ηA,R is the composition of the map ηA : A → RG(SN(A)) with
the map πR : RG(SN(A)) → RG(SNR(A)) that projects each marking of
SN(A) (the synthesized net) on the subset of places of SN(A) which are
defined by regions in R. The map ηA,R is a simulation map and it justifies
the relation A ≤ RG(SNR(A)). The three statements in the proposition may
now be proven as follows.

Proof. of Prop. 1.75

Ad 1) 1.a) and 1.b) are equivalent by the remarks made after Def. 1.72.
1.b) and 1.c) are equivalent because A ≤ RG(N) iff N ≤ SN(A) (by
Th. 1.51) iff N ∼= SNR(A) for some set of regions R ⊆ R(A), and
L(A) = L(SNR(A)) iff ηA,R is a saturating morphism iff ESSP(R) holds
in A (by definition of saturating morphisms and in view of the net firing
rule applied to the net SNR(A)).

Ad 2) A →֒ RG(N) iff A ≤ RG(N) and the label preserving morphism
justifying this relation is injective. Now A ≤ RG(N) iff N ≤ SN(A) (by
Th. 1.51) iff N ∼= SNR(A) for some set of regions R ⊆ R(A), and the
label preserving morphism justifying the relation A ≤ RG(SNR(A)) is
ηA,R. Finally ηA,R is injective iff SSP(R) holds in A.
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Ad 3) This restatement of Th. 1.43 follows from the equivalence
A ∼= RG(N) ⇔ (A ⊲ RG(N) ∧ A →֒ RG(N)). 2

The next theorem is the major result of the section. This theorem states that
ASN ·RG is optimal among all quotients A/ ≡ of A which may be realized
exactly by net systems (at least, if event-state separation is satisfied in A,
since otherwise such quotients do not exist).

Theorem 1.77. Let A be an initialized transition system satisfying the event-
state separation property. Then ASN ·RG is the least separated initialized tran-
sition system A′ such that A ⊲ A′.

Proof. By Prop. 1.40 and Th. 1.44, an initialized transition system A′ is sep-
arated if and only if, for some set of regions R′ ⊆ R(A′), A′ ∼= RG(N ′) for
N ′ = SNR′(A′). IfA ⊲ A′, then by Lemma 1.56, for every region r′ ofA′, there
exists a region r of A with the same signature. Assume that A ⊲ A′ and A′ is
separated. Let R ⊆ R(A) be the set of regions of A with the same signatures
as the regions in R′. Then necessarily, A′ ∼= RG(N) for N = SNR(A). By as-
sumption, A satisfies the event-state separation property, hence ESSP (R(A))
holds in A. By Prop. 1.75, A ⊲ RG(N) for N = SN(A). Now R ⊆ R(A)
entails SNR(A) ≤ SN(A), and by Property 1.61 following from Th. 1.51,
the latter entails RG(SN(A)) ≤ RG(SNR(A)). As RG(SN(A)) is separated,
RG(SN(A)) is the least separated initialized transition system A′ such that
A ⊲ A′. 2

The following example shows that, even though A is a separated initialized
transition system, the minimal automaton Min(A) recognizing the language
L(A) (see, e.g., [30]) may be non-separated. In particular, Min(A) is not
always isomorphic to the least separated folding of A, namely ASN ·RG. As
minimization is a form of folding (A ⊲ Min(A)), it follows that the class of
separated initialized transition systems is not closed under folding.

Example 1.78. Fig. 1.26 displays, from left to right, an elementary net system
N , its reachability graph RG(N), and the minimal automaton Min(RG(N))
which is obtained by identifying the two language equivalent markings {p3}
and {p4}. On the one hand, RG(N) is separated (by construction). On the
other hand, Min(RG(N)) is not separated, and since it is not isomorphic
to RG(N), it is not isomorphic either to (RG(N))SN ·RG (because RG(N) ∼=
(RG(N))SN ·RG by Property 1.63 following from Th. 1.51). In fact, a region

of Min(RG(N)) contains s2 if and only if it contains s3, because s2
cd
→ s6 and

s3
dc
→ s6 converge (in s6) and the sequences cd and dc are permutations of

each other. Therefore, the states s2 and s3 cannot be separated. For the same
reason, no region can separate the event d from the state s2. The signature of
the region [[p3]], that separates d and m3 from m2 in RG(N), is lost through
the minimization ϕ : RG(N) → Min(RG(N)) (this region is not the inverse
image ϕ−1(r) of any region of Min(RG(N))). 2
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p1

p2 p3 p4 p5

a b

c d

m1 = {p1, p2, p5}

m2 = {p2, p3, p5}m3 = {p2, p4, p5}

m4 = {p4, p5} m5 = {p2, p3}

m6 = {p3} m7 = {p4}

a b

c d

d c

s1
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Fig. 1.26. separated transition systems are not closed under folding

Folding is a well-behaved operation that preserves and reflects languages of
transition systems, but it may dramatically interfere with net synthesis, as
Example 1.78 has shown. In the special case where A is a minimal automaton,
A ⊲ A′ entails A ∼= A′, and in particular, A ⊲ RG(N) entails A ∼= RG(N) for
any elementary net system N . Therefore, one can state the following corollary
of Proposition 1.75.

Corollary 1.79. A minimal initialized transition system A ∼= Min(A) is sep-
arated if and only if it satisfies the event state separation property. More pre-
cisely, A ∼= RG(N) for some net system N if and only if N ∼= SNR(A) and
A satisfies ESSP (R) for some set of regions R ⊆ R(A). 2

We want now to address the case where one adds as a specific requirement
that N should be an elementary net system.

Example 1.80 (Exple. 1.28 continued). To start with an example, consider the
initialized transition system A depicted in Fig. 1.13, on page 19. It may be
checked that the event-state separation property holds inA (see Examples 1.21
on p. 19, and 1.28 on p. 22). However, for any set of regions R such that
ESSP (R) holds in A, the reachability graph RG(SNR(A)) is isomorphic to
the initialized transition system depicted on the right of Fig. 1.16, on p. 23
(note that SNR(A) is necessarily a subnet of the net system depicted on the
left of Fig. 1.16). Therefore, the transitions a and b (or c and d) must be
equivalent in SNR(A). 2

As the above example shows, it may happen, for an initialized transition
system A which is loop-free and simple, and where event-state separation
holds, that A ⊲ RG(N) for no elementary net system N . For any set of
regions R enforcing event-state separation, RG(SNR(A)) is indeed a quotient
of A, but loops or multiple transitions between states may be produced by
folding A to RG(SNR(A)) (using the folding morphisn ηA,R of Def. 1.76).
This unpleasant situation cannot occur if one requires from R to enforce in
A both state separation and event-state separation, since in this case A ∼=
RG(SNR(A)). If state separation is dismissed, then one must compensate for
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this weakening by adding two new regional axioms, which express the absence
of isolated or equivalent transitions in the synthesized net system SNR(A).

Proposition 1.81. An initialized transition system A may be folded to some
elementary transition system A′ if and only if event-state separation is satis-
fied in A together with the following two properties:

event-effectiveness (EE): (∀e ∈ E) ◦e 6= ∅
i.e., all events have non empty presets,

event-simpleness (ES): (∀e, e′ ∈ E) (◦e = ◦e′ ∧ e◦ = e′◦)⇒ e = e′.

Proof. Let A ⊲ RG(N) for some elementary net system N . By Prop. 1.75
N ∼= SNR(A) for some set of regions R ⊆ R(A) such that A satisfies
ESSP (R). Without loss of generality we may assume that N is saturated, i.e.,
that R = R(A) and N = SN(A). Indeed, seeing that NRG·SN is elementary
if N is elementary, one can always replace N with NRG·SN which is satu-
rated and satisfies A ⊲ RG(NRG·SN), since RG(N) = NRG ∼= NRG·SN ·RG =
RG(NRG·SN ) (by Property 1.63 following from Th. 1.51). As N is an ele-
mentary net system, it has neither isolated transitions ((∀e ∈ E) •e 6= ∅)
nor equivalent transitions ((∀e, e′ ∈ E) (•e = •e′ ∧ e• = e′•) ⇒ e = e′).
For any place p ∈ •e, the extension r = [[p]] of p is a region of RG(N) and
r ∈ ◦e (Prop. 1.19); by Lemma 1.56, r′ = η−1

A (r) is a region of A with the
same signature as r (see Def. 1.76 for the definition of the simulation map
ηA). Therefore, the property of event effectiveness is satisfied in A. From any
place p ∈ •e \ •e′ (respectively p ∈ e• \ e′•), one can construct similarly a
region r′ of A such that r′ ∈ ◦e \ ◦e′ (resp. r ∈ e◦ \ e′◦). Therefore, the prop-
erty of event simpleness is satisfied in A. Conversely, assume that A is an
initialized transition system and that A satisfies the properties of event-state
separation, event-effectiveness and event-simpleness. Then the synthesized net
system N = SN(A) is an elementary net system (by event effectiveness and
event simpleness) and A ⊲ RG(N) (by Prop. 1.75). 2

Corollary 1.82. A minimal initialized transition system A ∼= Min(A) is an
elementary transition system if and only if it satisfies the properties of event-
state separation, event-effectiveness and event-simpleness. 2

1.7 Net Synthesis from Languages

The net synthesis problem from initialized transition systems A up to lan-
guage equivalence consists of deciding whether L(A) = L(N) for some net
system N and constructing such an N if it exists. This problem has received
little attention in the literature on elementary (or quasi-elementary) nets. We
approach the problem in two steps. In a first step, we extend the theory of
regions to arbitrary languages L ⊆ E∗, identified with infinite trees, i.e., with
infinite initialized transition systems without converging paths. In a second
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step, we focus on languages L(A) of finite initialized transition systems, and
we adapt the results to finite unfoldings U(A) of the given transition systems
A, located between A and L(A), i.e., L(A) ⊲ U(A) ⊲ A.

In Sec. 1.6, we have illustrated with Example 1.78 a situation in which an
initialized transition system A = Min(RG(N)) cannot be realized by any
net system, although N is an elementary net system which realizes A up
to language equivalence. Further, we argued that the trouble comes from
the loss of some signatures of regions through the minimization operation
RG(N) ⊲ Min(RG(N)). In order to realize an initialized transition system A
by a net system N up to language equivalence, if this is possible, one may be
forced to synthesize the places of N from the regions of some unfolding of A.
In Example 1.78, A is an acyclic transition system, i.e., δ(s, u) = s ⇒ u = ε
for all states s and for all sequences of events u, and the choice of the right
unfolding is not a problem: there exists only one unfolding, that splits s6
to two different states, according to the label d or c of the incoming path,
and thus produces an initialized transition system A′ such that A′ ∼= RG(N)
and A′

⊲ A. In the general case where A may have cycles, the choice of the
right unfolding is a bit more complex. To help the presentation, we make a
first attempt by considering complete and hence possibly infinite unfoldings
of initialized transition systems.

Definition 1.83. A language L ⊆ E∗ is prefix closed if uv ∈ L entails u ∈ L
for all u, v ∈ E∗ (in particular, L contains the empty word ε). For any prefix
closed language L ⊆ E∗, let L = (S,E, δ, s0) be the initialized transition
system defined by S = L, s0 = ε, and δ(u, e) = ue if and only if u · e ∈ L
(language L is both the set of states and the set of labels of paths of this
transition system, e.g., Fig 1.27). For any initialized transition system A =
(S,E, δ, s0), let ≡A be the equivalence relation on the language L(A) given by
u1 ≡A u2 ⇔ δ(s0, u1) = δ(s0, u2) where δ : S × E∗ → S is the inductive
extension of δ : S × E → S (see Def. 1.29 on page 22). ♦

ε

a b

ac bd

acd bdc

a b

c

d

d

c

Fig. 1.27. the initialized transition system version of a language
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Example 1.84. Let A be the initialized transition system shown on the right
of Fig. 1.26. The initialized transition system L defined from L(A) is shown
in Fig. 1.27. The equivalence ≡A on L(A) identifies acd and bdc (acd ≡A bdc).
A is isomorphic to the quotient of L by the equivalence ≡A. 2

The following lemma states that folding and unfolding operations may be
characterized in terms of the languages L(A) and the quivalence relation ≡A.

Lemma 1.85. For any initialized transition systems A and A′, A ⊲ A′ ⇔
(L(A) = L(A′) ∧ ≡A⊆≡A′). In particular, for any initialized transition sys-
tem A′ with set of events E and for any prefix closed language L ⊆ E∗,
L ⊲ A′ ⇔ L = L(A′).

Proof. The left-to-right implication follows from the definition of saturating
morphisms by straightforward induction on the length of words. In order to
establish the converse implication, assume L(A) = L(A′) and ≡A⊆≡A′. Let
S and δ (resp. S′ and δ′) be the set of states and partial transition function of
A (resp. A′). Let ϕ : S → S′ be the map defined by ϕ(s) = δ′(s′0, u) for any u
such that δ(s0, u) = s. As L(A) = L(A′) and ≡A⊆≡A′ , ϕ is well defined and
total, and it is a label preserving morphism of initialized transition systems.
As L(A′) ⊆ L(A), ϕ is a saturating morphism, hence A ⊲ A′. The main
statement of the lemma has been established. The particular case follows by
identifying L with the initialized transition system A defined from L (see
Def. 1.83) and by remarking that in this case, ≡A is the identity (on the
language L). 2

From now on in the section, we shall often use the same notation to denote
a prefix-closed language L and the initialized transition system defined from
this language according to Def. 1.83. At this stage, it is important to note
that the definition of regions (Def. 1.20) does not rely on the assumption that
transition systems are finite. Therefore, the notion of regions may be extended
to arbitrary prefix-closed languages over a finite set of events E.

Definition 1.86. Given a prefix-closed language L ⊆ E∗, a region of L is
a region of the initialized transition system L = (L,E, δ, ε) with the partial
transition map δ(u, e) = ue if ue ∈ L. ♦

Remark 1.87. A signature r : {init} ∪ E → {−1, 0, 1} determines a region of
L if and only if there exists a corresponding map r : L → {0, 1} (necessarily
unique) such that r(ε) = r(init) and r(ue) = r(u) + r(e) for all words ue ∈ L
with e ∈ E. As a consequence, a region of L restricts on any prefix-closed
language L′ ⊆ L to a region of L′ with the same signature (assuming that
each event e ∈ E occurs at least once in both L and L′). 2

For any language L ⊆ E∗ over a finite alphabet E, the set R(L) of all regions of
L is finite, because there exists only a finite number of signatures of regions.
Therefore, for any L ⊆ E∗, SN(L) is a well-defined net system. It follows
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from this observation that most results established in the basic theory of
regions may be applied to languages with minor adaptations. The following
proposition is a joint adaptation of Th. 1.37 and Property 1.62 following from
Th. 1.51.

Proposition 1.88. Let L be a prefix closed language over a finite set of events
E. Then L = L(N) for some net system N with the set of transitions E if and
only if L = L(N) for N = SN(L), if and only if the event-state separation
property ESSP holds in the initialized transition system L. If ESSP does not
hold, then the language L(N) of the net system N = SN(L) synthesized from
all regions of L is the least language of a net system larger than L.

Proof. Let N be a net system. By Lemma 1.85, L = L(N) if and only if
L ⊲ RG(N). By Prop. 1.75, L ⊲ RG(N) if and only if N ∼= SNR(L) for
some set of regions R ⊆ R(L) such that ESSP (R) holds in L. If ESSP (R)
holds in L for R ⊆ R(L), then it holds also for R = R(L). By Prop. 1.75,
ESSP holds in L if and only if L ⊲ RG(SN(L)), if and only if L = L(N)
for N = SN(L). Therefore, L = L(N) for some net system N if and only if
the event-state separation property ESSP holds in L, if and only if L = L(N)
for N = SN(L). The first statement of the proposition has been established.
In order to establish the second statement, observe that for any prefix-closed
language L and for any initialized transition system A, L ≤ A if and only
if L ⊆ L(A). So, because L ≤ RG(SN(L)) (by Property 1.60 following from
Th. 1.51), L is included in the language of the net system SN(L) synthesized
from all regions of L. For any other net system N such that L ⊆ L(N),
every place p of N determines a region of L(N) with the same signature.
Since L ≤ L(N), by Lemma 1.56, this signature coincides with the signature
of some region of L, and therefore with the signature of some place of the
net system SN(L). The above reasoning shows that N is isomorphic to a
restriction of SN(L), hence L(N) necessarily contains the language of the net
system SN(L). 2

Remark 1.89. Prop. 1.88 has theoretical interest, but it does not help much in
practice since it does not tell us how computing SN(L), even if L = L(A) is the
language of a finite initialized transition system A. In the end of the section,
we show that in that case, the optimal net system SN(L) may be computed
effectively. Let L = L(A) be the language of a finite initialized transition
system A = (S,E, δ, s0). The map from L to S that sends each word of L to
the state of A in which it is recognized is a saturating morphism from L (seen
as an initialized transition system) to A, hence L ⊲ A and in particular L ≤ A.
Therefore, every region of A induces a region of L with the same signature
(by Lemma 1.56). However, as was shown by Example 1.78, not every region
of L corresponds in this way to a region of A. Therefore, the language of the
net system SN(L) synthesized from all regions of L may be smaller than the
language of the net system SN(A) synthesized from all regions of A. The next
definition proposes a finite unfolding U(A) of A (L(A) ⊲ U(A) ⊲ A) such that
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L(A) and U(A) have the same signatures of regions. In view of Prop. 1.88,
the language of the net system SN(U(A)) synthesized from U(A) is therefore
the least language of a net system larger than or equal to L(A).

Definition 1.90. The limited unfolding of a finite initialized transition sys-
tem A = (S,E, δ, s0) with language L = L(A) is the initialized transition
system U(A) = (S′, E, δ′, s′0) defined as follows:

1. S′ is the set of words u ∈ L such that, for any decomposition u = u1u2u3

with u2 6= ε, δ(s0, u1) 6= δ(s0, u1u2) in A,
2. the initial state s′0 is the empty word ε,
3. δ′(u, e) is defined if and only if δ(s0, ue) is defined in A, and then, either
δ′(u, e) = ue if ue ∈ S′, or δ′(u, e) = u1 for the (unique) prefix u1 of u
(= u1u2) such that δ(s0, ue) = δ(s0, u1). ♦

s0

s1 s2

s3 s4

a d

b ec

b

f

ε(0)

a(1) d(2)

ab(3) de(4)

abc(2) def(3)

abce(4)

a d

b e

c f

b

e

c

f

b

Fig. 1.28. A and its limited unfolding U(A)

Example 1.91. Fig. 1.28 shows an initialized transition system A and its lim-
ited unfolding U(A). The word abce is a state of U(A) because no state of A
is visited twice when following the corresponding path from the initial state
0 of A. On the contrary, the word abcef is not a state of U(A) because abcef
leads to the same state of A as the word ab which is a prefix of abcef . U(A)
folds back to A as indicated by the labels attached to the states of U(A), e.g.,
the state abce is mapped to the state 4 of A and the state ab is mapped to
the state 3 of A. 2

Note that the set S′ in Def. 1.90 is necessarily finite because the maximal
length of the words u ∈ S′ is at most |S| (the number of states of A) and
E is a finite set of events. The transitions of U(A) may be classified in two
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categories: forward transitions u
e
→ ue and backward transitions uv

e
→ u. By

cutting off the backward transitions, one gets a finite tree that spans U(A).
The backward transitions are chords of this tree, retracing the incoming paths.

Remark 1.92. The relation U(A) ⊲ A is justified by the (saturating) simu-
lation map that sends any word u ∈ S′ to δ(s0, u). The relation L ⊲ U(A)
follows from L(U(A)) = L(A); it is justified by the (saturating) simulation
map ϕ defined inductively by ϕ(u) = u if u ∈ S′ and ϕ(u1u2u3) = ϕ(u1u3) if
δ(s0, u1u2) = δ(s0, u1) (Exer. 1.6). 2

Note that U(A) may have size exponential in the size of A. However, con-
structing this limited unfolding in order to obtain indirectly a net realization
of the language of A is justified by the following proposition, which states the
main result of the section.

Proposition 1.93. Let A be a finite initialized transition system with set of
events E, and let r : {init}∪E → {−1, 0, 1} be the signature of a region of the
language L(A). Then there exists a region of U(A) with the same signature r.

Proof. Let A = (S,E, δ, s0), L = L(A), and U(A) = (S′, E, δ′, s′0). As r :
{init}∪E → {−1, 0, 1} is the signature of a region of L, this map determines
a (unique) map r : L→ {0, 1} such that r(ue) = r(u)+r(e) for all ue ∈ L with
e ∈ E. We claim that the induced restriction r′ : S′ → {0, 1} of r on S′ ⊆ L
is a region of U(A), with the given signature r : {init} ∪ E → {−1, 0, 1}.
In order to establish this claim, in view of Remark 1.52, it suffices to prove
that δ′(u, e) = v entails r(v) = r(u) + r(e) for any word u ∈ S′ and for
any event e ∈ E. If v = ue, then u

e
→ ue is a forward transition of U(A),

and r(v) = r(u) + r(e) follows since r is a region of L. In the opposite case,
u

e
→ v is a backward transition of U(A), i.e., u = vw for some w ∈ E∗ with

δ(s0, v) = δ(s0, vwe). Let w = e1e2 . . . em (with m = 0 if w = ε) and let
z = r(e1) + r(e2) . . . + r(em) + r(e). Then, r(v) = r(u) + r(e) if and only
if r(v) = r(v) + z if and only if z = 0. Now vwewe ∈ L because δ(s0, v) =
δ(s0, vwe). As r(vwe) = r(v)+ z and r(vwewe) = r(v)+2z, and because r(v)
and r(vwewe) belong to {0, 1}, necessarily z = 0. Therefore, r(v) = r(u)+r(e)
for every backward transition u

e
→ v of U(A). 2

By Lemma 1.56, every signature of a region of L(A) coincides with the signa-
ture of a region of U(A). By Prop. 1.93, every signature of a region of U(A)
coincides with the signature of a region of L(A). Therefore, for any finite
initialized transition system A, the signatures of the regions of the language
L(A) are the same as the signatures of the regions of the limited unfolding
U(A) of A. The theorem below follows as an immediate corollary.

Theorem 1.94. The net system SN(U(A)) synthesized from the limited un-
folding of A recognizes the least language of a net system larger than or equal
to L(A).



52 1 Introduction to Elementary Net Synthesis

Example 1.95 (Exple. 1.27 (page 22) continued). Fig. 1.29 shows (on the left)
the limited unfolding A′ = U(A) of the initialized transition system A given
on the left of Fig.1.15 (on page 22), the net system SN(U(A)) (in the center)
synthesized from it, and the reachability graph of this net (on the right).
The latter differs from the reachability graph of SN(A), which was shown
in Fig. 1.15. Both reachability graphs generate the same language, which is
larger than the language of A. 2

s0

s1 s2

s′1 s′2

a b

c cc c

c a b

s0

s1 s2

a b

c

c c

Fig. 1.29. A′, SN(A′), and RG(SN(A′)) where A′ = U(A) is the limited unfolding
of initialized transition system A from Fig.1.15 on page 22

Example 1.96 (Exple. 1.78 on page 44 continued). Let A be the initialized
transition system depicted in the rightmost part of Fig. 1.26 on page 45.
U(A) is the initialized transition system depicted in Fig. 1.27 (on page 47).
The reachability graph of the net SN(U(A)) is isomorphic to U(A) (see
Fig. 1.26). The synthesized net system SN(U(A)) realizes here exactly the
language L(A). 2

The next proposition shows that limited unfoldings can actually be used to
decide on the exact net realization problem for languages of finite initialized
transition systems.

Proposition 1.97. Let L = L(A) be the language of a finite initialized tran-
sition system A.

1. If the property ESSP (R) holds in L for some set of regions R ⊆ R(L),
then ESSP (R′) holds in U(A) for R′ defined as the set of regions of U(A)
with signatures equal to signatures of regions in R.

2. If the property ESSP (R′) holds in U(A) for some set of regions R′ ⊆
R(U(A)), then ESSP (R) holds in L for R =

{

ϕ−1(r′) | r′ ∈ R′
}

, where
ϕ is the simulation map which justifies the relation L ⊲ U(A) (see Re-
mark 1.92).

Proof. Let U(A) = (S′, E, δ′, s′0), thus S′ ⊆ L by Def. 1.90. Suppose u ∈
S′ ⊆ L and ue /∈ L for some event e. If ESSP (R) holds in L, then some
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region r ∈ R(L) separates e from u in the transition system L. The induced
restriction of r on S′ ⊆ L is a region r′ of U(A) with the same signature as
r, hence it separates e from u in U(A). This establishes the first statement.
In order to prove the second statement, let u ∈ L and ue /∈ L, and suppose
that ESSP (R′) holds in U(A). Let v = ϕ(u), where ϕ : L → U(A) is the
simulation morphism defined in Remark 1.92, then δ(s0, u) = δ(s0, v), hence
ve /∈ L. As L ⊲ U(A) entails L(U(A)) = L, δ′(v, e) is undefined in U(A),
hence some region r′ ∈ R′ separates e from v. By Lemma 1.56, ϕ−1(r′) is a
region in R(L) with the same signature as r′, hence separating e from u in
L. 2

Corollary 1.98. The language L(A) of a finite initialized transition system
A may be realized by some net system if and only if ESSP (R) holds in U(A)
for some set of regions R, and in this case, L(A) = L(SNR(U(A))). 2

In view of Prop. 1.81, the above corollary may be strengthened into the fol-
lowing.

Corollary 1.99. The language L(A) of a finite initialized transition system A
may be realized by some elementary net system if and only if the properties of
event-state separation, event-effectiveness, and event-simpleness are satisfied
in U(A), and in this case, L(A) = L(SNR(U(A))) for any set of regions R of
U(A) witnessing for these properties. 2

1.8 Regions of Labelled Partial 2-Structures

The scope of Ehrenfeucht and Rozenberg’s theory of regions extends beyond
Elementary Net Synthesis. The primary goal of this theory was to provide an
effective representation of Labelled Partial 2-Structures by Labelled Partial
Set 2-Structures, that encompass reachability graphs of Elementary Nets as
a particular case. In this section, we outline the theory of regions of Labelled
Partial 2-Structures which was defined in [21, 22] and the articulation between
Elementary Net Synthesis and this more general theory.

Labelled Partial 2-Structures are a subclass of labelled graphs that may
be defined as follows (the definition below is equivalent to the definition given
in [21]).

Definition 1.100. A Labelled Partial 2-Structure (or LP2S) is a tuple g =
(S, F,E, λ) where S = dom(g) is a set of states (or nodes), called the domain
of g, F ⊆ {(x, y) | x, y ∈ S ∧ x 6= y } is a set of 2-edges, E = alph(g) is an
alphabet, and λ : F → E is a labelling map. By extension, let g = (S, F,∼
, E, λ) where ∼ is the equivalence relation on F induced by the labelling map
λ, i.e., (x, y) ∼ (x′, y′) if and only if λ(x, y) = λ(x′, y′). ♦

According to this definition, a LP2S is essentially a loop-free and simple tran-
sition system (see Defs. 1.29 and 1.30) that is not initialized and needs not
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be connected. The theory of regions was founded in the perspective of char-
acterizing those LP2S which may be represented up to an isomorphism using
sets and ordered symmetric differences of sets for representing nodes and
edge-labels, respectively. Such representations are called Labelled Partial Set
2-Structures.

Definition 1.101. A Labelled Partial Set 2-Structure (or LPS2S) based on
a (non-empty) set B is an LP2S g = (S, F,∼, E, λ) where S ⊆ 2B, E ⊆
{(x, y) | x, y ⊆ B ∧ x ∪ y 6= ∅ ∧ x ∩ y = ∅}, and for every 2-edge (x, y) ∈ F ,
λ(x, y) = (x \ y, y \ x) is the ordered symmetric difference between the sets x
and y (also noted osd(x, y)). ♦

In order to make the representation problem for LP2S quite precise, it remains
to specify their isomorphisms.

Definition 1.102. Let g1 = (S1, F1,∼1, E1, λ1) and g2 = (S2, F2,∼2, E2, λ2)
be LP2S. A morphism of LP2S ϕ : g1 → g2 is a map ϕ : S1 → S2 such that,

1. ∀(x, y) ∈ F1 ϕ(x) = ϕ(y) or (ϕ(u), ϕ(v)) ∈ F2

2. ∀(x, y), (u, v) ∈ F1 s.t. ϕ(x) 6= ϕ(y) and ϕ(u) 6= ϕ(v)

(x, y) ∼1 (u, v) ⇒ (ϕ(x), ϕ(y)) ∼2 (ϕ(u), ϕ(v))

A morphism ϕ : g1 → g2 is said to be uniform if, for all (x, y), (u, v) ∈ F1,
(x, y) ∼1 (u, v) and ϕ(x) 6= ϕ(y) entail ϕ(u) 6= ϕ(v). A morphism ϕ : g1 → g2
is said to be strongly surjective if the map ϕ : S1 → S2 is onto and every 2-
edge in F2 is the image (ϕ(x), ϕ(y)) of some 2-edge (x, y) ∈ F1. A morphism
ϕ : g1 → g2 is an isomorphism if the map ϕ : S1 → S2 is bijective and the
inverse map ϕ−1 : S2 → S1 defines a morphism from g2 to g1. ♦

The representation problem for LP2S is the following: given a LP2S g, decide
whether exists and construct a LPS2S h such that g and h are isomorphic as
LP2S. This problem was solved in [21]. The crucial idea is that, if a LP2S g is
isomorphic to some LPS2S, then it must be isomorphic to some LPS2S based
on regions of g defined as follows.

Definition 1.103. Let g = (S, F,∼, E, λ) be a LP2S. A subset r ⊆ S is a
region of g iff, for all (x, y), (u, v) ∈ F , (x, y) ∼ (u, v) entails the following:

1. (x ∈ r ∧ y /∈ r) ⇒ (u ∈ r ∧ v /∈ r)
2. (x /∈ r ∧ y ∈ r) ⇒ (u /∈ r ∧ v ∈ r)

Let Rg denote the set of regions of g, and for every x ∈ S, let

Rg(x) = {r ∈ Rg | x ∈ r } ♦

Def. 1.20 in Sect. 1.3 is a mere restatement of this original definition. The
general representation problem for LP2S differs to some extent from the net
realization problem for initialized transition systems, which was dealt with in
Sections 1.3 and 1.4, since the former problem does not depend at all upon any
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firing rule. In spite of this difference, the construction, from a given LP2S g, of
a LPS2S regv(g), called the regional version of g, has much in common with
the direct construction, from an initialized and separated transition system A,
of the reachability graph RG(SN(A)) of the net system SN(A) synthesized
from A.

Definition 1.104. Given a LP2S g = (S, F,∼, E, λ), let regg : S → 2Rg be
the (regional) mapping defined by regg(x) = Rg(x). ♦

Definition 1.105. Given a LP2S g = (S, F,∼, E, λ), the regional version of
g is the LPS2S regv(g) = (S′, F ′,∼′, E′, λ′), based on the set Rg \ ∅, defined
by:
1. S′ = {Rg(x) | x ∈ S },
2. F ′ = {(Rg(x), Rg(y)) | x, y ∈ S ∧ (x, y) ∈ F ∧Rg(x) 6= Rg(y)},
3. E′ = {osd(x′, y′) | (x′, y′) ∈ F ′ }, and
4. λ′(x′, y′) = osd(x′, y′). ♦

It was shown in [21] that for any LP2S g, regg is a uniform and strongly
surjective morphism from g onto regv(g). This morphism is bijective if and
only if g satisfies the following Node Separation Property (NS), which was
called State Separation in Sect. 1.4:

(∀x, y ∈ dom(g)) x 6= y ⇒ Rg(x) 6= Rg(y).

The solution to the representation problem for LP2S is given by the theorem
stated below, proven in [21], where ES denotes the Event Separation Property
defined as follows for g = (S, F,∼, E, λ):

∀(x, y), (u, v) ∈ F λ(x, y) 6= λ(u, v)⇒ (Rg(x) \Rg(y)) 6= (Rg(u) \Rg(v))

which may be restated (using complementary regions) equivalently as:

λ(x, y) 6= λ(u, v)⇒ osd(Rg(x), Rg(y)) 6= osd(Rg(u), Rg(v)).

Theorem 1.106. For any LP2S g, the following are equivalent:
1. g is isomorphic to some LPS2S h,
2. g is isomorphic to regv(g),
3. regg is an isomorphism,
4. g has the properties NS and ES.

Based on this theorem, two decision procedures were proposed in [21] for
the LP2S representation problem. One procedure consists of computing the
regional version regv(g) of the given LP2S g and then checking that g and
regv(g) are isomorphic. The other procedure consists of checking g for the
separation properties NS and ES and then computing regv(g) only if both
properties hold. One finds here an anticipation of the two types of decision
procedures for the net realization problem of initialized transition systems
which were presented in Sections 1.3 and 1.4. It was moreover shown in [21]
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that for any LP2S g satisfying NS and ES, the LPS2S regv(g) is maximal
in the sense that any LPS2S h isomorphic to g derives from regv(g) by a
bijective renaming of the base, possibly followed by the addition to the base
of useless elements b, i.e., elements b such that ∀x, y ∈ dom(h) b ∈ x⇔ b ∈ y.
This property of maximality is an early form of the property of saturatedness
of synthesized net systems observed in Sect.1.5 (we recall that a net system is
saturated if no place can be added to this net system without modifying its
reachability graph up to isomorphisms of initialized transition systems).

The approach briefly recalled above was adapted in [22] to provide an
effective solution to the net synthesis problem from initialized transition sys-
tems. This application of the general theory of regions of Labelled Partial
2-Structures to concurrency relies on two central facts reported herafter.

First, given any LP2S g, one can extract from regv(g) a net N(g) =
(P,E, F ) defined as follows. The set of places P is the base of regv(g), i.e. the
set Rg of all regions of g. The set of transitions E is the alphabet of regv(g),
i.e. the set of ordered symmetric differences osd(x, y) for 2-edges (x, y) of
regv(g). The flow relation F ⊆ Rg × T ∪ T × Rg is defined as (r, (x, y)) ∈ F
iff r ∈ x and ((x, y), r) ∈ F iff r ∈ y.

Second, given any LPS2S h = (S, F,∼, E, λ), where S ⊆ 2B and E ⊂
2B × 2B letting B be the base of h, let FC (Forward Closure) denote the
property defined as follows:

(∀(A,A′) ∈ E) (∀x ∈ S) A ⊆ x ∧ A′ ∩ x = ∅ ⇒

(∃y ∈ S) (x, y) ∈ F ∧ λ(x, y) = (A,A′).

Then FC is a canonical property in the following sense: if a LP2S g is iso-
morphic to an LPS2S, then g is isomorphic to some LPS2S h satisfying FC if
and only if regv(g) satisfies FC. Note that FC is essentially the same as the
Event-State Separation Property considered in Section 1.4. In the sequel, a
LPS2S which satisfies FC is said to be forward closed.

Theorems 1.37 and 1.43 of this book are inspired from similar results,
based on the above two facts, established in [22] for Initialized Labelled Par-
tial 2-Structures (ILP2S) and Initialized Labelled Partial Set 2-Structures
(ILPS2S). ILP2S and ILPS2S are just LP2S and LPS2S with initial nodes.
The Elementary Net Systems studied in [22] are a bit different from those
we have considered: every place belongs to the pre-set or post-set of some
transition, and every transition has pre-places and post-places. It was shown
in [22] that an ILP2S (g, s0) is isomorphic to the reachability graph of some
Elementary Net System N iff (g, s0) is reachable, g is isomorphic to regv(g),
and regv(g) satisfies FC. Equivalently, (g, s0) is isomorphic to the reachability
graph of some Elementary Net System N iff (g, s0) is reachable, g satisfies NS
and ES, and regv(g) satisfies FC. If these conditions hold, then (g, s0) is iso-
morphic to the reachability graph of the saturated net system NS(g) defined
as N(regv(g)) with Rg(s0) as the initial marking.

The synthesis problem was also solved in [22] for C/E Net Systems, which
differ from Elementary Net Systems only in that transitions may be fired
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forwards or backwards. In order to characterize ILP2S that may be realized by
C/E Net Systems, it suffices to require, in addition to Forward Closure (FC),
a similar property of Backward Closure (BC). Ehrenfeucht and Rozenberg
asked in the conclusion of [22] the following question, that will be answered
in Part 2 of this book: Is there a notion of a “morphism” between labelled 2-
structures that would give a characterization of regions in the same way that
c-morphisms between 2-structures characterize clans of 2-structures?.

In the end of the section, we sketch a different extension of Ehrenfeucht
and Rozenberg’s theory of regions, aiming at the representation of an LP2S
or ILP2S by a C/E or Elementary Net determined entirely by its reachability
set, i.e., the transitions may be left implicit and they can be reconstructed
unambiguously from the considered set of markings.

From now on, non-uniform morphisms of LP2S are ignored, i.e., all mor-
phisms of LP2S are uniform (see Def. 1.102). Let us introduce some definitions.

Definition 1.107. Given a (non-empty) set B, let 2B = (2B, F,∼, 2B ×
2B, osd) denote the free LPS2S over the base B, i.e. the LPS2S with the set
of 2-edges F = {(x, y) | x, y ⊆ B ∧ x 6= y}. ♦

Definition 1.108. Let g1 = (S1, F1,∼1, E1, λ1) and g2 = (S2, F2,∼2, E2, λ2)
be LP2S. Then g1 is a substructure of g2 if S1 ⊆ S2, F1 ⊆ F2, ∼1=∼2

∩(F1 × F1), E1 ⊆ E2, and λ1 is jointly the restriction of λ2 on F1 and the
co-restriction of λ2 on E1. If moreover F1 = F2 ∩ (S1 × S1), then g1 is a full
substructure of g2. ♦

The main contribution of [7] is the following theorem.

Theorem 1.109. Given a LP2S g, there exists a forward-closed and full sub-
structure g of 2Rg and a morphism regg : g → g such that, for any base set
B and for any forward-closed and full substructure h of 2B, every morphism
ϕ : g → h factors uniquely as ϕ = ψ ◦ regg, where ψ : g → h. 2

We shall not give the proof of this theorem but just sketch the construc-
tion of g. The idea is to construct the LPS2S g as the limit of an increasing
sequence of substructures gn of 2Rg defined inductively from g0 = regv(g),
where increasing means that for every n, gn is a substructure of gn+1. This
increasing sequence must stabilize since 2Rg is finite. For each n, gn+1 is ob-
tained from gn in two expansion steps. In the first step, one takes the set
of nodes Sn ⊆ 2Rg of gn and one constructs the full substructure of 2Rg

over the considered set of nodes. In the second step, for every x, y, z in Sn

such that x \ y ⊆ z and (y \ x) ∩ z = ∅, one adds a 2-edge (z, w) from z to
w = (z \ (x \ y)) ∪ (y \ x), if such edge is not already present. Let S be the
set of nodes of the fixpoint gn = gn+1. Then the regions of g are exactly the
subsets of S of the form

{

x ∈ S | r ∈ x
}

for some r ∈ Rg. As a consequence,
the sets of regions Rg and Rg are isomorphic when seen as partial Boolean
algebras (where x∨y is defined and equal to x∪y if x∪y is a region, and it is
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undefined otherwise). In other words, regions are robust: expanding regv(g)
(or any LPS2S) by adding iteratively new transitions between existing nodes
and new nodes to ensure forward closedness w.r.t. existing transitions, does
not affect the structure of regions!

The following theorem follows as an easy corollary from Th. 1.109.

Theorem 1.110. A LP2S g is isomorphic to a forward-closed and full sub-
structure of a LPS2S iff it is isomorphic to g, iff regg is an isomorphism, iff
the underlying graph of g is complete and all three axioms NS, ES, and FC
are satisfied in g. 2

Further readings

An intriguing connection between Elementary Net Synthesis and algebra was
pointed to in [6]. There, it was observed that the set of regions of an initialized
transition system, or more generally of a labelled partial 2-structure, forms a
cohererent orthomodular poset, a structure which has been studied at depth
in the framework of models of quantum logics. Coherent orthomodular posets
may alternatively be seen as transitive partial Boolean algebras.

In [6], a dual adjunction based on regions is constructed between Prime Co-
herent Orthomodular Posets (PCOP) and C/E Transition Systems (CETS),
i.e., transition systems isomorphic to C/E net reachability graphs. The dual
adjunction is comprised of two contravariant functors H : CETSop → PCOP
and J : PCOP op → CETS, such that Hop is left adjoint to J (equivalently,
Jop is left adjoint to H). This situation is conceptually close to the situation
found in Sec. 1.5, where we established an order-theoretic Galois connection
between Net Systems and Initialized Transition Systems. However, it is still a
conjecture whether H(A) ∼= H(J(H(A))) and J(P ) ∼= J(H(J(P ))) for every
CETS A and for every PCOP P , as should be the case for a categorical Galois
connection. Answering positively this conjecture would show that regions are
indeed much more robust than was shown in [7].

Problems

1.1 (From [20]). Let R ⊂ R(A) be an admissible subset of regions of an
initialized transition system A. A region r ∈ R is redundant in R if R \ {r} is
admissible. Show that r is redundant in R in each of the following cases:
(a) S \ r ∈ R,
(b) r = r1 ∩ r2 and S \ r = r3 ∪ r4 for some r1, r2, r3, and r4 in R,
(c) r = r1 ∪ r2 and S \ r = r3 ∩ r4 for some r1, r2, r3, and r4 in R,
(d) r = r1 ∩ r2 for some r1 and r2 in R such that

∀s ∈ S ∀e ∈ E ∀s′ ∈ S \ r s
e
−→ s′ ⇒ s′ 6∈ r1 ∪ r2
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1.2 (From [5]). A minimal region of an initialized transition system A is a
region of A which is minimal for set inclusion amongst the non-trivial regions
of A. Show successively the following:
(a) The union of two disjoint regions r1 and r2 is a region with

•(r1 ∪ r2) = (•r1 ∪ •r2) \ ((•r1 ∩ r2•) ∪ (•r2 ∩ r1•))
(r1 ∪ r2)• = (r1

• ∪ r2•) \ ((•r1 ∩ r2•) ∪ (•r2 ∩ r1•))

(b) The set-theoretical difference r2 \ r1 of two regions r1 and r2 such that
r1 ⊆ r2 is a region.
(c) Every region is a disjoint union of minimal regions. Find an example show-
ing that this decomposition is not necessarily unique.
(d) If r is a region and e ∈ •r, then there exists a minimal region r1 ⊆ r such
that e ∈ •r1. Symmetrically, if r is a region and e ∈ r•, then there exists a
minimal region r2 ⊆ r such that e ∈ r2•.
(e) The set of minimal regions of an elementary transition system is an ad-
missible set of regions.

1.3 (From [20]).
(a) Compute all non-trivial regions of
the initialized transition system dis-
played next.
(b) Construct the elementary net sys-
tem synthesized from all regions.
(c) Construct the state graph of this
elementary net system.
(d) Show that there is a smallest ad-
missible set of regions R.
(e) Compare the net system synthe-
sized from R with the net system syn-
thesized from all minimal regions.

q1

q2

q3

q4

q4

a

b

c

c

d

b

d

1.4.
(a) Show that states s1 and s2 cannot be separated by any region in any of

the two initialized transition systems shown in Fig. 1.18 (page 31) .
(b) Show that event c cannot be separated from state s by any region in any
of the two initialized transition systems shown in Fig. 1.19 (page 31).

1.5. Compute the regions of the transition systems shown in Fig. 1.13 and
Fig. 1.26 (on the right hand side). Compute the net systems synthesized from
minimal regions and their reachability graphs. Conclude that the given tran-
sition systems are not separated.

1.6. Let U(A) = (S′, E, δ′, s′0) be the limited unfolding of a finite initialized
transition system A = (S,E, δ, s0) (Def. 1.90 on page 50). Show that the
simulation map ϕ : L(A)→ U(A) is the unique map ϕ : L→ S′ such that (i)
ϕ(u) = u if u ∈ S′, and (ii) ϕ(u1u2u3) = ϕ(u1u3) if δ(s0, u1u2) = δ(s0, u1).
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1.7. The synchronized product of an i-indexed family of initialized transition
systems Ai = (Si, E, δi, s0,i), i ∈ I, is the initialized transition system A =
(S,E, δ, s0) where s0 is the i-indexed vector with entries s0(i) = s0,i and
S and δ are defined simultaneously from the axiom s0 ∈ S by the inductive
statement: (∀s ∈ S) (δ(s, e) = s′ ∧ s′ ∈ S if (∀i ∈ I) (δi(s(i), e) = s′(i)).
Show that a synchronized product of separated initialized transition systems
is separated.

1.8. Write a program taking as argument a set X of subsets of a set R and
computing all minimal subsets Y ofR that intersect every element ofX . Apply
this program to the set R of non trivial regions of the four season transition
system (Fig.1.21) in order to compute all minimal admissible sets of regions
and all minimal strongly admissible sets of regions (yielding realizations of the
transition system by elementary net systems and by contact-free elementary
net systems, respectively).

1.9 (From [16]). Two states s and s′ of an initialized transition system are
said to be confluent if at least one state is reachable both from s and from s′.
An initialized transition system is said to be confluent (resp. conditionnally
confluent) if all pairs of states (resp. all pairs of language equivalent states)
are confluent. Thus in particular, a finite initialized transition system in which
the initial state may be reached from any other state is confluent. Prove the
following statements:
(a) Two language equivalent states of a confluent (or conditionally confluent)
initialized transition system cannot be separated by any region.
(b) If an initialized transition system A is confluent (or conditionally con-
fluent) and it enjoys event-state separation, then RG(SN(A)) is a minimal
automaton.
(c) If an initialized transition system A enjoys event-state separation, then any
two states of A which cannot be separated by regions are language equivalent.

1.10.
(a) Compute the regions of the transi-
tion system shown on the right.
(b) Verify that all non trivial regions
are incomparable for set inclusion.
(c) Extract a minimal admissible set of
regions and construct the correspond-
ing synthesized net system.
(d) Describe all the minimal admissible
sets of regions of this transition system.

d e
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1.11. For the initialized transition system A shown next:
(a) Compute the set Rmin(A) of minimal regions
(as defined in Exer. 1.2).
(b) Whenever a unique minimal region separates
strongly an event e from a state s, this region must
belong to every strongly admissible set of minimal
regions. Find five such minimal regions.

s1

s2 s5

s3 s6

s4 s7

a b

c d

d c

e f

(c) Show that there are three distinct minimal strongly admissible sets of
minimal regions.





2

Algorithms of Elementary Net Synthesis

In this chapter, we consider finite transition systems exclusively. The chap-
ter contains three sections. The first section focusses on minimal regions and
shows that they are sufficiently complete for all forms of the net synthesis
problem described in Chap. 1, i.e., whenever a set of regions is admissible
for some separation property, some set of minimal regions is also admissi-
ble. The interest is to reduce significantly the search space for admissible sets
of regions, which has a direct impact on the efficiency of the net synthesis
algorithms. The second section shows that unfortunately, the net synthesis
problem is NP-complete, hence one cannot construct very efficient synthesis
algorithms. The third section constructs a flexible algorithm, based on min-
imal regions, that can be tailored to all forms of the net synthesis problem
by selecting the relevant separation axioms. Most developments presented in
the chapter, in spite of the title, are in fact independent of elementary nets
and valid in the larger framework of quasi-elementary nets. By nets and net
systems, reconducting the convention adopted in Chap. 1, we always mean
quasi-elementary nets and quasi-elementary net systems, thus elementary is
never meant unless it is explicit.

2.1 Minimal Regions and State Machine Decompositions

Given an initialized transition system A, deciding whether A can be realized
exactly by a net system and providing it with a net realization amounts to
searching for an admissible set of regions R and synthesizing the net sys-
tem SNR(A) induced from R. For any two distinct states, or state and event
disabled at this state, one should search for a region of A enforcing the prop-
erty of separation SSP, or ESSP, respectively. As far as theory is concerned,
this search makes no difficulty: A is finite and R(A) is also finite, hence it is
straightforward to design an effective decision and realization procedure for
the basic net synthesis problem. However, the set of regions of an initialized
transition system with set of states S may be as large as 2S . This would not
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be a problem if it was possible, for each pair of states or state and event to be
separated, to compute separating regions with an efficient algorithm. Unfortu-
nately, no such algorithm is known, and one is forced to search for separating
regions instead of computing them. It is therefore highly relevant, in order to
obtain reasonably efficient net synthesis procedures, to try reducing the search
space to smaller subsets of regions with easy criteria of recognition. Minimal
regions were put forward for this purpose by Bernardinello in [5], and they
have been widely used since then, e.g., in the tool Petrify whose principles
will be presented in the end of Sec. 2.3.

The rest of the section is organized as follows. First, we establish the
crucial property of regions to be closed under relative complement. On this
basis, we show that minimal regions are sufficiently complete for the basic net
synthesis problem, i.e., an initialized transition system has an admissible set
of regions if and only if it has an admissible set of minimal regions. So, it is not
necessary to compute non-minimal regions for solving the basic net synthesis
problem. Second, we show that net versions of initialized transition systems
synthesized from (regions or) minimal regions may always be covered by state
machine components, hence net synthesis reveals implicit concurrency. We
give examples showing that unfortunately, in some cases where the basic net
synthesis problem has feasible solutions, one cannot find least admissible sets
of minimal regions solving this problem. Much freedom is therefore left for the
design of net synthesis procedures, even if they use only minimal regions. Next,
we show that for any initialized transition system, separated or non-separated,
the net systems synthesized from all minimal regions and from all regions,
respectively, are equivalent. So, it is not necessary to compute non-minimal
regions for obtaining the best over-approximation of a transition system by
the reachability graph of a net system. We finally show that minimal regions
are sufficiently complete also for net synthesis from transition systems up to
folding operations preserving languages, and for net synthesis from transition
systems up to language equivalence. Hence, minimal regions are sufficiently
complete for all forms of the net synthesis problem described in Chap. 1.

2.1.1 Minimal Regions are Sufficient for Synthesis

We will show in this section that minimal regions are sufficiently complete
for the basic net synthesis problem. In other words, one can design correct
decision and realization procedures for the basic net synthesis problem in
which the search space for regions is reduced to the minimal regions, thus
possibly increasing efficiency. The crux of the development presented in this
part is the following proposition.

Proposition 2.1. Let A be an initialized transition system. Let r, r′ be two
regions of A. If r′ ⊆ r, then r \ r′ is a region of A.

Proof. Three mutually exclusive cases can occur for an event e (see Fig. 2.1).
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1. All occurrences of e enter r.
Then either all occurrences of e enter r′, and therefore they do not cross
the border of r \ r′, or no occurence of e crosses the border of r′, and
therefore all occurrences of e enter r \ r′.

2. All occurrences of e exit from r.
Then either all occurrences of e exit from r′, and therefore they do not
cross the border of r \ r′, or no occurence of e crosses the border of r′, and
therefore all occurrences of e exit from r \ r′.

3. No occurrence of e crosses the border of r.
Then three mutually exclusive sub-cases can occur.
a) All occurrences of e enter r′.

Then all occurences of e exit from r \ r′.
b) All occurrences of e exit from r′.

Then all occurences of e enter r \ r′.
c) No occurrence of e crosses the border of r′.

Then no occurrence of e crosses the border of r \ r′.

2

e ∈ ◦r e ∈ r◦ e ∈ r⊥

r
r′

r
r′

e ∈ ◦(r \ r′)

r
r′

r
r′

e ∈ (r \ r′)◦

r
r′

r
r′

r
r′

e ∈ (r \ r′)⊥

Table 2.1. a graphical proof of Prop. 2.1

As we consider finite transition systems exclusively, every initialized tran-
sition system A has a non-empty set of minimal non-empty regions. For con-
venience, let us introduce a notation for this set.

Definition 2.2. Given an initialized transition system A, let Rmin(A) denote
the subset of regions of A which are minimal w.r.t. set inclusion in R(A) \ ∅.

♦
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In the sequel, minimal region means always minimal non-empty region. Three
lemmas based on Prop. 2.1 are needed to show that, if an initialized transi-
tion system has an admissible set of regions, then it has an admissible set of
minimal regions.

Lemma 2.3. Let A be an initialized transition system. Let r be a region of
A. Let s, s′ be two states of A, such that s ∈ r and s′ /∈ r. Let r′ be a region
of A strictly included in r. Then r′ or r \ r′ separates state s from state s′.

Proof. As r′ and r \ r′ form a partition of r it follows from s′ 6∈ r that s′ /∈ r′

and s′ /∈ r \ r′ and from s ∈ r that s ∈ r′ or s ∈ r \ r′. 2

Lemma 2.4. Let A be an initialized transition system with set of states S.
Let s, r, and e be a state, a region, and an event of A, respectively, such that
r separates event e from state s. Then either e exits from r and s /∈ r, or e
exits from the complementary region S \ r and s /∈ (S \ r).

Proof. By Def. 1.42, if r separates event e from state s, then either e exits
from r and s /∈ r, or e enters r and s ∈ r. In the latter case, necessarily, the
event e exits from the complementary region S \ r and s /∈ (S \ r). 2

Lemma 2.5. Let A be an initialized transition system. Let s, r, and e be a
state, a region, and an event of A, respectively, such that e exits from r and
s /∈ r. Let r′ be a region of A strictly included in r. Then either r′ or r \ r′

separates event e from state s.

Proof. In view of Table 2.1 every event that exits from r exits either from r′

or from r \ r′. A state that does not belong to r belongs neither to r′ nor to
r \ r′, which are subsets of r, hence either r or r \ r′ separates event e from
state s. 2

We can now show that any separated transition system (see Def. 1.46)
may be realized by the net system synthesized from its minimal regions.

Proposition 2.6. Let A be an initialized transition system. If A is separated,
then A ∼= RG(SNR(A)) for R = Rmin(A).

Proof. As A is a separated transition system, the set R(A) of all regions of
A is admissible. As R(A) is admissible, by Lemma 2.3, every pair of states is
separated by some region in Rmin(A). As R(A) is admissible, by Lemma 2.4,
every event e disabled at some state s is separated from this state by some
pre-region r ∈ ◦e. By Lemma 2.5, the event e is then disabled at s by some
region in Rmin(A). Therefore, Rmin(A) is an admissible set of regions of A,
and by Th. 1.43, A ∼= RG(SNR(A)). 2
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2.1.2 Regions and State-Machine Decompositions

We will show in this section that the net systems synthesized from all regions
of an initialized transition system, or from all minimal regions of an initialized
transition system, may be covered by sequential components. The import of
this result is to give evidence of the fact that net synthesis extracts concur-
rency from (sequential) transition systems, in which it is implicit. The state
machine decomposition of net systems synthesized from minimal regions relies
essentially on Prop. 2.1 which was established in the last section.

Before we introduce definitions and terminology about state machine com-
ponents and state machine decompositions, we need to define subnet systems.

Definition 2.7. Let N = (P, T, F,M0) be a net system. A subnet system of
N is a net system N ′ = (P ′, T ′, F ′,M ′

0) such that the following conditions
hold:

1. P ′ ⊆ P and T ′ ⊆ T ,
2. ∀p ∈ P ′ ∀t ∈ T ((p, t) ∈ F ∨ (t, p) ∈ F )⇒ t ∈ T ′,
3. F ′ is the induced restriction of F on (P ′ × T ′) ∪ (T ′ × P ′),
4. M ′

0 is the induced restriction of M0 on P ′.

A subnet system N ′ of N is connected if the graph (P ′ ∪ T ′, F ′) is connected.

This definition is more demanding than other definitions of subnets sometimes
found in the literature, because it requires that transitions connected with a
place come along with that place into the subnet.

Definition 2.8. Let N = (P, T, F,M0) be a net system. A state machine com-
ponent of N is a connected subnet system N ′ of N , let N ′ = (P ′, T ′, F ′,M ′

0),
such that |M ′

0| = 1 (i.e., there is exactly one place marked in M ′
0) and for

every transition t′ ∈ T ′, |•t′| = 1 , and |t′•| = 1.

Example 2.9. The elementary net system for mutual exclusion shown in
Fig. 1.5 has exactly three state machine components, shown in Fig. 2.1.

2

A state-machine N ′ = (P ′, T ′, F ′,M ′
0) may be seen alternatively as an initial-

ized transition system (P ′, T ′, δ′, p′0) with the set of states P ′, the initial state
p′o ∈ M

′
0, and the transition map δ′(p′, t′) = p” if •t′ = {p′} and t′• = {p”}.

In fact, the reachability graph of N ′ is isomorphic to this initialized transition
system. Every state-machine N ′ = (P ′, T ′, F ′,M ′

0) is therefore a contact-free
net system.

Definition 2.10. A state machine decomposition of N is a family of state
machine components Ni = (Pi, Ti, Fi,M0,i) of N that covers N , i.e., such
that P = ∪iPi and T = ∪iTi where P and T are the subsets of non-isolated
places and transitions of N , respectively. ♦
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Fig. 2.1. the three state-machine components of the net system in Fig. 1.5

Example 2.11. The state-machines shown in Fig.2.1 cover the net system of
Fig. 1.5 and provide a state machine decomposition of this system. The three
state-machines represent the two process components and the resource, taken
in isolation. 2

A net system N in which every place p has a complementary place p′ may
always be decomposed into state machine components Ni, each of which is
determined by setting Pi = {p, p′} for some place p of N . As adding comple-
mentary places does not affect the behaviour of net systems, the reachable
state graph RG(N) of a net system N is always isomorphic to the reachable
state graph RG(N ′) of some contact-free and state-machine decomposable net
system N ′ [32].

Let us consider now the particular case of the net systems SN(A) (=
SNR(A)(A)) or SNRmin(A)(A) synthesized from all regions or from all min-
imal regions of an initialized transition system A. We want to show that
both net systems may be covered by state-machine components (plus possi-
bly isolated places and transitions). The proof of this result depends mainly
upon Prop. 2.1, which shows that any non-minimal region of an initialized
transition system A may be partitioned into smaller regions. Indeed, if r is a
non-minimal region of A, then there must exist some minimal region r′ ⊆ r,
and by Prop. 2.1, the relative complement r\r′ is also a region of A. However,
in addition to Prop. 2.1, we need the weakly converse property as follows.

Proposition 2.12. Let A = (S,E, δ, s0) be an initialized transition system.
Let r1, r2 be two disjoint regions of A. Then r1 ∪ r2 is a region of A.

Proof. Let e ∈ E. If all occurences of e enter r1, then either they all exit from
r2 and therefore they do not cross the border of r1 ∪ r2, or none of them
crosses the border of r2 and therefore they all enter r1 ∪ r2. If all occurences
of e exit from r1, then symmetrically, either they do not cross the border of
r1 ∪ r2, or they all exit from r1 ∪ r2. Similar considerations apply to r2. The
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remaining case is when no occurence of e crosses the borders of r1 and r2 and
then no occurrence of e crosses the border of r1 ∪ r2. 2

Take any initialized but not necessarily separated transition system A =
(S,E, δ, s0). By Prop. 2.1, the set of states S may be partitioned into regions
(or into minimal regions) of A and every non-empty region (or minimal region)
of A appears in at least one such partition. The next proposition states that
every non-trivial partition of S into regions of A determines a state-machine
component of the saturated net system synthesized from the regions of A.
In particular, every non-trivial partition of S into minimal regions of A de-
termines a state-machine component of the net system synthesized from the
minimal regions of A.

Proposition 2.13. Let A = (S,E, δ, s0) be an initialized transition system.
Let R = {r1, . . . , rn} be a non-trivial partition of S into regions of A. Let
T = ∪i

◦ri. Then for every t ∈ T , |◦t∩R| = 1, and |t◦∩R| = 1. Moreover, the
net system (R, T, F,M0) defined by ri ∈ M0 iff s0 ∈ ri, (ri, t) ∈ F iff t ∈ ri◦,
and (t, ri) ∈ F iff t ∈ ◦ri, is connected.

Proof. Let t ∈ T . By construction of T , all occurences of the event t in A enter
jointly some region ri ∈ R, necessarily unique. As R is a partition of S, all
occurences of the event t in A exit from some other region rj ∈ R, necessarily
unique. As t enters ri and t exits from rj , ri 6= rj be definition of regions. We
now prove that N = (R, T, F,M0) is a connected net. Consider any split of R
into non-empty and complementary subsets {r1, . . . , rk} and {rk+1, . . . , rn}.
By Prop.2.12, r = ∪k

i=1ri and r′ = ∪n
i=k+1ri are two (complementary) non-

trivial regions of A. As r is non-trivial, e ∈ r◦ for some e ∈ E, and since r and
r′ are complementary regions, e ∈ ◦r′ . Therefore, all occurrences of e in A
exit jointly from some region ri with index i ≤ k and they enter jointly some
other region rj with j ≥ k+ 1. As a result, (ri, e) ∈ F and (e, rj) ∈ F . As the
split of R was arbitrary, N is connected. 2

Proposition 2.13 establishes the following two claims:

1. For every initialized transition system A with set of states S, the saturated
net system SN(A) synthesized from the regions of A may be covered by
state-machine components, induced from non-trivial partitions of S into
regions of A.

2. For every initialized transition system A with set of states S, the net
system SNRmin(A)(A) synthesized from the minimal regions of A may be
covered by state-machine components, induced from non-trivial partitions
of S into minimal regions of A.

As every state-machine component of a net system is contact free, the net
systems SN(A) and SNRmin(A)(A) are contact-free.
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2.1.3 Minimal Admissible Sets of Regions

In Section 1.4, the four season example has shown that there may exist min-
imal admissible sets of regions which are incomparable w.r.t. set inclusion.
Moreover, these minimal admissible sets of regions may have different cardi-
nalities. Similar observations are valid if one replaces admissible sets of regions
with strongly admissible sets of regions. In this section, we show that the sit-
uation is not improved if one replaces regions with minimal regions, hence
searching for minimal admissible sets of minimal regions cannot be the target
of the design of net synthesis algorithms.

In the four season example, there was only one admissible set of minimal
regions, and the following questions could not be settled:

• May there exist several minimal admissible sets of minimal regions?
• If so, do all minimal admissible sets of minimal regions have the same

cardinality?

We address these two questions using an example borrowed from [4].

p1 p2

p3

p4 p5

p6

a

b c

f

ed

Fig. 2.2. an elementary net system

Example 2.14. Consider the elementary net system N shown in Fig. 2.2. The
reachability graph RG(N) of this net system is shown in Fig. 2.3, where the
markings are written as ordered sequences of 0 and 1 following the natural or-
der on the places (the initial marking is 110000). This elementary transition
system has 12 non-trivial regions, namely the regions ri and r′i defined for
i = 1, . . . , 6 as follows: let ri be the set of reachable markings of N with the
ith digit equal to 1, i.e. ri = {M | pi ∈M }, and let r′i be the set of reachable
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Fig. 2.3. the reachability graph of the elementary net system in Fig. 2.2

markings of N with the ith digit equal to 0: r′i = {M | pi 6∈M }. As ri and
r′i are complementary, there exist exactly six partitions of the set of states of
RG(N) into regions. One can check that all the considered regions are mini-
mal, hence every proper partition of the set of states of RG(N) into regions
is a partition into minimal regions. By the way, the minimal regions r1, r2, r3
have an empty intersection although they intersect pairwise. A minimal ad-
missible set of minimal regions is R = {r1, r2, r3, r4, r5, r6}, as the reader may
check. R is not strongly admissible, since the net system SNR(RG(N)) syn-
thesized from R is isomorphic to the net system N and N has contacts (e.g.,
a cannot be fired in the initial marking because p1, which is a post-place of
a, is marked). Now seeing that ri and r′i are complementary regions, any set
R′ obtained by replacing some or all of the regions ri by their complement
r′i is also a minimal admissible set of minimal regions. Moreover all minimal
admissible sets of minimal regions are obtained in this way. Indeed, a mini-
mal set of minimal regions cannot contain complementary regions since two
complementary regions are equivalent w.r.t. the separation properties SSP
and ESSP. THis example thus provided an initialized transition system with
many minimal admissible sets of minimal regions. 2

In the above example, all minimal admissible sets of minimal regions have the
same cardinality. This may be changed by adding to the transition system
shown in Fig. 2.3 a new state s0, taken as the initial state, and three tran-

sitions s0
i
−→ 110000, s0

j
−→ 101000, and s0

k
−→ 011000. Let A be the resulting
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initialized transition system. The minimal regions of A are ri and r′i defined
as above (i = 1, . . . , 6) plus the minimal region r7 = {s0}. Remark that ri
and r′i are no longer complementary in A. The set of states of A has now six
partitions {ri, r′i, r7} into minimal regions. R = {r1, r2, r3, r4, r5, r6, r7} is a
minimal admissible set of minimal regions, but R′ = {r′1, r

′
2, r

′
3, r

′
4, r

′
5, r

′
6} is

also a minimal admissible set of minimal regions. Therefore, minimal admis-
sible sets of minimal regions may have different cardinalities.

The questions of uniqueness or equal cardinality of minimal strongly admis-
sible sets of minimal regions may be asked similarly. The example presented
above does not help answering these questions, because A has a unique mini-
mal strongly admissible set of minimal regions, namely {r1, r2, r3, r

′
1, r

′
2, r

′
3, r

′
4,

r′5, r
′
6, r7}. However, the next example, borrowed from [17], shows that mini-

mal strongly admissible sets of minimal regions are generally not unique. So,
the only question left open is whether all minimal strongly admissible sets of
minimal regions have equal cardinality.

s1

s2 s5

s3 s6

s4 s7

a b

c d

d c

e f

Fig. 2.4. an elementary transition system

Example 2.15. Consider the elementary transition system shown in Fig. 2.4.
All minimal pre-regions of the events that occur in this elementary transition
system are listed in the next table.

pre-region of events
r0 = {s2, s5, s6} c
r1 = {s2, s4, s6} c, e
r2 = {s2, s3, s5} d
r3 = {s2, s3, s4} e
r4 = {s3, s5, s7} d, f
r5 = {s5, s6, s7} f
r6 = {s3, s4, s7} e, f
r7 = {s4, s6, s7} e, f
r8 = {s1} a, b

Note that, whenever a unique minimal region separates strongly an event
e from a state s, this region must belong to every strongly admissible set
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of minimal regions. Using this argument, one can infer that every strongly
admissible set of minimal regions of the transition system shown in Fig. 2.4
contains the set {r0, r1, r2, r4, r8}. The reader may check that by adding to
this set any of the sets {r3, r7} or {r5, r6} or {r6, r7}, one obtains a minimal
strongly admissible set of minimal regions. So, such sets are generally not
unique. 2

2.1.4 Minimal Regions are Sufficient for Approximate Synthesis

In Sec. 2.1.1, we have shown that minimal regions are sufficiently complete
for the basic net synthesis problem. We will show that minimal regions are
sufficient also for computing optimal solutions to the approximate net real-
ization problem. Recall from Section 1.5 that for any initialized transition
system A, the net system SN(A) synthesized from all regions of A yields
an optimal over-approximation of A by the reachability graph of a net sys-
tem (A ≤ RG(N) iff N ≤ SN(A)). We aim at proving that the net system
SN(A) synthesized from all regions of A and the net system SNRmin(A)(A)
synthesized from all minimal regions of A have in fact isomorphic reachability
graphs. One can therefore design optimal procedures for the approximate net
realization problem in which the search space for regions is reduced to mini-
mal regions, thus resulting in exponentially smaller net systems.

In the sequel, A = (S,E, δ, s0) is an initialized transition system, and
ηA : A → RG(SN(A)) is the simulation map that sends each state of A to
the marking of SN(A) comprised of the regions of A which this state belongs
to (see Def. 1.76). Let us recall that for any region r ∈ RG(SN((A)), η−1

A (r)
is a region of A with the same signature as r (Lemma 1.56). A main step
towards proving that SN(A) and SNRmin(A)(A) have isomorphic reachability

graphs (Prop. 2.18) is to show that η−1
A (r) restricts to a bijection between

Rmin(RG(SN(A))) and Rmin(A). For the ease of the presentation, in order
to prove this intermediate result, we shall temporarily accept without proof
the following statement, which will be established after the main proposition.

Lemma 2.16. The map η−1
A : R(RG(SN(A)))→ R(A) is a bijection between

regions, and it preserves and reflects disjointness of regions.

As the region η−1
A (r) of A has the same signature as the region r of

RG(SN(A)), Lemma 2.16 tells us among other that the map η−1
A (preserves

and) reflects signatures of regions.

Lemma 2.17. The induced restriction of η−1
A on Rmin(RG(SN(A))) is a

bijection between Rmin(RG(SN(A))) and Rmin(A).

Proof. The proof proceeds by contradiction.



74 2 Algorithms of Elementary Net Synthesis

1. Suppose η−1
A (r) is a minimal region of A but r is a non-minimal region of

RG(SN(A)). By Prop. 2.1, r = r1∪r2 is the union ot two non-empty and
disjoint regions of RG(SN(A)). By definition of inverse maps, η−1

A (r) =
η−1

A (r1) ∪ η
−1
A (r2). By Lemma 2.16, η−1

A (r1) and η−1
A (r2) are two non-

empty and disjoint regions of A, both included in η−1
A (r), hence η−1

A (r)
was not minimal.

2. Suppose r is a minimal region of RG(SN(A)) but η−1
A (r) is a non-minimal

region of A. By Prop. 2.1, η−1
A (r) = r′1 ∪ r

′
2 is the union of two non-empty

and disjoint regions of A. As η−1
A is a bijection between the regions of

RG(SN(A)) and the regions of A, r′1 = η−1
A (r1) and r′2 = η−1

A (r2) for some
non-empty regions r1, r2 of RG(SN(A)). As η−1

A reflects disjointness, r1
and r2 are disjoint. By Prop. 2.12, r1∪ r2 is a region of RG(SN(A)). Now
η−1

A (r1 ∪ r2) = η−1
A (r1) ∪ η

−1
A (r2) = r′1 ∪ r

′
2 = η−1

A (r), and because η−1
A is

a bijection, r = r1 ∪ r2, contradicting the assumption that r is a minimal
region. 2

We can now state and prove the main result of the section.

Proposition 2.18. For any initialized transition system A, the net systems
SN(A) and SNRmin(A)(A) have isomorphic reachability graphs.

Proof. Let B = RG(SN(A)). By Th. 1.77, B is a separated transition sys-
tem. By Prop. 2.6, B ∼= RG(SNRmin(B)(B)), i.e., B is realized exactly by
the net synthesized from its minimal regions. Therefore, RG(SN(A)) ∼=
RG(SNRmin(B)(B)). By Lemma 2.17, η−1

A maps bijectively Rmin(B) to
Rmin(A) such that two corresponding regions have the same signature, hence
the net systems SNRmin(A)(A) and SNRmin(B)(B) are isomorphic. The net
systems SN(A) and SNRmin(A)(A) have therefore isomorphic reachability
graphs. 2

It remains to establish Lemma. 2.16.

Proof (of Lemma 2.16).
We show first that η−1

A : R(RG(SN(A))) → R(A) is a bijection. As η−1
A

preserves signatures of regions, it suffices, in view of Lemma 1.32, to show
that every signature of a region of A coincides with the signature of some
region of RG(SN(A)). Indeed, for any region of A, the signature of this region
is the same as the signature of the place of SN(A) induced from this region,
and for every place of SN(A), the signature of this place is the same as the
signature of the region of RG(SN(A)) defined as its extension. Therefore, η−1

A

is a bijection. η−1
A : R(RG(SN(A)))→ R(A) obviously preserves disjointness

of regions since it is defined as an inverse map. In order to complete the
proof of the lemma, we show that for any two regions r1, r2 of RG(SN(A)),
if η−1

A (r1) ∩ η
−1
A (r2) = ∅, then r1 and r2 are disjoint. As η−1

A (r1) and η−1
A (r2)

are disjoint, by Propositions 2.12 and 2.1, the set S \ (η−1
A (r1) ∪ η

−1
A (r2))

is a region of A, let η−1
A (r3) where r3 ∈ R(A). By Prop. 2.13, the partition
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{η−1
A (r1), η

−1
A (r2), η

−1
A (r3)} of S determines a state-machine component of the

net system SN(A), i.e., exactly one of the places p1, p2, p3 of SN(A) induced
from these three regions of A is marked in any reachable marking of SN(A).
Now for each i, the place pi has the same signature as the region η−1

A (ri) from
which it has been induced, and the place pi has the same signature as its
extension r′i which is a region of RG(SN(A)). As η−1

A : R(RG(SN(A))) →
R(A) is a bijection preserving signatures of regions, necessarily, r′i = ri. As
p1, p2, p3 form a sequential component of SN(A), the regions r1, r2, r3 are
disjoint, hence in particular r1 and r2 are disjoint. 2

2.1.5 Minimal Regions are Sufficiently Complete for Synthesis up
to Folding Operations Preserving Languages and for Synthesis up
to Language Equivalence

According to Prop. 1.81, an initialized transition system A may be realized
by an elementary net system up to folding operations preserving languages
if and only if the axioms of event-state separation, event effectiveness, and
event simpleness are satisfied in A. In this case, A ⊲ RG(SNR(A)) for any
set of regions R ⊆ R(A) enforcing these properties. In this section, we show
that the set of minimal regions Rmin(A) is sufficiently complete w.r.t. all
three axioms, which means that whenever the axioms are satisfied for the set
R(A), they are satisfied also for the set Rmin(A). This result entails sufficient
completeness of minimal regions for the synthesis of net systems up to lan-
guage equivalence. Indeed, by Prop. 1.97, the synthesis of a net system from
an initialized transition system A up to language equivalence reduces to the
synthesis of a net system from the limited unfolding U(A) of A up to fold-
ing operations preserving languages. The minimal regions of a (prefix-closed)
regular language are therefore sufficiently complete for the realization of this
language by an elementary net system.

The proposition stated and established below completes our efforts to show
that minimal regions are sufficiently complete for all forms of the net synthesis
problem, explaining why Section 2.3 will be focussed on the search for minimal
regions exclusively.

Proposition 2.19. Minimal regions are sufficiently complete w.r.t. the ax-
ioms of event-state separation, event effectiveness, and event simpleness.

Proof. As regards event-state separation, Lemmas 2.4 and 2.5 have already
shown in Sec. 2.1.1 that minimal regions are sufficiently complete. We address
now the axioms of event effectiveness and event simpleness. Let e be an event
with an input region r. For every region r′ ⊂ r, either r′ or r \ r′ is an input
region of e. It follows by induction on finite sets that e has some minimal
input region included in r. As regards event simpleness, we show that any non
minimal region r separating two events e and e′ contains a strict subregion
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r′ ⊂ r which separates e and e′ as well. Suppose, as a first case, that events
e and e′ are distinguished by some input region, e.g., r ∈ ◦e and r 6∈ ◦e′.
Since r is not minimal, there exists a region r′ ⊂ r and either r′ or r \ r′ is
an input region of e. Suppose for instance that r′ ∈ ◦e (and thus r \ r′ ∈ e⊥).
If r′ 6∈ ◦e′, then r′ separates e from e′. If r′ ∈ ◦e′, then for every event e′,

s
e′

→ s′ ⇒ (s ∈ r′ ∧ s′ /∈ r′), and (r′ ⊂ r ∧ r 6∈ ◦e′)⇒ (s ∈ r ∧ s′ ∈ r), hence
altogether (s /∈ (r \ r′) ∧ s′ ∈ (r \ r′)). Therefore in this case, (r \ r′) ∈ e⊥

and (r \ r′) ∈ e′◦, showing that r \ r′ separates e from e′. The case where
events e and e′ are distinguished by output regions can be treated similarly:
one can apply the above reasoning on the dual transition system obtained by
reversing all transitions. In fact, if let the dual (S,E,∆opp) of the transition
system (S,E,∆) be defined by (s, e, s′) ∈ ∆opp ⇔ (s′, e, s) ∈ ∆, then (S,E,∆)
and (S,E,∆opp) have the same regions r = ropp ⊆ S, where r ∈ ◦e iff ropp ∈ e◦

and r ∈ e◦ iff ropp ∈ ◦e. Thus, in both cases, we can find a region r′ strictly
included in r separating e and e′. It follows by induction on finite sets that e
and e′ may be separated by a minimal region. 2

2.2 NP-Completeness of Synthesis

Before we deal with the design of net synthesis algorithms, it is worth study-
ing the complexity of the net synthesis problem, since it determines more or
less which types of techniques can be applied in such algorithms. The analysis
done in this section shows that elementary net synthesis algorithms rely on
purely combinatorial methods.

In the section, the regions r ⊆ S of an initialized transition system A =
(S,E, δ, s0), and more generally all subsets r ⊆ S, are identified with their
characteristic functions. By Prop. 1.40, an elementary transition system A =
(S,E, δ, s0) has always some admissible set of regions R with size |R| less
than or equal to |S| × ((|S| − 1)/2 + |E|), where |E| ≤ |S| × (|S| − 1) since
elementary transition systems are loop-free and simple. Every region r ∈ R,
as a subset of S, has size |r| less than or equal to |S|. If the elementary net
synthesis problem has a solution for an initialized transition system A, one
can therefore construct such a solution from an admissible set of regions R
with size polynomial in the size of A.

Consider any set R of subsets r ⊆ S. Verifying that a subset r ⊆ S is
a region of A takes time linear in the number of transitions of A (hence
quadratic in |S|) since it suffices to check that all transitions s

e
−→ s′ labelled

with the same event e determine the same difference r(s′)− r(s) in {−1, 0, 1}.
Verifying that R is an admissible set of regions takes time polynomial in |S|
and |R|, since it suffices to check for |S| × ((|S| − 1)/2) pairs of states s, s′

that r(s) 6= r(s′) for some r ∈ R, and to check for at most |S|2 × (|S| − 1)
triples of states s, s′, s” (such that s′

e
−→ s” for some event e disabled in s)

that r(s) < r(s′)− r(s”) for some r ∈ R.
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Altogether, i) the elementary net synthesis problem has a solution for a
loop-free and simple initialized transition system A = (S,E, δ, s0) if and only
if one can produce non-deterministically a polynomial size description of a set
of subsets of S that happens to be an admissible subset of regions of A, and
ii) for arbitrary polynomial size descriptions of sets of subsets of S, checking
whether they define an admissible subset of regions of A can be done using
time polynomial in |S| and the size of these descriptions. The elementary
net synthesis problem for loop-free and simple initialized transition systems
falls therefore in NP by definition of this complexity class (NP means Non-
Deterministic Polynomial Time).

In the rest of the section, we provide some intuitions under the stronger
claim, established in [2], that the elementary net synthesis problem (for loop-
free and simple initialized transition systems) is NP -complete. This property
means that for any decision problem in the class NP , let (Q(x), X) where Q
is a predicate in one variable x ranging over a set of strings X , there exists
an algorithm α, that translates strings σ to loop-free and simple initialized
transition systems α(σ), using time polynomial in the length of the input
strings, such that Q(σ) is true if and only if α(σ) is an elementary transition
system. The algorithm α is then called a polynomial time reduction of the
problem (Q(x), X) to the elementary net synthesis problem.

In section 2.2.1, it is shown that for each instance of the state separation
or event-state separation problem taken in isolation, deciding whether this
instance can be solved by a separating region is an NP-complete problem.
In section 2.2.2, we give a sketch of the proof that it is also an NP-complete
problem to decide whether all instances of the state separation and event-state
separation problems can be solved together by some admissible set of regions.

2.2.1 The Separation Problems are NP -Complete

Let us call state separation problem the question whether, given an initialized
transition system A = (S,E, δ, s0) and two states s, s′ ∈ S, these two states
are separated by some region of A. Similarly, let us call event state separation
problem the question whether, given an initialized transition system A =
(S,E, δ, s0), an event e ∈ E and a state s ∈ S, some region of A separates
e from s. Clearly, both separation problems are in the class NP . Hiraishi
proved in [25] that they are in fact NP -complete. For this purpose, he showed
that a well-known NP -complete problem, namely the satisfaction problem
3-SAT , reduces in polynomial time to the state separation problem, which
reduces in turn in polynomial time to the event state separation problem.
The latter point is clear from the following remark: two states s, s′ ∈ S are
separated by some region ofA if and only if, in the initialized transition system
A′ = (S,E′, δ′, s0) defined by E′ = E∪{e′}, e′ /∈ E, δ′(s, e) = δ(s, e) for e ∈ E,
and δ(s, e′) = s′, the event e′ is separated from the state s′ by some region
(of A′). We present below the reduction of 3-SAT to the state separation
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problem. As Hiraishi noted, this reduction has no direct implication on the
complexity of the elementary net synthesis problem.

Recall that 3-SAT is the problem whether, given a finite set V of boolean
variables (v ∈ V ) and a finite system C of disjunctive clauses over V , with
exactly three literals (v or ¬v) per clause, there exists a truth assignment for
V satisfying all clauses in C (e.g., ¬v1 ∨ ¬v2 ∨ ¬v3 is satisfied if the value
false is assigned to at least one variable in the set {v1, v2, v3}). This problem
is NP -complete, see e.g. [24].

From V and C, Hiraishi constructs a transition system A by gluing on two
shared states s1 and s2 two collections of transition systems Av (v ∈ V ) and
Ac (c ∈ C) with sets of states pairwise disjoint except for states s1 and s2.
For each variable v ∈ V , let Av be the transition system shown in Fig. 2.5(a).
For each clause c = c1 ∨ c2 ∨ c3 in C, where each ci is either a variable or
the complement of a variable in V , let Ac be the transition system shown in
Fig. 2.5(b), where cy, cz and ncy, ncz are fresh events local to Ac. A has size
polynomial in the size of C, and its initial state is s2.

s2 sv s1

(a)

v ¬v

s2 sc1 sc2 sc3 sc4 s1

scy

scz

(b)

c1 cy c2 cz c3

cy

cz

ncy

ncz

Fig. 2.5. the transition systems representing a variable (a) and a clause (b)

TheNP -completeness of the state separation problem is established by the
following proposition, that shows a reduction of 3-SAT to the state separation
problem.

Proposition 2.20. The problem 3-SAT has a solution for V and C if and
only if the state separation problem has a solution for s1, s2 and A.

Proof. (⇐) Suppose that the state separation problem has a solution for
s1, s2 and A = (S,E, δ, s2). As R(A) is closed under complementation of
regions, there must exist two maps r : S → {0, 1} and r : E → {−1, 0, 1}
such that r(s2) = 0, r(s1) = 1, and r(s′) = r(s) + r(e) whenever δ(s, e) =
s′. By restricting r on Ac for a fixed c ∈ C, one can see the following. As
r(s1) = 1, r(cy) and r(cz) must belong to the set {−1, 0}. Therefore, r(c1) +
r(c2) + r(c3) ≥ r(c1) + r(cy) + r(c2) + r(cz) + r(c3) = r(s1) − r(s2) = 1, i.e.,
r(c1) + r(c2) + r(c3) ≥ 1. Therefore, r(ci) = 1 for at least one literal c1 or c2
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or c3 in every clause c ∈ C. By restricting r on Av for a fixed variable v ∈ V ,
one can see the following. As r(s1) − r(s2) = 1, one has either r(v) = 1 and
r(¬v) = 0 or r(v) = 0 and r(¬v) = 1. Let f : V → {0, 1} be the boolean
valuation defined by f(v) = r(v) for all v. The truth assignment represented
by f (f(v) = 1 iff v is true) is then a solution of 3-SAT for V and C.

(⇒) Suppose now that 3-SAT has a solution for V and C, and let f :
V → {0, 1} be the boolean representation of this solution. Let r(s2) = 0 and
r(s1) = 1. For every v ∈ V , let r(v) = f(v) and r(¬v) = 1 − f(v). Each ci is
either a variable v or the negation ¬v of a variable, hence r(ci) ∈ {0, 1}. For
every c ∈ C, let r(sc1) = r(s2)+r(c1) and symmetrically r(sc4) = r(s1)−r(c3),
hence r(sc1) and r(sc4) both belong to the set {0, 1}. We want to show that
one can complete the definition of r on the local states and events of each
transition system Ac so that r(s′) = r(s) + r(e) whenever δ(s, e) = s′ in Ac,
hence yielding a region r of A that separates s1 from s2. Remark that for
any such region, r(cy) and r(cz) belong necessarily to the set {−1, 0} since
r(s1) = 1.

The rows of the following table enumerate the eight possibilities for the
values (in {0, 1}) of r(sc1), r(c2) and r(sc4) (grey columns of the table). In
each row, the other entries are filled with values r(cy) ∈ {−1, 0}, r(sc2) ∈
{0, 1}, r(sc3) ∈ {0, 1}, and r(cz) ∈ {−1, 0} such that r(sc1) + r(cy) = r(sc2),
r(sc2) + r(c2) = r(sc3), and r(sc3) + r(cz) = r(sc4). For all rows but one,
there is a (unique) solution as indicated in the table.

r(sc1) r(cy) r(sc2) r(c2) r(sc3) r(cz) r(sc4)
0 0 0 0 0 0 0
0 0 1
0 0 0 1 1 -1 0
0 0 0 1 1 0 1
1 -1 0 0 0 0 0
1 0 1 0 1 0 1
1 -1 0 1 1 -1 0
1 -1 0 1 1 0 1

The exception is when r(sc1) = 0, r(c2) = 0 and r(sc4) = 1. However this
situation cannot occur since this would entail that r(c1) = 0, r(c2) = 0 and
r(c3) = 0 (because r(sc4) = r(s1) − r(c3) = 1 − r(c3)), in contradiction with
the assumption that f represents a solution of 3-SAT . Therefore, r defines a
region of A that separates s1 from s2, as wanted. 2

Inserting intermediate events cy and cz between the occurrences of the
literals c1, c2, and c3 in the transition system Tc that codes the clause c =
c1∨c2∨c3 is crucial to the proof of the above proposition. A similar technique
will be employed in the next section.
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2.2.2 The Elementary Net Synthesis Problem is NP -Complete

The reduction of 3-SAT to the state separation problem given by Hiraishi is
elegant and simple, but it has no direct implication on the complexity of the
elementary net synthesis problem. An independent reduction of 3-SAT to the
(basic) elementary net synthesis problem for loop-free and simple initialized
transition systems was proposed in [2], showing that this problem is NP -
complete. We present below the principles of this reduction without providing
the long and tedious proofs of the results.

It is first shown in [2] that 3-SAT is polynomialy equivalent to another
problem of satisfaction of sets of clauses on the boolean ring Z/2Z. Recall
that Z/2Z = ({0, 1},+, 0, · , 1) where + is the sum modulo 2 (hence z + z = 0
for all z) and · is the usual multiplication.

Definition 2.21 ([2]). Let X = {x0, . . . , xn} be a set of boolean variables,
with a distinguished element x0. A system of clauses over the boolean ring
is a pair (Σ,Π) where Σ is a finite set of additive clauses σα (α ∈ A) and
Π is a finite set of multiplicative clauses πβ (β ∈ B) with respective forms
xα0

+ xα1
+ xα2

and xβ1
· xβ2

, subject to the following restrictions:

1. each additive clause has exactly three variables,
2. two additive clauses have at most one common variable,
3. each multiplicative clause has exactly two variables, and
4. the distinguished variable x0 does not occur in any multiplicative clause.

The system (Σ,Π) is said to be satisfiable if there exists a boolean assignment
for X such that x0 = 1, xα0

+ xα1
+ xα2

= 0 for all α ∈ A, and xβ1
· xβ2

= 0
for all β ∈ B. Such boolean assignments are called solutions of (Σ,Π). Let
CBR denote the problem whether a system of clauses (Σ,Π) has a solution.

The problem is to code uniformly systems of clauses (Σ,Π) into loop-
free and simple initialized transition systems A(Σ,Π) with size polynomial in
the size of (Σ,Π), such that (Σ,Π) has a solution if and only if A(Σ,Π) is
an elementary transition system. The intuition is to represent every additive
clause by a directed cycle and every multiplicative clause by a diamond in
A(Σ,Π) in the sense given by the following definition.

Definition 2.22. Let A = (S,E, δ, s0) be an initialized transition system. A
directed cycle (in A) is defined by a state s ∈ S and a sequence of events
e1 . . . en ∈ E∗ such that δ(s, e1 . . . en) = s. A diamond (in A) is defined by a
state s and two events e and e′ such that δ(s, ee′) and δ(s, e′e) are both defined
and equal.

To explain the coding, consider any non-trivial region r of A = (S,E, δ, s0).
Given r : E → {−1, 0, 1}, define abs(r) : E → Z/2Z by setting down
abs(r)(e) = r(e) mod 2. Then abs(r)(e1) + . . . + abs(r)(en) = 0 for every
directed cycle (s, e1 . . . en) and abs(r)(e) · abs(r)(e′) = 0 for every diamond
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(s, e, e′). Unfortunately, one cannot apply naively this principle for coding the
satisfaction problem (Σ,Π) into an initialized transition systemA = A(Σ,Π),
such that every region r ∈ R(A) induces a solution abs(r) of (Σ,Π) and every
solution of (Σ,Π) is the abstraction abs(r) of some region r ∈ R(A). If every
additive clause xα0

+ xα1
+ xα2

in Σ was coded into a cycle (s, xα0
xα1

xα2
),

then the satisfiability of (Σ,Π) could not be reduced to the problem whether
A(Σ,Π) is elementary. Indeed, it could occur that for some clause α and for
some i ∈ {0, 1, 2}, xαi

= 0 for all solutions of (Σ,Π), and it would be impos-

sible in this case to separate any pair of states s′ and s” such that s′
xαi−→ s”

in A(Σ,Π).
This first problem may be avoided by replacing every additive clause xα0

+
xα1

+xα2
by two additive clauses coded into cycles of A(Σ,Π), let xα0

+xα3
+

xα1
+xα4

+xα2
+xα5

and α+xα3
+xα4

+xα5
where xα3

, xα4
, xα5

and α are
fresh auxiliary variables, plus one multiplicative clause coded into a diamond
of A(Σ,Π), let x0 · α where x0 is the distinguished variable. As x0 = 1 and
x0 ·α = 0 and α+xα3

+xα4
+xα5

= 0 entail xα0
+xα3

+xα1
+xα4

+xα2
+xα5

=
xα0

+ xα1
+ xα2

in Z/2Z, the solutions of (Σ,Π) are set in correspondence
in this way with the regions r of A(Σ,Π) such that r(x0) 6= 0. Now, pairs

of states s′ and s” such that s′
xαi−→ s” for some i ∈ {0, 1, 2} can always be

separated by regions r of A(Σ,Π) such that r(x0) = 0, i.e. by regions that do
not represent solutions of (Σ,Π).

As a first approximation, let A(Σ,Π) be constructed from all state disjoint
cycles and diamonds induced from the respective equations xα0

+xα3
+xα1

+
xα4

+xα2
+xα5

= 0, α+xα3
+xα4

+xα5
= 0, x0 ·α = 0, and xβ1

·xβ2
= 0, by

defining for each component a transition s0
s
−→ s from the initial state s0 of

A(Σ,Π) to the initial state s of the component. The transitions of A(Σ,Π)
are thus labelled either by variables in X (the variables xαi

for α ∈ A and
i ∈ {0, 1, 2} and the variables xβj

for β ∈ B and j ∈ {1, 2}), or with auxiliary
variables α or xα3

, xα4
, xα5

(α ∈ A, all distinct), or with state variables s
that occur only once.

Separating states of different components of A(Σ,Π) is now easy, but
it remains problematic to construct regions of A(Σ,Π) separating pairs of
states of a fixed component. The difficulty lies in the fact that each variable
xk ∈ X may appear as the label of some transition in arbitrarily many cycles or
diamonds. A region of a fixed component (a cycle or a diamond) can therefore
not always be extended to a region of the global system A(Σ,Π), even though
all cycles and diamonds have disjoint sets of states.

In order to alleviate this second difficulty, one may proceed as follows.
Define for each variable xk ∈ X as many fresh events xα

k or xβ
k as clauses σα

or πβ in which it occurs. Replace every occurrence of xk in A(Σ,Π) by xα
k

or xβ
k according to the clause from which this occurrence has been generated.

Finally, for every new event xγ
k , define a transition from the initial state s0 of

A(Σ,Π) to the initial state of the transition system UV γ
k shown in Fig. 2.6,

labelled with a new event uγ
k. Note that all transition systems UV γ

k with the
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Fig. 2.6. the components of A(Σ, Π)

same index k share the states uk, vk and the transition uk
xk−→ vk. The role

of the components UV γ
k is explained by the following table, that displays all

possible values r(xk), r(xγ
k), r(yγ

k ) and r(zγ
k ) for a region r of UV γ

k .

r(yγ
k ) r(zγ

k ) r(xγ
k) r(xk)

+1 -1 0 0
+1 0 +1 -1
-1 +1 0 0
-1 0 -1 +1
0 +1 +1 -1
0 -1 -1 +1

0 0 +1 +1
0 0 -1 -1
0 0 0 0

Let us explain how this table has been filled. Since consecutive transitions
labelled yγ

k and zγ
k appear always in this order in UV kγ , r(yγ

k ) = +1 ⇒
r(zγ

k ) ∈ {−1, 0} and r(yγ
k ) = −1⇒ r(zγ

k ) ∈ {0,+1}. Similarly, r(zγ
k ) = +1⇒

r(yγ
k ) ∈ {−1, 0} and r(zγ

k ) = −1 ⇒ r(yγ
k ) ∈ {0,+1}. The corresponding

situations are enumerated in the leftmost columns of the upper part of the
table. The entries of the rightmost columns are then uniquely determined, as
readily verified. The remaining cases are when r(yγ

k ) = r(zγ
k ) = 0, and the

only contraint imposed by the structure of UV kγ is then r(xγ
k ) = r(xk).

In view of this table, abs(r)(xγ
k) = abs(r)(xk) = abs(r)(xη

k) in Z/2Z for
any two aliases xγ

k and xη
k of the same variable xk used in different clauses
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γ, η ∈ Σ ∪Π . However, at the same time, one may have either r(xγ
k) = r(xη

k)
or r(xγ

k) = −r(xη
k). This degree of freedom is crucial for producing regions r of

A(Σ,Π) from solutions f : X → {0, 1} of (Σ,Π) such that f(x) = abs(r)(x)
for all x ∈ X .

Altogether, A(Σ,Π) is the assembly of all components shown in Fig. 2.6,
namely Sα, Wα

L , and Wα
R (for every α ∈ A), T β (for every β ∈ B), and

UV γ
k (for every additive or multiplicative clause γ and for every variable xk

occurring in this clause). Every component is connected to the initial state s0
ofA(Σ,Π) by a transition s0

s
−→ s leading to its initial state s. All components

UV γ
k with the same index k share the transition uk

xk−→ vk.

Proposition 2.23. If A(Σ,Π) is an elementary transition system, then (Σ,Π)
is satisfiable.

Proof. If A = A(Σ,Π) is an elementary transition system, then there must
exist a region r ∈ R(A) separating states wα

0 and wα
2 , hence necessarily

abs(r)(x0) = 1. As a result, abs(r)(α) = 0 and abs(r)(xα
3 ) + abs(r)(xα

4 ) +
abs(r)(xα

5 ) = 0 for all α. The restriction of the map abs(r) : X → Z/2Z on
the set of original variables X of (Σ,Π) is a solution of this system, because
abs(r)(xγ

k) = abs(r)(xk) for all variables xk and for all exponents γ. 2

The converse proposition, stated below and established in [2], shows the
NP -completeness of the elementary net synthesis problem.

Proposition 2.24. If (Σ,Π) is satisfiable, then A(Σ,Π) is an elementary
transition system. 2

2.3 Algorithms of Elementary Net Synthesis

A variety of net synthesis problems have been dealt with and have received
theoretical solutions in Chapter 1. In this section, we will design corresponding
synthesis algorithms. We want algorithms that may synthesize both elemen-
tary nets or quasi-elementary nets from given transition systems or languages.
We want to cover both exact net realization problems and approximate net
realization problems.

In order to obtain optimal solutions to approximate net realization prob-
lems, there is no other way than to enumerate all regions of the given transition
system or language, or all regions of a sufficiently complete subset thereof, e.g.,
the minimal regions. In order to obtain solutions to exact net realization prob-
lems, one can proceed differently. It has been shown in Chapter 1 that solving
exact net realization problems amounts always to the following: given an ini-
tialized transition system A (or U(A) or L), search the set of regions R(A) for
an admissible subset w.r.t. a selection of the axioms SSP (state separation),
ESSP (event-state separation), EESSP (strong event-state separation), EE
(event effectiveness), and ES (event simpleness). For reasons explained later,



84 2 Algorithms of Elementary Net Synthesis

one may disregard event effectiveness and focus on the separation axioms SSP,
ESSP, SESSP, and ES (renamed event separation from now on).

An exact net realization problem may therefore be specified equivalently
as a pair (A, γ) where A is an initialized transition system and γ is the set of
separation problems, i.e., pairs {s, s′} or {s, e} or {e, e′} where s, s′ are states
and e, e′ are events, for which one wants to find separating regions. The set γ
defines the goal of the search for admissible regions R ⊆ R(A). If the search
has been successful, then the net system SNR(A) synthesized from R may be
returned as a solution to the net realization problem.

We know from Sect. 2.2 that each separation problem {s, s′} or {s, e} is
NP-complete, and this complexity class pertains also to the separation prob-
lem {e, e′}, as the instances {e, e′} where e and e′ occur exactly once in A may
be reduced to the separation problem {s, s′}. Therefore, one cannot expect
to compute some region r separating a given pair {s, s′} or {s, e} or {e, e′}
without exploring to some extent the set R(A), or the set Rmin(A) (mini-
mal regions are sufficiently complete for all separation axioms, see Chapter 1).
However, in order to obtain reasonable synthesis algorithms, we set the follow-
ing requirements on the process used to explore regions. First, the exploration
should be goal oriented, i.e., it should not produce regions that do not solve
any separation problem in γ. Second, one should produce as few non-minimal
regions as possible. Third, one should not produce twice the same region.

In the rest of the section, A = (S,E, δ, s0) is a fixed initialized transition
system.

In order to enable a goal oriented exploration of the set of regions meeting
the above requirements, we consider an abstraction of regions, called rough
regions (Sect. 2.3.1). A rough region, as the name suggests, represents a (pos-
sibly empty) set of regions with constrained values r(s) and r(e) for a subset of
states s and events e. Exploring R(A) can be done by progressive refinements
of rough regions, i.e., by progressive completions of their signature until some
region is completely defined, or it may be recognized from the incomplete sig-
nature that at least one minimal region is compatible with this signature, or
the rough region is found incoherent. We design in Sect. 2.3.2 an algorithm
that generates rough regions and regions independently of any goal. This al-
gorithm computes all minimal regions of a given transition system A, plus
possibly some non minimal regions, and it is intended to be used in all forms
of the approximate net realization problem. In Sect. 2.3.2, this general algo-
rithm is adapted into a goal oriented algorithm, that may be used to decide on
the feasability of exact net realization problems specified in the form (A, γ).
We finally give in Sect. 2.3.2 some comments on the heuristics used in the
synthesis tool petrify [13].

2.3.1 Rough Regions

In this section, we introduce rough regions which are an abstraction of regions.
Rough regions are a hybrid concept, in between regions and rough sets (see
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[29] for the background). First, we recall the definition of rough sets. Next,
we define the rough regions of an initialized transition system as rough sets
of states satisfying regional conditions inspired from the conditions stated for
regions in Def. 1.20. Finally, we show how one can compute rough regions
from arbitrary rough sets by repeated inferences based on these conditions.

By now, the reader has probably experimented with the search for specific
regions in a transition system. He may have observed an analogy with the
game of Go: one puts a black stone on a point (a given state of the transition
system) when one wants to include this state in the region. On the contrary,
one puts a white stone when one wants that the considered state does not
belong to the region. Points left unoccupied indicate states whose membership
to the region is not yet determined.

Example 2.25. Suppose that one searches for a region r separating event a
from state s in A, i.e., r is a solution to the separation problem {s, a}. If such
a region exists, then r should contain the set X• of all states enabling event a,
and r should not intersect the set X◦ comprised of the considered state s and
all states reached by a-labelled transitions (see Fig. 2.7). In other words, r
should be compatible with the rough set X = 〈X•, X◦〉 according to Def. 2.26
stated hereafter. 2
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Fig. 2.7. rough set X = 〈X•, X◦〉 for the separation problem {s, a} where s is the
initial state

Definition 2.26. A rough set (of states) X is a pair 〈X•, X◦〉 of subsets
X•, X◦ ⊆ S. The set X• is the positive part of X, and X◦ is its neg-
ative part. The extent of the rough set X = 〈X•, X◦〉 is the set [[X ]] =
{Y ⊆ S | X• ⊆ Y ⊆ S \X◦ } of subsets of S compatible with X, i.e., con-
taining the positive part of X and not intersecting its negative part. X is said
to be coherent if its extent is not empty ([[X ]] 6= ∅ ⇔ X• ∩X◦ = ∅). A rough
set is said to be crisp if X◦ = S \X•, in which case [[X ]] = {X•}. We allow
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ourselves to identify a subset Y ⊆ S with the (crisp) rough set 〈Y, S \ Y 〉.
♦

When a rough set X = 〈X•, X◦〉 is coherent, its extent is the (non-empty)
interval of sets [X•, S \X◦]. The minimal set X• contains all and only states
which are required to belong to every set compatible with X ; the maximal set
S \X◦ contains all and only states which are not excluded to belong to sets
compatible with X . For technical reasons, we cannot work exclusively with
intervals of sets and need considering possibly incoherent rough sets. We shall
often use for rough sets 〈X•, X◦〉 an equivalent but more practical notation,
as follows.

Notation 2.27 A rough set can be identified with a map X : S → S where S
is the finite lattice shown next. The correspondence is given by:

X• = {s ∈ S | X(s) ≥ 1}
X◦ = {s ∈ S | X(s) ≥ 0}

and in the converse direction by:

X(s) = 0 if s ∈ X◦ \X•

X(s) = 1 if s ∈ X• \X◦

X(s) = ! if s ∈ X• ∩X◦

X(s) = ? if s 6∈ X• ∪X◦

?

0S = 1

!

♦

Thus, X(s) ≥ 1 means that state s should belong to every set compatible
with the rough set X , and X(s) ≥ 0 means that state s cannot belong to any
set compatible with the rough set X . The relation X(s) =? means that no
constraint of membership bears upon state s. In contrast, the relationX(s) =!
means that two contradictory constraints of membership bear upon state s,
hence X is incoherent. As a matter of fact, a rough set X is incoherent (i.e.,
X• ∩ X◦ 6= ∅) if and only if X(s) =! for some state s ∈ S. The increase of
the positive or negative information conveyed by rough sets is captured in the
following refinement relation.

Definition 2.28. Given rough sets X : S → S and X ′ : S → S, X ′ refines X
(notation: X ≤ X ′) if X(s) ≤ X ′(s) for all s ∈ S. ♦

The refinement relation is an order relation, and it turns the set S → S of all
rough sets (on S) into a finite lattice. The crisp rough sets (i.e., sets) coincide
with the coherent rough sets which are maximal w.r.t. the refinement relation.

Remark 2.29. For any rough sets X and X ′, the following relations hold:

• X ≤ X ′ ⇔ X• ⊆ X ′
• ∧ X◦ ⊆ X ′

◦

• [[X ]] = {Y ⊆ S | X ≤ Y }
• X ≤ X ′ ⇔ [[X ′]] ⊆ [[X ]] 2

Rough sets (of states) present interest in the context of this book in as far as
they represent sets of regions. For convenience, let us fix the notation.
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Notation 2.30 Given a rough set X = 〈X•, X◦〉, let R(X) denote the set of
regions of A compatible with X, i.e., r ∈ R(X) if r ∈ R(A) and X• ⊆ r and
X◦ ⊆ S \ r. ♦

Remark 2.31. R(X) = ∅ wheneverX is an incoherent rough set, but R(X) = ∅
may also occur when X is a coherent rough set, since a non-empty interval
[X•, S \X◦] may possibly not contain any region of A. 2

Exploring the set of regions R(X) as we shall do in Sections 2.3.2 and 2.3.3
should be carried out in a rational way. Given a rough set X , one should
therefore, before considering any other refinement, try to infer from X all
logical consequences for regions r compatible with X (if such regions exist)
of the rules stated in Def. 1.20 upon the possible values of r(s) and r(e) (for
s ∈ S and e ∈ E). Investigating this issue is the goal pursued in the rest of
the section. To give some intuition, we propose first two examples.

Example 2.32. Let X = 〈X•, X◦〉 be the rough set described in Exemple 2.25.

For every region r ∈ R(X) and for every transition s
λ
→ s′, the following

relations must hold:

(s ∈ r ∧ s′ 6∈ r) ⇔ r(λ) = −1
(s 6∈ r ∧ s′ ∈ r) ⇔ r(λ) = +1
(s ∈ r ⇔ s′ ∈ r) ⇔ r(λ) = 0

Using these relations, one can check that there is a unique way to refine the
rough set X into a crisp rough set r which is a region (i.e., r ∈ R(X)). The
only possible values for the r(λ) are indeed r(a) = −1, r(b) = +1, r(c) = 0,
r(d) = +1, r(e) = 0, and r(f) = 0. The resulting region r is represented as
a (crisp) rough set on the left of Fig. 2.8 (compare with Fig. 2.7 to see that
this rough set is a refinement of X). The place of the synthesized net system
derived from the region r is represented on the right of Fig. 2.8. 2

Example 2.33. Consider the separation problem {s1, c} in the initialized tran-
sition system depicted on the left of Fig. 2.9. Solving this separation problem
amounts to finding a region compatible with the rough set X = 〈X•, X◦〉
represented in the middle of Fig. 2.9. The set X• (black nodes) is the set of
states where c is enabled. The set X◦ (white nodes) is the union of {s1} and
the set of states reached by c-labelled transitions. For any region r in R(X),
the following relations must hold:

(s4 6∈ r ∧ s4
d
→ s6) ⇒ r(d) ∈ {0,+1}

(s7
d
→ s1 ∧ s1 6∈ r) ⇒ r(d) ∈ {−1, 0}

Hence necessarily, r(d) = 0, entailing that s6 6∈ r and s7 6∈ r. Therefore, R(X)
contains a single region r, which is represented as a (crisp) rough set on the
right of Fig. 2.9. This region is the unique region separating c from s1. 2
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Fig. 2.8. a region r ∈ R(X) represented as a crisp rough set and the corresponding
place of the synthesized net system
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Fig. 2.9. computing a region for the separation problem {s1, c}

In both examples above, the situation was simple because R(X) contained
one and exactly one region. In the general case, R(X) may contain several
regions, or no region at all. Moreover, in the general case, an iterative process
is needed to infer all consequences of the rules stated in Def. 1.20 upon the
possible values of r(s) and r(e) for an arbitrary region r ∈ R(X).

In order to make the description of this inference process easy, we consider
in a preliminary step a simplified objective as follows: given a coherent rough
set X , infer the consequences of the constraints stated in Def. 1.20 on the
possible values r(e) for regions r ∈ R(X) without envisaging any feedback on
the values r(s) for states s ∈ X? = {s ∈ S | X(s) =?} (when X is a coherent
rough set, X(s) ∈ {0, 1, ?} for every state s and thus, X? = S \ (X• ∪ X◦)).
This limited objective may be achieved by applying to every transition s

e
→ s′

(of A) the following set of rules:
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s ∈ X◦ ∧ s′ ∈ X• ⇒ r(e) = +1
s ∈ X• ∧ s′ ∈ X◦ ⇒ r(e) = −1
s ∈ X◦ ∧ s′ ∈ X◦ ⇒ r(e) = 0
s ∈ X• ∧ s′ ∈ X• ⇒ r(e) = 0
s ∈ X◦ ∧ s′ ∈ X? ⇒ r(e) ∈ {0,+1}
s ∈ X• ∧ s′ ∈ X? ⇒ r(e) ∈ {−1, 0}
s ∈ X? ∧ s′ ∈ X◦ ⇒ r(e) ∈ {−1, 0}
s ∈ X? ∧ s′ ∈ X• ⇒ r(e) ∈ {0,+1}
s ∈ X? ∧ s′ ∈ X? ⇒ r(e) ∈ {−1, 0,+1}

(2.1)

All rules in 2.1 may be replaced equivalently with a single generic rule, which
we now introduce. A few notations are needed. First, for any two states q, q′ ∈
{0, 1, ?}, let [q, q′] be the label of the transition from q to q′ in the transition
system depicted on the left of Fig. 2.10, and let [[q, q′]] be the corresponding
subset of {−1, 0,+1} given by the table in the middle of Fig. 2.10. Second,

?

0 1

−

+

?

+

+1

0

−

−1 0

? = {−1, 0, +1}
− = {−1, 0}
+ = {0, +1}
−1 = {−1}

0 = {0}
+1 = {+1}

! = ∅ ?

− +

−1 +10

!

E =

Fig. 2.10. a lattice for classifying events w.r.t. a rough set

for q ∈ {0, 1, ?}, let X≥q = {s ∈ S | X(s) ≥ q } where ≥ is the order relation
in the lattice S (Notation 2.27). When X = 〈X•, X◦〉 is a coherent rough set,
X≥0 = X◦, X≥1 = X•, and X≥? = S (all states of A). Using these notations,
for every transition s

e
→ s′ (of A) the generic rule may be stated as:

(s ∈ X≥q ∧ s′ ∈ X≥q′) ⇒ r(e) ∈ [[q, q′]]

For q, q′ ∈ {0, 1, ?}, the sets [[q, q′]], which are subsets of {−1, 0,+1}, form
together with the empty set a lattice ordered by reverse set inclusion. This
lattice E is shown on the right of Fig. 2.10, where [[q, q′]] is represented as
[q, q′] ∈ {?,−,+,−1, 0,+1}. The ordering in the lattice represents the in-
crease of information: the least element ‘?‘ means the lack of information and
the greatest element ‘!‘ means the excess of information, i.e., the presence of
contradictory informations (which is excluded from coherent rough sets).

Given a coherent rough set X , by collecting for every event e ∈ E all
informations about the possible values of r(e) obtained by applying the rules
(2.1) to all transitions s

e
→ s′, one gets a map X : E → E, called the signature

of the rough set X , defined by
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X(e) =
∨

{

[X(s), X(s′)]
∣

∣ s
e
→ s′

}

=
⋂

{

[[X(s), X(s′)]]
∣

∣ s
e
→ s′

}

(2.2)

This definition of the signature of a rough set may be rephrased equivalently
as follows.

Definition 2.34. The signature of a rough set X is the least map X : E → E
(w.r.t. the pointwise ordering induced from the order relation in the lattice E)
such that the following relations hold for every transition s

e
→ s′:

(s ∈ X• ∧ s′ ∈ X◦) ⇒ e ∈ X◦

(s ∈ X◦ ∧ s′ ∈ X•) ⇒ e ∈ ◦X
(s ∈ X◦ ∧ s′ ∈ X◦) ∨ (s ∈ X• ∧ s′ ∈ X•) ⇒ e ∈ X⊥

(s ∈ X• ∨ s′ ∈ X◦) ⇒ e ∈ X−

(s ∈ X◦ ∨ s′ ∈ X•) ⇒ e ∈ X+

where X◦, ◦X, X−, X+ and X⊥ are the following subsets of E:

X◦ = {e ∈ E | X(e) ≥ −1}
◦X = {e ∈ E | X(e) ≥ +1}
X− = {e ∈ E | X(e) ≥ −}
X+ = {e ∈ E | X(e) ≥ +}
X⊥ = {e ∈ E | X(e) ≥ 0} ♦

X(e) = ? − + −1 0 +1 !

X◦ /∈ /∈ /∈ ∈ /∈ /∈ ∈

◦X /∈ /∈ /∈ /∈ /∈ ∈ ∈

X− /∈ ∈ /∈ ∈ ∈ /∈ ∈

X+ /∈ /∈ ∈ /∈ ∈ ∈ ∈

X⊥ /∈ /∈ /∈ /∈ ∈ /∈ ∈

! 0

+1

−1

+

−

X⊥

◦X

X◦

Fig. 2.11. membership of e to the sets X◦, ◦X, X−, X+, X⊥ of Def. 2.34

Remark 2.35. The signature of a crisp rough set (i.e., a set) takes its values
X(e) in {−1, 0,+1, !}. A crisp rough set X is a region if and only if X(e) 6=!
for every event e. In this case, E = ◦X ⊎ X◦ ⊎ X⊥ and the place p of the
synthesized net derived from the considered region has the flow relations given
by •p = ◦X and p• = X◦. 2



2.3 Algorithms of Elementary Net Synthesis 91

Remark 2.36. If X ≤ X ′ in the lattice S → S, then the signature of the rough
set X is smaller than the signature of of the rough set X ′ in the lattice E → E.

2

After this preliminary step, let us return to the general objective of inferring
from X all logical consequences of the rules stated in Def. 1.20 upon the
possible values of r(s) and r(e) for regions r compatible with X . We want to
represent the result of the inference as a refinement of X , and more precisely
as a rough region according to the following definition, which is reminiscent
of Def. 1.20.

Definition 2.37. A rough region is a rough set Y such that the following
relations hold for all transitions s

e
→ s′:

e ∈ Y ◦ ⇒ (s ∈ Y• ∧ s′ ∈ Y◦)
e ∈ ◦Y ⇒ (s ∈ Y◦ ∧ s′ ∈ Y•)
e ∈ Y ⊥ ⇒ [(s ∈ Y• ⇔ s′ ∈ Y•) ∧ (s ∈ Y◦ ⇔ s′ ∈ Y◦)] ♦

The intuition under Def. 2.37 is the following: if all what we know about an
unknown region r ∈ R(Y ) is that Y• ⊆ r and Y◦ ∩ r = ∅, then one cannot
increase this information by merely applying the rules stated in Def. 1.20, i.e.,
without predicting values r(s) for any state s ∈ S \ (Y• ∪ Y◦).

Remark 2.38. By Defs 1.20, 2.26 and 2.34, regions coincide with crisp rough
regions, i.e., with rough regions which represent sets. 2

We introduce now a transformation of rough sets directly inspired from
Def. 2.37.

Definition 2.39. For any rough set X, let α(X) be the least rough set Y
larger than X such that the following relations hold for all transitions s

e
→ s′:

e ∈ X◦ ⇒ (s ∈ Y• ∧ s′ ∈ Y◦)
e ∈ ◦X ⇒ (s ∈ Y◦ ∧ s′ ∈ Y•)
e ∈ X⊥ ⇒ [(s ∈ Y• ⇔ s′ ∈ Y•) ∧ (s ∈ Y◦ ⇔ s′ ∈ Y◦)] ♦

When playing the Go-like game which was sketched in Exples 2.32 and 2.33,
the principle followed is just to apply the transformation α iteratively to
the given rough set X . The transformation α is an extensive and increasing
operator in the finite lattice S → S, hence if one applies this transformation
iteratively from X , one reaches sooner or later a fixpoint αn(X) = αn+1(X).
In view of the similarity between Definitions 2.37 and 2.39, the fixpoint
αn(X) = αn+1(X) is a rough region. We claim that is is indeed the least
rough region larger than X . In order to establish this claim, we observe that
for any two rough sets X and X ′, X ≤ X ′ entails X(e) ≤ X ′(e) for all e ∈ E
(Remark 2.36), which entails in turn X◦ ⊆ X ′◦, ◦X ⊆ ◦X ′, and X⊥ ⊆ X ′⊥.
It follows, in view of the similarity between Definitions 2.37 and 2.39, that if
a rough region Y is larger that αi(X), then it must be larger than αi+1(X),
which establishes the claim by induction on i. The fixpoint αn(X) = αn+1(X)
is therefore equal to the rough region σ(X) in the next definition.
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Definition 2.40. Given an initialized transition system A = (S,E, δ, s0) and
a rough set X (of states of A), the rough region σ(X) induced by X is the
least refinement Y of X such that the following relations hold for all transition
s

e
→ s′:

(s ∈ Y• ∧ s′ ∈ Y◦) ⇔ e ∈ Y ◦

(s ∈ Y◦ ∧ s′ ∈ Y•) ⇔ e ∈ ◦Y
(s ∈ Y◦ ∧ s′ ∈ Y◦) ∨ (s ∈ Y• ∧ s′ ∈ Y•) ⇒ e ∈ Y ⊥

(s ∈ Y◦ ⇔ s′ ∈ Y◦) ∧ (s ∈ Y• ⇔ s′ ∈ Y•) ⇐ e ∈ Y ⊥

(s ∈ Y• ∨ s′ ∈ Y◦) ⇒ e ∈ Y −

(s ∈ Y◦ ∨ s′ ∈ Y•) ⇒ e ∈ Y + ♦

The following proposition tells us that computing σ(X) from X amounts as
desired to extract from X all implicit informations on the values of r(s) and
r(e) (s ∈ S and e ∈ E) for an arbitrary region r ∈ R(X).

Proposition 2.41. For any rough set X, R(σ(X)) = R(X).

Proof. As X ≤ σ(X), R(σ(X)) ⊆ R(X) by Rem. 2.29. To show the converse
inclusion, let r ∈ R(X). By Rem. 2.38, r coincides with a crisp rough region Y
that refines X , i.e., X ≤ Y . As σ(X) is the least rough region larger than X ,
necessarily σ(X) ≤ Y . By Rem. 2.38, r ∈ R(σ(X)), hence R(X) ⊆ R(σ(X)).

2

The proposition below shows that when computing σ(X) by fixpoint iteration,
one can stop the iteration at any step i such that αi(X)(s) =! or αi(X)(e) =!
for some s ∈ S or e ∈ E. In this case, as αi(X) ≤ σ(X), it follows indeed
form the proposition that σ(X)(s) =! and σ(X)(e) =! for all s ∈ S and e ∈ E,
indicating that R(X) = R(σ(X)) is an empty set of regions.

Proposition 2.42. Given an initialized transition system A = (S,E, δ, s0),
let Y = 〈Y•, Y◦〉 be any non-trivial rough region of A, i.e., Y• ∪ Y◦ 6= ∅. Then
Y is coherent, i.e., Y• ∩ Y◦ = ∅, if and only if the sets ◦Y , Y ◦, and Y ⊥ are
pairwise disjoint. Moreover, A has a unique incoherent rough region Y , that
satisfies Y• = Y◦ = S and ◦Y = Y ◦ = Y + = Y − = E, i.e., Y (s) =! for every
state s and Y (e) =! for every event e.

Proof. We show first that, if s ∈ Y• ∩ Y◦, then for any transition s
e
→ s′,

s′ ∈ Y• ∩ Y◦. By Def. 2.34, e ∈ Y − because s ∈ Y•, and e ∈ Y + because
s ∈ Y◦, hence e ∈ Y ⊥. By Def. 2.37, s′ ∈ Y• ∩ Y◦ since Y is a rough region.
A symmetric reasoning may be used to show that, if s′ ∈ Y• ∩ Y◦, then for
any transition s

e
→ s′, s ∈ Y• ∩ Y◦. As the underlying graph of A is connected

(every state may be reached from the initial state) and every neighbour state
of an incoherent state is incoherent, it follows by induction that Y• = Y◦ = S,
hence 〈S, S〉 is the unique incoherent rough region of A. As every event labels
at least one transition, it follows from Def. 2.34 that necessarily, ◦Y = Y ◦ =
Y ⊥ = Y + = Y − = E. We have proved by the way that any rough region Y for
which ◦Y , Y ◦, and Y ⊥ are pairwise disjoint is coherent. To complete the proof
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of the proposition, it remains to show that the disjointness of subsets ◦Y , Y ◦,
and Y ⊥ is a necessary condition for the coherence of Y . Assume for instance
that e ∈ ◦Y ∩Y ⊥. As e ∈ ◦Y , by Def. 2.34, there exists some transition s

e
→ s′

with s ∈ Y◦ and s′ ∈ Y•. As e ∈ Y ⊥, it follows by Def. 2.37 that s′ ∈ Y◦ and
s ∈ Y•, hence Y is incoherent. The case where e ∈ ◦Y ∩Y ⊥ is similar. Finally,
if one assumes e ∈ ◦Y ∩ Y ◦, as Y ◦ ⊆ Y − and ◦Y ⊆ Y +, then necessarily
e ∈ Y + ∩Y − = Y ⊥ and the same reasoning as in the former two cases can be
applied. 2

We finally propose an example to illustrate the case where R(Y ) may be an
empty set of regions although Y is a coherent rough region.

Example 2.43. In Section 2.2.1 we presented Hiraishi’s reduction of 3-SAT
to the state separation problem. The satisfiability of a clausal system was
reduced to the separation problem {s1, s2} for two specific states s1 and s2
of a transition system derived from the clausal system (see Fig. 2.5, p. 78).
The separation problem {s1, s2} may be equivalently specified by the rough
set Y described in Fig. 2.12, i.e., the states s1 and s2 can be separated by a
region if and only if R(Y ) is not empty. Therefore, deciding whether R(Y ) is
empty is an NP-complete problem. This remark applies to rough sets and to
rough regions as well, because the rough set Y described in Fig. 2.12 is in fact
a (coherent) rough region. The signature computed from Eq. 2.2 is given by:

Y (v) = Y (¬v) = +
Y (c1) = Y (c3) = +
Y (c2) =?
Y (cy) = Y (ncy) = −
Y (cz) = Y (ncz) = −

As a consequence, in view of Def. 2.34, Y ◦ = ◦Y = Y ⊥ = ∅, Y + =
{v,¬v, c1, c3}, and Y − = {cy, ncy, cz, ncz}. As Y ◦, ◦Y and Y ⊥ are all empty,
α(Y ) = Y hence Y is a rough region. 2

v ∈ V

v ¬v

c = c1 ∨ c2 ∨ c3

c1 cy c2 cz c3

cy

cz

ncy

ncz

Fig. 2.12. rough set representation of a system of clauses

Remark 2.44. In Example 2.43, the sequence c1cyc2czc3 leads from the state
s2 to the state s1. However, the Y -image +− ? − + of this sequence does not
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lead from state 0 to state 1 in the classifying transition system shown on the
left of Fig. 2.10, even though 0 = Y (s2) and 1 = Y (s1). 2

Example 2.43 has shown that the set of regions R(X) = R(σ(X)) represented
by a rough set X may be empty even though the rough region σ(X) induced
by X is coherent. In Exercice 2.3, we show that for any rough set X , there
exists a largest refinement ρ(X) of X such that R(X) = R(ρ(X)), which
entails that R(X) = ∅ if and only if ρ(X) is incoherent. As the emptyness
of R(X) is an NP-complete problem, computing ρ(X) must therefore require
exponential time in the worst case, whereas computing σ(X) takes polynomial
time (since it amounts to a fixpoint computation in a finite lattice).

2.3.2 Extracting Regions from a Rough Region

Computing rough regions σ(X) from rough sets X = 〈X•, X◦〉 serves to ex-
hibit characteristics shared by all regions compatible with X , but it does not
help exploring further the set of regions R(X). In this section, we show how
refining a rough region X into two rough regions X1 and X2, each of which
is a refinement of X , such that R(X) = R(X1) ⊎R(X2). In each of these two
refinements one forces r(e) = +1 or r(e) = −1 or r(e) = 0 (for all regions
r ∈ R(X ′)) for one appropriate event e ∈ E. On this basis, one can construct
from a rough region X a binary refinement tree with rough regions as internal
nodes, selectors e = +1, or e = −1, or e = 0 as labels of arcs, and regions
as leaves. By applying this construction to 2 × |E| different rough sets, one
obtains a global search tree for the whole set of regions R(A). We propose
an optimization of this global construction, aiming at producing all minimal
regions (Rmin(A)) and as few non-minimal regions as possible, and avoiding
that the same region can appear at two different leaves. The resulting set of
regions R induces a net system SNR(A) close to SNRmin(A)(A), and with a
reachability graph isomorphic to the reachability graph of the saturated net
system SN(A), hence it affords a relatively small and qualitatively optimal
solution to (all forms of) the approximate net synthesis problem.

To give an intuition, we present first a very simple example in which the
reader will recognize the elementary transition system for mutual exclusion.

Example 2.45. Consider the transition system shown in Fig. 2.13. In this tran-
sition system, the event c is not enabled in the initial state s0. The sep-
aration problem {s0, c} may be represented equivalently by the rough set
X = 〈X•, X◦〉 given by X• = {s1, s6} and X◦ = {s0, s3, s7}, i.e., a region
r separates c from s0 iff r ∈ R(X). Let Y = σ(X) be the induced rough
set. Computing α(X) according to Def. 2.39 yields α(X)• = {s1, s6} and
α(X)◦ = {s0, s3, s4, s7}. There are three different reasons why s4 has been
added to the negative part of the rough set:
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s0

init
s1 s2

s6 s5

s4 s3

s7

b
b′

a b′

b
a′
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c′

c′

a′
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c

a a′

init
s2

s5

s4

b
b′

a b′

b
a′

a

c′

c′

a′

c

c

a a′

Fig. 2.13. rough set representation of the separation problem {s0, c}

s0 ∈ X◦ ∧ X(a′) = 0 hence a′ ∈ X⊥

s7 ∈ X◦ ∧ X(a) = 0 hence a ∈ X⊥

s6 ∈ X• ∧ X(b) = +1 hence b ∈ ◦X

The reader can check that α2(X) = α(X), i.e., that no further refinement can
be done without introducing new assumptions.

Thus Y = σ(X), shown next, is given by
Y• = X• and Y◦ = X◦ ∪ {s4} Note that
Y (b′) = + and Y (c′) = −. As Y (b′) =
+, for any r ∈ R(Y ), one must have r(b′) ∈
{0,+1}. Therefore, one can split the set
R(Y ) into R1 ⊎R2 where

R1 = {r ∈ R(Y ) | r(b′) = 0} and R2 = {r ∈ R(Y ) | r(b′) = +1}

Now, for any region r, r(b′) = 0 implies r(s2) = r(s5) = 0 and r(b′) = +1
implies r(s2) = r(s5) = 1. Therefore R(X) contains contains exactly the fol-
lowing two regions (represented as crisp rough regions refining X):

2

Forcing regions r ∈ R(X) to take a specific value r(e) ∈ {−1, 0,+1}, as was
done in Example 2.45 is the object of the refinement operation introduced in
the following definition.

Definition 2.46. For any rough set X = 〈X•, X◦〉,

1. let X [e := +1] be the rough set obtained by adding s to X◦ and s′ to X•

for every transition s
e
→ s′. Similarly,

2. let X [e := −1] be the rough set obtained by adding s to X• and s′ to X◦

for every transition s
e
→ s′. Finally,
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3. let X [e := 0] be the rough set obtained by adding s to X• (resp. X◦) if s′

belongs to X• (resp. X◦), and conversely for s′ and s, for every transition
s

e
→ s′.

For v ∈ {−1, 0, 1}, let X [e = v] = σ(X [e := v]), i.e., the least rough region
refining the rough set X [e := v]. In case when X is the totally undefined rough
set (X• = X◦ = ∅ and R(X) = R(A)), we abbreviate X [e := v] and X [e = v]
to [e := v] and [e = v], respectively. ♦

Remark 2.47. For any rough set X and for any v ∈ {−1, 0, 1}, the following
relations hold:

1. R(X [e := v]) = R(X [e = v]) = {r ∈ R(X) | r(e) = v }
2. X(e) = − ⇒ R(X) = R(X [e = −1]) ⊎R(X [e = 0])
3. X(e) = + ⇒ R(X) = R(X [e = +1]) ⊎R(X [e = 0]) 2

Let X be a coherent rough region which is neither crisp (X• ∪ X◦ 6= S)
nor totally undefined (X• ∪ X◦ = ∅). Then, necessarily X(e) ∈ {−,+} for
some event e. By items (2) and (3) in Remark 2.47, one can always find two
rough regions X1 and X2 which are refinements of X such that R(X) =
R(X1) ⊎ R(X2). If moreover X has a non-empty positive part X•, i.e., the
trivial region ∅ does not belong to R(X), then the same property holds for
the refinements X1 and X2 of X . By iterating the splitting procedure, one can
construct from X a binary tree T (X) providing a recursive decomposition of
the set R(X). The tree T (X) has rough regions as nodes, and selectors e = +1
or e = −1 or e = −0 as labels of arcs.

From now on, we always suppose that X is a coherent rough region with
a non-empty positive part X•. As we are mainly interested in minimal re-
gions, we propose to optimize the construction of T (X) in two ways. First,
one discards any node Y which is an incoherent rough region (as it cannot
contribute any region to R(X)). Second, one avoids to split any node Y such
that Y is a coherent rough region and its positive part Y• is a region. In the
latter case, we say that Y is a terminal rough region. If Y is a terminal rough
region then Y• is the smallest region in R(Y ) and this region is non-empty
(because Y• ⊇ X• 6= ∅). It is not worth exploring further R(Y ) in that case,
since we are interested mainly in minimal regions and all regions in R(Y ) are
larger than Y•. Note that a node Y of T (X) which is a crisp rough region is
always a terminal rough region (but not the other way round).

With these optimizations, it just remains to collect from T (X) the set
R′(X) of all regions Y• given by terminal nodes Y of this tree. Thus, R′(X) =
{X•} if X is terminal, R′(X) = ∅ if X is incoherent, and otherwise R′(X) =
R′(X1) ∪ R′(X2) where X1 and X2 are the two sons of X , namely, X1 =
X [e = +1] and X2 = X [e = 0] for some event e such that X(e) = +, or
X1 = X [e = +1] and X2 = X [e = 0] for some event e such that X(e) = −.

Let minR′(X) denote the set of regions r ∈ R′(X) which are minimal
w.r.t. set inclusion in R′(X). It is important to note that minR′(X) does
not depend on the selection of the events e chosen for refining the nodes of
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T (X). Indeed, by construction, minR(X) ⊆ R′(X) and R′(X) ⊆ R(X), hence
minR′(X) = minR(X). The remark below suggests that one can modify the
algorithm which we have presented so as to compute directly the set minR(X).

Remark 2.48. We have seen that if X is a coherent rough region which is
neither crisp nor totally undefined, then necessarily, X(e) ∈ {−,+} for some
event e. If X(e) = −, then there must exist some transition s1

e
→ s′1 with

s1 ∈ X• and s′1 ∈ X? or some transition s2
e
→ s′2 with s2 ∈ X? and s′2 ∈ X◦. If

both types of transitions exist, then any two regions chosen from the respective
sets R(X [e = −1]) and R(X [e = 0]) must be incomparable for set inclusion.
Therefore in this case

minR(X) = minR(X [e = −1]) ⊎minR(X [e = 0])

If X(e) = +, then a similar reasoning can be applied. If, at each stage where
one should refine a node Y of T (X), one could choose some event e with
two types of transitions among the events satisfying Y (e) ∈ {−,+}, then one
would get in the end R′(X) = minR(X). Problem 2.7 on page 107 shows
how the algorithm which we have described may be adapted, based on this
remark, to compute incrementally the set of all regions which are minimal in
R(X) (assuming that X• 6= ∅, hence that ∅ /∈ R(X)). 2

It is worth noting that regions r ∈ minR′(X) need not be minimal regions of
A. In particular, regions Y• defined by terminal nodes Y = 〈Y•, Y◦〉 of T (X)
may contain strictly smaller non-empty regions of A which do not belong to
R(X). There is however a crucial case where minR(X) = Rmin(A) ∩ R(X),
identified by the following proposition.

Proposition 2.49. For any rough region X of the form [e = −1], or [e = +1]
minR(X) = Rmin(A) ∩R(X).

Proof. First, note that every rough region X of the form [e = −1], or [e = +1]
has a non-empty positive part. We have to show that every non-empty region
r ∈ minR(X) is a minimal region of A. Suppose for a contradiction that r′ ⊂ r
for some non-empty region r′ of A. Let r′′ = r \ r′. If X equals [e = −1] (resp.
[e = +1]), then either r′(e) = −1 (resp. r′(e) = +1) and then r′ ∈ R(X), or
r”(e) = −1 (resp. r”(e) = +1), and then r′′ ∈ R(X). Therefore, r was not
minimal in R(X), showing the contradiction. 2

Prop. 2.49 tells us that, if we gather all individual trees T [e = −1] or T [e = +1]
into a single tree T , with corresponding selectors e = −1 or e = +1 labelling
the initial arcs, then all minimal regions of A appear as terminal nodes of this
tree. This gives an algorithm for enumerating all minimal regions, plus some
non-minimal regions, but we are not done because this enumeration is not
necessarily free from repetitions, i.e., several terminal nodes may contribute
the same region. This may be easily corrected in view of the remark below.
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Remark 2.50. If E = {e1, . . . , en} is an enumeration of the set of events of the
initialized transition system A, then

R(A) \ {∅} =
⊎

1≤i≤n {r ∈ R([ei = −1]) | ∀1 ≤ j < i r(ej) 6= −1}

⊎
⊎

1≤i≤n

{

r ∈ R([ei = +1])

∣

∣

∣

∣

∀1 ≤ j ≤ n r(ej) 6= −1
∀1 ≤ j < i r(ej) 6= +1

}

2

In order to compute a “small” set of regions R′(A) including all minimal
regions of A, i.e., such that min(R(A)\{∅}) ⊆ R′(A) ⊆ R(A), one can proceed
as follows. First compute for all events ei the rough regions Xi and Xn+i

defined as [ei = −1] and [ei = +1], respectively. For k = 1 to 2n, if Xk(ej) =
−1 and j < k or Xk(ej) = +1 and n + j < k for some j ≤ n, then let Xk

be redefined as the incoherent rough region. Next, for k = 1 to 2n, construct
from the rough region Xk the corresponding tree T (Xk), but whenever a new
node Y is generated in this tree by the refinement process, if Y (ej) = −1 and
j < k or Y (ej) = +1 and n+ j < k for some j ≤ n, then let Y be redefined
as the incoherent rough region. Let R′(Xk) be the collection of regions Y•
defined by the terminal nodes Y = 〈Y•, Y◦〉 of the tree T (Xk) thus obtained,
and let R′(A) = ∪k≤2nR

′(Xk). By Remark 2.50, the sets R′(Xk) are pairwise
disjoint, and min(R(A) \ {∅}) = minR′(A) as desired.

Remark 2.51. Problem 2.8 on page 110 shows that one can proceed in a similar
way to compute incrementally the set Rmin(A) of all minimal regions of A.

2

2.3.3 Net Synthesis Algorithms

In Chap. 1, we have introduced and studied different types of net synthesis
problems, depending on whether a given initialized transition system A should
be realized by a net system up to transition system isomorphism or up to
language equivalence, on whether one wants to synthesize an arbitrary net
system or an elementary net system, and on whether one wants this net system
to be contact-free or not. For all types of problems, deciding upon the existence
of an exact solution to the problem and synthesizing a corresponding net
system reduces to finding in a transition system A (or U(A) or L) a subset of
regions R ⊆ R(A) that enforce a selection of the following axioms:

state separation: for all pairs of distinct states s and s′

∃r ∈ R (s ∈ r ∧ s′ 6∈ r) ∨ (s 6∈ r ∧ s′ ∈ r)

event-state separation: for all pairs of state s and event e disabled in s

∃r ∈ R (r ∈ ◦e ∧ s 6∈ r) ∨ (r ∈ e◦ ∧ s ∈ r)
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strong event-state separation: for any event e disabled in state s

∃r ∈ R r ∈ ◦e ∧ s 6∈ r

event separation: for all pairs of distinct events e and e′

(R ∩ ◦e 6= R ∩ ◦(e′)) ∨ (R ∩ e◦ 6= R ∩ (e′)◦)

event effectiveness: ∀e ∈ E R ∩ ◦e 6= ∅.

For more precision, let us recall some results:

1. An initialized transition system A is isomorphic to the reachability graph
of a net system N if and only N is isomorphic to the net system SNR(A)
synthesized from a subset of regions R ⊆ R(A) enforcing state separation
and event-state separation.

2. A loop-free and simple initialized transition system A is isomorphic to
the reachability graph of an elementary net system N if and only N is
isomorphic to the net system SNR(A) synthesized from a subset of regions
R ⊆ R(A) satisfying state separation and event-state separation.

3. An initialized transition system A is language equivalent to a net system
N if and only N is isomorphic to the net system SNR(U(A)) synthesized
from a subset of regions R ⊆ R(U(A)) enforcing event-state separation,
where U(A) is the limited unfolding of A.

4. An initialized transition system A is language equivalent to an elementary
net system N if and only N is isomorphic to the net system SNR(U(A))
synthesized from a subset of regions R ⊆ R(U(A)) enforcing event-state
separation, event separation and event effectiveness in U(A), the limited
unfolding of A.

5. In all cases above, similar results hold for contact-free nets up to replac-
ing event-state separation with strong event-state separation. Moreover,
minimal regions are sufficiently complete w.r.t. all axioms, and whenever
event-state separation holds, strong event-state separation can be enforced
by minimal regions.

In this section, we design a general net synthesis algorithm which applies
to all types of synthesis problems, with one exception, and which produces
contact-free nets exclusively (in view of the last result recalled above, this is
always possible when the synthesis problem has a solution). The exception
is the synthesis of elementary net systems from transition systems A up to
language equivalence. This is in fact the unique form of the net synthesis
problem in which the axiom of event effectiveness enters the game. However,
for this problem, event-state separation is also required and if it holds, then
event effectiveness holds if and only if no event e is enabled in every state
of U(A), and this can be checked a priori on A. Therefore, the general net
synthesis algorithm which we propose covers also the synthesis of elementary
net systems up to language equivalence for initialized transition system A
passing this test.
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Definition 2.52. Given an initialized transition system A = (S,E, δ, s0), a
separation problem is any pair {s, s′} or {s, e} or {e, e′} where s, s′ are states
and e, e′ are events, such that s 6= s′ or ¬(s

e
→) or e 6= e′, respectively. A sepa-

ration problem is feasible if the considered pair of states / events is separated
by some region r ∈ R(A), called a solution to the separation problem. A sep-
aration goal γ is a set of separation problems. A separation goal is feasible if
every separation problem in this goal is feasible. A set of regions is admissible
w.r.t. goal γ if it supplies solutions to all separation problems in γ. ♦

Deciding whether a net synthesis problem has feasible solutions reduces to
deciding whether some corresponding separation goal is feasible. Given an
initialized transition system A and a separation goal γ relative to A, we want
to produce for γ an admissible set of regions R ⊆ R(A) if this goal is feasi-
ble, thus yielding the net system SNR(A) as a solution to the net synthesis
problem, or to produce in the converse case the residual subset of separation
problems in γ which are not feasible. Moreover, we want to be free to impose
or not to impose the constraint that SNR(A) should be contact free. We adapt
for this purpose the techniques presented in Sect. 2.3.2.

We describe now the generic net synthesis algorithm which results from
this adaptation. In the sequel, A = (S,E, δ, s0), {e1, . . . , en} is an enumeration
of the set of events E, and γ ⊆ ((S × S)∪ (S ×E) ∪ (E ×E)) is a separation
goal. For i = 1 to n, let Xi and Xn+i denote the rough regions [ei = −1] and
[ei = +1], respectively (see Def. 2.46). The algorithm visits the trees T (Xk)
according to the increasing order on subscripts k, with the two optimizations
described in the end of Sect. 2.3.2. The visit of each tree T (Xk) is stopped
as soon as it cannot help to solve further the residual separation goal. The
exploration of the sequence of trees T (Xk) as soon as the set of collected
regions ∪k≤j R

′(Xk) is admissible for the given goal γ. To better explain the
control of the iteration and the production of the output, let us give one more
definition.

Definition 2.53. Given a separation goal γ and a set of regions R ⊆ R(A),
let γR ⊆ γ denote the set separation problems in γ solved by regions in R.

♦
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The net synthesis algorithm may then be described by the following
pseudo-code:

solve(γ) =

begin
R← ∅
for k = 1 to 2n do

if γ 6= ∅ then
Rk ← visit(Xk, k, γ)
R ← R ∪Rk

γ ← γ \ γRk

done

if γ = ∅
then return(R)
else return(R, γ)

end

visit(X, k, γ) =

begin
if X is incoherent or

X(ej) = −1 for some j < k or
X(ej) = +1 for some j < k − n or
X is terminal and γR = ∅ for R = {X•}

then return(∅)
if X is terminal then return({X•})
otherwise choose some e ∈ E such that X(e) ∈ {−,+}

if X(e) = + then R1 ← visit(σ(X [e := +1]), k, γ)
R2 ← visit(σ(X [e := 0]), k, γ \ γR1)
return(R1 ∪R2)

if X(e) = − then R1 ← visit(σ(X [e := −1]), k, γ)
R2 ← visit(σ(X [e := 0]), k, γ \ γR1)
return(R1 ∪R2)

end

Some comments follow. The algorithm returns either an admissible set of
regions R for the given goal γ, hence a solution to the net synthesis problem,
or a set of regions R and a residual goal comprised of all unfeasible separation
problems within the given goal γ. In the latter case, the synthesis problem
has no exact solution and the net synthesized from R is the best approximate
solution. This is done by successive visits to the trees T (Xk) for k = 1 to
2n. Visiting T (Xk) with a goal γ produces a set Rk of regions extracted from
R′(Xk), each of which solves some separation problem in γ, and a residual
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goal γ \ γRk . The residual goal is comprised of all separation problems which
have no solution in R′(Xk), and defines the goal of the visit to the next tree.
The parameter X of visit(X, k, γ) is either the rough region Xk or a rough
region which has been derived from Xk by refinement operations. The third
parameter is the goal assigned to the visit of the subtree of T (Xk) rooted
at X . Each tree T (Xk) is explored by depth first search and from left to
right. Following the simplification rules indicated after Remark 2.50 p. 98,
the subtree of T (Xk) rooted at X is not really visited when it is sure that
R(X) has already been entirely explored, i.e. when X(ej) = −1 for some
j < k or X(ej) = +1 for some j < k−n. For a terminal node X , the result of
visit(X, k, γ) is the singleton set {X•} if the region X• solves some separation
problem in γ, or the empty set otherwise. In case when two sibling nodes Y1

and Y2 are explored, the subgoal reached by Y1 is subtracted from the goal
assigned to Y2. The sets of regions R1 and R2 produced at sibling nodes are
collected and returned inductively.

A first improvement may be brought by avoiding to make an actual proce-
dure call visit(X, k, γ) at all times when it can be checked from X•, X◦, and
the induced signature of X , that no region in R(X) can solve any separation
problem in γ.

A second and more significant improvement is suggested in the following
remark, which is in the line of the earlier Remarks 2.48 and 2.51.

Remark 2.54. Problem 2.10 on page 112 shows how adapting the algorithm
so that it computes an admissible set of minimal regions for the given goal
γ, or decides that no such set exists, without producing twice any minimal
region. 2

The net synthesis algorithm which we have defined computes an admissible
set R of regions (or minimal regions, with the above adaptation) for the given
goal γ . However, R is not necessarily minimal w.r.t. set inclusion amongst
admissible sets of regions. It is not difficult to extract a minimal admissible
set of regions from a given admissible set of regions, e.g. by using the method
presented in Prob. 1.8 (on page 60). This minimization procedure is however
highly time consuming since it requires computing first for each region in R
the exact list of separation problems in γ which this region solves, which our
net synthesis algorithm precisely avoids by computing a residual goal after
each step.

2.3.4 The Heuristic Approach of Petrify

When a net synthesis problem given by a transition system A and a goal γ has
no solution, the synthesis algorithm which has been presented in Section 2.3.3
returns a list of unfeasible separation problems in the given goal γ and an
approximate solution to the problem, given by a set of regions of A or by the
net system SNR(A) synthesized from this set of regions. Using this feedback,
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one may try to modify A and iterate synthesis. No optimal restructuring tech-
nique has been developped yet for this purpose, but at least, heuristics have
been proposed and implemented in the synthesis tool petrify [13]. In this
section, we present briefly the principles of petrify and the heuristics used
for label splitting, and then discuss this concept in a more general context.

Technically speaking, petrify is dedicated to the synthesis of net systems
up to a language preserving folding operation. From the results established in
Sect. 1.6 and Sect. 1.7 of Chap. 1, we know that the problem of net synthesis
up to language equivalence may be reduced to the former problem by a limited
unfolding of the given transition system A.

Recall that A = (S,E, δ, q0) may be realized up by an elementary net
system up to a language preserving folding operation if and only if the ax-
ioms of event-state separation (or equivalently, strong event-state separation),
event effectiveness, and event simpleness are satisfied in A. In this case,
A ⊲ RG(SNR(A)) for any set of regions R ⊆ R(A) which is admissible
for the considered axioms. Moreover, the minimal regions of A are sufficiently
complete for this problem.

In petrify, event simpleness is disregarded, and one searches for strongly
admissible sets of minimal regions w.r.t. the remaining two axioms, namely,
event effectiveness and strong event-state separation. However, it may occur
that SNR(A) is not an elementary net system, even though R ⊆ Rmin(A) is
an admissible set of regions for both axioms, simply because this net system
has equivalent transitions. To keep working with elementary nets, we shall
assume in this section that the construction of net systems SNR(A) from sets
of regions R is slightly modified as follows: the transitions of SNR(A), which
were till now the events of A, are henceforth the equivalence classes of events
of A induced by the relation e ≡ e′ if r(e) = r(e′) for every r ∈ R.

Event-effectiveness requires that every event has some pre-region, i.e. that
◦e differs from the empty set for every e. Event-state separation requires that,
whenever δ(s, e) is undefined for some s ∈ S, s /∈ r for some region r ∈ ◦e. As
minimal regions are sufficiently complete w.r.t. these axioms, the algorithms
used in petrify are focussed on minimal pre-regions of events.

In order to check event-state separation for a given event e, one com-
putes first the actual enabling set AES(e) = {s ∈ S | δ(s, e) defined}. Taking
AES(e) as a seed, one examines stepwise all extensions of this set liable to be
minimal pre-regions of e or to be included in minimal pre-regions of e. One
can then compute the region enabled set RES(e) = ∩{r ∈ Rmin(A) | r◦e}. If
AES(e) = RES(e), then event-state separation holds for e. In the converse
case, no folding of A can be realized by an elementary net system.

However, when AES(e) is strictly included in RES(e) for some e, petrify

does not simply notify that A cannot be realized by an elementary net system.
Instead of this, petrify computes a relabelled version A′ of A which may
be realized by an elementary net system, and it produces a net system N ′

such that A′
⊲ RG(N ′). An algorithm is proposed to compute an initialized
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transition system A′ as close as possible to the original A. This algorithm is
based on the following heuristic.

Whenever AES(e) ⊂ RES(e) for some e, compute for each set of states
Q between these two bounds (AES(e) ⊆ Q ⊆ RES(e)) the number of vio-
lations of the border crossing conditions that would hold if Q was a region
(e.g. for some e′, some transitions labelled e′ have their source and target in
Q, and some other transitions labelled e′ exit from Q). Choose Q with the
least number of violations of the border crossing conditions, and as small as
possible within this classs.0 Then force Q to become a region by relabelling
A as follows. For each event e′ violating the border crossing conditions w.r.t.
the set Q, change labels e′ of transitions entering, resp. exiting Q to e′1, resp.
to e′2. Provided that the axiom of event effectiveness is satisfied in A, an iter-
ative application of this relabelling procedure leads always to an elementary
transition system A′ as desired, since an initialized transition system in which
every event occurs exactly once must be an elementary transition system.

This relabelling technique is known as label splitting or event splitting,
since it consists in splitting, for some labels e, the set of transitions s

e
→ s′ of

A into several subsets, in each of which e is replaced by a new label. Suppose
that e has been split into a set of labels {e1, . . . , en}, yielding a new transi-
tion system A′. Suppose that A′ can be realized by a net system N ′ up to
isomorphism of transition systems. Then e1, . . . , en are transitions of N ′, and
they appear as such in the reachability graph of N ′. However, if one merges
backwards all labels e1, . . . , en into a single label e, then one retrieves A (up
to an isomorphism). Realizing transition systems by net systems up to label
splitting is indeed just the same as realizing transition systems by labelled
net systems. Applying label splitting to a transition system A produces a
transition system A′ with more regions, and if it is applied until every label
occurs exactly once, then all sets of states are regions and the net realization
problem becomes trivial. The issue is to find an optimal strategy to guarantee
the success of net synthesis at the lowest cost, where the cost may be e.g. the
number of new labels used, or the number of the relabelled transitions. This
is an important issue for the practical applications of net synthesis.

Problems

2.1. This exercice uses Propositions 2.1 (p. 64), 2.12 (p. 68), and 2.13 (p. 69)
(a) Show that the intersection r1 ∩ r2 of two regions r1 and r2 is a region if
and only if their union r1 ∪ r2 is a region.
(b) Show that, for any transition system A, the subsets of regions of A which,
when equipped with set theoretic union and complementation, may be seen
as boolean algebras, are in bijective correspondence with the partitions of the
set of states into regions.
(c) Consider the transition system introduced in Prob. 1.3 (on page 59). Draw
a diagram showing the regions of this transition system ordered by set inclu-
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sion. Find the maximal subsets of regions which define boolean algebras. What
can you say about the regions in these subsets? Construct the corresponding
components of the net system synthesized from all regions.

2.2 (From [2]). Show that 3-SAT reduces polynomially to the satisfiability
problem for systems of clauses over the boolean ring (definition 2.21).

2.3. The dual of a rough set X is the rough set X = 〈X•, X◦〉 defined by
X• = X◦ and X◦ = X•.
(a) Show that (i) R(X) = {r | r ∈ R(X)}, where r is the complement of
r, (ii) for any coherent and non-trivial rough set X (i.e., X• ∩ X◦ = ∅ and
X• ∪ X◦ 6= ∅) the sets R(X) and R(X) are disjoint (i.e., a region and its
complement cannot both be compatible with X), and (iii) X ≤ Y ⇔ X ≤ Y
(b) Let the completion Y = ρ(X) of a rough set X = 〈X•, X◦〉 be defined as
the rough set Y with Y• =

⋂

r∈R(X) r and Y◦ =
⋂

r∈R(X) r. Observe that

ρ(X) = ρ(X), ρ(〈∅, ∅〉) = 〈∅, ∅〉, and ρ(X) = 〈S, S〉 for any incoherent rough
set X . Prove that completion is a closure operation, i.e., that

1. X ≤ ρ(X)
2. X ≤ Y ⇒ ρ(X) ≤ ρ(Y )
3. ρ(ρ(X)) = ρ(X)

Prove moreover that R(ρ(X)) = R(X).
(c) Show that the completion of a rough set X is the largest refinement Y of
X such that R(X) = R(Y ). More precisely, show that for any refinement Y
of X , R(X) = R(Y )⇔ Y ≤ ρ(X).
(d) Observe that R(X) = ∅ if and only if ρ(X) = Y is the largest incoherent
rough set, defined by Y• = Y◦ = S. Show that computing the completion of a
rough set is NP-Complete.

2.4. (a) Let transition systems (S,E,∆) be defined as in Def. 1.6 except that
the initial state is missing. Observe that the definition of regions (Def. 1.20)
does actually not depend on initial states, hence it may be applied also to
transition systems. Show that r is region of the transition system (S,E,∆) if
and only if

s
e
→ s′ ∈ ∆ ⇒ r(s)

r(e)
→ r(s′) ∈ ∆τ 0 10

+1

0

−1

where τ = (Q,L,∆τ) is the transition system depicted above, with sets of
states Q = {0, 1} and set of events L = {−1, 0,+1}. Observe that a similar
property does not hold for rough regions when replacing this transition system
with the one in Fig. 2.10 (see Remark 2.44).
(b) We have presented the lattice E (Fig. 2.10 on page 89) as the set of sub-
sets of {−1, 0,+1} ordered by reverse inclusion; similarly one can present the
lattice S (see figure on page 86) as the set of subsets of {0, 1} ordered by
reverse inclusion, with ? = {0, 1}, 0 = {0}, 1 = {1}, and ! = ∅.
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Show that the operation [·, ·] defined on page 89 is the restriction to S \ {!} of
the binary relation defined on S by:

[s, s′] =
{

ℓ ∈ L
∣

∣

∣
∃(q ℓ
→ q′) ∈ ∆τ s.t. q ∈ s ∧ q′ ∈ s′

}

Note that [s, ! ] = [ !, s] = ! for all s ∈ S.
(c) Let ⊕,⊖ : S× E→ S be the two operations defined as:

s⊕ e =
{

q′ ∈ {0, 1}
∣

∣

∣
∃(q ℓ
→ q′) ∈ ∆τ s.t. q ∈ s ∧ l ∈ e

}

s⊖ e =
{

q′ ∈ {0, 1}
∣

∣

∣
∃(q′

ℓ
→ q) ∈ ∆τ s.t. q ∈ s ∧ l ∈ e

}

We recall that the signature of a rough set X is the map X : E → E defined
as

X(e) =
∨

{

[X(s), X(s′)]
∣

∣ s, s′ ∈ S s.t. s
e
→ s′ ∈ ∆

}

Show that the rough regions of a transition system (S,E,∆) coincide with
the rough sets X : S → S such that

X(s) =
∨

{

X(s′)⊕X(e)
∣

∣ s′
e
→ s

}

∨
∨

{

X(s′)⊖X(e)
∣

∣ s
e
→ s′

}

(d) Show that the rough region σ(X) induced by a rough set X is the least
refinement Y of X such that the following relations hold for every transition
s

e
→ s′ in ∆:

[Y (s), Y (s′)] ≤ Y (e)
Y (s)⊕ Y (e) ≤ Y (s′)
Y (s′)⊖ Y (e) ≤ Y (s)

2.5. Relying on the algebraic results established in Prob. 2.4, we propose an
incremental algorithm for computing the rough region σ(X) induced by a
given rough set X .
Let Y be a vector with two parts Y : S → S representing a rough set and Y :
E → E representing the signature of a rough set. Initially Y (s) = X(s) for all
s ∈ S and Y (e) =? for all e ∈ E. The two parts of the vector Y are updated by
two functions which are applied in alternation until the algorithm terminates.
These functions update_sig, resp. update_conf, update Y : E → E, resp.
Y : S → S, and they use auxiliary data ∂S, resp. ∂E, indicating which states
or events have received “fresh” values. Initially, ∂S = X• ∪ X◦ and ∂E = ∅.
These two functions may be described as follows.

1. update_sig updates Y : E → E by recomputing, according to the formu-
las given in Prob. 2.4(e), the values Y (e) for events e labelling transitions
s

e
→ s′ with s ∈ ∂S or s′ ∈ ∂S. If Y (e) gets the undefined value ! , then

an exception is raised, the algorithm is stopped, and the incoherent rough
region Y (s) = ! and Y (e) = ! for all s ∈ S and e ∈ E is returned as a
result. Otherwise, update_sig returns as a result the set ∂E of events e
whose values Y (e) have actually been modified.
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2. update_conf updates Y : S → S by recomputing, according to the for-
mulas given in Prob. 2.4(e), the values Y (s) for states s which are sources
or targets of transitions s

e
→ s′ or s′

e
→ s labelled with e ∈ ∂E. If Y (s)

gets the undefined value ! , then an exception is raised, the algorithm is
stopped, and the incoherent rough region Y (s) = ! and Y (e) = ! for all
s ∈ S and e ∈ E is returned as a result. Otherwise, update_conf returns
as a result the set ∂S of states s whose values Y (s) have actually been
modified.

The algorithm terminates either when an exception is caught, or when one of
the two update functions returns an empty set ∂E or ∂S. In the latter case
the result returned is the vector Y , which represents the rough region σ(X)
and its signature.

Describe explicitly the sets ∂S and ∂E computed by the respective functions
update_sig and update_conf, based on the results obtained in Prob. 2.4.
Write a complete program that computes σ(X) from X .

2.6. This exercise shows that, for deciding whether a coherent rough set X is
terminal, it suffices to check the crossing properties of the events e such that
X(e) = − or X(e) = + w.r.t. X•.

Given a coherent rough region X , show that X• is a region if and only if

1. For every event e ∈ E such that X(e) = + (or e ∈ X+\(◦X∪X⊥)), one of
the following two situations occurs uniformly for all e-labelled transitions:

s
e
→ s′ ⇒ (s ∈ X? ∧ s′ ∈ X•)

s
e
→ s′ ⇒ (s ∈ X◦ ∧ s′ ∈ X?) ∨ (s ∈ X? ∧ s′ ∈ X?)

2. For every event e ∈ E such that X(e) = − (or e ∈ X−\(X◦∪X⊥)), one of
the following two situations occurs uniformly for all e-labelled transitions:

s
e
→ s′ ⇒ (s ∈ X• ∧ s′ ∈ X?)

s
e
→ s′ ⇒ (s ∈ X? ∧ s′ ∈ X◦) ∨ (s ∈ X? ∧ s′ ∈ X?)

2.7. In Section 2.3.2, it was explained how computing, for a rough region X ,
an over-approximation of the set of regions which are minimal in R(X), i.e., a
subset of regions R′(X) such that minR(X) ⊆ R′(X) ⊆ R(X). The algorithm
for computing R′(X) may be summarized by the following recursive definition:

1. If X is incoherent, then R′(X) = ∅.
2. If X is a terminal rough region, then R′(X) = {X•}.
3. If X is not a terminal rough region,

then choose some event e such that X(e) ∈ {−,+} an let:
a) R′(X) = R′(X [e = +1]) ∪R′(X [e = 0]) if X(e) = +
b) R′(X) = R′(X [e = −1]) ∪R′(X [e = 0]) if X(e) = −
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The purpose of this exercise is to design another algorithm which takes as
input a rough region X and produces as an output the set minR(X) of the
regions which are minimal in R(X). We want to compute the set minR(X)
incrementally, i.e., to decide immediately for each region produced whether it
is minimal in R(X) or not. The first step to take towards this goal is to reorder
the sibling nodes of the binary tree T (X) for ensuring that a region found at
a leaf in a depth-first left-to-right traversal of this tree cannot be larger than
any region found subsequently. Under this assumption, for computing the set
minR(X), it suffices to check for each leaf of T (X) that the region produced
by this leaf is not larger than any region already produced (by leaves on its
left). One may moreover improve on this naive technique by maintaining along
the computation auxiliary informations needed to avoid useless comparisons.
In order to decide which successor of a non terminal rough region Y should
be visited first (i.e., put on the left), we need providing rough regions Y with
extended signatures that classify the events of a transition system in a much
finer way w.r.t. Y• and Y◦. We define extended signatures as maps Y : E → E′

where E′ is the lattice displayed in Fig. 2.14. Extended signatures are ordered

∀•?

∃•?

∃•?
?◦

∃?◦

∀?◦ ∃••

0

∃◦◦ ∀?•

∃?•

∃?◦•?

∃◦?

∀◦?

∀•◦

-1

∀•• ∃•◦•◦ ∀◦◦
∀◦•

+1
!

- +

?

Fig. 2.14. a lattice E′ for a refined classification of the events of a transition system

pointwise: Y ≤ Y ′ ⇔ ∀e ∈ E Y (e) ≤ Y ′(e). The extended signature of a
rough set X = 〈X•, X◦〉 is the least extended signature X : E → E′ such that
the following relations hold for all α, β ∈ {◦, •, ?}

(

∃s
e
→ s′ · s ∈ Xα ∧ s′ ∈ Xβ

)

⇒ X(e) ≥ ∃α
β

(

∀s
e
→ s′ · s ∈ Xα ∧ s′ ∈ Xβ

)

⇒ X(e) ≥ ∀α
β

The rationale for considering ∃α
β ≤ ∀

α
β may be found in the fact that uniform

crossing relations w.r.t. {X•, X?, X◦} for all e-labelled transitions are more
significant than similar crossing relations for just one e-labelled transition,
owing to the assumption that every event e labels at least one transition. The



2.3 Algorithms of Elementary Net Synthesis 109

elements −, 0, and +, represented inside dashed circles in Fig.2.14 do not
belong to the image of any extended signature, and they have been added in
E′ just for convenience, see item (b) below.

(a) Show that if X is the extended signature of a rough region, then the
following relations hold:

X(e) ≥ ∃α
β ⇔

(

∃s
e
→ s′ · s ∈ Xα ∧ s′ ∈ Xβ

)

X(e) ≥ ∀α
β ⇔

(

∀s e
→ s′ · s ∈ Xα ∧ s′ ∈ Xβ

)

(b) Show that the signature of a rough region may be derived from its extended
signature using the formulas

X◦ = {e ∈ E | X(e) ≥ −1}
◦X = {e ∈ E | X(e) ≥ +1}
X− = {e ∈ E | X(e) ≥ −}
X+ = {e ∈ E | X(e) ≥ +}

where −1 and +1 are used as aliases for ∀•◦ and ∀◦• respectively (as indicated
in Fig. 2.14).
(c) For any rough region X , prove the following relations (whose right mem-
bers should be interpreted as conjunctions (i) and (ii)):

X(e) = ∃•? ⇔ (i) ∃s
e
→ s′ · s ∈ X• and s′ ∈ X?

(ii) ∀s
e
→ s′ · s ∈ X• ∪X? and s′ ∈ X?

X(e) = ∃?◦ ⇔ (i) ∃s e
→ s′ · s ∈ X? and s′ ∈ X◦

(ii) ∀s
e
→ s′ · s ∈ X? and s′ ∈ X◦ ∪X?

X(e) = ∃?• ⇔ (i) ∃s
e
→ s′ · s ∈ X? and s′ ∈ X•

(ii) ∀s
e
→ s′ · s ∈ X? and s′ ∈ X• ∪X?

X(e) = ∃◦? ⇔ (i) ∃s
e
→ s′ · s ∈ X◦ and s′ ∈ X?

(ii) ∀s e
→ s′ · s ∈ X◦ ∪X? and s′ ∈ X?

Prove that X(e) = ∃?◦•? if and only if the following relations hold:

(i) ∃s
e
→ s′ · s ∈ X? and s′ ∈ X•

(ii) ∃s
e
→ s′ · s ∈ X◦ and s′ ∈ X?

(iii) ∀s e
→ s′ · (s ∈ X? ∧ s′ ∈ X•) ∨ (s ∈ X◦ ∧ s′ ∈ X?) ∨ (s ∈ X? ∧ s′ ∈ X?)

Adapt the above statement to the case X(e) = ∃•?
?◦.

(d) Show that a rough region X is terminal if and only if, for every event e,
the value of X(e) is one of the elements of E′ indicated with a double circle
(hint: in this case, what does it mean to replace ? with ◦ uniformly in the
values X(e) for all e ∈ E?).
(e) Show that if X is a non terminal rough region, then for any event e:

e ∈ X− \ (X⊥ ∪X◦) if and only if X(e) ∈ {∃•? , ∃
•?
?◦, ∀

?
◦}

e ∈ X+ \ (X⊥ ∪ ◦X) if and only if X(e) ∈ {∃?•, ∃
?◦
•?, ∀

◦
?}
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The corresponding elements of E′ are displayed with thick circles in Fig. 2.14.
(f) Propose a method for computing incrementally from X = 〈X•, X◦〉, for
any rough set X , the extended signature of the rough region σ(X).
(g) Show that one can always order the two successors X1 and X2 of a (non
terminal) rough region X so that no region in R(X1) can be larger than any
region in R(X2). Hint: use the following case analysis:

1. If X(e) = ∃•?
?◦, let X1 = σ(X [e := −1]) and X2 = σ(X [e := 0]), then two

regions r1 ∈ R(X1) and r2 ∈ R(X2) cannot be compared, i.e., r1 6⊆ r2 and
r2 6⊆ r1. A similar situation is found when X(e) = ∃?◦•?.

2. If X(e) = ∃•? , let X1 = σ(X [e := −1]) and X2 = σ(X [e := 0]), then for
any two regions r1 ∈ R(X1) and r2 ∈ R(X2), r1 6⊇ r2. A similar situation
is found when X(e) = ∃?•.

3. If X(e) = ∀?◦, then let X1 = σ(X [e := 0]) and X2 = σ(X [e := −1]),
then for any two regions r1 ∈ R(X1) and r2 ∈ R(X2), r1 6⊇ r2. A similar
situation is found when X(e) = ∀◦? .

(h) If the sibling nodes of T (X) are ordered as indicated in (g), and if one visits
this tree by depth first and from left to right, checking that a terminal rough
region Y• belongs to minR(X) reduces to checking that this region is included
in none of the regions produced so far. Justify the definition of the function
Rmin(X) given in Table 2.2 for computing incrementally the set minR(X).
The first parameter of the function visit represents the currently visited node
Y (rough region). The second and third parameters τ ⊆ E × ℘(R(A)) and
R ⊆ R(A) serve to reduce to a strict minimum the number of comparisons
done for checking that a newly discovered region is minimal in R(X), using
the knowledge provided by the case analysis done in (g).

2.8. In order to compute the set Rmin(A) of all minimal regions of an
initialized transition system A, inducing an optimal net approximation of
SNRmin(A)(A) (see Sec. 2.1.1), we propose to mix the algorithm sketched
after Rem. 2.50 with the algorithm presented in Table 2.2.

Recall that we should visit in sequence a family of trees Tk = T (Xk) for
k = 1 to 2n, where E = {e1, . . . , en} and for each i ≤ n, Xi and Xn+i are the
rough regions [ei = −1] and [ei = +1], respectively. In view of Prop. 2.49, if
one applies the algorithm elaborated in Problem 2.7 to a fixed tree Tk, then
we get as a result the set R(Xk) ∩ Rmin(A). So, we could content ourselves
with using this algorithm to compute independently all sets R(Xk)∩Rmin(A)
and then merge the results, but we want to do better.

The idea of the algorithm sketched after Rem. 2.50 is to avoid computing
the tree T (Y ) for any node Y of a tree Tk such that Y (ej) = −1 for some j < k
or Y (ej) = +1 for some j < k − n, since in this case R(Y ) ⊆ ∪h<kR(Xh).
Thus, when visiting T1, . . . , Tk−1 in sequence, and exploring each of these
trees by depth first and from left to right, one has necessarily met a set of
nodes Y1, . . . , Ym, possibly from different trees, such that R(Yj) ⊆ R(Y ) for
all j ∈ {1, . . . ,m} and R(Y ) = ∪1≤j≤mR(Yj). In particular, these relations
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Rmin(X) = visit(σ(X), ∅, ∅)
visit(Y, τ, R) =
begin

if Y a terminal configuration then

if r ⊆ Y• for some r such that
r ∈ R or ∃(e,R′) ∈ τ · (Y (e) = ∀•• ∧ r ∈ R′)

then return(∅) else return({Y•})
else choose some e ∈ (Y − \ (Y ⊥ ∪ Y ◦)) ∪ (Y + \ (Y ⊥ ∪ ◦Y ))

case Y (e) of

∃•?
?◦ do R1 ← visit(σ(Y [e := −1]), τ, R)

R2 ← visit(σ(Y [e := 0]), τ, R)
return(R1 ∪R2)

∃?◦•? do R1 ← visit(σ(Y [e := +1]), τ, R)
R2 ← visit(σ(Y [e := 0]), τ, R)
return(R1 ∪R2)

∃•? do R1 ← visit(σ(Y [e := −1]), τ, R)
R2 ← visit(σ(Y [e := 0]), τ ∪ (e,R1), R)
return(R1 ∪R2)

∃?• do R1 ← visit(σ(Y [e := +1]), τ, R)
R2 ← visit(σ(Y [e := 0]), τ ∪ (e,R1), R)
return(R1 ∪R2)

∀?◦ do R1 ← visit(σ(Y [e := 0]), τ, R)
R2 ← visit(σ(Y [e := −1]), τ, R ∪ R1)
return(R1 ∪R2)

∀◦? do R1 ← visit(σ(Y [e := 0]), τ, R)
R2 ← visit(σ(X[e := +1]), τ, R ∪R1)
return(R1 ∪R2)

end

Table 2.2. pseudocode of the function Rmin

are satisfied for the set trail(Y ) = {Y1, . . . , Ym} of already visited nodes Yl

with least signatures larger than the signature of Y . Whenever a node Y of
a tree Tk such that Y (ej) = −1 for some j < k or Y (ej) = +1 for some
j < k − n, the idea is replace the effective visit to T (Y ) by a fictitious visit
returning the same result, namely the sum of the sets of minimal regions
already computed from all nodes Yl ∈ trail(Y ). For this purpose, one must
store at every node Yl the set of minimal regions which have been computed
when visiting this node. The result of the fictitious visit to the node X does
not contribute to the final result, since it does not contain any new minimal
region, but it may serve to avoid useless comparisons between new regions and
already computed minimal regions, as was done in the algorithm elaborated
in Problem 2.7. However, in that algorithm, the set of regions returned by
function visit served two purposes: on the one hand, it contributed directly
to the final result, and on the other hand it was transmitted as an argument
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for the visit to the sibling node. Here the two roles must be distinguished.

Write a modified version of the algorithm given in Table 2.2, incorporating
the suggested adaptions.

2.9. Using the algorithm constructed in Prob. 2.8,
(a) compute the set of minimal regions of the transition system shown in
Fig. 2.3 (on page 71),
(b) compute the set of minimal regions of the transition system shown in
Fig. 2.4 (on page 72).

2.10. Construct an algorithm which, given a separation goal as input, pro-
duces an admissible set of minimal regions for this goal. For this purpose, use
the results of Prob. 2.8.

2.11. Using the algorithm constructed in Prob. 2.10,
(a) compute an elementary net system with a reachability graph isomorphic
to the transition system shown in Fig. 2.3 (on page 71),
(b) compute an elementary net system with a reachability graph isomorphic
to the transition system shown in Fig. 2.4 (on page 72).

2.12. An improvement over the function solve(γ) (defined on page 101) may
be brought by avoiding to make an actual procedure call visit(X, k, γ) at all
times when it can be checked from X•, X◦ and the induced signature of X ,
that no region in R(X) can solve any separation problem in γ.

We declare that a rough region X is impractical for a goal γ if and only if the
following relations hold for all pairs {s, s′} or {s, e} or {e, e′} of states s, s′

and events e, e′ (of A):
(s, s′) ∈ γ ∧ {X(s), X(s′)} ⊆ {0, 1} ⇒ X(s) = X(s′)
(s, e) ∈ γ ∧ X(e) = − ⇒ X(s) = 1
(e, e′) ∈ γ ∧ {X(e), X(e′)} ⊆ {−1, 0,+1} ⇒ X(e) = X(e′)

(a) Show that if X is impractical for γ, then γR = ∅ for R = R(X).
(b) Show that the converse does not hold: γR = ∅ for R = R(X) does not
entail that X is impractical for γ.

2.13 (From [17]).
(a) Show that no net system can be
language equivalent to the transition
system displayed next.
(b) Split the event b so that the modi-
fied transition system may be realized
by a net system. Draw the reachability
graph of the net system.

s1

s2

s3

s7 s5

s4 s6

a

b

d

c
db

d b

c

bd
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Applications of Elementary Net Synthesis

In this chapter, we present applications of regions and elementary (or quasi-
elementary) net synthesis in two different contexts. The first context is the
design of speed independent circuits, a wide and complex field that encom-
passes many other topics than Petri nets. We refer the reader to the book [14]
for a complete presentation of this field. We will limit ourselves to assess in
Section 3.1 the roles played by regions and net synthesis for affording solutions
to the Complete State Coding problem (CSC). This crucial problem motivated
indeed the inclusion of a net synthesis procedure in petrify, a general design
tool for asynchronous circuits presented in [14]. However, different methods
based on net unfoldings and SAT solvers are now preferred to net synthesis
for solving the CSC problem. The second context of application of net syn-
thesis that we examine is process mining, and more precisey, business process
mining. This field encompasses many aspects little related or not related at
all with Petri nets. We refer the reader to the book [35] for a complete pre-
sentation of process mining, a topic which is again too large to be surveyed
here. We will limit ourselves to give in Section 3.2 a comparative assessment
of the α algorithm, embedded in the tool prom, and of other workflow net
synthesis algorithms based on regions. Process mining algorithms based on
the synthesis of P/T-nets are left for further consideration in part II of this
book.

3.1 Regions in the Design of Speed Independent Circuits

Regions and the region-based synthesis of Elementary Nets play an impor-
tant role in petrify, a general design tool for Speed Independent Circuits
presented in a series of papers and in the book [14]. In the design of an asyn-
chronous circuit, the intended behaviour may be represented by an initialized
transition system called a State Graph (SG), whose transitions are labelled
with events x+ or x− to indicate that a signal x is raising or falling. There
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are input signals switched by the environment, and internal signals and out-
put signals switched by the circuit (internal signals and output signals are also
called non-input signals). Schematically, there are two phases of design, both
often requiring the insertion of internal signals which makes an automated tool
like petrify quite necessary. Given an arbitrary SG, the first phase consists
of refining this description by inserting new signals until one meets conditions
that guarantee the existence of a speed independent circuit behaving as de-
scribed. Given a library of gates, the second phase consists of implementing
the boolean next-state functions of the internal and output signals as combina-
tions of the functions of these gates without making assumptions on switching
delays. During this functional and combinational decomposition, new signals
appear naturally when putting wires between gates. Regions and region-based
synthesis are used in the first phase of the design, which is considered below.
Our account relies mostly on [12], [13] and [14].

Definition 3.1. Let X = XI ∪XO be a finite set of binary signals, where XI

is the set of input signals and XO is the set of internal or output signals. A
State Graph (A,X, λS , λE) is an initialized transition system A = (S,E, T, s0)

equipped with two labelling maps λS : S → {0, 1}X (called the state assignment
function) and λE : E → X × {+,−} (called the event assignment function).
The flat version of the state graph A is the initialized transition system A′ =

(S,X × {+,−} , T ′, s0) defined by T ′ =
{

s
λE(e)
−→ s′

∣

∣ s
e
−→ s′ ∈ T

}

. We recall

that A′ is deterministic if, for any x∗ ∈ X × {+,−} and for any state s ∈ S,
s

x∗
−→ s1 and s

x∗
−→ s2 entail s1 = s2. A

′ is commutative if, for any x∗, y∗ ∈
X × {+,−} and for any state s ∈ S, s

x∗
−→s1

y∗
−→ s2 and s

y∗
−→s3

x∗
−→ s4 entail

s2 = s4. A state graph is deterministic, resp.commutative, if its flat version is
deterministic, resp. commutative. Two state graphs are said to be equivalent
if their flat versions are isomorphic. ♦

Given a state graph SG, assume that it describes actually the behaviour of a
speed independent circuit, that is to say, a set of gates and wires whose func-
tional behaviour does not depend upon delays of gates. Then each sequence
of transitions s0

e1−→s1
e2−→ . . .

en−→ sn+1 in SG describes a possible evolution of
the circuit, where every signal x has the initial value λS(s0)(x). A transi-
tion s

e
−→ s′ labelled with λE(e) = x+ (resp. x−) represents a raising (resp.

falling) edge of the signal x. In order that labels of states indicate values of
signals compatible with the induced switching sequences, the following condi-
tion must be satisfied:

Consistency: for every transition s
e
−→ s′:

1. if λE(e) = x+ then λS(s)(x) = 0 and λS(s′)(x) = 1,
2. if λE(e) = x− then λS(s)(x) = 1 and λS(s′)(x) = 0,
3. otherwise λS(s)(x) = λS(s′)(x).

Two other conditions must be satisfied. In order that the described behaviour
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can be implemented by gates, it is necessary that the enabling of every non-
input signal x to switch (from 0 to 1 or from 1 to 0) in a state s depends

functionally upon the vector λS(s) ∈ {0, 1}X , since otherwise no next state
function could be defined for the signal x. This condition is called CSC (Com-
plete State Coding condition). In order that the described behaviour can be
obtained from a set of gates and wires without making assumptions on the
delays of gates, it is necessary that the switching of a non-input signal cannot
disable or be disabled by the switching of another non-input signal. This con-
dition is called Output Persistency. These two conditions upon the flat version
of the state graph may be expressed formally as follows:

Output Persistency: for all x∗, y∗ ∈ X × {+,−} with x∗ 6= y∗, for all tran-
sitions s

x∗
−→ s′ and s

y∗
−→ s”, if x or is a non-input signal, or y is a non-input

signal, then there exists some transition s”
x∗
−→ .

Complete State Coding: for every non-input signal x ∈ XO, and for all states
s′, s” ∈ S with λS(s′) = λS(s”), if s′

x∗
−→ with x∗ = x+ or x∗ = x−, then

there exists some transition s”
x∗
−→ .

The state graph generated by a speed-independent circuit is finite, consistent,
output persistent and satisfies CSC. Conversely, these four conditions guar-
antee that a state graph can be implemented by a speed independent circuit.
If a state graph SG, given as the specification of the behaviour of a speed
independent circuit, is not consistent, or if it is not output persistent, then
this must be fixed by a redesign. In contrast, the CSC property can sometimes
be enforced on a state graph by inserting auxiliary signals while preserving
consistency and output persistency. Let SG and SG′ be two state graphs,
where SG′ has been obtained from SG by signal insertions (a precise defini-
tion will be given later). A speed independent circuit that implements SG′ is
considered to be also an implementation of SG if the flat versions of the two
state graphs are language equivalent (when projecting the sequences of labels
generated by SG′ on X × {+,−} where X is the set of signals of SG), and
for every sequence leading SG′ to a sink state (i.e., a state which is not the
source of any transition), the projection of this sequence on X ×{+,−} leads
SG to a sink state. It has been shown in [15] that signal insertions are always
sufficient to enforce the CSC condition on (flat versions of) state graphs de-
rived from Petri nets (more precisely, from Signal Transition Graphs which
are labelled Petri nets) provided these state graphs are consistent, output
persistent, deterministic and commutative.

Definition 3.2. A State Transition Graph (N,X, λ) over the set of signals
X is a Petri net system N = (P, T, F,M0) equipped with a labelling map
λ : T → X × {+,−}. ♦

Of particular interest are the STG whose reachability graphs can be trans-
formed to a consistent SG in a unique way by labelling the reachable markings
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in X → {0, 1}. This uniqueness property may be enforced by supplying in the
net, for each signal x ∈ X , two auxiliary places px and px′ with the flow
relations F (x+, px), F (px′, x+) and F (x−, px′), F (px, x−). Given an STG
(N,X, λ) with reachability graph RG(N), deciding whether exists some state

coding map λS : RS(N)→ {0, 1}X that transforms RG(N) into a state graph
satisfying CSC is much more difficult. This problem is indeed co-NP-complete
in the size of the STG [23] (co-NP-completeness means that it is NP-complete
to check the non-existence of a state coding map ensuring CSC). Moreover,
the complexity of the problem is not decreased if one restricts STG to (1-safe)
live or acyclic marked graphs (a marked graph is a net in which every place
has at most one input transition and at most one output transition).

In order to eliminate CSC conflicts, i.e., pairs of markings M and M ′ with
identical binary codes (λS(M) = λS(M ′)) but different sets of enabled output
signals x+ or x−, a direct transformation of STG by signal insertions has been
defined in [13] and [14]. The transformation consists of adding for each place p
of the STG a new signal πp, for each transition t of the STG a new signal τt,
and to proceed as follows. For every transition t with input places pi1, . . . , pin

and ouptut places po1, . . . , poj , insert between t and its output places a subnet
with fresh places and fresh transitions labelled as indicated in Fig. 3.1 (thick
edges represent places like in marked graphs, e.g, the edge between πpoj+ and
πpin− represents an empty place p with the flow relations F (πpoj+, p) and
F (p, πpin−)). Note that several transitions may bear the same label πp+ or
πp− in the the resulting STG.

t

t

pi1

po1

pi1

πpi1−

πpo1+

πpin−

πpoj+

po1

pin

τt+

τt−

poj

pin

poj

Fig. 3.1. Transformation for a transition t
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The transformation sketched in Fig. 3.1 enforces the CSC property on
state graphs of STG and it preserves consistency, output persistency, deter-
minism and commutativity. Moreover, it produces an STG with an unchanged
language (when the generated words are projected on the original alphabet
X × {+,−}), and it does not introduce new sink states. Nervertheless, this
transformation has mostly theoretical interest according to the authors of [13]
and [14], because it results in STG with lots of internal signals that may lead
to impractical and inefficient circuits. A similar remark applies to the slightly
different transformation presented in [11], which works linearly in the size of
the STG. For eliminating CSC conflicts, these authors have therefore elabo-
rated and implemented in petrify other methods that work directly on (flat
versions of) state graphs SG without synthesizing first an STG from the SG.
These alternative methods, which have been proved to be complete for state
graphs of STG but not for arbitrary SG, proceed by repeated insertions of
new signals induced by bipartitions of the state space of the SG. Before we
proceed to describe precisely the signal insertions in SG, we would like to
make a first assessment.

At this stage, one can identify two different roles of net synthesis in
petrify and the design of speed independent circuits. First, given a
consistent and output persistent SG, net synthesis may serve to check
whether the given SG is equivalent to the state graph of some STG,
i.e., whether it belongs to the domain in which signal insertions are a
complete method for eliminating CSC conflicts. Second, when a con-
sistent and output persistent SG satisfying CSC has been obtained by
signal insertions, net synthesis may help to produce an equivalent but
more compact representation in the form of an STG.

We describe now the procedure for inserting a signal after bipartioning a State
Graph. In a preliminary stage, we describe two alternative procedures for
inserting an event by a non-empty subset of states in an initialized transition
system A = (S,E, T, s0). The following definitions are illustrated in Fig. 3.2.

Definition 3.3. Inserting e′ /∈ E after Z ⊆ S means refining A to A′ =
(S∪Z ′, E∪{e′} , T ′, s0) where Z ′ is a set of fresh states in bijection with Z (let
the bijection send s ∈ Z to s′ ∈ Z ′) and T ′ is the set of transitions as follows.

First, T ′ contains a fresh transition s
e′

−→ s′ for each state s ∈ Z. Second, T ′

contains all transitions s1
e
−→ s2 in T with s1 /∈ Z or s2 ∈ Z. Third, for each

transition s1
e
−→ s2 in T with s1 ∈ Z, T ′ contains the transition s′1

e
−→ s2 if

s2 /∈ Z, or the transition s′1
e
−→ s′2 if s2 ∈ Z. ♦

Definition 3.4. Inserting e′ /∈ E before Z ⊆ S means refining A to A′ =
(S∪Z ′, E∪{e′} , T ′, s0) where Z ′ is a set of fresh states in bijection with Z (let
the bijection send s ∈ Z to s′ ∈ Z ′) and T ′ is the set of transitions as follows.

First, T ′ contains a fresh transition s′
e′

−→ s for each state s ∈ Z. Second, T ′
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Fig. 3.2. Inserting e′ after Z or before Z

contains all transitions s1
e
−→ s2 in T with s2 /∈ Z or s1 ∈ Z. Third, for each

transition s1
e
−→ s2 in T with s2 ∈ Z, T ′ contains the transition s1

e
−→ s′2 if

s1 /∈ Z, or the transition s′1
e
−→ s′2 if s1 ∈ Z. ♦

Now consider a state graph SG = (A,X, λS , λE) where A = (S,E, T, s0). For
any subset of states B ⊆ S, define the exit border of B as the set EB(B) =
{

s ∈ B
∣

∣ ∃e ∈ E ∃s′ ∈ S : s
e
−→ s′ ∧ s′ /∈ B

}

and the input border of B as the

set IB(B) =
{

s ∈ B
∣

∣ ∃e ∈ E ∃s′ ∈ S : s′
e
−→ s ∧ s′ /∈ B

}

. Inserting a signal
x by the exit borders of a partition {B,S \B} means inserting simultaneously
in A an event e− after the exit border EB(B) and an event e+ after the
exit border EB(S \ B), with λE(e−) = x− and λE(e+) = x+ or vice-versa.
Inserting a signal x by the input borders of a partition {B,S \B} means
inserting simultaneously in A an event e+ before the input border IB(B)
and an event e− before the input border IB(S \B), with λE(e+) = x+ and
λE(e−) = x− or vice-versa. In any case, if SG is a consistent state graph, then
at most one extension of the map λS can preserve consistency. The conditions
in which this occurs are stated in the following proposition, proved in [13] and
[14].

Proposition 3.5. Inserting a signal x by the exit (resp. input) borders of a
partition {B,S \B} preserves consistency if and only the exit (resp. input)
borders of B and S \B are well-formed in the following sense:

1. EB(B) is well-formed if every transition s
e
−→ s′ from s ∈ EB(B) reaches

some state s′ ∈ (S \B) ∪ EB(B), and similarly for EB(S \B);
2. IB(B) is well-formed if every transition s′

e
−→ s to s ∈ IB(B) originates

from some state s′ ∈ (S \B)∪IB(B), and similarly for IB(S \B). 2

Thus, whenever a CSC conflict occurs between two states s1, s2 of a state
graph SG, if s1 ∈ B and s2 ∈ S \ B for some partition {B,S \B} satisfying
the conditions of the proposition, this CSC conflict can be reduced by insert-
ing a new signal x. However, such signal insertions do not necessarily preserve
output-persistency and commutivity of state graphs. Relying on the complete-
ness of the transformation sketched in Fig. 3.1, it may be shown that, given
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any STG with a deterministic, commutative, output persistent and consistent
state graph SG, one can reduce all CSC conflicts by repeated signal insertions
preserving these properties. In practice, it remains however to find at each
stage some partition of the set of states such that a signal insertion at the
borders of this partition reduces some violation of the CSC property without
compromising the other properties. This leads us to make a second assessment
about the role of regions in the design of speed independent circuits.

In petrify, regions play a third role by guiding the choice of the
partitions used to reduce CSC conflicts by signal insertions at their
borders.

The following definition and proposition clarify the connections between re-
gions and CSC-conflicts.

Definition 3.6. Given an initialized transition system (S,E, T, s0), a region
r ⊆ S is exit persistent if, for all states s ∈ r, s

e1−→ s1 and s
e2−→ s2 with s1 /∈ r

and s2 ∈ r entail the existence of some transition s2
e1−→ . ♦

Proposition 3.7. Given a consistent, output persistent, deterministic and
commutative state graph (A,X, λS , λE), suppose that the event-state separa-
tion property ESSP holds in the underlying transition system A = (S,E, T, s0)
(in the terminology of [14], A is excitation closed). Let B ⊆ S be a region of
A. If B and the complementary region S \B are exit persistent and they have
well-formed exit borders, then inserting a new signal by the exit borders of the
partition (B,S \B) produces a state graph with the same properties. 2

As consistency, output persistency, determinism and commutativity are pre-
served under state graph equivalence, one can freely split the events of A until
the property ESSP holds.

Beside signal insertions directly based on regions (Prop. 3.7), petrify uses
also for signal insertions sophisticated heuristics using intersections of regions
and event enabling sets of states (called excitation regions). It is not clear
however that such heuristics are complete, whereas signal insertions operating
the transformation of STG indicated in Fig. 3.1 are complete.

To conclude this section, we should indicate that the use of regions and
net synthesis for solving CSC conflicts in STG has now mainly historical
interest, since other methods using finite complete prefixes of STG (instead
of reachability graphs) and SAT solvers (instead of regions and net synthesis)
give better results in practice (see, e.g., [27] for more on this topic).
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3.2 Elementary Net Synthesis and Process Mining

The purpose of process mining [35] is to construct or to reconstruct from
an event log a business process model that can generate this event log. The
game is to dig out of event logs sufficient informations on the structure of
their generating model. As a technique for model discovery, process mining
has some connections with machine learning.

Process mining may be used for the purpose of modelling. For instance,
after collecting over a long period of time informations on the health history
of many patients, including the diagnosis and treatment steps, one may want
to extract from this record an accurate model of the workflow system of an
hospital. Reverse engineering, which consists of reconstructing from represen-
tative use cases an existing but partially unknown system, is another activity
of model discovery that can be achieved by process mining. According to
[35], process mining can be used alternatively for conformance checking or
enhancement of business process models. For instance, process-aware systems
record run-time informations used to detect discrepancies between expected
and actual behaviours and to refactor these systems.

In this section we focus our attention on model discovery. We fix a subclass
of net systems, the so-called workflow nets, as the class of target models for
process mining. We describe in Sect. 3.2.1 the model of workflow nets and the
general problem of discovering workflow nets from event logs. We present and
assess in Sect. 3.2.2 the α algorithm for mining workflows from event logs [38].
We consider in Sect. 3.2.3 an alternative workflow mining algorithm based on
regions [9, 10].

3.2.1 Discovering Workflow Nets from Event Logs

A log is a finite set of independent execution sequences of a workflow system.
Given a log of the system to be discovered (i.e., constructed or reconstructed),
each event reported in this log refers to an activity, i.e., a particular step in
the workflow system, and to a specific case, i.e., a process instance. Additional
informations pertaining to events are generally included, for instance a time
stamp or the identity of the performer. Since cases have little or no connection
with one another, and time stamps serve only to indicate the correct ordering
of the activities, an event log may be abstracted to a set of sequences of
activities. Each sequence represents all activities of a case from the time when
it enters the system till the time when it leaves the system.

As the target representation of process mining, we consider a subclass
of (quasi-elementary) net systems, called workflow nets. The goal of process
mining is to synthezise from an event log a workflow net that can reproduce
all sequences of activities traced in this log, from the inception of a case to its
termination.
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Example 3.8. A workflow net is displayed in Fig. 3.3. This net specifies all
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Fig. 3.3. a workflow net

possible behaviours of an isolated case in a workflow system. In other words,
the firing sequences of the workflow net represent bijectively all activities
pertaining to a case from the time when the case enters into the system (the
input place i is marked) until the case terminates and exits from the system
(the output place o is marked). The possible sequences of activities are thus
ABCD,ACBD,AED. 2

A workflow net contains an input place i and an output place o. The input
place i is initially marked, and this initial marking represents the entry of a
new case in the system. The output place o gets marked when the case comes
to completion, and this final marking represents the exit of the case from
the system. The current marking of the workflow net represents the current
status of a case. It is assumed that the execution of a case can always reach
termination, and that it cannot interfere with the execution of any subsequent
case. The latter property, called soundness in [38], can be formalized as follows:
when the output place is marked, all other places must be empty. The marking
in which the output place and no other place is marked is called the terminal
marking. Therefore, in a sound workflow net, the terminal marking must be
reachable from any other reachable marking.

Moving the token from the output place back to the initial place is a way to
simulate the termination of a case and the inception of a new case. A workflow
net with such an implicit feedback may be seen as a cyclic generator, that can
iterate in sequence all scenarios of execution of all cases. Instead of adding
a feedback transition from the output place to the input place, one might as
well coalesce the input place and the output place (confusing thus the initial
and terminal markings). With this representation, the two crucial properties
of workflow nets N may be reformulated equivalently as follows: (i) the net N ′

obtained by coalescing the input place and the output place of N is reversible
(the initial marking may be reached from any reachable marking) and (ii) the
initial (or terminal) marking is the only reachable marking of N ′ containing
the input (or output) place. This is essentially the definition of workflow nets
which we adopt below.



122 3 Applications of Elementary Net Synthesis

Before stating this definition, let us recall that a net system is live if, for
any transition t and for any reachable marking M , the transition t is enabled
in some marking reachable from M .

Definition 3.9. A workflow net is a contact-free and connected net system
N = (P, T, F,M0) where P contains an input place i and an output place o
(the remaining places p ∈ P \ {i, o} are called inner places), such that the
following conditions hold:

1. •i = o• = ∅
2. (∀p ∈ P \ {i, o}) •p 6= ∅ ∧ p• 6= ∅
3. M0 = {i}.
4. The closed net system N ′ = (P ′, T, F ′, {ι}) obtained from N by replacing

places i and o with a unique place ι such that •ι = •o and ι• = i• is live
and reversible, and its initial marking M ′

0 = {ι} is the unique reachable
marking of N ′ in which the place ι is marked. ♦

In view of Def. 3.9, workflow nets are initially live, in conformity with the gen-
eral assumption that all net systems considered in this book are initially live
(i.e., free from dead transitions). Def. 3.9 is an equivalent reformulation of the
definition of sound workflow nets given in [38] (contact-free quasi-elementary
net systems are equivalent to one-safe net systems).

Remark 3.10. Verifying the following properties is left as Exercise 3.1.

1. ∀t ∈ T •t 6= ∅ ∧ t• 6= ∅.
2. The closed net system N ′ is strongly connected.
3. i• = {t ∈ T | ∃u ∈ T ∗ t · u ∈ L(N)}.
4. •o = {t ∈ T | ∃u ∈ T ∗ u · t ∈ L(N)}.
5. (∀p ∈ P \ {i, o}) •p ∩ •o = ∅ ∧ p• ∩ i• = ∅. 2

The central notion of workflow logs is defined below.

Definition 3.11. Given a workflow net N = (P, T, F,M0), the full log of N
is the language L(N) = {u ∈ T ∗ | {i} [u〉 {o}}, i.e., the full log of N is the set
of all firing sequences from the initial marking {i} to the final marking {o}. A
log of N is any subset W ⊆ L(N) such that every transition t ∈ T occurs in
at least one execution sequence in W . A workflow log is any log of a workflow
net. ♦

Since workflow nets have no dead transitions, the full log of a workflow net
is actually a log of this workflow net. In view of Remark 3.10, it can easily
be checked that any workflow log is a w-language according to the definition
below.

Definition 3.12. A language W ⊆ T ∗ is a w-language if the following condi-
tions hold:

1. Every transition t ∈ T occurs in at least one word in W .
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2. W ⊆ IW (T \ IW )∗ where IW = {t ∈ T | ∃u ∈ T ∗ t · u ∈W }, i.e., tran-
sitions occurring in the first position of some word in W cannot occur in
different positions in any other word in W .

3. W ⊆ (T \OW )∗OW where OW = {t ∈ T | ∃u ∈ T ∗ u · t ∈ W }, i.e., tran-
sitions occurring in the last position of some word in W cannot occur in
different positions in any other word in W . ♦

In view of conditions (2) and (3) in Def. 3.12, any w-language W is a prefix
language, i.e., a word in W cannot be a prefix of a strictly longer word in W .
In view of item (4) in Def. 3.9, every firing sequence of a workflow net can be
extended to a firing sequence that ends in the final marking {o} of this net.
Therefore, once can state the following remark.

Remark 3.13. L(N) = max(L(N)) and L(N) = pref(L(N)) for any workflow
net N where, for any W ⊆ T ∗, max(W ) = {u ∈W | u · v ∈ W ⇒ v = ε} and
pref(W ) = {u ∈ T ∗ | ∃v ∈ T ∗ u · v ∈ W } for W ⊆ T ∗. 2

A fundamental assumption of process mining is that the set of execution
sequences W ⊆ T ∗ taken as input is actually a log of some unknown workflow
net N , that the mining algorithm µ should try to reconstruct, i.e., W ⊆ L(N)
and hopefully N ∼= µ(W ) where µ(W ) is the result produced by the mining
algorithm.

Definition 3.14. A workflow net N is discovered from one of its log W ⊆
L(N) by a process mining algorithm µ if N ∼= µ(W ), meaning that the work-
flow nets N and µ(W ) coincide up to a bijective renaming of places (they
are isomorphic). A workflow net N is said to be µ-reconstructible if it can be
discovered from its full log, i.e., N ∼= µ(L(N)). ♦

Example 3.15 (Exple. 3.8 continued).
Consider the log {ABCD,ACBD,AED} ⊆ L(N) of the workflow net N shown
in Fig. 3.3. Every execution sequence in this log starts with event A and ends
with event D. In between, one is left the choice to perform either the event
E or the events B and C, which are concurrent since they occur in the log in
both orders BC and CB. Using these structural informations extracted from
the log, the two process mining algorithms examined in the end of the section,
the α algorithm and the region based mining algorithm, are able to discover
the workflow net N from the considered log. All three execution sequences in
this log are actually needed: every activity ought to be reported in at least
one execution sequence(thus AED is needed), and for any pair of concurrent
events, at least two traces exhibiting the two possible orderings are needed
(thus ABCD and ACBD are needed). 2

The set of all execution sequences of a workflow net may grow exponentially
with the number of events, owing to their possible concurrency. Therefore
the execution sequences reported in an event log usually form a small but
hopefully representative set of samples of all possible behaviours. In order to
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discover a workflow net N from some small log W ⊂ L(N), a process mining
algorithm µ must carry out some non-trivial generalization over the traces in
this log. Henceforth, we shall assume that a process mining algorithm µ is
always defined as the composition µ = Syn ◦ Abs of an abstraction function
Abs and a synthesis function Syn. The role of the function Abs is to extract
from a log W the relevant relations between the events that occur in this
log. The role of the function Syn is to reflect, as faithfully as possible, these
relations in the structure of a synthesized net system. We assume that for any
log W , µ(W ) is a well-defined (quasi-elementary) net system, but we do not
assume that µ(W ) is always a workflow net. We do not either set injectivity
as a requirement on the synthesis function Syn, because this would hamper
our planned presentation of the α algorithm.

Definition 3.16. Given a workflow net N and an abstraction function Abs
defined on ℘(L(N)), a w-language W ⊆ L(N) is a complete log of N w.r.t.
Abs if Abs(W ) = Abs(L(N)). If µ = Syn ◦ Abs, W is then said to be a µ-
complete log of N . ♦

Remark 3.17. Assuming that W ⊆ T ∗ is a µ-complete log of a(n unknown)
workflow net N , the following conditions are equivalent:

1. N is µ-reconstructible: N ∼= µ(L(N));
2. N can be discovered from W : N ∼= µ(W );

So, if W ⊆ T ∗ is a µ-complete log of some µ-reconstructible workflow net N ,
then N ∼= µ(W ). On the other hand, W ⊆ T ∗ is a µ-complete log of µ(W ) if
and only if:

1. µ(W ) is a workflow net and W ⊆ L(µ(W )).
2. Abs(W ) = Abs(L(µ(W ))).

and then µ(W ) is µ-reconstructible. 2

In fact, a workflow netN is µ-reconstructible if and only if it may be discovered
by µ from some complete log W (of N). Process discovery amounts to the
following:

Problem: decide whether a given w-languageW ⊂ T ∗ is a µ-complete
log of some µ-reconstructible workflow net.
Solution: compute the net system N = µ(W ), check that (i) N is a
workflow net, (ii) W ⊆ L(N), i.e., the synthesized net can reproduce
every execution sequence in W , and (iii) Abs(W ) = Abs(L(µ(W )). If
this is the case, then W is a complete log of the workflow net N =
µ(W ), and N ∼= µ(L(N)). Otherwise, no solution exists.

If the synthesis function Syn is non-injective, then the relation µ(W ′) =
µ(L(N)) may also hold for an incomplete log W ′ of N , and in particular for
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a log W ′ such that W ⊆ W ′ ⊆ L(N). Worse, it may occur that a workflow
net N , discovered by µ from some complete log W , cannot be discovered from
some incomplete log W ′ such that W ⊆ W ′ ⊆ L(N). In order to avoid such
situations, we shall always assume in the sequel that abstraction functions
Abs are convex according to the following definition.

Definition 3.18. Given a workflow net N , an abstraction function Abs de-
fined on ℘(L(N)) is convex if every log of N that contains a complete log is
also a complete log, i.e., W ⊆ W ′ ⊆ L(N) and Abs(W ) = Abs(L(N)) entail
Abs(W ′) = Abs(L(N)). ♦

Other desirable properties of process mining algorithms are discussed below. If
the abstraction function Abs is the identity on ℘(L(N)), i.e., it does not entail
any abstraction, then L(N) is the unique complete log of N . More generally, if
the abstraction is too weak, the language of the net µ(W ) may often be a tight
over-approximation of W , much smaller than L(N) (the logs are supposed to
report only a small fragment of the set of all possible behaviours). In that
case, µ(W ) is an overfitted model[36]. Overfitting occurs when the process
mining algorithm does not carry out sufficient generalization over the set of
traces in the log. On the contrary, good process mining algorithms should be
sober according to the following definition.

Definition 3.19. A process mining algorithm µ = Syn ◦ Abs is sober if its
abstraction function Abs is convex and the minimal size of complete logs of
workflow nets is asymptotically negligible w.r.t. the size of their languages.

♦

Sobriety means that one may generally assume that a workflow log is µ-
complete as soon as it contains a reasonable number of execution sequences.
Process reconstruction amounts to the following:

Problem given a sober mining algorithm µ and a reasonably large w-
languageW ⊂ T ∗, decide whetherW is a log of some µ-reconstructible
workflow net.
Solution compute the net system N = µ(W ), check that (i) N is
a workflow net, and (ii) W ⊆ L(N), i.e., the synthesized net can
reproduce each execution sequence in W . If this is the case, then W
is a complete log of the workflow net N = µ(W ), and N ∼= µ(L(N)).
Otherwise, no solution exists.

Sober mining algorithms avoid producing overfitted models (models that do
not generalize enough). On the other hand, producing underfitted models al-
lowing too many behaviours results in mining algorithms with low expressivity
according to the following definition.

Definition 3.20. The expressivity of a process mining algorithm µ is given
by the class of the µ-reconstructible workflow nets. ♦
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To sum up, one needs to find a balance between sobriety and expressivity
ensuring that the mining algorithm is both sober (not overfitting) and precise
(not underfitting). Finding an adequate level of generalization is all the more
difficult than logs provide only positive instances of behaviour, making it hard
to guess which behaviours are not expected to happen.

In the rest of the section, we examine two process mining algorithms. The
first algorithm, α, constructs net systems after extracting from logs all ordered
pairs of events that appear in sequence in at least one execution sequence in
the log. The α-algorithm is sober and very efficient, but its expressivity, not
fully characterized, may be limited. The second algorithm, based on regions
and the net synthesis techniques presented in this book, has high expressivity,
but it is neither sober nor very efficient. Both types of mining algorithms may
therefore play complementary roles in practical tools for workflow mining.

3.2.2 The Process Mining Algorithm α

In this section, we present and illustrate the process mining algorithm α [38],
and we provide a new characterization of the α-reconstructible workflow nets.
The proof of this characterization, given in [1], is not reproduced here (this
piece of work is too far from the central topic of this book). In conformity
with the general scheme sketched in Sect. 3.2.1, we present the algorithm α
as the composition α = Syn ◦Abs of an abstraction function and a synthesis
function. The abstraction function Abs is given in the following definition.

Definition 3.21. The α-abstraction of a workflow log W ⊂ T ∗ is the triple
Abs(W ) = 〈IW , CW , OW 〉 where:

1. IW = {t ∈ T | ∃u ∈ T ∗ t · u ∈W } is the set of transitions starting some
execution sequence in the log;

2. OW = {t ∈ T | ∃u ∈ T ∗ u · t ∈W } is the set of transitions ending some
execution sequence in the log;

3. CW =
{

t · t′ ∈ T 2 | ∃u, v ∈ T ∗ u · t · t′ · v ∈ W
}

is the set of pairs of
transitions appearing consecutively in some execution sequence in the log.

♦

The abstraction function Abs is obviously convex (Def. 3.18). When N ranges
over workflow nets with set of transitions T , the size of Abs(N) is in O(|T |2).
Moreover, a firing sequence of N contained in a log W may contribute several
pairs of transitions in CW . Therefore, one may expect to find α-complete
logs of N with size even smaller than O(|T |2). In view of these observations,
α = Syn ◦ Abs is a sober mining algorithm (def. 3.19). In order to complete
the description of α, it remains to specify the synthesis function Syn used in
this algorithm.

From the theory of event structures [39, 40], we know that the behaviour
of a net system can be captured, up to net unfolding, by the basic relations
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of causality, conflict and concurrency between events. When unfolding a net
to an event structure, the events are not in bijective correspondence with
the transitions of the net, since two occurrences of the same transition may
be distinguished by their past history. Nevertheless, given a workflow net N
with set of transitions T and a log W of N , one may derive from the α-
abstraction of this log three relations →W , ♯W , ‖W between the transitions
of N (the activities reported in the log), approximating loosely the relations
of causality, conflict and concurrency in the associated event structure. These
relations are the following:

causality: t→W t′ ⇔ t · t′ ∈ CW ∧ t′ · t 6∈ CW

conflict: t ♯W t′ ⇔ t · t′ 6∈ CW ∧ t′ · t 6∈ CW

concurrency: t ‖W t′ ⇔ t · t′ ∈ CW ∧ t′ · t ∈ CW

From these relations between transitions, one may derive again the following
relations between sets of transitions.

Definition 3.22. Let W ⊆ T ∗ be a workflow log. For any sets of transitions
A,B ⊆ T , let A ≺W B when the following three conditions hold:

1. (∀a ∈ A)(∀b ∈ B) a →W b,
2. (∀a1, a2 ∈ A) a1♯W a2, and
3. (∀b1, b2 ∈ B) b1♯W b2

Let A ≺m
W B when A and B are maximal sets with the property A ≺W B, i.e.,

A ≺m
W B ⇔ (A ≺W B) ∧ (A′ ≺W B′ ∧A ⊆ A′ ∧B ⊆ B′ ⇒ A = A′ ∧B = B′).

♦

Note that the definition of ≺W may be applied to any workflow log, and in
particular to the full log L(N) of a workflow net N . Using the above relations,
the synthesis function Syn used in the α algorithm may be defined as follows.

Definition 3.23. Let 〈IW , CW , OW 〉 be the α-abstraction of a workflow log
W ⊂ T ∗. Then α(W ) = Syn(〈IW , CW , OW 〉) is the (quasi-elementary) net
system (P, T, F,M0) defined as follows:

1. P = {i, o} ∪ {pA,B | A,B ⊆ T ∧A ≺
m
W B },

2. •i = ∅, and i• = IW ,
3. •o = OW , and o• = ∅,
4. •pA,B = A, and pA,B

• = B,
5. M0 = {i}. ♦

We start now a series of illustrative examples. Our first example shows that the
synthesis function Syn is not injective, even in restriction to α-abstractions
of logs of a fixed workflow net N .

Example 3.24. Let N be a worflow net with an initial transition X , a final
transition Y , and six concurrent transitions A,A′, A”, B,B′, B” in between.
The full log L(N) of N is the set of all words that start with X , end with Y ,
and contain every transition of N exactly once. Consider the two logs
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W1 = {XA′AA”BB”Y ,XB′BB”AA”Y }
W2 = {XA′AA”BB”Y ,XB′BB”AA”Y ,XA′ABB”A”Y ,XB′BAA”B”Y }

Necessarily Abs(W1) 6= Abs(W2). Nevertheless, the nets synthesized by the
function Syn from Abs(W1) and Abs(W2) are both equal to the net depicted
in Fig. 3.4. As this net gets deadlocked after A′ or B′, it is not a workflow

i o

X

A′

B′

A

B

A′′

B′′

Y

Fig. 3.4. a net system which is not a workflow net

net, hence the α-algorithm will deliver no result in either cases. 2

Our second example shows that a workflow net α(W ) mined from a workflow
log W is not always α-reconstructible.

Example 3.25. Consider the workflow net N1 depicted in Fig. 3.5. Let W1 =

i oA

B

C

C’

E

D

Fig. 3.5. workflow net N1

{ACC′D,BCC′E,AD, BE}, then clearly, W1 is a log of N1. Applying the α-
algorithm to this workflow log produces the workflow net N2 = α(W1) shown
in Fig. 3.6. The full log of N2 is the language L(N2) = {ACC′D,BCC′E}.

i o

A

B

C C’

E

D

Fig. 3.6. workflow net N2

Let W2 = L(N2). Applying the α-algorithm to this workflow log pro-
duces the workflow net N3 = α(W2) depicted in Fig. 3.7. Therefore, N2 =
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i o

A

B

C C’

E

D

Fig. 3.7. workflow net N3

α(W1) is not α-reconstructible. The full log of N3 is the language L(N3) =
{ACC′D,ACC′E,BCC′D,BCCE}. LetW3 = L(N3). Applying the α-algorithm
to the workflow log W3 produces again the workflow net N3. Therefore, N3 is
α-reconstructible. The neat effect of the alpha-algorithm applied to the full
log W2 ofN2 is to remove from this net the two places connected to transitions
A and D, resp. B and E. Removing these places from N2 modifies the lan-
guage of this net by adding ACC′E and BCC′D as possible execution traces.
According to the definitions given below, these places are neither boundary
places nor structurally implicit places. 2

Definition 3.26. An inner place p of a workflow net is said to be a boundary
place when: ∀t ∈ •p ∀t′ ∈ p• t · t′ ∈ CL(N). ♦

Definition 3.27. A place p of a (contact-free) net system N = (P, T, F,M0)
is a structurally implicit place if for every reachable marking M and transition
t ∈ p•, •t \ {p} ⊆M ⇒ p ∈M . ♦

It is straightforward to see that if a workflow net N has inner places which are
not boundary places, then this workflow net is not α-reconstructible. Worse, if
N has inner places which are neither boundary places nor structurally implicit
places, then L(N) = L(N ′) for no α-reconstructible workflow net N ′. Our
last example is intended to illustrate another obstacle to α-reconstructibility,
namely the presence of short loops.

Definition 3.28. Two transitions of a (contact-free) net system form a short
loop if t• ∩ •t′ 6= ∅ and t′• ∩ •t 6= ∅. ♦

Example 3.29. The workflow net N of Fig. 3.8 has a short loop involving
transitions B and C. A complete log of N is W = {ABCBD}. The abstraction
of this log is Abs(W ) = {{A} , {AB,BC,CB,BD}, {D}}. Since both short se-
quences BC and CB belong to CW , one gets B ‖W C. Thus cyclic dependencies
within short loops are lost when applying the α-algorithm. The net system
synthesized by the function Syn from Abs(W ) is shown in Fig. 3.9. This net it
is not a workflow net since the transition C is isolated, hence the α-algorithm
produces no result when it is applied to the workflow log W . 2

After these examples, let us now state the characterization of α-reconstructible
workflow nets established in [1].
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i o

A

B

C

D

Fig. 3.8. a workflow net with a short loop

i o

A

B

C

D

Fig. 3.9. the net system constructed by the algorithm α from the complete log
W = {ABCBD} of the workflow net of Fig. 3.8

Definition 3.30. An α-workflow net is a workflow net N = (P, T, F,M0) in
which there are no short loops, all inner places are boundary places, and for
any two (non-empty and disjoint) sets of transitions A and B, if A ≺W B for
W = L(N), then A ⊆ •p and B ⊆ p• for some place p ∈ P . ♦

Theorem 3.31. A workflow net N is isomorphic to α(L(N)), i.e. N is α-
reconstructible, if and only if N is an α-workflow net.

The α-algorithm was originally presented in the context of structured workflow
nets. The main result announced in [38] and proven in the report [37] is that
structured workflow nets without short loops are α-reconstructible. Let us
briefly introduce structured workflow nets. The reader may have observed
that the net shown in Fig. 3.6 is not a free-choice net [18]. The two choices
between events A and B and between events D and E are not independent: if
one chooses A (resp. B), then one must choose D (resp. E). In fact, one cannot
choose between events D and E at run time, since both events are never jointly
enabled. Structured workflow nets satisfy a property slightly stronger that the
free-choice property, that already excludes such interferences between conflict
(the sharing of an input place by two transitions) and synchronization (the
sharing of two input places by a transition).

Definition 3.32. A workflow net N = (P, T, F,M0) is a structured workflow
net if it has no structurally implicit places and the following condition holds:

∀t ∈ T |•t| > 1⇒ (∀p ∈ •t |•p| = 1 ∧ |p•| = 1) (SWN)

i.e., if a transition t requires the synchronization of several conditions (places),
then each of these conditions has a unique cause (|•p| = 1) and a unique
consequence (|p•| = 1), hence it cannot induce a conflict between t and another
transition t′. ♦
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The main result established in [37] is the following.

Theorem 3.33. Structured workflow nets without short loops are α-recons-
tructible. 2

Th. 3.33 may be established with little effort on the basis of Th. 3.31. The
key argument is the observation that, for any pair of transitions t and t′ of a
structured workflow net, the set t•∩ •t′ contains at most one place. From this
restrictive property, many interesting facts follow. In particular, for an inner
place, it is equivalent to be a boundary place and not to be a structurally
implicit place. This strong property does not hold for general workflow nets.
E.g., in the workflow net N2 shown in Fig. 3.6, the places connected to tran-
sitions A and D, resp. B and E are neither boundary places nor structurally
implicit places, while in the workflow net considered in Example 3.34 given
below, the place p (in grey) is jointly a boundary place and a structurally
implicit place. In order to establish Th. 3.33, it suffices then to show that
under condition (SWN), if A ≺W B for W = L(N), then A ⊆ •p and B ⊆ p•

for some place p of N . Proving this using the fact that |t• ∩ •t′| ≤ 1 for all
transitions t and t′ of N is left to the reader as an exercice (see Prob. 3.5 on
page 3.5).

Example 3.34. Consider transitions C, F , G in the workflow net N depicted
on the left of Fig. 3.10. If we let W = L(N), then we get C♯WF , C →W G,

A

B

C

D

E

F

G p

A

B

C

D

E

F

G

Fig. 3.10. a place p of an α-reconstructible net which is jointly a boundary place
and a structurally implicit place

and F →W G. Therefore, the α-algorithm necessarily produces a place in
C•∩F •∩•G. This is indeed the place p that appears in the net N ′ = α(L(N))
shown on the right of Fig. 3.10. Another place in D• ∩ E• ∩ •G appears
symmetrically in N ′. Now N and N ′ are language equivalent, and therefore,
N ′ is α-reconstructible. It follows from Th. 3.31 that p is a boundary place.
However, p is clearly a structurally implicit place of N ′. 2

The conditions characterizing structured workflow nets (Def. 3.32) are suf-
ficient, but not necessary, to ensure α-reconstructibility. Actually, an α-
reconstructible net may contain structurally implicit places (Exple. 3.34) and
it may not satisfy condition (SWN) (Exple. 3.8, on page 121).
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Adding structurally implicit places to a net preserves its language, and
removing places from a net satisfying condition (SWN) cannot invalidate this
condition. Therefore, one can state the following corollary to Th. 3.33.

Corollary 3.35. A workflow net N without short loops and satisfying condi-
tion (SWN) is always language equivalent to some α-reconstructible workflow
net N ′. 2

Condition (SWN) is a structural condition, hence it can be checked very effi-
ciently. It was argued [38] that the class of nets satisfying this condition sup-
ports all basic routing patterns and building blocks used to construct workflow
systems in practice.

To conclude this section, we note that Example 3.25 provides a language
W1 = {ACC′D,BCC′E,AD,BE} with W1 6⊆ L(α(W1)) = {ACC′D,BCC′E}.
It follows therefrom that there cannnot exist any order (or pre-order) relation
on net systems such that α participates in a Galois connection of the form:

W ⊆ L(N) ⇔ N ⊑ α(W )

In other words, α cannot always provide optimal over-approximations of work-
flow logs by languages of workflow nets. Recall that when mining a process
from a w-language W one should check both that the net system α(W ) con-
structed from W is indeed a workflow net and that W is included in the
language of this net system (which is not the case for W = W1).

Summing up, α is an efficient tool for identifying from complete logs all
workflow nets in the class characterized by Th. 3.31, but it is not targeted
to synthesize optimal workflow nets from arbitrary w-languages. In the con-
text of workflow net identification, sobriety is a crucial property, and the α-
algorithm enjoys this property. The central result, stated in Theo. 3.33, is the
α-reconstructibility of all structured workflow nets without short loops. The
subclass of workflow nets without short loops satisfying the condition (SWN)
is of special interest since it is characterized by purely structural properties,
hence easy to check, and all workflow nets in this subclass are language equiv-
alent to α-reconstructible workflow nets.

3.2.3 A Region-based Mining Algorithm

We have observed that α cannot always provide optimal over-approximations
of workflow logs by languages of workflow nets. In this section, we propose
another algorithm tailored for this purpose, called ω and based on regions. At
start, we apply naively to prefix closures of w-languages the Galois connec-
tion established in Section 1.5 between net systems and initialized transition
systems (which include prefix closed languages as a particular case). In this
way, each w-language W gets associated with the net system SN(pref(W ))
synthesized from all regions of its prefix closure, but this net is in general not
a workflow net. To fix the problem, we specialize regions to workflow-regions
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(regions that may appear as extensions of places of workflow nets), and we
introduce two specialized net synthesis operations ω(W ) and ωmin(W ), pro-
ducing nets from all workflow regions and from all minimal workflow regions
of W , respectively. We show that ω(W ) and ωmin(W ) are contact-free net
systems and that they are language equivalent. Next, we introduce a con-
dition of ω-completeness of logs W ensuring that ω(W ) and ωmin(W ) are
workflow nets. We prove that every workflow net is language equivalent to
some ω-reconstructible workflow net. We compare the α-algorithm and the ω-
algorithm for their respective advantages. We finally propose an incremental
version of the ω-algorithm to compensate for its lack of sobriety.

To begin with, we bring back some material scattered in earlier sections.
LetW ⊆ T ∗ be any w-language over T . The prefix closure ofW is the language
pref(W ) = {u ∈ T ∗ | ∃v ∈ T ∗ u · v ∈ W }. By Def. 3.12, W = max(pref(W ))
where max(U) = {u ∈ U | u · v ∈ U ⇒ v = ε}. Therefore, W and pref(W )
determine each other. By Def. 1.83, pref(W ) may be considered as an initial-
ized transition system, with words as states. By Th. 1.51, for any net system
N with the set of transitions T , the following relation holds:

pref(W ) ⊆ L(N) ⇔ N ≤ SN(pref(W )) (GC)

To explain the Galois connection GC, let us recall the following:

1. The prefix-closed language pref(W ) is identified with the initialized tran-
sition system (S, T,∆, s0) defined with S = pref(W ), s0 = ε, and
∆ = {(u, t, u · t) | u · t ∈ S }.

2. SN(pref((W )) is the net system synthesized from all regions of pref((W )),
i.e., the set of places of this net system is the set R(pref((W )).

3. The order relation ≤ between net systems is the inclusion between sets of
places, where each place p is identified with its signature p : {init}∪T →
{−1, 0, 1}, i.e., p(init) = M0(p) and for all t ∈ T , p(t) = −1 if t ∈ p•,
p(t) = 1 if t ∈ •p, and p(t) = 0 otherwise.

4. L(N) = {u ∈ T ∗ |M0[u〉} is the set of all transition sequences that can
be fired from the initial marking of N .

Let us examine the special case where the Galois connection is applied to a
workflow net N . In this particular case, L(N) = pref(L(N)), since any firing
sequence can be extended to a firing sequence that reaches the final marking.
As N ≤ N ′ ⇒ L(N ′) ⊆ L(N) and in view of GC, for any W ⊆ T ∗, the
language L(SN(pref(W ))) of the net system SN(pref(W )) synthezised from
the prefix closure of W is the least language of a net system that includes
W . However, SN(pref(W )) needs not be a workflow net, even if W is a w-
language. We will come back to this problem and fix it later on. Ignoring
this problem, we would like to propose now a global comparison between α
and region-based synthesis algorithms, regarding both the different goals they
pursue and the different techniques they use for constructing places of nets.
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The main goal of α is the exact reconstruction of processes from sets of
execution sequences, and α is particularly good at achieving this goal from
complete logs (that need not be full logs). When using α, the working assump-
tion is that the set W of sequences taken as input is a complete log of some
workflow net to be reconstructed. Without this assumption, α may behave in
an unexpected way, for instance it can produce workflow nets with languages
strictly included in W . When using region-based net synthesis algorithms, one
does not make any assumption on W . One just tries to construct for all W
the simplest net model that contains all sequences in this set. Sobriety, which
is crucial to process reconstruction algorithms, has minor importance in this
different perspective.

With the α-algorithm, the places of the net α(W ), or the pairs (•p, p•) ∈
℘(T ) × ℘(T ) which represent the places p, are the maximal pairs of sets of
transitions (A,B) in the relation A ≺W B (Def. 3.22). This relation ≺W is
computed solely from the pairs of transitions that appear consecutively in
some sequence in W (this local information is reported in the component CW

of the α-abstraction of W ). With a region based synthesis algorithm, the
places p of the synthesized net, or the corresponding pairs (•p, p•), are the
regions of W , or the signatures of these regions (for any non-trivial region p,
◦p and p◦ determine p(init)). Now regions cannot be determined from local
informations such as given in CW . On the contrary, regions are determined
from constraints induced by arbitrary long factors of all words in W . As a con-
sequence, one cannot expect from region based synthesis algorithm to have
the efficiency of α.

We now come back to the problem caused by the fact that SN(pref(W ))
needs not be a workflow net. In view of relation (GC), the net system
SN(pref(W )) is maximal w.r.t. net inclusion among net systems N with
language L(N) larger than or including pref(W ). Consider the particular
case where W is a complete log of an α-reconstructible workflow net N .
Then, every place of N must also be a place of SN(pref(W )), and therefore,
W ⊆ L(SN(pref(W ))) ⊆ L(N). However, L(SN(pref(W ))) may be strictly
smaller than L(N), because SN(pref(W )) may have more places than N .
Owing to the presence of these additional places, SN(pref(W )) may even
not be a workflow net. The question is then to determine which places of
SN(pref(W )) should be removed in order to obtain a workflow net. We will
address this question for arbitrary workflow logs, i.e. for possibly incomplete
logs of possibly not α-reconstructible workflow nets. To fix the problem, we
must specialize regions (Def. 1.20) to workflow-regions, i.e., regions that may
appear as extensions of places of workflow nets, and consider relativized ver-
sions of the net synthesis operator SN restricted to workflow-regions.

Before we define workflow regions, it may be useful to recall the definition
of regions of a prefix closed language (Def. 1.20 and Def. 1.83). Given W ⊆ T ∗,
a region of the prefix-closed language L = pref(W ) is a subset r ⊆ L such
that one of the following cases is met for each transition t ∈ T :
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1. ∀w.t ∈ pref(W ) (w ∈ r ∧ w.t 6∈ r) (t ∈ r◦)
2. ∀w.t ∈ pref(W ) (w /∈ r ∧ w.t ∈ r) (t ∈ ◦r)
3. ∀w.t ∈ pref(W ) (w ∈ r ∧ w.t 6∈ r) (t ∈ r⊥)

By an abuse of terminology, the regions of the language L = pref(W ) are
also called regions of W .

Example 3.36. Fig. 3.11 shows (on the left) a workflow net N with no inner
place, and with just two transitionsA andB from the place i to the place o. Let
W be the full log of N , thus W = {A,B}. The prefix-closed language pref(W )
defines the transition system shown in the middle of Fig. 3.11. The set of
regions of W is {{ε} , {A} , {B} , {A, B}}. There are three minimal regions:
i = {ε} (which represents the extension of the place i), r1 = {A}, and r2 =
{B}. The region o = {A,B} (which represents the extension of the place o) is
not minimal since it contains the regions r1 and r2. The net SN(pref(W )) is
depicted on the right of Fig.3.11. 2
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Fig. 3.11. N , pref(W ), and the net SN(pref(W ))

The following remarks give further hints to the definition of workflow regions.

Remark 3.37. If W ⊆ L(N) is a log of some workflow net N , then it is a
w-language (Def. 3.12 on page 122), and i = {ε} is a region of W , with •i = ∅
and i• = IW , and o = W is a region of W , with •o = OW and o• = ∅. The
region i = {ε} is a minimal region of W , but the region o = W is in general
not a minimal region of W . In fact, o = W is not a minimal region as soon
as OW contains at least two transitions of N , because every subset O ⊆ OW

determines a corresponding region r with •r = O and r• = ∅. This situation
has already been illustrated in Example 3.36. 2

Remark 3.38. Given a w-language W included in the language L(N) of a
workflow net N , let p be an inner place of N . Consider the extension [[p]] of p in
W , i.e., the subset of words u ∈ pref(W ) such that M0[u〉M for some marking
M of N with M(p) = 1. Then [[p]] is a region of W and [[p]] ∩ ({ε} ∪W ) = ∅.
Indeed, the place p is empty when the place i of N is marked (thus the
extensions of p and i cannot intersect), and the place p is empty as well when
the place o of N is marked (thus the extensions of p and o cannot intersect).

2

We are ready to define (minimal) workflow regions and a relativized version
of the net synthesis operator SN .
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Definition 3.39. Given a w-language W ⊆ T ∗ on T , a workflow-region or
ω-region of W is either the region i = {ε}, or the region o = W , or a region
r ⊆ pref(W ) (of the transition system pref(W )) that intersects neither i =
{ε} nor o = W . In the latter case, r is called an inner ω-region of W . ♦

Every region of an initialized transition system is a disjoint union of minimal
regions. In particular, every region of a w-language W has a decomposition
r = r1 ⊎ · · · ⊎ rn into minimal regions. Then r is an ω-region if and only if all
minimal regions ri are ω-regions. Therefore, the minimal non-empty ω-regions
(w.r.t. set inclusion) are the regions i and o plus the inner ω-regions which
coincide with minimal regions.

Notation 3.40 let Rω(W ) (resp. Rminω(W )) denote the set of ω-regions
(resp. minimal ω-regions) of a w-language W (more exactly, of its prefix-
closure pref(W )). Let ω(W ) and ωmin(W ) denote the net systems synthezised
from these respective sets of ω-regions, i.e., ω(W ) = SNR(pref(W )) for R =
Rω(W ) and ωmin(W ) = SNR(pref(W )) for R = Rminω(W ). ♦

In the rest of the section, we study the two process mining algorithms ω
and ωmin with the synthesis function Syn = SN and with the respective ab-
straction functions Abs(W ) = Rω(W ) and Abs(W ) = Rminω(W ). We want
precisely to show that both algorithms compute optimal over-approximations
of workflow logs by workflow nets. In order to reach this objective, one must
specialize the Galois connection (GC) between prefix-closed languages and net
systems, based on regions of languages, to a similar connection between w-
languages and workflow nets, based on ω-regions of w-languages. We propose
the adaptation given in the following Def. 3.41 and Prop. 3.43.

Definition 3.41. A workflow net N with set of transitions T is said to be
compatible with a w-language W ⊆ T ∗ on T if IW = i• and OW = •o. ♦

Remark 3.42. Let N be a workflow net with set of transitions T and let W ⊆
T ∗ be a w-language on T .

1. If W ⊆ L(N) then N is compatible with W .
2. If N is compatible with W then W ⊆ L(N) ⇔ W ⊆ L(N). 2

Proposition 3.43. If N is a workflow net compatible with a w-language W
then W ⊆ L(N) ⇔ N ≤ ω(W )

Proof. If N is a workflow net such that W ⊆ L(N) then, by Remarks 3.37
and 3.38, the extension of every place of N is an ω-region of W , hence N ≤
ω(W ). Conversely, if N is a workflow net compatible with W and N ≤ ω(W ),
then L(ω(W )) ⊆ L(N). Since the places of the net ω(W ) are regions of W ,
we moreover have W ⊆ L(ω(W )), and hence W ⊆ L(N). Finally, as N is
compatible with W , W ⊆ L(N) by Rem. 3.42. 2
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We will now show that for any w-language W , the net systems ω(W ) and
ωmin(W ) are two language equivalent contact-free net systems. We introduce
simplified notations before proving this result (in Prop. 3.47).

Notation 3.44 Regions r ∈ R(A) of an initialized system A = (S, T,∆, s0)
are characterized by their signature r : {init}∪T → {−1, 0, 1} (see Rem. 1.52).
By an abuse of the notation, we allow ourselves, given two initialized transition
systems A1 and A2 with the same set of events T , to write R1 = R2 for sets of
regions R1 ⊆ R(A1) and R2 ⊆ R(A2), respectively, to mean that the regions
in R1 have the same signatures as the regions in R2.

Definition 3.45. Given a w-language W on set of events T , let T (W ) be the
initialized transition system (S, s0, T,∆) defined with S = (pref(W ) \W ) ∪
{sm}, s0 = ε, and ∆ = {(f(w), t, f(w′) | w′ = w · t ∧w′ ∈ pref(W )}, where
f : pref(W ) → S is the map given by f(u) = u for w ∈ pref(W ) \W and
f(u) = sm for u ∈ W .

Note that f : pref(W ) → T (W ) is the unique label preserving morphism
from the transition system pref(W ) (see Def. 1.83) to the transition system
T (W ), and it is a saturating morphism (Def. 1.72).

Lemma 3.46. For any w-language W , f−1 restricts to a bijection between the
minimal ω-regions of W and the minimal regions of T (W ), i.e., Rminω(W ) =
Rmin(T (W )).

Proof. The minimal ω-regions i = {ε} and o = W of W are the inverse images
f−1({ε}) and f−1({sm}) of the minimal regions {ε} and {sm} of T (W ). Any
minimal region of T (W ) that differs from {ε} and {sm} coincides, as a subset
of pref(W ), with an inner region of W , hence with an ω-region r = f−1(r).
Any minimal ω-region r of W that differs from i = {ε} and o = W coincides,
as a subset of pref(W ), with a region f(r) of T (W ). As f and f−1 operate
monotonically on regions, the lemma obtains. 2

We will now establish the announced statement.

Proposition 3.47. For any w-language W , ω(W ) and ωmin(W ) are language
equivalent net systems: L(ω(W )) = L(ωmin(W )) = L(SN(T (W ))). Moreover,
they are contact-free.

Proof. By Prop. 2.18, SN(T (W )) and the net system SNR(T (W )) defined
with R = Rmin(T (W )) have isomorphic reachability graphs. By Lemma 3.46,
the regions in Rmin(T (W )) coincide, as maps r : {init}∪T → {−1, 0, 1}, with
the regions in Rminω(W ). In view of this, the net systems SNR(T (W )) and
SNRminω(W )(W ) = ωmin(W ) are isomorphic. By construction, ωmin(W ) =
SNR(T (W )) is contact-free (see Sec. 2.1). As ωmin(W ) is a subnet of ω(W ),
ω(W ) is contact-free. In order to complete the proof of the proposition, it
suffices to prove that L(ωmin(W )) = L(ω(W )).
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By the proof of Prop. 1.88, a prefix closed language L is of the form
L = L(N) for some net system N if and only if the places of N in-
duce regions of L that form an admissible set w.r.t. ESSP. By Prop. 2.18,
the net systems SN(T (W )) and ωmin(W ) = SNRmin(T (W ))(T (W )) have
isomorphic reachability graphs, hence they have the same language. Let
L = L(ωmin(W )). By the above reasoning, Rminω(W ) is an admissible set of
regions of L w.r.t. ESSP. Now, Rminω(W ) ⊆ Rω(W ) ⊆ R(T (W )), and since
L = L(SN(T (W ))), Rω(W ) is also an admissible set of regions of L w.r.t.
ESSP, hence L(ωmin(W )) = L(ω(W )). 2

Example 3.48. The set of minimal regions of W = {ACDE,BDCE} is the set
Rmin(W ) = {i, r1, r2, r3, r4, r5, r6, r7, r8, o} given by i = {s1}, o = {s8, s9},
and

r1 = {s2, s3, s5}
r2 = {s2, s5, s6, s8}
r3 = {s3, s4, s7, s9}
r4 = {s2, s3, s4}
r5 = {s4, s6, s7}
r6 = {s5, s6, s7}
r7 = {s2, s4, s6, s8}
r8 = {s3, s5, s7, s9}

The net system synthesized from Rmin(W ) is shown
in the left part of Fig. 3.12. The language of this net
system is exactlyW . The region r2 and r7, resp. r3 and
r8, are not ω-regions since they contain the terminal
state s8 = ACDE, resp. the terminal state s9 = BDCE

but not both.

s1

s2 s3

s4 s5

s6 s7

s8 s9

A B

C D

D C

E E

The ω-regions of W are all regions in Rmin(W ) and not in {r2, r3, r7, r8}
plus the non-minimal region r = r1 ∪ r5 = r4 ∪ r6 = {s2, s3, s4, s5, s6, s7}.
By removing r and {r2, r3, r7, r8}, we obtain the net system ωmin(W ) =
SNRminω(W )(W ) which coincides with SNRmin(T (W ))(T (W )). We recall that
T (W ) is the initialized transition system obtained from the transition system
W by fusing the terminal states s8 and s9. 2

The result stated in Prop. 3.47 is not fully satisfactory, since it may occur that
ω(W ) is not a workflow net but there exists a workflow net N ≤ ω(W ) such
that W ⊆ L(N). The missing condition for the success of the ω-algorithm is
the ω-completeness of logs W , defined as follows.

Definition 3.49. A w-language W ⊆ L(N) is said to be an ω-complete log of
a workflow net N if ω(W ) = ω(L(N)), i.e., if ω(W ) ≤ ω(L(N)), or equiva-
lently Rω(W ) ⊆ Rω(L(N)). ♦

Def. 3.49 is consistent with the general definition of completeness introduced
in Def. 3.16, where one lets Abs(W ) = Rω(W ). Note that if a w-language
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Fig. 3.12. the net system realization of W = {ACDE, BDCE} and its version
using ω-regions

W ⊆ L(N) is an ω-complete log of a workflow net N , then W and N are
compatible (Def. 3.41).

Proposition 3.50. The abstraction function Abs(W ) = Rω(W ) is convex: if
W is an ω-complete log of a workflow net N and if W ⊆ W ′ ⊆ L(N), then
W ′ is an ω-complete log of a N .

Proof. As W is ω-complete, Rω(L(N)) = Rω(W ). As W ⊆ W ′ ⊆ (L(N),
Rω(L(N)) ⊆ Rω(W ′) ⊆ Rω(W ). Therefore, Rω(W ′) = Rω(L(N)). 2

Armed with the condition of ω-completeness, we can now state and prove the
main result of the section. The theorem below and its corollaries are not exact
counterparts of Theo. 3.31 and Cor. 3.35 for the α-algorithm, and we shall
resume the comparison between the α-algorithm and the ω-algorithm after
these statements have been established.

Theorem 3.51. A workflow log W is ω-complete for some workflow net N
if and only if ω(W ) is a workflow net, and then W is an ω-complete log of
ω(W ) and L(ω(W )) = L(N).

Proof. Let W ⊆ T ∗ be a w-language on T . As all places of ω(W ) are regions
of W , W ⊆ L(ω(W )). As every transition t ∈ T occurs in at least one word
in W , ω(W ) is initially live.

Assume that W is an ω-complete log of some workflow net N . Then W
and N are compatible, and by Prop. 3.43, N ≤ ω(W ). N is connected, N and
ω(W ) have the same set of transitions, all places that belong to ω(W ) but do
not belong to N are inner regions of W , and all inner regions have both a non
empty preset and a non empty poset, therefore the net ω(W ) is connected.
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Let t1 . . . tn ∈ L(ω(W )) be a maximal firing sequence of ω(W ) and let
Mk, 0 ≤ k ≤ n, be the markings defined by M0 = {i} and Mk−1[tk〉Mk.
By definition of L(ω(W )), Mn = {o}. By definition of ω-regions, i 6∈ Mk for
1 ≤ k ≤ n, and o 6∈Mk for 0 ≤ k < n.

In order to show that ω(W ) is a workflow net, it remains to check that
every firing sequence from the initial marking can be extended to a firing
sequence ending in the final marking, i.e., Lmax(ω(W )) = L(ω(W )). Let u ∈
Lmax(ω(W )). As N ≤ ω(W ) ⇒ L(ω(W )) ⊆ L(N) and N is a workflow net,
u · v ∈ L(N) for some v ∈ T ∗. We claim that L(N) ⊆ L(ω(W )). Actually,
L(N) ⊆ L(ω(L(N))), and since W is a complete log of N , ω(W ) = ω(L(N)).
Therefore, u · v ∈ L(ω(W )). As u ∈ Lmax(ω(W )), necessarily, v = ε, and
u ∈ L(ω(W )) as required. We have thus shown that ω(W ) is a workflow net.

We show now that W is an ω-complete log of ω(W ). By definition of
ω-regions, the net system ω(W ) is compatible with W , hence the nets N
and ω(W ) have identical postsets i• and identical presets •o. Therefore,
L(ω(W )) ⊆ L(N) entails L(ω(W )) ⊆ L(N). Since L(N) ⊆ L(ω(W )), nec-
essarily L(N) = L(ω(W )). As W is an ω-complete log of N , Rω(W ) =
Rω(L(N)), hence Rω(W ) = Rω(L(ω(W ))), i.e., W is an ω-complete log of
ω(W ).

Supposing now that ω(W ) is a workflow net, we finally show that W is
an ω-complete log of ω(W ). By definition of ω(W ), every ω-region of W is a
place of this net and hence a region of L(ω(W )). By Prop. 1.75, L(ω(W )) ⊲

RG(ω(W )), hence every region of RG(ω(W )) induces a region of L(ω(W ))
with the same signature (Lemma 1.5). Since L(ω(W )) ⊆ L(W ) any region of
⊆ L(ω(W ) is also a region of L(ω(W )). Therefore, Rω(W ) ⊆ Rω(L(ω(W ))).
As W ⊆ L(ω(W )) entails Rω(L(ω(W ))), both sets are equal, hence W is an
ω-complete log of ω(W ). 2

Corollary 3.52. Every workflow net N is ω-reconstructible up to language
equivalence: L(N) = L(ω(L(N))), entailing that L(N) = L(ω(W )) for any
ω-complete log W of N . 2

In view of the above theorem, a workflow log is ω-complete for some workflow
net N if and only if it is ω-complete for ω(W ), hence we can speak about
ω-complete workflow logs without specifying any reference nets.

Corollary 3.53. If a workflow log W is ω-complete, then L(ω(W )) is the
least language of a workflow net that contains every execution sequence in W .

Proof. By Prop.3.43, ω(W ) is the largest workflow net compatible with W ,
hence L(ω(W )) is the least language of a workflow net that contains every
execution sequence in W . 2

By Prop. 3.47, ωmin(W ) is a contact-free net system and L(ωmin(W )) =
L(ω(W )). By reproducing verbatim the arguments given in the proof of
Theo. 3.51, one can also show that ωmin(W ) is a workflow net, and that a
workflow log W is complete w.r.t. the abstraction function Rω if and only if
it is complete w.r.t. the abstraction function Rminω.
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Corollary 3.54. If a w-language W ⊆ T ∗ is an ω-complete log, then ωmin(W )
is a workflow net and L(ωmin(W )) is the least language of a workflow net that
contains W . 2

Example 3.55 (Exple. 3.48 continued).

The net system N = ωmin(W ) synthezised
from W = {ACDE,BDCE} is shown next.
N is a workflow net, and

L(N) = {ACDE,ADCE,BCDE,BDCE}

One may check that Rω(W ) ⊆ Rω(L(N)),
where ω-regions are identified with signatures,
hence W is an ω-complete log and L(N) is the
least language of a workflow net that contains
W .
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r5 r6
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C D
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If we now apply the α-algorithm to the log W ,
we obtain A♯W B, A♯W D, B♯W C, C‖W D and
the immediate causalities A→W C, B →W D,
C →W E, and D →W E. The resulting net
α(W ), given next, is a workflow net but

W = {ACDE,BDCE} 6⊆ L(W ) = {ACE,BDE}

The workflow net depicted on the right in
Fig. 3.12 has precisely the language W , hence
it is not α-reconstructible.

i

o

A B

C D

E

2

We resume now the comparison between the α-algorithm and the ω-algorithm.
The ω-algorithm presents some advantages over ther α-algorithm:

Expressivity Many workflow nets are not α-reconstructible. We have iden-
tified a sub-class of α-reconstructible workflow nets (the structured work-
flow nets) and a related sub-class of workflow nets which are language
equivalent to α-reconstructible workflow nets. However, these classes are
very restrictive. In contrast, every workflow net is ω-reconstructible.

Approximate realization As shown by Exple. 3.55, α may fail to find a
workflow net realizing all computation sequences in a given ω-complete log
W , i.e., a workflow net N such thatW ⊆ L(N). In that case, α provides no
solution of any kind. In contrast, ω always produces the optimal solution,
i.e., a workflow net with the least possible language containing W .

In theory, these are significant advantages. In practice, there are also signifi-
cant drawbacks, listed below.
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Sobriety Even though one can find workflow nets and ω-complete logs thereof
which are not α-complete (Exer. 3.7), α-complete logs are often much
smaller than ω-complete logs.

Complexity The α-algorithm is much faster and less space consuming than
the ω-algorithm.

For algorithm α, sobriety followed from the fact that the abstraction function
captures information exclusively from segments of length 2 of words in the
log. The notion of region is in contrast not local, e.g., the places p and p′

of the workflow net of Fig. 3.13 are not boundary places, but they can be
retrieved as regions. The price to pay for increased expressivity is that many
execution sequences ought to be present in the log to take such “long distance”
dependencies into account.

Example 3.56. Let us consider the two workflow nets depicted in Fig.3.13. N2

i

p

q

o
A

A’

B

C’

C

i o
A

A’

B

C’

C

Fig. 3.13. the workflow net N2 (on the right) constructed by algorithm α from the
language of the workflow net N on the left

is the workflow net constructed by algorithm α from W = {ABC,A′BC′},
i.e., from the language of workflow net N . W is an α-complete log of N2

but it is not an ω-complete log of N2. To explain the absence of the place p
(respectively of the place q) from N2, the execution trace ABC′ (resp. A′BC)
should be added to this α-complete log. By doing so, one ends up with the
ω-complete log W2 = {ABC,A′BC′,ABC′,A′BC}) of N2 (which happens to
be its full log). Note that W is nevertheless an ω-complete log, since it is
the language of a workflow net: W = L(N). For k ≥ 2, let us consider the
workflow net Nk constructed similarly as N2 but replacing A and A′ (resp.
C and C′) by k transitions A1, . . . ,Ak (resp. C1, . . . ,Ck) put in parallel. The
set {AiBCi | 1 ≤ i ≤ k } is an α-complete log of Nk whereas the unique ω-
complete log of Nk is the full log L(Nk) = {AiBCj | 1 ≤ i, j ≤ k }. Indeed
every execution sequence AiBCj is needed to exclude the (inner) place pi,j

such that •pi,j = {Am | m 6= i} and pi,j
• = {Cj}. 2

To compensate for the lack of sobriety of the ω algorithm, we finally propose
in the end of the section an incremental version of the ω algorithm, based on
the following observation.

Proposition 3.57. Let W and W ′ be two w-languages over T such that
W ⊆W ′. Then Rω(W ′) = {r ∈ Rω(W ) | ∀w ∈W ′ \W w ⊢ r } where w ⊢ r
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means that r enables w, i.e., w belongs to the language of the “atomic” net
system SN{r}(W ).

Proof. Left as an exercice (Exer. 3.8). 2

In the incremental version of the ω-algorithm, one starts from an initial work-
flow log W0 and computes the set of ω-regions of this log (one computes all
regions of T (W0) and then removes all regions that fail to be ω-regions). Next,
whenever new execution sequences are introduced, yielding an increasing se-
quence of logs W0 ⊂W1 ⊂ . . .Wi−1 ⊂Wi . . ., one removes at each step i every
ω-region (ofW0) that does not enable all new execution sequences inWi\Wi−1.
This yields a decreasing sequence of ω-regions R0 ⊇ R1 ⊇ . . . Ri−1 ⊇ Ri . . ..
By Prop. 3.57, the current net SNRi

(Wi) is always equal to ω(Wi). In par-
ticular, whenever Wi is an ω-complete log, SNRi

(Wi) is an optimal workflow
net approximation of Wi.

The incremental version of the ω-algorithm allows saving space. Comput-
ing all regions of a log requires storing a full representation of this log, which
may be impractical. Difficulties may be avoided by starting with a small log
W0, containing at least one occurrence of every event in T so as to meet the
conditions stated in Prop. 3.57. Discarding iteratively from Rω(W0) all ω-
regions r such that w 6⊢ r for some execution sequence w ∈ Wi \Wi−1 does
not incur high memory cost.

One may even avoid computing the whole set of regions Rω(W0) of the
initial log W0, and compute instead the set of minimal ω-regions Rminω(W0).
Unfortunately, it is not possible, given an increasing sequence of logs W0 ⊂
W1 ⊂ . . .Wi−1 ⊂Wi . . ., to compute exactly at each step i the set of minimal
ω-regions Rminω(Wi) without storing the current log Wi−1 or Wi in memory,
which is precisely what the incremental version of the ω-algorithm aims at
avoiding. The difficulties encountered will be pointed out and discussed after
an example.

Example 3.58 (See Exer. 3.8). Let W0 = {ABCD} ⊂W1 = {ABCD, ACBD}.

s0

s1

s2 s3

s4

s5
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B C

C B

D

The initialized transition system
T (W1) is shown on the left. T (W0)
is the induced restriction of T (W1)
on the subset of states

S = {s0, s1, s2, s4, s5}

The net system ωmin(W1), the
places of which are the minimal ω-
regions of T (W1), is shown on the
right.
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For every region p′i ∈ R(T (W1)), the induced restriction
of p′i on S is a region of T (W0) with the same signature,
namely pi = p′i ∩ S. Indeed, one has:

p′1 = {s1, s3}
p′2 = {s1, s2}
p′3 = {s2, s4}
p′4 = {s3, s4}

p1 = {s1}
p2 = {s1, s2}
p3 = {s2, s4}
p4 = {s4}

If r′ ∈ R(T (W1)) and r ∈ R(T (W0)) are related regions,
i.e., r = r′∩S, then r ∈ Rminω(W0)⇒ r′ ∈ Rminω(W1).
However, the converse implication does not hold since
p2 and p3 are not minimal regions of T (W0). Indeed,
Rminω(W0) = Rmin(T (W0)) = {i, p1, p, p4, o}, where
p = {s2}. Moreover, p = {s2} does not coincide with the
restriction on S of any region of T (W1).

Given the set W1 \W0 = {ACBD}, in order to compute Rminω(W1) from
Rminω(W0), one may proceed as follows. The unique region in Rminω(W0) =
Rmin(T (W0)) that disables ACBD is the place p. Therefore, one removes p
and replaces it with all regions of T (W0) strictly and minimally containing p,
namely p2 and p3. These regions enable all words in W1 \W0: p2 ⊢ ACBD and
p3 ⊢ ACBD. Moreover, {i, p′1, p

′
1, p

′
3, p

′
4, o} are pairwise incomparable regions

of T (W1). In view of Prop. 3.59 below, Rminω(W1) is equal to the considered
set. 2

Proposition 3.59. Let W and W ′ be two w-languages over T such that W ⊆
W ′. Then Rminω(W ′) = minW ′ {r ∈ Rω(W ) | ∀w ∈W ′ \W w ⊢ r } where
minW ′ denotes the operation on sets of regions r ∈ Rω(W ), identified by their
signatures with regions r ∈ Rω(W ′), that extracts from a set the minimal
elements of this set w.r.t. the inclusion of sets of states of T (W ′).

Proof. Left as an exercice (Exer. 3.8). 2

A naive algorithm based on Prop. 3.59 would consist of computing ini-
tially Rminω(W0) and proceeding as follows with the increasing sequence
of logs W0 ⊂ W1 ⊂ . . .Wi−1 ⊂ Wi . . .. At step i, one removes all regions
r ∈ Rminω(Wi−1) that do not enable all new sequences in Wi \Wi−1. Any
such region r ∈ Rminω(Wi−1), identified by its signature with a correspond-
ing region r ∈ Rω(W0), is then replaced with the set

minW0
{r′ ∈ Rω(W0) | r ⊂ r

′ ∧ ∀w ∈Wi \Wi−1 w ⊢ r }

Let Ri ⊆ Rminω(Wi) be the set of regions obtained after these replacements
have been done, then it remains to compute Rminω(Wi) = minWi

(Ri). Un-
fortunately, W0 and Wi \Wi−1 do not provide enough data for computing
minWi

(Ri) from the signatures of the regions in Ri, and one needs using
explicitly the whole log Wi for this purpose. This should be avoided in an
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incremental algorithm, hence we propose to avoid computing minWi
(Ri) and

use instead the set Ri. The net synthesized from Ri is a representation of the
equivalent but smaller net ωmin(Wi).

According to this final algorithm, one explores uniquely the set of ω-regions
Rω(W0) of the initial log. The successive increments Wi \Wi−1 serve only to
filter out regions from this set. To compute Rminω(W0), or a “small” set of
ω-regions containing Rminω(W0), one can apply the general algorithm pre-
sented in Sections 2.3.1 to 2.3.2, where the refinement process of rough regions
is stopped at all terminal nodes 〈Y•, Y◦〉 (of the trees T (Xk)), yielding regions
r = Y•. Let R0 be the resulting set of regions, thus Rminω(W0) ⊆ R0. When-
ever some region r ∈ R0 is removed because it does not enable all sequences
in W1 \ W0, to compute a “small” set of ω-regions enabling W1 \ W0 and
strictly containing r, it suffices to resume the refinement process of rough re-
gions from the terminal node 〈Y•, Y◦〉 that produced r = Y•. The new terminal
nodes 〈Z•, Z◦〉 obtained from this refinement actually yield regions r′ = Z•

larger than r and none of them is missed. We iterate the same refinement
process from these new terminal nodes 〈Z•, Z◦〉 such that the region Z• does
not enabled all sequences in W1 \W0. The same technique may be applied at
all steps to compute Ri from the set of nodes 〈Y•, Y◦〉 (of the trees T (Xk))
that determine regions r = Y• ∈ Ri−1.

Problems

3.1. Let N ′ be the net obtained by gluing the input and output places of a
workflow net N (Def. 3.9 on p.122).
(a) Show that ∀t ∈ T •t 6= ∅ ∧ t• 6= ∅.
(b) Show that N ′ is strongly connected.
(c) Show the following:

1. i• = {t ∈ T | ∃u ∈ T ∗ t · u ∈ L(N)}.
2. •o = {t ∈ T | ∃u ∈ T ∗ u · t ∈ L(N)}.
3. (∀p ∈ P \ {i, o}) •p ∩ •o = ∅ ∧ p• ∩ i• = ∅.

3.2. Given a (quasi-elementary) net system N , let W be a set of firing se-
quences of N . In order to allow the reconstruction of N from the α-abstraction
Abs(W ), given in Def. 3.21, the relations→W , ♯W and ‖W defined respectively
as:

causality: t→W t′ ⇔ t · t′ ∈ CW ∧ t′ · t 6∈ CW

conflict: t ♯W t′ ⇔ t · t′ 6∈ CW ∧ t′ · t 6∈ CW

concurrency: t ‖W t′ ⇔ t · t′ ∈ CW ∧ t′ · t ∈ CW

should fit at best with the corresponding relations defined respectively as:

t→N t
′ ⇔ t• ∩ •t′ 6= ∅

t ♯N t′ ⇔ (•t ∩ •t′) ∪ (t• ∩ t′•) 6= ∅
t ‖N t′ ⇔ (•t ∪ t′•) ∩ (•t ∪ t′•) = ∅
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For any marking M and for any a sequence of transitions u ∈ T ∗ enabled in
M , let M [u〉Mu.
(a) Show that

(M [t · t′〉 ∧ M [t′〉) ⇔ (t‖N t
′ ∧ •t ∪ •t′ ⊆M ∧ M ∩ (t• ∪ t′•) = ∅)

and that moreover M [t′ · t〉 and Mt·t′ = Mt′·t in this case.
(b) Show that

M [t · t′〉 ⇔ ¬(t♯N t
′) ∧ •t ∪ (•t′ \ t•) ⊆M ∧ M ∩ (t• ∪ (t′• \ •t) = ∅)

(c) Show that, if M [t · t′〉 and t• ∩ •t′ = •t ∩ t′• = ∅, then M [t′〉 and hence
t‖N t′. Show that, if N is contact-free, then

(M [t · t′〉 ∧ t• ∩ •t′ = ∅) ⇒ M [t′〉

(d) Show that t♯N t
′ ⇒ t♯W t′, and that t♯N t

′ ⇔ t♯W t′ if t and t′ are co-enabled,
i.e., M [t〉 and M [t′〉 for some reachable marking M .
(e) Show that the following relations hold if N is contact-free:

1. t→W t′ ⇒ t→N t′,
2. t‖W t′ ⇒ t‖N t′,
3. if t and t′ are co-enabled then t‖N t

′ ⇔ t‖W t′.

(f) Show that →L(N)=→N if N is a workflow net without short loops (i.e.,
t• ∩ •t′ 6= ∅ and t′• ∩ •t 6= ∅ are mutually exclusive) and all inner places of N
are boundary places.

3.3. Given a workflow net N = (P, T, F, {i}) and two concurrent transitions
t and t′ of this net (t‖N t′), if σ = u · t · t′ · v is an execution sequence of N ,
then in view of (b) in Prob. 3.2, u · t′ · t · v is also an execution sequence of N .
Therefore, the language of N is closed under the congruence ∼ generated by
the relations t · t′ ∼ t′ · t pertaining to pairs of concurrent transitions t and t′.
An equivalence class of maximal execution sequences of N is called a process
of N . Processes of a workflow net N may be represented equivalently as pairs
R = (R, ℓ) consisting of a net R = (PR, TR, FR) and two labelling functions
ℓ : TR → T and ℓ : PR → ℘(P ) satisfying the following conditions:

1. There is a unique place iR such that •iR = ∅, and ℓ(iR) = {i} where i is
the input place of the workflow net N .

2. There is a unique place oR such that oR
• = ∅, and ℓ(oR) = {o} where o

is the output place of the workflow net N .
3. Every place has at most one incoming arc and one outgoing arc:

∀p ∈ PR |•p| ≤ 1 and |p•| ≤ 1

4. The underlying graph of R is acyclic.
5. If pR ∈ tR

• ∩ •t′R then ℓ(pR) = ℓ(tR)• ∩ •ℓ(t′R)
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6. {ℓ(pR) | pR ∈ •tR } is a partition of •ℓ(tR).
7. {ℓ(pR) | pR ∈ tR• } is a partition of ℓ(tR)•.

The above definition differs slightly from the usual definition of processes as
occurrence nets. The sole difference is that here, each place in a process R
is mapped by ℓ to a set of places of N , playing indistinguishable roles in this
process. As a result, processes are free from equivalent places. In the sequel,
we let ℓ(MR) =

⋃

{ℓ(pR) | pR ∈MR } denote the marking of N associated by
ℓ with the marking MR of R.

(a) Show that for any reachable marking MR of R, MR[tR〉M ′
R in R if and

only if ℓ(MR)[ℓ(tR)〉ℓ(M ′
R) in N .

(b) Show that R is a workflow net and show that, if N has no short loops,
then R has no short loops.
(c) Show that every transition in TR occurs exactly once in any maximal ex-
ecution sequence of R.
(d) Show that the set LR = {ℓ(t1) · · · ℓ(tn) | t1 · · · tn ∈ L(R)} is an equiva-
lence class of maximal execution sequences of N w.r.t. the permutation equiv-
alence ∼ (we recall that L(R) is the set of maximal firing sequences of the
workflow net R, thus starting in {iR} and ending in {oR}).
(e) Construct for each maximal execution sequence σ of N an associated pro-
cess R = (R, ℓ) of N such that σ ∈ LR.
(f) Show that a place pR ∈ (tR

•∩ •t′R) is structurally implicit in R if and only
if there does not exist any execution sequence in L(R) in which transition tR
is immediately followed by t′R.
(g) Show that the complete processes R = (R, ℓ) of a workflow net N are
in bijective correspondence with the equivalences classes of the maximal ex-
ecution sequences of N modulo ∼, where the correspondence is given by
LR = {ℓ(t1) · · · ℓ(tn) | t1 · · · tn ∈ L(R)}.
(h) Show that an inner place p of a workflow net is a boundary place if and
only if for every pair of transitions t ∈ •p and t′ ∈ p•, there exists a process
R = (R, ℓ) of N and a non structurally implicit place pR ∈ (tR

• ∩ •t′R) in
this process such that ℓ(tR) = t and ℓ(t′R) = t′ (hence p ∈ ℓ(pR)).
(i) Show that the workflow net depicted in Fig. 3.3 on page 3.3 has two pro-
cesses. Infer from this that all inner places of this workflow net are boundary
places.
(j) Show that the workflow net depicted in Fig. 3.6 on page 3.6 has two com-
plete processes. Infer from this that all inner places of this workflow net are
boundary places except for p ∈ A• ∩ •D and q ∈ B• ∩ •E.

3.4. This exercise aims at providing a comparison between the condition (SWN)
defined on page 130 with the free-choice condition on nets. A net is N-free if
its underlying graph does not contain any subgraph consisting of two places
p and q and two transitions t and u such that p is simultaneously a pre-place
of t and u, and t is simultaneously a post-transition of p and q, i.e. they form
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an ”N” pattern

p q

u t . The condition of N-freeness stipulates that for
every transition t and for every pre-place p ∈ •t, either t is the unique post
transition of p, or p is the unique pre-place of t. In other words, p cannot
be involved jointly in a synchronization (with another pre-place of t) and in
a choice (between t and another post-transition). A net is free-choice if it is
contact-free and every pair of transitions sharing some pre-place have an iden-
tical set of pre-places: •t1∩•t2 6= ∅ ⇒ •t1 = •t2. The choice is “free” because
any pair of conflicting transitions t1 and t2 enabled jointly in some marking
M (M [t1〉 and M [t2〉 but neither M [t1 . t2〉 nor M [t2 . t1〉) are always jointly
enabled or jointly disabled in any marking. Note that in this case, necessarily
•t1 ∩ •t2 6= ∅ since the net is contact-free.
(a) Show that a net which satisfies the condition (SWN) is N-free, and that a
net which satisfies the condition N-free is free-choice.
(b) Show that a net is contact-free if and only if it can be assembled from
clusters defined as follows. A cluster is a net (P, T, F ) such that F = P × T ,
see Fig. 3.14 (left). For assembling a number of clusters, one takes their dis-
joint union and one adds arcs from transitions of a cluster to place of other
clusters), but one cannot add any arc from places to transitions.
(c) Show that a net satisfies the condition N-free if and only if it can be

Fig. 3.14. the general form of a cluster (left), and two specific cases: for choice
(center) and synchronization (right)

assembled from clusters (P, T, F ) in which at least one of the sets P or T is a
singleton, see Fig. 3.14 (center and right).
(d) What condition should be added to the assembly rule to obtain exactly
the set of nets satisfying condition (SWN)?

3.5. The purpose of this problem is to show that structured workflow nets
(Def. 3.32, on p. 130) without short loops are α-reconstructible.
(a) Show that, if t and t′ are transitions of a workflow net satisfying the
condition (SWN), then t• ∩ •t′ contains at most one place.
(b) Show that an inner place of a workflow net satisfying the condition (SWN)
is a boundary place if and only if it is not a structurally implicit place.
(c) Show that in a structured workflow net, the following relations are satisfied:

(t1 →N t ∧ t2 →N t ∧ t1♯L(N)t2)⇒ t1♯N t2

(t→N t1 ∧ t→N t2 ∧ t1♯L(N)t2)⇒ t1♯N t2
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(d) Conclude that a structured workflow net without short loops is α-
reconstructible.

3.6. Construct the workflow nets ωmin(W ) synthezised from the full logs W =
L(N) of the workflow nets N depicted in Fig. 3.3 and Fig. 3.6, and for the
workflow net N defined in Exple. 3.34.

3.7 ([10]). Check that the workflow net depicted in Fig. 3.15 is α-reconstructible.

i o
I

A B

C

O

Fig. 3.15. a workflow net

Check that the full log of this net is the unique α-complete log. Show that this
workflow net can be synthesized from a strictly smaller log by the ω-algorithm.

3.8. Let A = (S,E,∆, s0) be an initialized transition system.
(a) Show that L(SN(A)) =

⋂
{

L
(

SN{r}(A)
)

| r ∈ R(A)
}

=
⋂

{

L
(

SN{r}(A)
)

| r ∈ Rmin(A)
}

(hint: use Prop. 2.18).
(b) Assume that A is the induced restriction on a subset of states S ⊆ S′

of another initialized transition system A′ = (S′, E,∆′, s0), i.e., ∆ = ∆′ ∩
S × E × S. Note that A and A′ have the same set of events E, and since
we consider only reduced transition systems (Def. 1.30), every event e ∈ E
occurs in L(A) and in L(A′). Show that the restriction r = r′ ∩ S of a region
r′ ∈ R(A′) is a region of A with the same signature, and hence that the map
r′ 7→ r′ ∩ S is injective, i.e., R(A′) can be seen as a subset of R(A).
(c) Let r′ ∈ R(A′) and r = r′ ∩S ∈ R(A). Show that (i) r ∈ Rmin(A)⇒ r′ ∈
Rmin(A′), but (ii) possibly r′ ∈ Rmin(A′) and r 6∈ Rmin(A).
(d) Let W and W ′ be two w-languages over T such that W ⊆ W ′. Show
that Rω(W ′) = {r ∈ Rω(W ) | ∀w ∈ W ′ \W w ⊢ r } where w ⊢ r means
that r enables w, i.e., w belongs to the language of the “atomic” net system
SN{r}(W ).
(e) Show that Rminω(W ′) 6= {r ∈ Rminω(W ) | ∀w ∈W ′ \W w ⊢ r } in
the general case (hint: use Example 3.8).
(f) Show that Rminω(W ′) = minW ′ {r ∈ Rω(W ) | ∀w ∈W ′ \W w ⊢ r }
where minW ′ denotes the operation on sets of regions r ∈ Rω(W ), identified
by their signatures with regions r ∈ Rω(W ′), that extracts from a set the
minimal elements of this set w.r.t. the inclusion of sets of states of T (W ′).





Conclusion
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