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1 Introduction and Overview
1.1 Origins
Let us begin with the problems which gave rise to Domain Theory:

1. Least fixpoints as meanings of recursive definitions. Recursive definitions of
procedures, data structures and other computational entities abound in program-
ming languages. Indeed, recursion is the basic effective mechanism for describ-
ing infinite computational behaviour in finite terms. Given a recursive definition:

X = . . . X . . . (1)

How can we give a non-circular account of its meaning? Suppose we are work-
ing inside some mathematical structure D. We want to find an element d ∈ D
such that substituting d for x in (1) yields a valid equation. The right-hand-side
of (1) can be read as a function of X , semantically as f : D → D. We can now
see that we are asking for an element d ∈ D such that d = f(d)—that is, for a
fixpoint of f . Moreover, we want a uniform canonical method for constructing
such fixpoints for arbitrary structures D and functions f : D → D within our
framework. Elementary considerations show that the usual categories of math-
ematical structures either fail to meet this requirement at all (sets, topological
spaces) or meet it in a trivial fashion (groups, vector spaces).

2. Recursive domain equations. Apart from recursive definitions of computa-
tional objects, programming languages also abound, explicitly or implicitly, in
recursive definitions of datatypes. The classical example is the type-free λ-
calculus [Bar84]. To give a mathematical semantics for the λ-calculus is to find
a mathematical structure D such that terms of the λ-calculus can be interpreted
as elements of D in such a way that application in the calculus is interpreted
by function application. Now consider the self-application term λx.xx. By the
usual condition for type-compatibility of a function with its argument, we see
that if the second occurrence of x in xx has type D, and the whole term xx has
type D, then the first occurrence must have, or be construable as having, type
[D −→ D]. Thus we are led to the requirement that we have

[D −→ D] ∼= D.

If we view [. −→ .] as a functor F : Cop × C → C over a suitable category C
of mathematical structures, then we are looking for a fixpoint D ∼= F (D, D).
Thus recursive datatypes again lead to a requirement for fixpoints, but now lifted
to the functorial level. Again we want such fixpoints to exist uniformly and
canonically.

This second requirement is even further beyond the realms of ordinary mathemati-
cal experience than the first. Collectively, they call for a novel mathematical theory to
serve as a foundation for the semantics of programming languages.
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A first step towards Domain Theory is the familiar result that every monotone
function on a complete lattice, or more generally on a directed-complete partial or-
der with least element, has a least fixpoint. (For an account of the history of this
result, see [LNS82].) Some early uses of this result in the context of formal lan-
guage theory were [Ard60, GR62]. It had also found applications in recursion theory
[Kle52, Pla64]. Its application to the semantics of first-order recursion equations and
flowcharts was already well-established among Computer Scientists by the end of the
1960’s [dBS69, Bek69, Bek71, Par69]. But Domain Theory proper, at least as we un-
derstand the term, began in 1969, and was unambiguously the creation of one man,
Dana Scott [Sco69, Sco70, Sco71, Sco72, Sco93]. In particular, the following key
insights can be identified in his work:

1. Domains as types. The fact that suitable categories of domains are cartesian
closed, and hence give rise to models of typed λ-calculi. More generally, that
domains give mathematical meaning to a broad class of data-structuring mecha-
nisms.

2. Recursive types. Scott’s key construction was a solution to the “domain equa-
tion”

D ∼= [D −→ D]

thus giving the first mathematical model of the type-free λ-calculus. This led
to a general theory of solutions of recursive domain equations. In conjunction
with (1), this showed that domains form a suitable universe for the semantics of
programming languages. In this way, Scott provided a mathematical foundation
for the work of Christopher Strachey on denotational semantics [MS76, Sto77].
This combination of descriptive richness and a powerful and elegant mathemati-
cal theory led to denotational semantics becoming a dominant paradigm in The-
oretical Computer Science.

3. Continuity vs. Computability. Continuity is a central pillar of Domain theory.
It serves as a qualitative approximation to computability. In other words, for
most purposes to detect whether some construction is computationally feasible
it is sufficient to check that it is continuous; while continuity is an “algebraic”
condition, which is much easier to handle than computability. In order to give
this idea of continuity as a smoothed-out version of computability substance, it
is not sufficient to work only with a notion of “completeness” or “convergence”;
one also needs a notion of approximation, which does justice to the idea that
infinite objects are given in some coherent way as limits of their finite approx-
imations. This leads to considering, not arbitrary complete partial orders, but
the continuous ones. Indeed, Scott’s early work on Domain Theory was semi-
nal to the subsequent extensive development of the theory of continuous lattices,
which also drew heavily on ideas from topology, analysis, topological algebra
and category theory [GHK+80].

4. Partial information. A natural concomitant of the notion of approximation in
domains is that they form the basis of a theory of partial information, which ex-
tends the familiar notion of partial function to encompass a whole spectrum of
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“degrees of definedness”. This has important applications to the semantics of
programming languages, where such multiple degrees of definition play a key
role in the analysis of computational notions such as lazy vs. eager evaluation,
and call-by-name vs. call-by-value parameter-passing mechanisms for proce-
dures.
General considerations from recursion theory dictate that partial functions are
unavoidable in any discussion of computability. Domain Theory provides an
appropriately abstract, structural setting in which these notions can be lifted to
higher types, recursive types, etc.

1.2 Our approach
It is a striking fact that, although Domain Theory has been around for a quarter-
century, no book-length treatment of it has yet been published. Quite a number of
books on semantics of programming languages, incorporating substantial introduc-
tions to domain theory as a necessary tool for denotational semantics, have appeared
[Sto77, Sch86, Gun92b, Win93]; but there has been no text devoted to the underlying
mathematical theory of domains. To make an analogy, it is as if many Calculus text-
books were available, offering presentations of some basic analysis interleaved with its
applications in modelling physical and geometrical problems; but no textbook of Real
Analysis. Although this Handbook Chapter cannot offer the comprehensive coverage
of a full-length textbook, it is nevertheless written in the spirit of a presentation of Real
Analysis. That is, we attempt to give a crisp, efficient presentation of the mathematical
theory of domains without excursions into applications. We hope that such an account
will be found useful by readers wishing to acquire some familiarity with Domain The-
ory, including those who seek to apply it. Indeed, we believe that the chances for
exciting new applications of Domain Theory will be enhanced if more people become
aware of the full richness of the mathematical theory.

1.3 Overview
Domains individually

We begin by developing the basic mathematical language of Domain Theory, and then
present the central pillars of the theory: convergence and approximation. We put con-
siderable emphasis on bases of continuous domains, and show how the theory can be
developed in terms of these. We also give a first presentation of the topological view
of Domain Theory, which will be a recurring theme.

Domains collectively

We study special classes of maps which play a key role in domain theory: retractions,
adjunctions, embeddings and projections. We also look at construction on domains
such as products, function spaces, sums and lifting; and at bilimits of directed systems
of domains and embeddings.
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Cartesian closed categories of domains

A particularly important requirement on categories of domains is that they should be
cartesian closed (i.e. closed under function spaces). This creates a tension with the
requirement for a good theory of approximation for domains, since neither the category
CONT of all continuous domains, nor the category ALG of all algebraic domains
is cartesian closed. This leads to a non-trivial analysis of necessary and sufficient
conditions on domains to ensure closure under function spaces, and striking results
on the classification of the maximal cartesian closed full subcategories of CONT and
ALG. This material is based on [Jun89, Jun90].

Recursive domain equations

The theory of recursive domain equations is presented. Although this material formed
the very starting point of Domain Theory, a full clarification of just what canonicity of
solutions means, and how it can be translated into proof principles for reasoning about
these canonical solutions, has only emerged over the past two or three years, through
the work of Peter Freyd and Andrew Pitts [Fre91, Fre92, Pit93b]. We make extensive
use of their insights in our presentation.

Equational theories

We present a general theory of the construction of free algebras for inequational theo-
ries over continuous domains. These results, and the underlying constructions in terms
of bases, appear to be new. We then apply this general theory to powerdomains and
give a comprehensive treatment of the Plotkin, Hoare and Smyth powerdomains. In ad-
dition to characterizing these as free algebras for certain inequational theories, we also
prove representation theorems which characterize a powerdomain over D as a certain
space of subsets ofD; these results make considerable use of topological methods.

Domains and logic

We develop the logical point of view of Domain Theory, in which domains are charac-
terized in terms of their observable properties, and functions in terms of their actions
on these properties. The general framework for this is provided by Stone duality; we
develop the rudiments of Stone duality in some generality, and then specialize it to
domains. Finally, we present “Domain Theory in Logical Form” [Abr91b], in which a
metalanguage of types and terms suitable for denotational semantics is extended with
a language of properties, and presented axiomatically as a programming logic in such
a way that the lattice of properties over each type is the Stone dual of the domain de-
noted by that type, and the prime filter of properties which can be proved to hold of
a term correspond under Stone duality to the domain element denoted by that term.
This yields a systematic way of moving back and forth between the logical and deno-
tational descriptions of some computational situation, each determining the other up to
isomorphism.
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2 Domains individually
We will begin by introducing the basic language of Domain Theory. Most topics we
deal with in this section are treated more thoroughly and at a more leisurely pace in
[DP90].

2.1 Convergence
2.1.1 Posets and preorders

Definition 2.1.1. A set P with a binary relation & is called a partially ordered set or
poset if the following holds for all x, y, z ∈ P :

1. x & x (Reflexivity)

2. x & y ∧ y & z =⇒ x & z (Transitivity)

3. x & y ∧ y & x =⇒ x = y (Antisymmetry)

Small finite partially ordered sets can be drawn as line diagrams (Hasse diagrams).
Examples are given in Figure 1. We will also allow ourselves to draw infinite posets
by showing a finite part which illustrates the building principle. Three examples are
given in Figure 2. We prefer the notation & to the more common ≤ because the order
on domains we are studying here often coexists with an otherwise unrelated intrinsic
order. The flat and lazy natural numbers from Figure 2 illustrate this.

If we drop antisymmetry from our list of requirements then we get what is known
as preorders. This does not change the theory very much. As is easily seen, the sub-
relation & ∩ + is in any case an equivalence relation and if two elements from two
equivalence classes x ∈ A, y ∈ B are related by &, then so is any pair of elements
from A and B. We can therefore pass from a preorder to a canonical partially ordered
set by taking equivalence classes. Pictorially, the situation then looks as in Figure 3.

Many notions from the theory of ordered sets make sense even if reflexivity fails.
Hence we may sum up these considerations with the slogan: Order theory is the study
of transitive relations. A common way to extract the order-theoretic content from a
relation R is to pass to the transitive closure of R, defined as

⋃

n∈N\{0} Rn.
Ordered sets can be turned upside down:

Proposition 2.1.2. If 〈P,&〉 is an ordered set then so is P op = 〈P,+〉.

!
The flat booleans

⊥

!true !false

!
! "

" !
The four-element lattice

! !
!

!
!
"

" !
!
"

" !
The four-element chain

!
!
!

Figure 1: A few posets drawn as line diagrams.

10



!
ordinal

0

! 1
! 2

! ω
"""

!
flat

⊥

!0 !1 !2 !3 " " "####!
!

"
" !

lazy

!0 !
!1 !

!2
!

" " "

!
! "

"
"

"
""

!
!

!
!

Figure 2: Three versions of the natural numbers.

! ! ! !

! ! ! ! !

!

$
$$

%
%%

%
%%

$
$$

#
$

%
&

#
$

%
&

#
$

%
&

#
$

%
&

Figure 3: A preorder whose canonical quotient is the four-element lattice.

One consequence of this observation is that each of the concepts introduced below
has a dual counterpart.

2.1.2 Notation from order theory

The following concepts form the core language of order theory.

Definition 2.1.3. Let (P,&) be an ordered set.

1. A subset A of P is an upper set if x ∈ A implies y ∈ A for all y + x. We denote
by ↑A the set of all elements above some element of A. If no confusion is to be
feared then we abbreviate ↑{x} as ↑x. The dual notions are lower set and ↓A.

2. An element x ∈ P is called an upper bound for a subset A ⊆ P , if x is above
every element of A. We often write A & x in this situation. We denote by ub(A)
the set of all upper bounds of A. Dually, lb(A) denotes the set of lower bounds
of A.

3. An element x ∈ P ismaximal if there is no other element of P above it: ↑x∩P =
{x}. Minimal elements are defined dually. For a subset A ⊆ P the minimal
elements of ub(A) are called minimal upper bounds of A. The set of all minimal
upper bounds of A is denoted by mub(A).
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4. If all elements of P are below a single element x ∈ P , then x is said to be the
largest element. The dually defined least element of a poset is also called bottom
and is commonly denoted by ⊥. In the presence of a least element we speak of a
pointed poset.

5. If for a subset A ⊆ P the set of upper bounds has a least element x, then x
is called the supremum or join. We write x =

⊔

A in this case. In the other
direction we speak of infimum or meet and write x =

!
A.

6. A partially ordered set P is a 2-semilattice (3-semilattice) if the supremum (in-
fimum) for each pair of elements exists. If P is both a 2- and a 3-semilattice
then P is called a lattice. A lattice is complete if suprema and infima exist for all
subsets.

The operations of forming suprema, resp. infima, have a few basic properties which
we will use throughout this text without mentioning them further.

Proposition 2.1.4. Let P be a poset such that the suprema and infima occurring in the
following formulae exist. (A, B and all Ai are subsets of P .)

1. A ⊆ B implies
⊔

A &
⊔

B and
!

A +
!

B.

2.
⊔

A =
⊔

(↓A) and
!

A =
!

(↑A).

3. If A =
⋃

i∈I Ai then
⊔

A =
⊔

i∈I(
⊔

Ai) and similarly for the infimum.

Proof. We illustrate order theoretic reasoning with suprema by showing (3). The el-
ement

⊔

A is above each element
⊔

Ai by (1), so it is an upper bound of the set
{
⊔

Ai | i ∈ I}. Since
⊔

i∈I(
⊔

Ai) is the least upper bound of this set, we have
⊔

A +
⊔

i∈I(
⊔

Ai). Conversely, each a ∈ A is contained in some Ai and there-
fore below the corresponding

⊔

Ai which in turn is below
⊔

i∈I(
⊔

Ai). Hence the
right hand side is an upper bound of A and as

⊔

A is the least such, we also have
⊔

A &
⊔

i∈I(
⊔

Ai).

Let us conclude this subsection by looking at an important family of examples of
complete lattices. Suppose X is a set and L is a family of subsets of X . We call
L a closure system if it is closed under the formation of intersections, that is, when-
ever each member of a family (Ai)i∈I belongs to L then so does

⋂

i∈I Ai. Because
we have allowed the index set to be empty, this implies that X is in L. We call the
members of L hulls or closed sets. Given an arbitrary subset A of X , one can form
⋂

{B ∈ L | A ⊆ B}. This is the least superset of A which belongs to L and is called
the hull or the closure of A.

Proposition 2.1.5. Every closure system is a complete lattice with respect to inclusion.

Proof. Infima are given by intersections and for the supremum one takes the closure of
the union.
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2.1.3 Monotone functions

Definition 2.1.6. Let P and Q be partially ordered sets. A function f : P → Q is
called monotone if for all x, y ∈ P with x & y we also have f(x) & f(y) in Q.

‘Monotone’ is really an abbreviation for ‘monotone order-preserving’, but since we
have no use for monotone order-reversing maps (x & y =⇒ f(x) + f(y)), we have
opted for the shorter expression. Alternative terminology is isotone (vs. antitone) or
the other half of the full expression: order-preservingmapping.

The set [P
m
−→ Q] of all monotone functions between two posets, when ordered

pointwise (i.e. f & g if for all x ∈ P , f(x) & g(x)), gives rise to another partially
ordered set, the monotone function space between P and Q. The category POSET of
posets and monotone maps has pleasing properties, see Exercise 2.3.9(9).

Proposition 2.1.7. If L is a complete lattice then every monotone map from L to L has
a fixpoint. The least of these is given by

"
{x ∈ L | f(x) & x} ,

the largest by
⊔

{x ∈ L | x & f(x)} .

Proof. Let A = {x ∈ L | f(x) & x} and a =
!

A. For each x ∈ A we have a & x
and f(a) & f(x) & x. Taking the infimum we get f(a) &

!
f(A) &

!
A = a and

a ∈ A follows. On the other hand, x ∈ A always implies f(x) ∈ A by monotonicity.
Applying this to a yields f(a) ∈ A and hence a & f(a).

For lattices, the converse is also true: The existence of fixpoints for monotonemaps
implies completeness. But the proof is much harder and relies on the Axiom of Choice,
see [Mar76].

2.1.4 Directed sets

Definition 2.1.8. Let P be a poset. A subset A of P is directed, if it is nonempty and
each pair of elements ofA has an upper bound inA. If a directed setA has a supremum
then this is denoted by

⊔

↑A.
Directed lower sets are called ideals. Ideals of the form ↓x are called principal.
The dual notions are filtered set and (principal) filter.

Simple examples of directed sets are chains. These are non-empty subsets which
are totally ordered, i.e. for each pair x, y either x & y or y & x holds. The chain
of natural numbers with their natural order is particularly simple; subsets of a poset
isomorphic to it are usually called ω-chains. Another frequent type of directed set is
given by the set of finite subsets of an arbitrary set. Using this and Proposition 2.1.4(3),
we get the following useful decomposition of general suprema.

Proposition 2.1.9. Let A be a non-empty subset of a 2-semilattice for which
⊔

A
exists. Then the join of A can also be written as

⊔

↑{
⊔

M | M ⊆ A finite and non-empty} .

13



General directed sets, on the other hand, may be quite messy and unstructured.
Sometimes one can find a well-behaved cofinal subset, such as a chain, where we say
that A is cofinal in B, if for all b ∈ B there is an a ∈ A above it. Such a cofinal subset
will have the same supremum (if it exists). But cofinal chains do not always exist, as
Exercise 2.3.9(6) shows. Still, every directed set may be thought of as being equipped
externally with a nice structure as we will now work out.

Definition 2.1.10. A monotone net in a poset P is a monotone function α from a
directed set I into P . The set I is called the index set of the net.

Let α : I → P be a monotone net. If we are given a monotone function β : J → I ,
where J is directed and where for all i ∈ I there is j ∈ J with β(j) ≥ i, then we call
α ◦ β : J → P a subnet of α.

A monotone net α : I → P has a supremum in P , if the set {α(i) | i ∈ I} has a
supremum in P .

Every directed set can be viewed as a monotone net: let the set itself be the index
set. On the other hand, the image of a monotone net α : I → P is a directed set in P .
So what are nets good for? The answer is given in the following proposition (which
seems to have been stated first in [Kra39]).

Lemma 2.1.11. Let P be a poset and let α : I → P be a monotone net. Then α has a
subnet α ◦ β : J → P , whose index set J is a lattice in which every principal ideal is
finite.

Proof. Let J be the set of finite subsets of I . Clearly, J is a lattice in which every prin-
cipal ideal is finite. We define the mapping β : J → I by induction on the cardinality
of the elements of J :

β(φ) = any element of I;

β(A) = any upper bound of the set A ∪ {β(B) | B ⊂ A}, A 8= φ.

It is obvious that β is monotone and defines a subnet.

This lemma allows us to base an induction proof on an arbitrary directed set. This
was recently applied to settle a long-standing conjecture in lattice theory, see [TT93].

Proposition 2.1.12. Let I be directed and α : I × I → P be a monotone net. Under
the assumption that the indicated directed suprema exist, the following equalities hold:

⊔

↑

i,j∈I

α(i, j) =
⊔

↑

i∈I

(
⊔

↑

j∈J

α(i, j)) =
⊔

↑

j∈J

(
⊔

↑

i∈I

α(i, j)) =
⊔

↑

i∈I

α(i, i).

2.1.5 Directed-complete partial orders

Definition 2.1.13. A posetD in which every directed subset has a supremum we call a
directed-complete partial order, or dcpo for short.

Examples 2.1.14. • Every complete lattice is also a dcpo. Instances of this are
powersets, topologies, subgroup lattices, congruence lattices, and, more gener-
ally, closure systems. As Proposition 2.1.9 shows, a lattice which is also a dcpo
is almost complete. Only a least element may be missing.

14



• Every finite poset is a dcpo.

• The set of natural numbers with the usual order does not form a dcpo; we have
to add a top element as done in Figure 2. In general, it is a difficult problem
how to add points to a poset so that it becomes a dcpo. Using Proposition 2.1.15
below, Markowsky has defined such a completion via chains in [Mar76]. Luckily,
we need not worry about this problem in domain theory because here we are
usually interested in algebraic or continuous dcpo’s where a completion is easily
defined, see Section 2.2.6 below. The correct formulation of what constitutes a
completion, of course, takes also morphisms into account. A general framework
is described in [Poi92], Sections 3.3 to 3.6.

• The points of a locale form a dcpo in the specialization order, see [Vic89, Joh82].

More examples will follow in the next subsection. There we will also discuss the
question of whether directed sets or ω-chains should be used to define dcpo’s. Arbi-
trarily long chains have the full power of directed sets (despite Exercise 2.3.9(6)) as the
following proposition shows.

Proposition 2.1.15. A partially ordered set D is a dcpo if and only if each chain in D
has a supremum.

The proof, which uses the Axiom of Choice, goes back to a lemma of Iwamura
[Iwa44] and can be found in [Mar76].

The following, which may also be found in [Mar76], complements Proposi-
tion 2.1.7 above.

Proposition 2.1.16. A pointed poset P is a dcpo if and only if every monotone map
on P has a least fixpoint.

2.1.6 Continuous functions

Definition 2.1.17. Let D and E be dcpo’s. A function f : D → E is (Scott-) con-
tinuous if it is monotone and if for each directed subset A of D we have f(

⊔

↑A) =
⊔

↑f(A). We denote the set of all continuous functions fromD toE, ordered pointwise,
by [D −→ E].

A function between pointed dcpo’s, which preserves the bottom element, is called
strict. We denote the space of all continuous strict functions by [D

⊥!
−→ E].

The identity function on a set A is denoted by idA, the constant function with im-
age {x} by cx.

The preservation of joins of directed sets is actually enough to define continuous
maps. In practice, however, one usually needs to show first that f(A) is directed. This
is equivalent to monotonicity.

Proposition 2.1.18. LetD andE be dcpo’s. Then [D −→ E] is again a dcpo. Directed
suprema in [D −→ E] are calculated pointwise.
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Proof. Let F be a directed collection of functions fromD to E. Let g : D → E be the
function, which is defined by g(x) =

⊔

↑
f∈F f(x). Let A ⊆ D be directed.

g(
⊔

↑A) =
⊔

↑

f∈F

f(
⊔

↑A)

=
⊔

↑

f∈F

⊔

↑

a∈A

f(a)

=
⊔

↑

a∈A

⊔

↑

f∈F

f(a)

=
⊔

↑

a∈A

g(a).

This shows that g is continuous.

The class of all dcpo’s together with Scott-continuous functions forms a category,
which we denote byDCPO. It has strong closure properties as we shall see shortly. For
the moment we concentrate on that property of continuous maps which is one of the
main reasons for the success of domain theory, namely, that fixpoints can be calculated
easily and uniformly.

Theorem 2.1.19. Let D be a pointed dcpo.

1. Every continuous function f on D has a least fixpoint. It is given by
⊔

↑
n∈N

fn(⊥).

2. The assignment fix : [D −→ D] → D, f 9→
⊔

↑
n∈N

fn(⊥) is continuous.

Proof. (1) The set {fn(⊥) | n ∈ N} is a chain. This follows from ⊥ & f(⊥) and the
monotonicity of f . Using continuity of f we get f(

⊔

↑
n∈N

fn(⊥)) =
⊔

↑
n∈N

fn+1(⊥)
and the latter is clearly equal to

⊔

↑
n∈N

fn(⊥).
If x is any other fixpoint of f then from⊥ & x we get f(⊥) & f(x) = x and so on

by induction. Hence x is an upper bound of all fn(⊥) and that is why it must be above
fix(f).

(2) Let us first look at the n-fold iteration operator itn : [D −→ D] → D which
maps f to fn(⊥). We show its continuity by induction. The 0th iteration operator
equals c⊥ so nothing has to be shown there. For the induction step let F be a directed
family of continuous functions onD. We calculate:

itn+1(
⊔

↑F ) = (
⊔

↑F )(itn(
⊔

↑F )) definition
= (

⊔

↑F )(
⊔

↑
f∈F itn(f)) ind. hypothesis

=
⊔

↑
g∈F g(

⊔

↑
f∈F (itn(f))) Prop. 2.1.18

=
⊔

↑
g∈F

⊔

↑
f∈F g(itn(f)) continuity of g

=
⊔

↑
f∈F fn+1(⊥) Prop. 2.1.12

The pointwise supremum of all iteration operators (which form a chain as we have
seen in (1)) is precisely fix and so the latter is also continuous.
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The least fixpoint operator is the mathematical counterpart of recursive and iterative
statements in programming languages. When proving a property of such a statement
semantically, one often employs the following proof principle which is known under
the name fixpoint induction (see [Ten91] or any other book on denotational semantics).
Call a predicate on (i.e. a subset of) a dcpo admissible if it contains ⊥ and is closed
under suprema of ω-chains. The following is then easily established:

Lemma 2.1.20. Let D be a dcpo, P ⊆ D an admissible predicate, and f : D → D
a Scott-continuous function. If it is true that f(x) satisfies P whenever x satisfies P ,
then it must be true that fix(f) satisfies P .

We also note the following invariance property of the least fixpoint operator. In
fact, it characterizes fix uniquely among all fixpoint operators (Exercise 2.3.9(16)).

Lemma 2.1.21. Let D and E be pointed dcpo’s and let

D
h & E

D

f

' h & E

g

'

be a commutative diagram of continuous functions where h is strict. Then fix(g) =
h(fix(f)).

Proof. Using continuity of h, commutativity of the diagram, and strictness of h in turn
we calculate:

h(fix(f)) = h(
⊔

↑

n∈N

fn(⊥))

=
⊔

↑

n∈N

h ◦ fn(⊥)

=
⊔

↑

n∈N

gn ◦ h(⊥)

= fix(g)

2.2 Approximation
In the last subsection we have explained the kind of limits that domain theory deals
with, namely, suprema of directed sets. We could have said much more about these
“convergence spaces” called dcpo’s. But the topic can easily become esoteric and lose
its connection with computing. For example, the cardinality of dcpo’s has not been re-
stricted yet and indeed, we didn’t have the tools to sensibly do so (Exercise 2.3.9(18)).
We will in this subsection introduce the idea that elements are composed of (or ‘ap-
proximated by’) ‘simple’ pieces. This will enrich our theory immensely and will also
give the desired connection to semantics.
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2.2.1 The order of approximation

Definition 2.2.1. Let x and y be elements of a dcpo D. We say that x approximates y
if for all directed subsets A of D, y &

⊔

↑A implies x & a for some a ∈ A. We say
that x is compact if it approximates itself.

We introduce the following notation for x, y ∈ D and A ⊆ D:

x : y ⇔ x approximates y

↓↓x = {y ∈ D | y : x}

↑↑x = {y ∈ D | x : y}

↑↑A =
⋃

a∈A

↑↑a

K(D) = {x ∈ D | x compact}

The relation: is traditionally called ‘way-below relation’. M.B. Smyth introduced
the expression ‘order of definite refinement’ in [Smy86]. Throughout this text we will
refer to it as the order of approximation, even though the relation is not reflexive. Other
common terminology for ‘compact’ is finite or isolated. The analogy to finite sets is
indeed very strong; however one covers a finite set M by a directed collection (Ai)i∈I

of sets,M will always be contained in some Ai already.
In general, approximation is not an absolute property of single points. Rather, we

could phrase x : y as “x is a lot simpler than y”, which clearly depends on y as much
as it depends on x.

An element which is compact approximates every element above it. More gener-
ally, we observe the following basic properties of approximation.

Proposition 2.2.2. LetD be a dcpo. Then the following is true for all x, x′, y, y′ ∈ D:

1. x : y =⇒ x & y;

2. x′ & x : y & y′ =⇒ x′ : y′.

2.2.2 Bases in dcpo’s

Definition 2.2.3. We say that a subset B of a dcpo D is a basis for D, if for every
element x of D the set Bx = ↓↓x ∩ B contains a directed subset with supremum x. We
call elements of Bx approximants to x relative to B.

We may think of the rational numbers as a basis for the reals (with a top element
added, in order to get a dcpo), but other choices are also possible: dyadic numbers,
irrational numbers, etc.

Proposition 2.2.4. Let D be a dcpo with basis B.

1. For every x ∈ D the set Bx is directed and x =
⊔

↑Bx.

2. B contains K(D).

3. Every superset of B is also a basis forD.
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Proof. (1) It is clear that the join of Bx equals x. The point is directedness. From
the definition we know there is some directed subset A of Bx with

⊔

↑A = x. Let
now y, y′ be elements approximating x. There must be elements a, a′ in A above y, y′,
respectively. These have an upper bound a′′ in A, which by definition belongs to Bx.

(2) We have to show that every element c of K(D) belongs to B. Indeed, since
c =

⊔

↑Bc there must be an element b ∈ Bc above c. All of Bc is below c, so b is
actually equal to c.

(3) is immediate from the definition.

Corollary 2.2.5. Let D be a dcpo with basis B.

1. The largest basis forD is D itself.

2. B is the smallest basis for D if and only if B = K(D).

The ‘only if’ part of (2) is not a direct consequence of the preceding proposition.
We leave its proof as Exercise 2.3.9(26).

2.2.3 Continuous and algebraic domains

Definition 2.2.6. A dcpo is called continuous or a continuous domain if it has a basis.
It is called algebraic or an algebraic domain if it has a basis of compact elements. We
say D is ω-continuous if there exists a countable basis and we call it ω-algebraic if
K(D) is a countable basis.

Here we are using the word “domain” for the first time. Indeed, for us a structure
only qualifies as a domain if it embodies both a notion of convergence and a notion of
approximation.

In the light of Proposition 2.2.4 we can reformulate Definition 2.2.6 as follows,
avoiding existential quantification.

Proposition 2.2.7. 1. A dcpo D is continuous if and only if for all x ∈ D, x =
⊔

↑
↓↓x holds.

2. It is algebraic if and only if for all x ∈ D, x =
⊔

↑K(D)x holds.

The word ‘algebraic’ points to algebra. Let us make this connection precise.

Definition 2.2.8. A closure systemL (cf. Section 2.1.2) is called inductive, if it is closed
under directed union.

Proposition 2.2.9. Every inductive closure system L is an algebraic lattice. The com-
pact elements are precisely the finitely generated hulls.

Proof. If A is the hull of a finite setM and if (Bi)i∈I is a directed family of hulls such
that

⊔

↑
i∈I Bi =

⋃

i∈I Bi ⊇ A, thenM is already contained in some Bi. Hence hulls
of finite sets are compact elements in the complete lattice L. On the other hand, every
closed set is the directed union of finitely generated hulls, so these form a basis. By
Proposition 2.2.4(2), there cannot be any other compact elements.
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Given a group, (or, more generally, an algebra in the sense of universal algebra),
then there are two canonical inductive closure systems associated with it, the lattice of
subgroups (subalgebras) and the lattice of normal subgroups (congruence relations).

Other standard examples of algebraic domains are:

• Any set with the discrete order is an algebraic domain. In semantics one usually
adds a bottom element (standing for divergence) resulting in so-called flat do-
mains. (The flat natural numbers are shown in Figure 2.) A basis must in either
case contain all elements.

• The set [X ⇀ Y ] of partial functions between sets X and Y ordered by graph
inclusion. Compact elements are those functions which have a finite carrier. It is
naturally isomorphic to [X −→ Y⊥] and to [X⊥

⊥!
−→ Y⊥].

• Every finite poset.

Continuous domains:

• Every algebraic dcpo is also continuous. This follows directly from the defini-
tion. The order of approximation is characterized by x : y if and only if there
exists a compact element c between x and y.

• The unit interval is a continuous lattice. It plays a central role in the theory of
continuous lattices, see [GHK+80], Chapter IV and in particular Theorem 2.19.
Another way of modelling the real numbers in domain theory is to take all closed
intervals of finite length and to order them by reversed inclusion. Single element
intervals are maximal in this domain and provide a faithful representation of
the real line. A countable basis is given by the set of intervals with rational
endpoints.

• The lattice of open subsets of a sober space X forms a continuous lattice if and
only ifX is locally compact. Compact Hausdorff spaces are a special case. Here
O : U holds if and only if there exists a compact set C such that O ⊆ C ⊆
U . This meeting point of topology and domain theory is discussed in detail in
[Smy92, Vic89, Joh82, GHK+80] and will also be addressed in Chapter 7.

At this point it may be helpful to give an example of a non-continuous dcpo. The
easiest to explain is depicted in Figure 4 (labelled D). We show that the order of
approximation on D is empty. Pairs (ai, bj) and (bi, aj) cannot belong to the order
of approximation because they are not related in the order. Two points ai & aj in the
same ‘leg’ are still not approximating because (bn)n∈N is a directed set with supremum
above aj but containing no element above ai.

A non-continuous distributive complete lattice is much harder to visualize by a line
diagram. From what we have said we know that the topology of a sober space which is
not locally compact is such a lattice. Exercise 2.3.9(21) discusses this in detail.

If D is pointed then the order of approximation is non-empty because a bottom
element approximates every other element.

A basis not only gives approximations for elements, it also approximates the order
relation:
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Figure 4: A continuous (E) and a non-continuous (D) dcpo.
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Figure 5: Basis element b witnesses that x is not below y.

Proposition 2.2.10. Let D be a continuous domain with basis B and let x and y be
elements of D. Then x & y, Bx ⊆ By and Bx ⊆ ↓y are all equivalent.

The form in which we will usually apply this proposition is: x 8& y implies there
exists b ∈ Bx with b 8& y. A picture of this situation is given in Figure 5.

In the light of Proposition 2.2.10 we can now also give a more intuitive rea-
son why the dcpo D in Figure 4 is not continuous. A natural candidate for a ba-
sis in D is the collection of all ai’s and bi’s (certainly, = doesn’t approximate any-
thing). Proposition 2.2.10 expresses the idea that in a continuous domain all informa-
tion about how elements are related is contained in the basis already. And the fact that
⊔

↑
n∈N

an =
⊔

↑
n∈N

bn = = holds inD is precisely what is not visible in the would-be
basis. Thus, the dcpo should look rather like E in the same figure (which indeed is an
algebraic domain).

Bases allow us to express the continuity of functions in a form reminiscent of the
ε-δ definition for real-valued functions.

Proposition 2.2.11. A map f between continuous domains D and E with bases
B and C, respectively, is continuous if and only if for each x ∈ D and e ∈ Cf(x)

there exists d ∈ Bx with f(↑d) ⊆ ↑e.
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Proof. By continuity we have f(x) = f(
⊔

↑Bx) =
⊔

↑
d∈Bx

f(d). Since e approx-
imates f(x), there exists d ∈ Bx with f(d) + e. Monotonicity of f then implies
f(↑d) ⊆ ↑e.

For the converse we first show monotonicity. Suppose x & y holds but f(x) is not
below f(y). By Proposition 2.2.10 there is e ∈ Cf(x) \↓f(y) and from our assumption
we get d ∈ Bx such that f(↑d) ⊆ ↑e. Since y belongs to ↑d this is a contradiction. Now
let A be a directed subset of D with x as its join. Monotonicity implies

⊔

↑f(A) &
f(

⊔

↑A) = f(x). If the converse relation does not hold then we can again choose
e ∈ Cf(x) with e 8&

⊔

↑f(A) and for some d ∈ Bx we have f(↑d) ⊆ ↑e. Since d
approximates x, some a ∈ A is above d and we get

⊔

↑f(A) + f(a) + f(d) + e
contradicting our choice of e.

Finally, we cite a result which reduces the calculation of least fixpoints to a basis.
The point here is that a continuous function need not preserve compactness nor the
order of approximation and so the sequence ⊥, f(⊥), f(f(⊥)), . . . need not consist of
basis elements.

Proposition 2.2.12. If D is a pointed ω-continuous domain with basis B and if
f : D → D is a continuous map, then there exists an ω-chain b0 & b1 & b2 & . . .
of basis elements such that the following conditions are satisfied:

1. b0 = ⊥,

2. ∀n ∈ N. bn+1 & f(bn),

3.
⊔

↑
n∈N

bn = fix(f) (=
⊔

↑
n∈N

fn(⊥)).

A proof may be found in [Abr90b].

2.2.4 Comments on possible variations

directed sets vs. ω-chains Let us start with the following observation.

Proposition 2.2.13. If a dcpoD has a countable basis then every directed subset ofD
contains an ω-chain with the same supremum.

This raises the question whether one shouldn’t build up the whole theory using ω-
chains. The basic definitions then read: An ω-ccpo is a poset in which every ω-chain
has a supremum. A function is ω-continuous if it preserves joins of ω-chains. An
element x is ω-approximating y if

⊔

↑
n∈N

an + y implies an + x for some n ∈ N.
An ω-ccpo is continuous if there is a countable subsetB such that every element is the
join of an ω-chain of elements from B ω-approximating it. Similarly for algebraicity.
(This is the approach adopted in [Plo81], for example.) The main point about these
definitions is the countability of the basis. It ensures that they are in complete harmony
with our set-up, because we can show:

Proposition 2.2.14. 1. Every continuous ω-ccpo is a continuous dcpo.

2. Every algebraic ω-ccpo is an algebraic dcpo.
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3. Every ω-continuous map between continuous ω-ccpo’s is continuous.

Proof. (1) Let (bn)n∈N be an enumeration of a basis B for D. We first show that the
continuous ω-ccpo D is directed-complete, so let A be a directed subset of D. Let B′

be the set of basis elements which are below some element of A and, for simplicity,
assume that B = B′. We construct an ω-chain in A as follows: let a0 be an element
ofA which is above b0. Then let bn1

be the first basis element not below a0. It must be
below some a′

1 ∈ A and we set a1 to be an upper bound of a0 and a′
1 in A. We proceed

by induction. It does not follow that the resulting chain (an)n∈N is cofinal inA but it is
true that its supremum is also the supremum of A, because both subsets ofD dominate
the same set of basis elements.

This construction also shows that ω-approximation is the same as approximation in
a continuous ω-ccpo. The same basis B may then be used to show thatD is a continu-
ous domain. (The directedness of the sets Bx follows as in Proposition 2.2.4(1).)

(2) follows from the proof of (1), so it remains to show (3). Monotonicity of the
function f is implied in the definition of ω-continuity. Therefore a directed set A ⊆ D
is mapped onto a directed set in E and also f(

⊔

↑A) +
⊔

↑f(A) holds. Let (an)n∈N

be an ω-chain in A with
⊔

↑A =
⊔

↑
n∈N

an, as constructed in the proof of (1). Then
we have f(

⊔

↑A) = f(
⊔

↑
n∈N

an) =
⊔

↑
n∈N

f(an) &
⊔

↑f(A).

If we drop the crucial assumption about the countability of the basis then the two
theories bifurcate and, in our opinion, the theory based on ω-chains becomes rather
bizarre. To give just one illustration, observe that simple objects, such as powersets,
may fail to be algebraic domains. There remains the question, however, whether in the
realm of a mathematical theory of computation one should start with ω-chains. Argu-
ments in favor of this approach point to pedagogy and foundations. The pedagogical
aspect is somewhat weakened by the fact that even in a continuous ω-ccpo the sets ↓↓x
happen to be directed. Glossing over this fact would tend to mislead the student. In
our eyes, the right middle ground for a course on domain theory, then, would be to
start with ω-chains and motivations from semantics and then at some point (probably
where the ideal completion of a poset is discussed) to switch to directed sets as the
more general concept. This suggestion is hardly original. It is in direct analogy with
the way students are introduced to topological concepts.

Turning to foundations, we feel that the necessity to choose chains where directed
subsets are naturally available (such as in function spaces) and thus to rely on the
Axiom of Choice without need, is a serious stain on this approach. To take foundational
questions seriously implies a much deeper re-working of the theory: some pointers to
the literature will be found in Section 8.

We do not feel the need to say much about the use of chains of arbitrary cardi-
nality. This adds nothing in strength (because of Proposition 2.1.15) but has all the
disadvantages pointed out for ω-chains already.
bases vs. intrinsic descriptions. The definition of a continuous domain given here

differs from, and is in fact more complicated than the standard one (which we pre-
sented as Proposition 2.2.7(1)). We nevertheless preferred this approach to the concept
of approximation for three reasons. Firstly, the standard definition does not allow the
restriction of the size of continuous domains. In this respect not the cardinality of a do-
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main but the minimal cardinality of a basis is of interest. Secondly, we wanted to point
out the strong analogy between algebraic and continuous domains. And, indeed, the
proofs we have given so far for continuous domains specialize directly to the algebraic
case if one replaces ‘B’ by ‘K(D)’ throughout. Thus far at least, proofs for algebraic
domains alone would not be any shorter. And, thirdly, we wanted to stress the idea of
approximation by elements which are (for whatever reason) simpler than others. Such
a notion of simplicity does often exist for continuous domains (such as rational vs. real
numbers), even though its justification is not purely order-theoretical (see 8.1.1).
algebraic vs. continuous. This brings up the question of why one bothers with con-

tinuous domains at all. There are two important reasons but they depend on definitions
introduced later in this text. The first is the simplification of the mathematical theory
of domains stemming from the possibility of freely using retracts (see Theorem 3.1.4
below). The second is the observation that in algebraic domains two fundamental con-
cepts of domain theory essentially coincide, namely, that of a Scott-open set and that of
a compact saturated set. We find it pedagogically advantageous to be able to distinguish
between the two.
continuous dcpo vs. continuous domain. It is presently common practice to start

a paper in semantics or domain theory by defining the subclass of dcpo’s of interest
and then assigning the name ‘domain’ to these structures. We fully agree with this
custom of using ‘domain’ as a generic name. In this article, however, we will study
a full range of possible definitions, the most general of which is that of a dcpo. We
have nevertheless avoided calling these domains. For us, ‘domain’ refers to both ideas
essential to the theory, namely, the idea of convergence and the idea of approximation.

2.2.5 Useful properties

Let us start right away with the single most important feature of the order of approxi-
mation, the interpolation property.

Lemma 2.2.15. Let D be a continuous domain and let M ⊆ D be a finite set each
of whose elements approximates y. Then there exists y′ ∈ D such that M : y′ : y
holds. If B is a basis for D then y′ may be chosen from B. (We say, y′ interpolates
between M and y.)

Proof. GivenM : y inD we define the set

A = {a ∈ D | ∃a′ ∈ D : a : a′ : y}.

It is clearly non-empty. It is directed because if a : a′ : y and b : b′ : y then by
the directedness of ↓↓y there is c′ ∈ D such that a′ & c′ : y and b′ & c′ : y and again
by the directedness of ↓↓c′ there is c ∈ D with a & c : c′ and b & c : c′. We calculate
the supremumofA: let y′ be any element approximating y. Since ↓↓y′ ⊆ Awe have that
⊔

↑A +
⊔

↑
↓↓y

′ = y′. This holds for all y′ : y so by continuity y =
⊔

↑
↓↓y &

⊔

↑A.
All elements of A are less than y, so in fact equality holds:

⊔

↑
↓↓y =

⊔

↑A. Remember
that we started out with a setM whose elements approximate y. By definition there is
am ∈ A with m & am for eachm ∈ M . Let a be an upper bound of the am in A. By
definition, for some a′, a : a′ : y, and we can take a′ as an interpolating element
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between M and y. The proof remains the same if we allow only basis elements to
enter A.

Corollary 2.2.16. LetD be a continuous domain with a basisB and letA be a directed
subset of D. If c is an element approximating

⊔

↑A then c already approximates some
a ∈ A. As a formula:

↓↓
⊔

↑A =
⋃

a∈A

↓↓a.

Intersecting with the basis on both sides gives

BF↑A
=

⋃

a∈A

Ba.

Next we will illustrate how in a domain we can restrict attention to principal ideals.

Proposition 2.2.17. 1. If D is a continuous domain and if x, y are elements in D,
then x approximates y if and only if for all directed sets A with

⊔

↑A = y there
is an a ∈ A such that a + x.

2. The order of approximation on a continuous domain is the union of the orders of
approximation on all principal ideals.

3. A dcpo is continuous if and only if each principal ideal is continuous.

4. For a continuous domainD we have K(D) =
⋃

x∈D K(↓x).

5. A dcpo is algebraic if and only if each principal ideal is algebraic.

Proposition 2.2.18. 1. In a continuous domain minimal upper bounds of finite sets
of compact elements are again compact.

2. In a complete lattice the sets ↓↓x are 2-sub-semilattices.

3. In a complete lattice the join of finitely many compact elements is again compact.

Corollary 2.2.19. A complete lattice is algebraic if and only if each element is the join
of compact elements.

The infimum of compact elements need not be compact again, even in an algebraic
lattice. An example is given in Figure 6.

2.2.6 Bases as objects

In Section 2.2.2 we have seen how we can use bases in order to express properties of
the ambient domain. We will now study the question of how far we can reduce domain
theory to a theory of (abstract) bases. The resulting techniques will prove useful in
later chapters but we hope that they will also deepen the reader’s understanding of the
nature of domains.

We start with the question of what additional information is necessary in order to
reconstruct a domain from one of its bases. Somewhat surprisingly, it is just the order
of approximation. Thus we define:
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Figure 6: The meet of the compact elements a and b is not compact.

Definition 2.2.20. An (abstract) basis is given by a set B together with a transitive
relation≺ on B, such that

(INT) M ≺ x =⇒ ∃y ∈ B. M ≺ y ≺ x

holds for all elements x and finite subsets M of B.

Abstract bases were introduced in [Smy77] where they are called “R-structures”.
Examples of abstract bases are concrete bases of continuous domains, of course, where
the relation≺ is the restriction of the order of approximation. Axiom (INT) is satisfied
because of Lemma 2.2.15 and because we have required bases in domains to have
directed sets of approximants for each element.

Other examples are partially ordered sets, where (INT) is satisfied because of re-
flexivity. We will shortly identify posets as being exactly the bases of compact elements
of algebraic domains.

In what follows we will use the terminology developed at the beginning of this
chapter, even though the relation ≺ on an abstract basis need neither be reflexive nor
antisymmetric. This is convenient but in some instances looks more innocent than it
is. An ideal A in a basis, for example, has the property (following from directedness)
that for every x ∈ A there is another element y ∈ A with x ≺ y. In posets this doesn’t
mean anything but here it becomes an important feature. Sometimes this is stressed by
using the expression ‘A is a round ideal’. Note that a set of the form ↓x is always an
ideal because of (INT) but that it need not contain x itself. We will refrain from calling
↓x ‘principal’ in these circumstances.

Definition 2.2.21. For a basis 〈B,≺〉 let Idl(B) be the set of all ideals ordered by
inclusion. It is called the ideal completion of B. Furthermore, let i : B → Idl(B)
denote the function which maps x ∈ B to ↓x. If we want to stress the relation with
which B is equipped then we write Idl(B,≺) for the ideal completion.

Proposition 2.2.22. Let 〈B,≺〉 be an abstract basis.
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1. The ideal completion of B is a dcpo.

2. A : A′ holds in Idl(B) if and only if there are x ≺ y inB such thatA ⊆ i(x) ⊆
i(y) ⊆ A′.

3. Idl(B) is a continuous domain and a basis of Idl(B) is given by i(B).

4. If ≺ is reflexive then Idl(B) is algebraic.

5. If 〈B,≺〉 is a poset then B, K(Idl(B)), and i(B) are all isomorphic.

Proof. (1) holds because clearly the directed union of ideals is an ideal. Roundness
implies that every A ∈ Idl(B) can be written as

⋃

x∈A ↓x. This union is directed
because A is directed. This proves (2) and also (3). The fourth claim follows from the
characterization of the order of approximation. The last clause holds because there is
only one basis of compact elements for an algebraic domain.

Defining the product of two abstract bases as one does for partially ordered sets,
we have the following:

Proposition 2.2.23. Idl(B × B′) ∼= Idl(B) × Idl(B′)

Our ‘completion’ has a weak universal property:

Proposition 2.2.24. Let 〈B,≺〉 be an abstract basis and let D be a dcpo. For every
monotone function f : B → D there is a largest continuous function f̂ : Idl(B) → D
such that f̂ ◦ i is below f . It is given by f̂(A) =

⊔

↑f(A).

B

!
!

!
!

f

(
Idl(B)

i

' f̂ & D

The assignment f 9→ f̂ is a Scott-continuous map from [B
m
−→ D] to [Idl(B) −→ D].

If the relation ≺ is reflexive then f̂ ◦ i equals f .

Proof. Let us first check continuity of f̂ . To this end let (Ai)i∈I be a di-
rected collection of ideals. Using general associativity (Proposition 2.1.4(3))
we can calculate: f̂(

⊔

↑
i∈I Ai) = f̂(

⋃

i∈I Ai) =
⊔

↑{f(x) | x ∈
⋃

i∈I Ai} =
⊔

↑
i∈I

⊔

↑{f(x) | x ∈ Ai} =
⊔

↑
i∈I f̂(Ai).

Since f is assumed to be monotone, f(x) is an upper bound for f(↓x). This proves
that f̂ ◦ i is below f . If, on the other hand, g : Idl(B) → D is another continuous
function with this property then we have g(A) = g(

⋃

x∈A ↓x) =
⊔

↑
x∈A g(↓x) =

⊔

↑
x∈A g(i(x)) &

⊔

↑
x∈A f(x) = f̂(A).

The claim about the continuity of the assignment f 9→ f̂ is shown by the usual
switch of directed suprema.

If≺ is a preorder then we can show that f̂ ◦i = f : f̂(i(x)) = f̂(↓x) =
⊔

↑f(↓x) =
f(x).
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A particular instance of this proposition is the case that B and B′ are two abstract
bases and f : B → B′ is monotone. By the extension of f to Idl(B) we mean the map
î′ ◦ f : Idl(B) → Idl(B′). It maps an ideal A ⊆ B to the ideal ↓f(A).

Proposition 2.2.25. Let D be a continuous domain with basis B. Viewing 〈B,:〉 as
an abstract basis, we have the following:

1. Idl(B) is isomorphic to D. The isomorphism σ : Idl(B) → D is the extension ê
of the embedding of B into D. Its inverse β maps elements x ∈ D to Bx.

2. For every dcpoE and continuous function f : D → E we have f = ĝ ◦ β where
g is the restriction of f to B.

Proof. In a continuous domain we have x =
⊔

↑Bx for all elements, so σ ◦ β = idD.
Composing the maps the other way round we need to see that every c ∈ B which ap-
proximates

⊔

↑A, whereA is an ideal in 〈B,:〉, actually belongs toA. We interpolate:
c : d :

⊔

↑A and using the defining property of the order of approximation, we find
a ∈ A above d. Therefore c approximates a and belongs to A.

The calculation for (2) is straightforward: f(x) = f(
⊔

↑Bx) =
⊔

↑f(Bx) = ĝ(Bx) = ĝ(β(x)).

Corollary 2.2.26. A continuous function from a continuous domain D to a dcpo E is
completely determined by its behavior on a basis ofD.

As we now know how to reconstruct a continuous domain from its basis and how to
recover a continuous function from its restriction to the basis, we may wonder whether
it is possible to work with bases alone. There is one further problem to overcome,
namely, the fact that continuous functions do not preserve the order of approximation.
The only way out is to switch from functions to relations, where we relate a basis
element c to all basis elements approximating f(c). This can be axiomatized as follows.

Definition 2.2.27. A relation R between abstract bases B and C is called approx-
imable if the following conditions are satisfied:

1. ∀x ∈ B ∀y, y′ ∈ C. (xRy A y′ =⇒ xRy′);

2. ∀x ∈ B ∀M ⊆fin C. (∀y ∈ M. xRy =⇒ (∃z ∈ C. xRz and z A M));

3. ∀x, x′ ∈ B ∀y ∈ C. (x′ A xRy =⇒ x′Ry);

4. ∀x ∈ B ∀y ∈ C. (xRy =⇒ (∃z ∈ B. x A zRy)).

The following is then proved without difficulties.

Theorem 2.2.28. The category of abstract bases and approximable relations is equiv-
alent to CONT, the category of continuous dcpo’s and continuous maps.

The formulations we have chosen in this section allow us immediately to read off
the corresponding results in the special case of algebraic domains. In particular:

Theorem 2.2.29. The category of preorders and approximable relations is equivalent
to ALG, the category of algebraic dcpo’s and continuous maps.
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2.3 Topology
By a topology on a space X we understand a system of subsets of X (called the open
sets), which is closed under finite intersections and infinite unions. It is an amazing
fact that by a suitable choice of a topology we can encode all information about con-
vergence, approximation, continuity of functions, and even points ofX themselves. To
a student of Mathematics this appears to be an immense abstraction from the intuitive
beginnings of analysis. In domain theory we are in the lucky situation that we can tie
up open sets with the concrete idea of observable properties. This has been done in
detail earlier in this handbook, [Smy92], and we may therefore proceed swiftly to the
mathematical side of the subject.

2.3.1 The Scott-topology on a dcpo

Definition 2.3.1. Let D be a dcpo. A subset A is called (Scott-)closed if it is a lower
set and is closed under suprema of directed subsets. Complements of closed sets are
called (Scott-)open; they are the elements of σD, the Scott-topology on D.

We shall use the notation Cl(A) for the smallest closed set containingA. Similarly,
Int(A) will stand for the open kernel of A.

A Scott-open setO is necessarily an upper set. By contraposition it is characterized
by the property that every directed set whose supremum lies in O has a non-empty
intersection with O.

Basic examples of closed sets are principal ideals. This knowledge is enough to
show the following:

Proposition 2.3.2. Let D be a dcpo.

1. For elements x, y ∈ D the following are equivalent:

(a) x & y,
(b) Every Scott-open set which contains x also contains y,
(c) x ∈ Cl({y}).

2. The Scott-topology satisfies the T0 separation axiom.

3. 〈D,σD〉 is a Hausdorff (= T2) topological space if and only if the order on D
is trivial.

Thus we can reconstruct the order between elements of a dcpo from the Scott-
topology. The same is true for limits of directed sets.

Proposition 2.3.3. Let A be a directed set in a dcpo D. Then x ∈ D is the supremum
of A if and only if it is an upper bound for A and every Scott-neighborhood of x
contains an element of A.

Proof. Indeed, the closed set ↓
⊔

↑A separates the supremum from all other upper
bounds of A.
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Proposition 2.3.4. For dcpo’sD and E, a function f from D to E is Scott-continuous
if and only if it is topologically continuous with respect to the Scott-topologies on D
and E.

Proof. Let f be a continuous function from D to E and let O be an open subset of E.
It is clear that f−1(O) is an upper set because continuous functions are monotone. If
f maps the element x =

⊔

↑
i∈I xi ∈ D into O then we have f(x) = f(

⊔

↑
i∈I xi) =

⊔

↑
i∈I f(xi) ∈ O and by definition there must be some xi which is mapped into O.

Hence f−1(O) is open in D.
For the converse assume that f is topologically continuous. We first show that f

must be monotone: Let x & x′ be elements of D. The inverse image of the Scott-
closed set ↓f(x′) contains x′. Hence it also contains x. Now let A ⊆ D be directed.
Look at the inverse image of the Scott-closed set ↓(

⊔

↑
a∈A f(a)). It contains A and is

Scott-closed, too. So it must also contain
⊔

↑A. Since by monotonicity f(
⊔

↑A) is an
upper bound of f(A), it follows that f(

⊔

↑A) is the supremum of f(A).

So much for the theme of convergence. Let us now proceed to see in how far
approximation is reflected in the Scott-topology.

2.3.2 The Scott-topology on domains

In this subsection we work with the second-most primitive form of open sets, namely
those which can be written as ↑↑x. We start by characterizing the order of approxima-
tion.

Proposition 2.3.5. Let D be a continuous domain. Then the following are equivalent
for all pairs x, y ∈ D:

1. x : y,

2. y ∈ Int(↑x),

3. y ∈ ↑↑x.

Comment: Of course, (1) is equivalent to (3) in all dcpos.

Proposition 2.3.6. Let D be a continuous domain with basis B. Then openness of a
subset O of D can be characterized in the following two ways:

1. O =
⋃

x∈O
↑↑x,

2. O =
⋃

x∈O∩B
↑↑x.

This can be read as saying that every open set is supported by its members from the
basis. We may therefore ask how the Scott-topology is derived from an abstract basis.

Proposition 2.3.7. Let (B,≺) be an abstract basis and letM be any subset ofB. Then
the set {A ∈ Idl(B) | M ∩ A 8= ∅} is Scott-open in Idl(B) and all open sets on Idl(B)
are of this form.
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This, finally, nicely connects the theory up with the idea of an observable property.
If we assume that the elements of an abstract basis are finitely describable and finitely
recognisable (and we strongly approve of this intuition) then it is clear how to observe
a property in the completion: we have to wait until we see an element from a given set
of basis elements.

We also have the following sharpening of Proposition 2.3.6:

Lemma 2.3.8. Every Scott-open set in a continuous domain is a union of Scott-open
filters.

Proof. Let x be an element in the open set O. By Proposition 2.3.6 there is an ele-
ment y ∈ O which approximates x. We repeatedly interpolate between y and x. This
gives us a sequence y : . . . : yn : . . . : y1 : x. The union of all ↑yn is a
Scott-open filter containing x and contained in O.

In this subsection we have laid the groundwork for a formulation of Domain The-
ory purely in terms of the lattice of Scott-open sets. Since we construe open sets as
properties we have also brought logic into the picture. This relationship will be looked
at more closely in Chapter 7. There and in Section 4.2.3 we will also exhibit more
properties of the Scott-topology on domains.

Exercises 2.3.9. 1. Formalize the passage from preorders to their quotient posets.

2. Draw line diagrams of the powersets of a one, two, three, and four element set.

3. Show that a poset which has all suprema also has all infima, and vice versa.

4. Refine Proposition 2.1.7 by showing that the fixpoints of a monotone function on
a complete lattice form a complete lattice. Is it a sublattice?

5. Show that finite directed sets have a largest element. Characterize the class of
posets in which this is true for every directed set.

6. Show that the directed set of finite subsets of real numbers does not contain a
cofinal chain.

7. Which of the following are dcpo’s: R, [0, 1] (unit interval), Q, Z− (negative
integers)?

8. Let f be a monotone map between complete lattices L and M and let A be a
subset of L. Prove: f(

⊔

A) +
⊔

f(A).

9. Show that the category of posets and monotone functions forms a cartesian
closed category.

10. Draw the line diagram for the function space of the flat booleans (see Figure 1).

11. Show that an ideal in a (binary) product of posets can always be seen as the
product of two ideals from the individual posets.
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12. Show that a map f between two dcpo’sD and E is continuous if and only if for
all directed sets A in D, f(

⊔

↑A) =
⊔

f(A) holds (i.e., monotonicity does not
need to be required explicitly).

13. Give an example of a monotone map f on a pointed dcpo D for which
⊔

↑
n∈N

fn(⊥) is not a fixpoint. (Some fixpoint must exist by Proposition 2.1.16.)

14. Use fixpoint induction to prove the following. Let f, g : D → D be continuous
functions on a pointed dcpo D with f(⊥) = g(⊥), and f ◦ g = g ◦ f . Then
fix(f) = fix(g).

15. (Dinaturality of fixpoints) Let D, E be pointed dcpo’s and let f : D →
E, g : E → D be continuous functions. Prove

fix(g ◦ f) = g(fix(f ◦ g)) .

16. Show that Lemma 2.1.21 uniquely characterizes fix among all fixpoint operators.

17. Prove: Given pointed dcpo’sD and E and a continuous function f : D × E →
E there is a continuous function Y (f) : D → E such that Y (f) = f ◦
〈idD, Y (f)〉 holds. (This is the general definition of a category having fixpoints.)
How does Theorem 2.1.19 follow from this?

18. Show that each version of the natural numbers as shown in Figure 2 is an exam-
ple of a countable dcpo whose function space is uncountable.

19. Characterize the order of approximation on the unit interval. What are the com-
pact elements?

20. Show that in finite posets every element is compact.

21. Let L be the lattice of open sets of Q, where Q is equipped with the ordinary
metric topology. Show that no two non-empty open sets approximate each other.
Conclude that L is not continuous.

22. Prove Proposition 2.2.10.

23. Extend Proposition 2.2.10 in the following way: For every finite subset M of
a continuous dcpo D with basis B there exists M ′ ⊆ B, such that x 9→ x′ is
an order-isomorphism between M and M ′ and such that for all x ∈ M , the
element x′ belongs to Bx.

24. Prove Proposition 2.2.17.

25. Show that elements of an abstract basis, which approximate no other element,
may be deleted without changing the ideal completion.

26. Show that if x is a non-compact element of a basisB for a continuous domainD
then B \ {x} is still a basis. (Hint: Use the interpolation property.)
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27. The preceding exercise shows that different bases can generate the same do-
main. Show that for a fixed basis different orders of approximation may also
yield the same domain. Show that this will definitely be the case if the two orders
≺1 and ≺2 satisfy the equations≺1◦≺2 =≺1 and ≺2◦≺1 =≺2.

28. Consider Proposition 2.2.22(2). Give an example of an abstract basis B which
shows that i(x) : i(y) in Idl(B) does not entail x ≺ y.

29. What is the ideal completion of 〈Q, <〉?

30. Let ≺ be a relation on a set B such that ≺◦≺ = ≺ holds. Give an example
showing that Axiom (INT) (Definition 2.2.20) need not be satisfied. Nevertheless,
Idl(B,≺) is a continuous domain. What is the advantage of our axiomatization
over this simpler concept?

31. Spell out the proof of Theorem 2.2.28.

32. Prove that in a dcpo every upper set is the intersection of its Scott-
neighborhoods.

33. Show that in order to construct the Scott-closure of a lower setA of a continuous
domain it is sufficient to add all suprema of directed subsets to ↓A. Give an
example of a non-continuous dcpo where this fails.

34. Given a subsetX in a dcpoD let X̄ be the smallest superset ofX which is closed
against the formation of suprema of directed subsets. Show that the cardinality
of X̄ can be no greater than 2|X|. (Hint: Construct a directed suprema closed
superset of X by adding all existing suprema to X .)

33



3 Domains collectively
3.1 Comparing domains
3.1.1 Retractions

A reader with some background in universal algebra may already have missed a discus-
sion of sub-dcpo’s and quotient-dcpo’s. The reason for this omission is quite simple:
there is no fully satisfactory notion of sub-object or quotient in domain theory based
on general Scott-continuous functions. And this is because the formation of directed
suprema is a partial operation of unbounded arity. We therefore cannot hope to be able
to employ the tools of universal algebra. But if we combine the ideas of sub-object and
quotient then the picture looks quite nice.

Definition 3.1.1. Let P and Q be posets. A pair s : P → Q, r : Q → P of monotone
functions is called a monotone section retraction pair if r ◦ s is the identity on P . In
this situation we will call P a monotone retract of Q.

If P and Q are dcpo’s and if both functions are continuous then we speak of a
continuous section retraction pair.

We will omit the qualifying adjective ‘monotone’, respectively ‘continuous’, if the
properties of the functions are clear from the context. We will also use s-r-pair as a
shorthand.

One sees immediately that in an s-r-pair the retraction is surjective and the section
is injective, so our intuition about P being both a sub-object and a quotient of Q is
justified. In such a situation P inherits many properties from Q:

Proposition 3.1.2. Let P and Q be posets and let s : P → Q, r : Q → P be a mono-
tone section retraction pair.

1. Let A be any subset of P . If s(A) has a supremum in Q then A has a supremum
in P . It is given by r(

⊔

s(A)). Similarly for the infimum.

2. IfQ is a (pointed) dcpo, a semilattice, a lattice or a complete lattice then so is P .

Proof. Because of r ◦ s = idP and the monotonicity of r it is clear that r(
⊔

s(A))
is an upper bound for A. Let x be another such. Then by the monotonicity of s we
have that s(x) is an upper bound of s(A) and hence it is above

⊔

s(A). So we get
x = r(s(x)) + r(

⊔

s(A)).
The property of being a (pointed) dcpo, semilattice, etc., is defined through the ex-

istence of suprema or infima of certain subsets. The shape of these subsets is preserved
by monotone functions and so (2) follows from (1).

Let us now turn to continuous section retraction pairs.

Lemma 3.1.3. Let (s, r) be a continuous section retraction pair between dcpo’s
D and E and let B be a basis for E. Then r(B) is a basis forD.
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Proof. Let c ∈ B be an approximant to s(x) for x ∈ D. We show that r(c) approxi-
mates x. To this end let A be a directed subset of D with

⊔

↑A + x. By the continuity
of s we have

⊔

↑s(A) = s(
⊔

↑A) + s(x) and so for some a ∈ A, s(a) + c must hold.
This implies a = r(s(a)) + r(c). The continuity of r gives us that x is the supremum
of r(Bs(x)).

Theorem 3.1.4. A retract of a continuous domain via a continuous s-r-pair is contin-
uous.

The analogous statement for algebraic domains does not hold in general. Instead
of constructing a particular counterexample, we use our knowledge about the ideal
completion to get a general, positive result which implies this negative one.

Theorem 3.1.5. Every (ω-) continuous domain is the retract of an (ω-) algebraic do-
main via a continuous s-r-pair.

In more detail, we have:

Proposition 3.1.6. Let D be a continuous domain with basis B. Then the maps
s : D → Idl(B,&), x 9→ Bx and r : Idl(B,&) → D, A 9→

⊔

↑A constitute a con-
tinuous section retraction pair betweenD and Idl(B,&).

Proof. The continuity of r follows from general associativity, Proposition 2.1.4, and
the fact that directed suprema in Idl(B) are directed unions. For the continuity of s we
use the interpolation property in the form of Proposition 2.2.16(2).

3.1.2 Idempotents

Often the section part of an s-r-pair is really a subset inclusion. In this case we can hide
it and work with the map s ◦ r on E alone. It is idempotent, because (s ◦ r) ◦ (s ◦ r) =
s ◦ (r ◦ s) ◦ r = s ◦ r.

Proposition 3.1.7. 1. The image of a continuous idempotent map f on a dcpoD is
a dcpo. The suprema of directed subsets of im(f), calculated in im(f), coincide
with those calculated in D. The inclusion im(f) → D is Scott-continuous.

2. The set of all continuous idempotent functions on a dcpo is again a dcpo.

Proof. (1) The first part follows from Proposition 3.1.2 because the inclusion is surely
monotone. For the second part let A be a directed set contained in im(f). We need to
see that

⊔

↑A belongs to im(f) again. This holds because f is continuous:
⊔

↑A =
⊔

↑f(A) = f(
⊔

↑A).
(2) Let (fi)i∈I be a directed family of continuous idempotents. For any x ∈ D we
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can calculate

(
⊔

↑

i∈I

fi) ◦ (
⊔

↑

j∈I

fj)(x) =
⊔

↑

i∈I

fi(
⊔

↑

j∈I

fj(x))

=
⊔

↑

i∈I

⊔

↑

j∈I

fi(fj(x))

=
⊔

↑

i∈I

fi(fi(x))

=
⊔

↑

i∈I

fi(x).

Hence the supremum of continuous idempotents is again an idempotent function. We
have proved in Proposition 2.1.18 that it is also continuous.

If f is a continuous idempotent map on a continuous domain D then we know
that its image is again continuous. But it is not true that the order of approximation
on im(f) is the restriction of the order of approximation on D. For example, every
constant map is continuous and idempotent. Its image is an algebraic domain with one
element, which is therefore compact. But surely not every element of a continuous
domain is compact. However, we can say something nice about the Scott-topology on
the image:

Proposition 3.1.8. If f is a continuous idempotent function on a dcpo D then the
Scott-topology on im(f) is the restriction of the Scott-topology onD to im(f).

Proof. This follows immediately because a continuous idempotent function f gives
rise to a continuous s-r-pair between im(f) andD.

Useful examples of idempotent self-maps are retractions retx onto principal ideals.
They are given by

retx(y) =

{

y, if y & x;
x, otherwise.

Their continuity follows from the fact that ↓x is always Scott-closed. Dually, we can
define a retraction onto a principal filter ↑c. It is Scott-continuous if (but not only if)
its generator c is compact.

3.1.3 Adjunctions

An easy way to avoid writing this subsection would be to refer to category theory and to
translate the general theory of adjoint functors into the poset setting. However, we feel
that the right way to get used to the idea of adjointness is to start out with a relatively
simple situation such as is presented by domain theory. (In fact, we will use adjoint
functors later on, but really in a descriptive fashion only.)

Let us start with the example of a surjective map f from a poset Q onto a poset P .
It is natural to ask whether there is a one-sided inverse e : P → Q for f , i.e. a map
such that f ◦ e = idP holds. Figure 7 illustrates this situation. Such a map must
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Figure 7: The right inverse problem for a surjective function

pick out a representative from f−1(x) for each x ∈ P . Set-theoretically this can be
done, but the point here is that we want e to be monotone. If we succeed then e and f
form a (monotone) section retraction pair. Even nicer would it be if we could pick
out a canonical representative from f−1(x), which in the realm of order theory means
that we want f−1(x) to have a least (or largest) element. If this is the case then how
can we ensure that the assignment e : x 9→ min(f−1(x)) is monotone? The solution
is suggested by the observation that if e is monotone then e(x) is not only the least
element of f−1(x) but also of f−1(↑x). This condition is also sufficient. The switch
from f−1(x) to f−1(↑x) (and this is a trick to remember) may allow us to construct
a partial right inverse even if f is not surjective. Thus we arrive at a first, tentative
definition of an adjunction.

Definition 3.1.9. (preliminary) Let P andQ be posets and let l : P → Q and u : Q →
P be monotone functions. We say that (l, u) is an adjunction between P and Q if for
every x ∈ P we have that l(x) is the least element of u−1(↑x).

This definition is simple and easy to motivate. But it brings out just one aspect of
adjoint pairs, namely, that l is uniquely determined by u. There is much more:

Proposition 3.1.10. Let P and Q be posets and l : P → Q and u : Q → P be mono-
tone functions. Then the following are equivalent:

1. ∀x ∈ P. l(x) = min(u−1(↑x)),

2. ∀y ∈ Q. u(y) = max(l−1(↓y)),

3. l ◦ u & idQ and u ◦ l + idP ,

4. ∀x ∈ P ∀y ∈ Q. (x & u(y) ⇔ l(x) & y).

(For (4)=⇒(1) the monotonicity of u and l is not needed.)

Proof. (1)=⇒(2) Pick an element y ∈ Q. Then because u(y) & u(y)we have from (1)
that l(u(y)) & y holds. So u(y) belongs to l−1(↓y). Now let x′ be any element of
l−1(↓y), or, equivalently, l(x′) & y. Using (1) again, we see that this can only happen
if u(y) + x′ holds. So u(y) is indeed the largest element of l−1(↓y). The converse is
proved analogously, of course.

(1) and (2) together immediately give both (3) and (4).
From (3) we get (4) by applying the monotone map l to the inequality x & u(y)

and using l ◦ u & idQ.
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Assuming (4) we see immediately that l(x) is a lower bound for u−1(↑x). But
because l(x) & l(x) and hence x & u(l(x))we have that l(x) also belongs to u−1(↑x).
We get the monotonicity of l as follows: If x & x′ holds in P then because l(x′) &
l(x′) we have x′ & u(l(x′)) and by transitivity x & u(l(x′)). Using (4) again, we get
l(x) & l(x′).

We conclude that despite the lopsided definition, the situation described by an ad-
junction is completely symmetric. And indeed, adjunctions are usually introduced us-
ing either (3) or (4).

Definition 3.1.11. (official) Let P and Q be posets and let l : P → Q and u : Q → P
be functions. We say that (l, u) is an adjunction between P and Q if for all x ∈ P and
y ∈ Q we have x & u(y) ⇔ l(x) & y. We call l the lower and u the upper adjoint and
write l : P ! Q : u.

Proposition 3.1.12. Let l : P ! Q : u be an adjunction between posets.

1. u ◦ l ◦ u = u and l ◦ u ◦ l = l,

2. The image of u and the image of l are order-isomorphic. The isomorphisms are
given by the restrictions of u and l to im(l) and im(u), respectively.

3. u is surjective⇔ u ◦ l = idP ⇔ l is injective,

4. l is surjective⇔ l ◦ u = idQ ⇔ u is injective,

5. l preserves existing suprema, u preserves existing infima.

Proof. (1) We use Proposition 3.1.10(3) twice: u = idP ◦u & (u◦ l)◦u = u◦(l◦u) &
u ◦ idQ = u.

(2) The equations from (1) say precisely that on the images of u and l, u ◦ l and
l ◦ u, respectively, act like identity functions.

(3) If u is surjective then we can cancel u on the right in the equation u ◦ l ◦ u = u
and get u ◦ l = idP . From this it follows that l must be injective.

(5) Let x =
⊔

A for A ⊆ P . By monotonicity, l(x) + l(a) for each a ∈ A.
Conversely, let y be any upper bound of l(A). Then u(y) is an upper bound for each
u(l(a)) which in turn is above a. So u(y) +

⊔

A = x holds and this is equivalent to
y + l(x).

The last property in the preceding proposition may be used to define an adjunc-
tion in yet another way, the only prerequisite being that there are enough sets with an
infimum (or supremum). This is the Adjoint Functor Theorem for posets.

Proposition 3.1.13. Let f : L → P be a monotone function from a complete lattice to
a poset. Then the following are equivalent:

1. f preserves all infima,

2. f has a lower adjoint.

And similarly: f preserves all suprema if and only if f has an upper adjoint.
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Proof. We already know how to define a candidate for a lower adjoint g; we try g(x) =!
f−1(↑x). All that remains, is to show that g(x) belongs to f−1(↑x). This follows

because f preserves meets: f(g(x)) = f(
!

f−1(↑x)) =
!

f(f−1(↑x)) +
!
↑x =

x.

This proposition gives us a way of recognizing an adjoint situation in cases where
only one function is explicitly given. It is then useful to have a notation for the missing
mapping. We write f∗ for the upper and f∗ for the lower adjoint of f .

Now it is high time to come back to domains and see what all this means in our
setting.

Proposition 3.1.14. Let l : D ! E : u be an adjunction between dcpo’s.

1. l is Scott-continuous.

2. If u is Scott-continuous then l preserves the order of approximation.

3. If D is continuous then the converse of (2) is also true.

Proof. Continuity of the lower adjoint follows from Proposition 3.1.12(5). So let x :
y be elements in D and let A be a directed subset of E such that l(y) &

⊔

↑A holds.
This implies y & u(

⊔

↑A) and from the continuity of u we deduce y &
⊔

↑u(A).
Hence some u(a) is above x which, going back to E, means l(x) & a.

(3) For the converse let A be any directed subset of E. Monotonicity of u yields
⊔

↑u(A) & u(
⊔

↑A). In order to show that the other inequality also holds, we prove
that

⊔

↑u(A) is above every approximant to u(
⊔

↑A). Indeed, if x : u(
⊔

↑A)we have
l(x) : l(u(

⊔

↑A)) &
⊔

↑A by assumption. So some a is above l(x) and for this a we
have x & u(a) &

⊔

↑u(A).

3.1.4 Projections and sub-domains

Let us now combine the ideas of Section 3.1.1 and 3.1.3.

Definition 3.1.15. Let D and E be dcpo’s and let e : D → E and p : E → D be
continuous functions. We say that (e, p) is a continuous embedding projection pair (or
e-p-pair) if p ◦ e = idD and e ◦ p & idE .

We note that the section retraction pair between a continuous domain and its ideal
completion as constructed in Section 3.1.1 is really an embedding projection pair.

From the general theory of adjunctions and retractions we already know quite a
bit about e-p-pairs. The embedding is injective, p is surjective, e preserves existing
suprema and the order of approximation, p preserves existing infima, D is continuous
if E is continuous, and, finally, embeddings and projections uniquely determine each
other. Because of this last property the term ‘embedding’ has a well-defined meaning;
it is an injective function which has a Scott-continuous upper adjoint.

An injective lower adjoint also reflects the order of approximation:

Proposition 3.1.16. Let e : D ! E : p be an e-p-pair between dcpo’s and let x and y
be elements of D. Then e(x) : e(y) holds in E if and only if x approximates y in D.
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Let us also look at the associated idempotent e◦p onE. As it is below the identity, it
makes good sense to call such a function a kernel operator, but often such maps are just
called projections. We denote the set of kernel operators on a dcpo D by [D

↓
−→ D].

It is important to note that while a kernel operator preserves infima as a map fromD to
its image, it does not have any preservation properties as a map from D to D besides
Scott-continuity. What we can say is summarized in the following proposition.

Proposition 3.1.17. Let D be a dcpo.

1. [D
↓

−→ D] is a dcpo.

2. If p is a kernel operator on D then for all x ∈ D we have that p(x) = max{y ∈
im(p) | y & x}.

3. The image of a kernel operator is closed under existing suprema.

4. :im(p)= (:D) ∩ (im(p) × im(p)).

5. For kernel operators p, p′ on D we have p & p′ if and only if im(p) ⊆ im(p′).

Proof. (1) is proved as Proposition 3.1.7 and (2) follows because p together with the
inclusion of im(p) intoD form an adjunction. This also shows (4). Finally, (3) and (5)
are direct consequences of (2).

In the introduction we explained the idea that the order on a semantic domain
models the relation of some elements being better than others, where—at least in
semantics—‘better’ may be replaced more precisely by ‘better termination’. Thus we
view elements at the bottom of a domain as being less desirable than those higher up;
they are ‘proto-elements’ from which fully developed elements evolve as we go up in
the order. Now, the embedding part of an e-p-pair e : D ! E : p places D at the bot-
tom ofE. Following the above line of thought, we may think ofD as being a collection
of proto-elements from which the elements of E evolve. Because there is the projec-
tion part as well, every element of E exists in some primitive form in D already. Also,
D contains some information about the order and the order of approximation on E.
We may therefore think of D as a preliminary version of E, as an approximation to E
on the domain level. This thought is made fruitful in Sections 4.2 and 5. Although the
word does not convey the whole fabric of ideas, we name D a sub-domain of E, just
in case there is an e-p-pair e : D ! E : p.

3.1.5 Closures and quotient domains

The sub-domain relation is preeminent in domain theory but, of course, we can also
combine retractions and adjunctions the other way around. Thus we arrive at contin-
uous insertion closure pairs (i-c-pairs). Because adjunctions are not symmetric as far
as the order of approximation is concerned, Proposition 3.1.14, the situation is not just
the order dual of that of the previous subsection. We know that the insertion preserves
existing infima and so on, but in addition we now have that the surjective part preserves
the order of approximation and therefore, D is algebraic if E is.
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The associated idempotent is called a closure operator. For closure operators the
same caveat applies as for kernel operators; they need not preserve suprema. Worse,
such functions do no longer automatically have a Scott-continuous (upper) adjoint.
This is the price we have to pay for the algebraicity of the image. Let us formulate this
precisely.

Proposition 3.1.18. Let D be an algebraic domain and let c : D → D be a monotone
idempotent function above idD . Then im(c) is again an algebraic domain if and only if
it is closed under directed suprema.

The reader will no doubt recognize this statement as being a reformulation and
generalization of our example of inductive closure systems from Chapter 2, Proposi-
tion 2.2.9. It is only consequent to callD a quotient domain of the continuous domain
E if there exists an i-c-pair e : D " E : c.

3.2 Finitary constructions
In this section we will present a few basic ways of putting domains together so as to
build up complicated structures from simple ones. There are three aspects of these
constructions which we are interested in. The first one is simply the order-theoretic
definition and the proof that we stay within dcpo’s and Scott-continuous functions.
The second one is the question how the construction can be described in terms of bases
and whether the principle of approximation can be retained. The third one, finally, is
the question of what universal property the construction has. This is the categorical
viewpoint. Since this Handbook contains a chapter on category theory, [Poi92] (in
particular, Chapter 2), we need not repeat here the arguments for why this is a fruitful
and enlightening way of looking at these type constructors.

There are, however, several categories that we are interested in and a construction
may play different roles in different settings. Let us therefore list the categories that,
at this point, seem suitable as a universe of discourse. There is, first of all, DCPO, the
category of dcpo’s and Scott-continuous functions as introduced in Section 2.1. We
can restrict the objects by taking only continuous or, more special, algebraic domains.
Thus we arrive at the full subcategories CONT and ALG of DCPO. Each of these
may be further restricted by requiring the objects to have a bottom element (and Theo-
rem 2.1.19 tells us why one would be interested in doing so) resulting in the categories
DCPO⊥, CONT⊥, and ALG⊥. The presence of a distinguished point in each object
suggests that morphisms should preserve them. But this is not really appropriate in
semantics; strict functions are tied to a particular evaluation strategy. For us this means
that there is yet another cascade of categories,DCPO⊥!, CONT⊥!, andALG⊥!, where
objects have bottom elements and morphisms are strict and Scott-continuous. Finally,
we may bound the size of (minimal) bases for continuous and algebraic domains to be
countable. We indicate this by the prefix ‘ω-’.
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3.2.1 Cartesian product

Definition 3.2.1. The cartesian product of two dcpo’sD andE is given by the following
data:

D × E = {〈x, y〉 | x ∈ D, y ∈ E},

〈x, y〉 & 〈x′, y′〉 if and only if x & x′ and y & y′.

This is just the usual product of sets, augmented by the coordinatewise order.
Through induction, we can define the cartesian product for finite non-empty collec-
tions of dcpo’s. For the product over the empty index set we define the result to be a
fixed one-element dcpo I.

Proposition 3.2.2. The cartesian product of dcpo’s is a dcpo. Suprema and infima are
calculated coordinatewise.

With each productD × E there are associated two projections:

π1 : D × E → D and π2 : D × E → E.

These projections are always surjective but they are upper adjoints only ifD and E are
pointed. So there is a slight mismatch with Section 3.1.4 here. Given a dcpo F and
continuous functions f : F → D and g : F → E, we denote the mediating morphism
from F toD × E by 〈f, g〉. It maps x ∈ F to 〈f(x), g(x)〉.

Proposition 3.2.3. Projections and mediating morphisms are continuous.

If f : D → D′ and g : E → E′ are Scott-continuous, then so is the mediating map
〈f ◦ π1, g ◦ π2〉 : D × E → D′ × E′. The common notation for it is f × g. Since
our construction is completely explicit, we have thus defined a functor in two variables
on DCPO.

Proposition 3.2.4. Let D and E be dcpo’s.

1. A tuple 〈x, y〉 approximates a tuple 〈x′, y′〉 inD×E if and only if x approximates
x′ in D and y approximates y′ in E.

2. If B and B′ are bases for D and E, respectively, then B × B′ is a basis for
D × E.

3. D × E is continuous if and only if D and E are.

4. K(D × E) = K(D) × K(E).

The categorical aspect of the cartesian product is quite pleasing; it is a categorical
product in each case. But we can say even more.

Lemma 3.2.5. Let C be a full subcategory of DCPO or DCPO⊥! which has finite
products. Then these are isomorphic to the cartesian product.
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In a restricted setting this was first observed in [Smy83a]. The general proof may
be found in [Jun89].

A useful property which does not follow from general categorical or topological
considerations, is the following.

Lemma 3.2.6. A function f : D × E → F is continuous if and only if it is continuous
in each variable separately.

Proof. Assume f : D × E → F is separately continuous. Then f is monotone, be-
cause given (x, y) & (x′, y′) we can fill in (x, y′) and use coordinatewise monotonicity
twice. The same works for continuity: if A ⊆ D × E is directed then

⊔

↑

(x,y)∈A

f(x, y) =
⊔

↑

x∈π1(A)

⊔

↑

y∈π2(A)

f(x, y)

=
⊔

↑

x∈π1(A)

f(x,
⊔

↑

y∈π2(A)

y)

= f(
⊔

↑

x∈π1(A)

x,
⊔

↑

y∈π2(A)

y)

= f(
⊔

↑A).

This proves the interesting direction.

3.2.2 Function space

We have introduced the function space in Section 2.1.6 already. It consists of all
continuous functions between two dcpo’s ordered pointwise. We know that this
is again a dcpo. The first morphism which is connected with this construction is
apply : [D −→ E] × D → E, 〈f, x〉 9→ f(x). It is continuous because it is contin-
uous in each argument separately: in the first because directed suprema of functions
are calculated pointwise, in the second, because [D −→ E] contains only continuous
functions.

The second standard morphism is the operation which rearranges a function of two
arguments into a combination of two unary functions. That is, if f maps D × E to F ,
then Curry(f) : D → [E −→ F ] is the mapping which assigns to d ∈ D the function
which assigns to e ∈ E the element f(d, e). Curry(f) is a continuous function because
of Lemma 3.2.6. And for completely general reasons we have that Curry itself is a
continuous operation from [D × E −→ F ] to [D −→ [E −→ F ]]. Another derived
operation is composition which is a continuous operation from [D −→ E]×[E −→ F ]
to [D −→ F ].

All this shows that the continuous function space is the exponential in DCPO.
Taking cartesian products and function spaces together we have shown that DCPO is
cartesian closed.

We turn the function space construction into a functor from DCPOop × DCPO to
DCPO by setting [· −→ ·](f, g)(h) = g ◦ h ◦ f , where f : D′ → D, g : E → E′ and
h is an element of [D −→ E].
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Figure 8: The coalesced sum of two pointed dcpo’s.

As for the product we can show that the choice of the exponential object is more
or less forced upon us. This again was first noticed by Smyth in the above mentioned
reference.

Lemma 3.2.7. LetC be a cartesian closed full subcategory ofDCPO. The exponential
of two objectsD and E of C is isomorphic to [D −→ E].

Let us now turn to the theme of approximation in function spaces. The reader
should brace himself for a profound disappointment: Even for algebraic domains it
may be the case that the order of approximation on the function space is empty! (Exer-
cise 3.3.12(11) discusses an example.) This fact together with Lemmas 3.2.5 and 3.2.7
implies that neither CONT nor ALG are cartesian closed. The only way to remedy
this situation is to move to more restricted classes of domains. This will be the topic of
Chapter 4.

3.2.3 Coalesced sum

In the category of sets the coproduct is given by disjoint union. This works equally
well for dcpo’s and there isn’t really anything interesting to prove about it. We denote
it byD

.
∪ E.

Disjoint union, however, destroys the property of having a least element and this
in turn is indispensable in proving that every function has a fixpoint, Theorem 2.1.19.
One therefore looks for substitutes for disjoint union which retain pointedness, but,
of course, one cannot expect a clean categorical characterization such as for cartesian
product or function space. (See also Exercise 3.3.12(12).) In fact, it has been shown in
[HP90] that we cannot have cartesian closure, the fixpoint property and coproducts in
a non-degenerate category.

So let us now restrict attention to pointed dcpo’s. One way of putting a family of
them together is to identify their bottom elements. This is called the coalesced sum and
denoted D ⊕ E. Figure 8 illustrates this operation. Elements from D ⊕ E different
from⊥D⊕E carry a label which indicates where they came from. We write them in the
form (x : i), i ∈ {1, 2}.

Proposition 3.2.8. The coalesced sum of pointed dcpo’s is a pointed dcpo.
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The individual dcpo’s may be injected into the sum in the obvious way:

inl(x) =

{

(x : 1), x 8= ⊥D;
⊥D⊕E, x = ⊥D

;

and
inr(x) =

{

(x : 2), x 8= ⊥E;
⊥D⊕E, x = ⊥E

.

A universal property for the sum holds only in the realm of strict functions:

Proposition 3.2.9. The coalesced sum of pointed dcpo’s is the coproduct in DCPO⊥!,
CONT⊥!, and ALG⊥!.

Once we accept the restriction to bottom preserving functions it is clear how to turn
the coalesced sum into a functor.

3.2.4 Smash product and strict function space

It is clear that inside DCPO⊥! a candidate for the exponential is not the full function
space but rather the set [D ⊥!

−→ E] of strict continuous functions from D to E. How-
ever, it does not harmonize with the product in DCPO⊥!, which, as we have seen, must
be the cartesian product. We do get a match if we consider the so-called smash product.
It is defined like the cartesian product but all tuples which contain at least one bottom
element are identified. Common notation isD ⊗ E.

We leave it to the reader to check that smash product and strict function space turn
DCPO⊥! into a monoidal closed category.

3.2.5 Lifting

Set-theoretically, lifting is the simple operation of adding a new bottom element to a
dcpo. Applied to D, the resulting structure is denoted by D⊥. Clearly, continuity or
algebraicity don’t suffer any harm from this.

Associated with it is the map up : D → D⊥ which maps each x ∈ D to its name-
sake in D⊥.

The categorical significance of lifting stems from the fact that it is left adjoint to
the inclusion functor from DCPO⊥! into DCPO. (Where a morphism f : D → E is
lifted by mapping the new bottom element ofD⊥ to the new bottom element of E⊥.)

3.2.6 Summary

For quick reference let us compile a table of the constructions looked at so far. A ‘#’
indicates that the category is closed under the respective construction, a ‘+’ says that, in
addition, the construction plays the expected categorical role as a product, exponential
or coproduct, respectively. Observe that for the constructions considered in this section
it makes no difference if we restrict the size of a (minimal) basis.
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DCPO DCPO⊥ DCPO⊥! CONT ALG
CONT⊥
ALG⊥

CONT⊥!
ALG⊥!

D × E + + + + + +
[D −→ E] + + #

D
.
∪ E + +

D ⊗ E # # # #

[D
⊥!
−→ E] # +
D ⊕ E # + # +

D⊥ # # # # # #

3.3 Infinitary constructions
The product and sum constructions from the previous section have infinitary counter-
parts. Generally, these work nicely as long as we are only concerned with questions
of convergence, but they cause problems with respect to the order of approximation.
This is exemplified by the fact that an infinite power of a finite poset may fail to be
algebraic. In any case, there is not much use of these operations in semantics. Much
more interesting is the idea of incrementally building up a domain in a limit process.
This is the topic of this section.

3.3.1 Limits and colimits

Our limit constructions are to be understood categorically and hence we refer once
more to [Poi92] for motivation and general results. Here are the basic defini-
tions. A diagram in a category C is given by a functor from a small category I
to C. We can describe, somewhat sloppily but more concretely, a diagram by a pair
〈(Di)i∈O, (fj : Dd(j) → Dc(j))j∈M 〉 of a family of objects and a family of connect-
ing morphisms. The shape of the diagram is thus encoded in the index sets O (which
correspond to the objects of I) and M (which correspond to the morphisms of I) and
in the maps c, d : M → O which corresponds to the dom and codom map on I. What
is lost is the information about composition in I. In the cases which interest us, this
is not a problem. A cone over such a diagram is given by an object D and a fam-
ily (fi : D → Di)i∈O of morphisms such that for all j ∈ M we have fj ◦fd(j) = fc(j).
A cone is limiting if for every other cone 〈E, (gi)i∈O〉 there is exactly one morphism
f : E → D such that for all i ∈ O, gi = fi ◦ f . If 〈D, (fi)i∈O〉 is a limiting cone,
then D is called limit and the fi are called limiting morphisms. The dual notions are
cocone, colimit, and colimiting morphism.

Theorem 3.3.1. DCPO has limits of arbitrary diagrams.

Proof. The proof follows general category theoretic principles. We describe the limit
of the diagram 〈(Di)i∈O, (fj : Dd(j) → Dc(j))j∈M 〉 as a set of particular elements of
the product of all Di’s, the so-called commuting tuples.

D = {〈xi : i ∈ O〉 ∈
∏

i∈O

Di | ∀j ∈ M. xc(j) = fj(xd(j))}

46



! ,
! !

,
, ,

! ! ! !
! !

,
, ,

, , , ,
, ,! ! !! ! ! !

/
/

// 0
0

00

!
!

##$
$ 111 222 %

%
222

%
%

3
3
3-
-
-
-

!
!

##$
$ 111 222 %

%
222

%
%

3
3
3-
-
-
-

$
$%

%
4
45
5 6
67
7

Figure 9: An expanding sequence of finite domains.

The order on the limit object is inherited from the product, that is, tuples are ordered
coordinatewise. It is again a dcpo because the coordinatewise supremumof commuting
tuples is commuting as all fj are Scott-continuous. This also proves that the projections
πj :

∏

i∈O Di → Dj restricted to D are continuous. They give us the maps needed to
complementD to a cone.

Given any other cone 〈E, (gi : E → Di)i∈O〉, we define the mediating morphism
h : E → D by h(x) = 〈gi(x) : i ∈ O〉. Again, it is obvious that this is well-defined
and continuous, and that it is the only possible choice.

We also have the dual:

Theorem 3.3.2. DCPO has colimits of arbitrary diagrams.

This was first noted in [Mar77] and, for a somewhat different setting, in [Mes77].
The simplest way to prove it is by reducing it to completeness à la Theorem 23.14
of [HS73]. This appears in [LS81]. A more detailed analysis of colimits appears in
[Fie92]. There the problem of retaining algebraicity is also addressed.

Theorem 3.3.3. DCPO is cartesian closed, complete and cocomplete.

Theorem 3.3.4. DCPO⊥! is monoidal closed, complete and cocomplete.

How about DCPO⊥, where objects have least elements but morphisms need not
preserve them? The truth is that both completeness and cocompleteness fail for this
category. On the other hand, it is the right setting for denotational semantics in most
cases. As a result of this mismatch, we quite often must resort to detailed proofs on
the element level and cannot simply apply general category theoretic principles. Let us
nevertheless write down the one good property of DCPO⊥:

Theorem 3.3.5. DCPO⊥ is cartesian closed.

3.3.2 The limit-colimit coincidence

The theorems of the previous subsection fall apart completely if we pass to domains,
that is, to CONT or ALG. To get better results for limits and colimits we must restrict
both the shape of the diagrams and the connecting morphisms used.
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For motivation let us look at a chain D1, D2, . . . of domains where each Dn is
a sub-domain of Dn+1 in the sense of Section 3.1.4. Taking up again the animated
language from that section we may think of the points of Dn+1 as growing out of
points ofDn, the latter being the buds which contain the leaves and flowers to be seen
at later stages. Figure 9 shows a, hopefully inspiring, example. Intuition suggests that
in such a situation a well-structured limit can be found by adding limit points to the
union of theDn, and that it will be algebraic if theDn are.

Definition 3.3.6. A diagram 〈(Dn)n∈N, (emn : Dn → Dm)n≤m∈N〉 in the category
DCPO is called an expanding sequence, if the following conditions are satisfied:

1. Each emn : Dn → Dm is an embedding. (The associated projection e∗mn we
denote by pnm.)

2. ∀n ∈ N. enn = idDn
.

3. ∀n ≤ m ≤ k ∈ N. ekn = ekm ◦ emn .

Note that because lower adjoints determine upper adjoints and vice versa, we have
pnk = pnm ◦ pmk whenever n ≤ m ≤ k ∈ N.

It turns out that, in contrast to the general situation, the colimit of an expanding
sequence can be calculated easily via the associated projections.

Theorem 3.3.7. Let 〈(Dn)n∈N, (emn : Dn → Dm)n≤m∈N〉 be an expanding sequence
in DCPO. Define

D = {〈xn : n ∈ N〉 ∈
∏

n∈N
Dn | ∀n ≤ m ∈ N. xn = pnm(xm)},

pm : D → Dm, 〈xn : n ∈ N〉 9→ xm, m ∈ N,

em : Dm → D, x 9→ 〈
⊔

↑
k,n,m pnk ◦ ekm(x) : n ∈ N〉, m ∈ N .3

Then

1. The maps (em, pm), m ∈ N, form embedding projection pairs and
⊔

↑
m∈N

em ◦
pm = idD holds.

2. 〈D, (pn)n∈N〉 is a limit of the diagram 〈(Dn)n∈N, (pnm)n≤m∈N〉. If
〈C, (gn)n∈N〉 is another cone, then the mediating map from C to D is given
by g(x) = 〈gn(x) : n ∈ N〉 or g =

⊔

↑
n∈N

en ◦ gn.

3. 〈D, (en)n∈N〉 is a colimit of the diagram 〈(Dn)n∈N, (emn)n≤m∈N〉. If
〈E, (fn)n∈N〉 is another cocone, then the mediating map from D to E is given
by f(〈xn : n ∈ N〉) =

⊔

↑
n∈N

fn(xn) or f =
⊔

↑
n∈N

fn ◦ pn.

Proof. We have already shown in Theorem 3.3.1 that a limit of the diagram
〈(Dn), (pnm)〉 is given by 〈D, (pn)〉 and that the mediating morphism has the (first)
postulated form.

3he directed supremum
F

↑
k"n,m pnk ◦ ekm(x) in the definition of em could be replaced by pnk ◦

ekm(x) for any upper bound k of {n, m} in N. However, this would actually make the proofs more cum-
bersome to write down.
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For the rest, let us start by showing that the functions em are well-defined, i.e. that
y = em(x) is a commuting tuple. Assume n ≤ n′. Then we have pnn′(yn′) =
pnn′(

⊔

↑
k,n′,m pn′k ◦ ekm(x)) =

⊔

↑
k,n′,m pnn′ ◦ pn′k ◦ ekm(x) =

⊔

↑
k,n′,m pnk ◦

ekm(x) = yn. The assignment x 9→ em(x) is Scott-continuous because of general
associativity and because only Scott-continuous maps are involved in the definition.

Next, let us now check that em and pm form an e-p-pair.

em ◦ pm(〈xn : n ∈ N〉) = em(xm)

= 〈
⊔

↑
k,n,m pnk ◦ ekm(xm) : n ∈ N〉

= 〈
⊔

↑
k,n,m pnk ◦ ekm ◦ pmk(xk) : n ∈ N〉

& 〈
⊔

↑
k,n,m pnk(xk) : n ∈ N〉

= 〈xn : n ∈ N〉

and pm ◦ em(x) = pm(〈
⊔

↑
k,n,m pnk ◦ ekm(x) : n ∈ N〉) =

⊔

↑
k,m pmk ◦ ekm(x) =

x.
A closer analysis reveals that em ◦ pm will leave all those elements of the tuple

〈xn : n ∈ N〉 unchanged for which n ≤ m:

pn(em ◦ pm(〈xn : n ∈ N〉)) = . . . =
⊔

↑

k≥n,m

pnk ◦ ekm ◦ pmk(xk)

=
⊔

↑

k≥n,m

pnm ◦ pmk ◦ ekm ◦ pmk(xk)

=
⊔

↑

k≥n,m

pnm ◦ pmk(xk) =
⊔

↑

k≥n,m

xn = xn

This proves that the em◦pm,m ∈ N, add up to the identity, as stated in (1). Putting this
to use, we easily get the second representation for the mediating map intoD viewed as
a limit: g = id ◦ g =

⊔

↑
m∈N

em ◦ pm ◦ g =
⊔

↑
m∈N

em ◦ gm.
It remains to prove the universal property of D as a colimit. To this end let

〈E, (fn)n∈N〉 be a cocone over the expanding sequence. We have to check that
f =

⊔

↑
n∈N

fn ◦ pn is well-defined in the sense that the supremum is over a directed
set. So let n ≤ m. We get fn ◦ pn = fm ◦ emn ◦ pnm ◦ pm & fm ◦ pm. It commutes
with the colimiting maps because

f ◦ em =
⊔

↑

n≥m

fn ◦ pn ◦ em

=
⊔

↑

n≥m

fn ◦ pn ◦ en ◦ enm

=
⊔

↑

n≥m

fn ◦ enm =
⊔

↑

n≥m

fm = fm

We also have to show that there is no other choice for f . Again the equation in (1)
comes in handy: Let f ′ be any mediating morphism. It must satisfy f ′ ◦ em = fm

and so f ′ ◦ em ◦ pm = fm ◦ pm. Forming the supremum on both sides gives f ′ =
⊔

↑
m∈N

fm ◦ pm which is the definition of f .
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This fact, that the colimit of an expanding sequence is canonically isomorphic to
the limit of the associated dual diagram, is called the limit-colimit coincidence. It is
one of the fundamental tools of domain theory and plays its most prominent role in
the solution of recursive domain equations, Chapter 5. Because of this coincidence we
will henceforth also speak of the bilimit of an expanding sequence and denote it by
bilim〈(Dn), (emn)〉.

We can generalize Theorem 3.3.7 in two ways; we can replace N by an arbitrary
directed set (in which case we will speak of an expanding system) and we can use
general Scott-continuous adjunctions instead of e-p-pairs. The first generalization is
harmless and does not need any serious adjustments in the proofs. We will freely use
it from now on. The second, on the other hand, is quite interesting. By the passage
from embeddings to, no longer injective, lower adjoints, we allow domains not only to
grow but also to shrink as we move on in the index set. Thus points, which at some
stage looked different, may at a later stage be recognised to be the same. The interested
reader will find an outline of the mathematical theory of this in the exercises. For the
main text, we must remind ourselves that this generalization has so far not found any
application in semantics.

Part (1) of the preceding theorem gives a characterization of bilimits:

Lemma 3.3.8. Let 〈E, (fn)n∈N〉 be a cocone for the expanding sequence
〈(Dn)n∈N,(emn : Dn → Dm)n≤m∈N〉. It is colimiting if and only if, firstly, there
are Scott-continuous functions gn : E → Dn such that each (fn, gn) is an e-p-pair
and, secondly,

⊔

↑
n∈N

fn ◦ gn = idE holds.

Proof. Necessity is Part (1) of Theorem 3.3.7. For sufficiency we show that the
bilimitD as constructed there, is isomorphic to E. We already have maps f : D → E
and g : E → D because D is the bilimit. These commute with the limiting and the
colimiting morphisms, respectively. So let us check that they compose to identities:

f ◦ g(x) = f(〈gn(x) : n ∈ N〉)

=
⊔

↑

n∈N

fn ◦ gn(x)

= x

and

g ◦ f = (
⊔

↑

n∈N

en ◦ gn) ◦ (
⊔

↑

m∈N

fm ◦ pm)

=
⊔

↑

n∈N

en ◦ gn ◦ fn ◦ pn

=
⊔

↑

n∈N

en ◦ pn = idD.

We note that in the proof we have used the condition
⊔

↑
n∈N

fn ◦ gn = idE only
for the first calculation. Without it, we still get that f and g form an e-p-pair. Thus we
have:
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Proposition 3.3.9. Let 〈E, (fn)n∈N〉 be a cocone over the expanding sequence
〈(Dn)n∈N, (emn : Dn → Dm)n≤m∈N〉 where the fn are embeddings. Then the bilimit
of the sequence is a sub-domain of E.

In other words:

Corollary 3.3.10. The bilimit of an expanding sequence is also the colimit (limit) in
the restricted category of dcpo’s with embeddings (projections) as morphisms.

3.3.3 Bilimits of domains

Theorem 3.3.11. Let 〈(Dn)n∈N, (emn : Dn → Dm)n≤m∈N〉 be an expanding se-
quence and 〈D, (en)n∈N〉 its bilimit.

1. If all Dn are (ω-)continuous then so is D. If we are given bases Bn, n ∈ N for
each Dn then a basis forD is given by

⋃

n∈N
en(Bn).

2. If all Dn are (ω-)algebraic then so is D and K(D) =
⋃

n∈N
en(K(Dn)).

Proof. Given an element x ∈ D we first show that
⋃

n∈N
en(Bn

pn(x)) is directed. To
this end it is sufficient to show that for all n ≤ m ∈ N and for each y ∈ Bn

pn(x) there is
y′ ∈ Bm

pm(x) with en(y) & em(y′). Well, because y approximates pn(x) and because
embeddings preserve the order of approximation, we have emn(y) : emn(pn(x)) =
emn(pnm ◦ pm(x)) & pm(x). Since pm(x) =

⊔

↑Bm
pm(x), some y′ : pm(x) is

above emn(y). This implies en(y) = em(emn(y)) & em(y′).
The set

⋃

n∈N
en(Bn

pn(x)) gives back x because x =
⊔

↑
n∈N

en ◦ pn(x) =
⊔

↑
n∈N

en(
⊔

↑Bn
pn(x)) =

⊔

↑
n∈N

⊔

↑en(Bn
pn(x)) =

⊔

↑
⋃

en(Bn
pn(x)). It consists

solely of approximants to x because the en are lower adjoints.

Exercises 3.3.12. 1. Let D be a continuous domain and let f : D → D be an
idempotent Scott-continuous function. Show that f(x) : f(y) holds in the
image of f if and only if there exists z : f(y) in D such that f(x) & f(z) &
f(y). In the case that D is algebraic conclude that an element x of im(f) is
compact if and only if there is c ∈ K(D)f(x) with f(c) = f(x).

2. Let p be a kernel operator with finite image. Show that im(p) is contained
in K(D) and that p itself is compact in [D −→ D].

3. [Hut92] A chain C is called order dense if it has more than one element and for
each pair x $ y there exists z ∈ C such that x $ z $ y.

(a) Let C be an order dense chain of compact elements in an alge-
braic domain D with least element. Consider the function g(x) =
⊔

{c ∈ C | c $ x}. Show that this is continuous and below the identity.
Give an example to demonstrate that g need not be idempotent. Show that
h = g ◦ g is idempotent and hence a kernel operator. Finally, show that the
image of h is not algebraic (it must be continuous by Theorem 3.1.4).
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(b) Let, conversely, f be a continuous and idempotent function on an algebraic
dcpo D such that its image is not algebraic. Show that K(D) contains an
order dense chain.

(c) An algebraic domain is called projection stable if every projection on D
has an algebraic image. Conclude that an algebraic domain with bottom
is projection stable if and only if K(D) does not contain an order dense
chain.

4. Let e : D ! E : p be an embedding projection pair between 3-semilattices.
Show that im(e) is a lower set in E if and only if for all x & y in E we have
e(p(x)) = e(p(y)) 3 x.

5. Formulate and prove a generalization of Proposition 3.1.13 for arbitrary posets.

6. Formulate an analogue of Proposition 3.2.4 for infinite products. Proceed as fol-
lows: First restrict to pointed dcpo’s. Next find an example of a (non-pointed) fi-
nite poset which has a non-algebraic infinite power. This should give you enough
intuition to try the general case.

7. A dcpo may be seen as a topological space with respect to the Scott-topology.
Given two dcpo’s we can form their product in DCPO. Show that the Scott-
topology on the product need not be the product topology but that the two topolo-
gies coincide if one of the factors is a continuous domain.

8. Construct an example which shows that Lemma 3.2.6 does not hold for infinite
products.

9. Derive Curry and composition as maps in an arbitrary cartesian closed category.

10. Let C be a cartesian closed full subcategory of DCPO. Let R-C be the full
subcategory of DCPO whose objects are the retracts of objects of C. Show that
R-C is cartesian closed.

11. Let Z− be the negative integers with the usual ordering. Show that the order
of approximation on [Z− −→ Z−] is empty. Find a pointed algebraic dcpo in
which a similar effect takes place.

12. Show that DCPO⊥ does not have coproducts.

13. Show that CONT does not have equalizers for all pairs of morphisms. (Hint:
First convince yourself that limits in CONT, if they exist, have the same under-
lying dcpo as when they are calculated in DCPO.)

14. Complement the table in Section 3.2.6 with the infinitary counterparts of carte-
sian product, disjoint union, smash product and sum. Observe that for these
the cardinality of the basis does play a role, so you have to add columns for
ω-CONT etc.
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15. Show that the embeddings into the bilimit of an expanding sequence are given
more concretely by em(x) = 〈xn : n ∈ N〉 with

xn =

{

pnm(x), n < m;
enm(x), n ≥ m.

Find a similar description for expanding systems.

16. Redo Section 3.3.2 for directed index sets and Scott-continuous adjunctions. The
following are the interesting points:

(a) The limit-colimit coincidence, Theorem 3.3.7, holds verbatim.
(b) The characterization of bilimits given in Lemma 3.3.8 does not suffice. It

states that E must not contain superfluous elements. Now we also need to
say that E does not identify too many elements.

(c) Given an expanding system 〈(Di), (lji)〉 with adjunctions, we can pass to
quotient domains D′

i by setting D′
i = im(

⊔

↑
k,i uik ◦ lki). Show that the

original adjunctions when restricted and corestricted to the D′
i become e-

p-pairs and that these define the same bilimit.

17. Let RD be the space of Scott-continuous idempotents on a dcpo D. Apply the
previous exercise to show that

⊔

↑
i∈I ri = r in RD implies bilim(im(ri)) ∼=

im(r) (where the connecting adjunctions are given by restricting the retractions
to the respective image).

18. Prove that the Scott-topology on a bilimit of continuousdomains is the restriction
of the product topology on the product of the individual domains.
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4 Cartesian closed categories of domains
In the last chapter we have seen that our big ambient categories DCPO and DCPO⊥

are, among other things, cartesian closed and we have already pointed out that for the
natural classes of domains, CONT and ALG, this is no longer true. The problematic
construction is the exponential, which as we know by Lemma 3.2.7, must be the set
of Scott-continuous functions ordered pointwise. If, on the other hand, we find a full
subcategory of CONT which is closed under terminal object, cartesian product and
function space, then it is also cartesian closed, because the necessary universal proper-
ties are inherited from DCPO.

Let us study more closely why function spaces may fail to be domains. The fact
that the order of approximation may be empty tells us that there may be no natural
candidates for basis elements in a function space. This we can better somewhat by
requiring the image domain to contain a bottom element.

Definition 4.0.1. For D and E dcpo’s where E has a least element and d ∈ D, e ∈ E,
we define the step function (d ↘ e) : D → E by

(d ↘ e)(x) =

{

e, if x ∈ Int(↑d);
⊥E, otherwise.

More generally, we will use (O ↘ e) for the function which maps the Scott-open setO
to e and everything else to ⊥.

Proposition 4.0.2. 1. Step functions are Scott-continuous.

2. Let D and E be dcpo’s where E is pointed and let f : D → E be continuous. If
e approximates f(d) then (d ↘ e) approximates f .

3. If, in addition,D and E are continuous then f is a supremum of step functions.

Proof. (1) Continuity follows from the openness of Int(↑d), respectivelyO.
(2) LetG be a directed family of functions with

⊔

↑G + f . Suprema in [D −→ E]
are calculated pointwise so we also have

⊔

↑
g∈G g(d) + f(d). This implies that for

some g ∈ G, g(d) + e holds. A simple case distinction then shows that g must be
above (d ↘ e) everywhere.

(3) We show that for each d ∈ D and each e : f(d) in E there is a step
function approximating f which maps d to e. Indeed, from d =

⊔

↑
↓↓d we get

f(d) = f(
⊔

↑
y.d y) =

⊔

↑
y.d f(y) and so for some y : d we have f(y) + e.

The desired step function is therefore given by (y ↘ e). Continuity of E implies that
we can get arbitrarily close to f(d) this way.

Note that the supremum in (3) need not be directed, so we have not shown that
[D −→ E] is again continuous. Was it a mistake to require directedness for the set of
approximants? The answer is no, because without it we could not have proved (3) in
the first place.

The problem of joining finitely many step functions together, so as to build directed
collections of approximants, comes up already in the case of two step functions (d1 ↘
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Figure 10: Finding an upper bound for two step functions.

e1) and (d2 ↘ e2) which approximate a given continuous function f . The situation
is illustrated in Figure 10. The problem is where to map the (Scott-open but otherwise
unstructured) set A = ↑↑d1 ∩ ↑↑d2. It has to be done in such a way that the resulting
function still approximates f . As it will turn out, it suffices to make special assumptions
about either the image domain E—the topic of Section 4.1— or about the pre-image
domainD – the topic of Section 4.2. In both cases we restrict our attention to pointed
domains, and we work with step functions and joins of these. From these we can pass to
more general domains in again two ways. This will be outlined briefly in Section 4.3.2.
The question then arises whether we have not missed out on some alternative way of
building a cartesian closed category. This is not the case as we will see in Section 4.3.
The basic tool for this fundamental result, Lemma 4.3.1, will nicely connect up with
the dichotomy distinguishing 4.1 and 4.2.

4.1 Local uniqueness: Lattice-like domains
The idea for adjusting the image domain is simple; we assume that e1 and e2 have a
least upper bound e (if bounded at all). Mapping the intersection A to e (and ↑↑d1 \ A
to e1 and ↑↑d2 \ A to e2) results in a continuous function h which is above (d1 ↘ e1)
and (d2 ↘ e2) and still approximates f . This is seen as follows: Suppose G is a
directed collection of functions with supremum above f . Some g1 ∈ G must be above
(d1 ↘ e1) and some g2 ∈ G must be above (d2 ↘ e2). Then by construction every
upper bound of {g1, g2} in G is above h.

In fact, we do not need that the join of e1 and e2 exists globally in E. It suffices to
form the join for every a ∈ A inside ↓f(a), because we have seen in Proposition 2.2.17
that all considerations about the order of approximation can be performed inside prin-
cipal ideals. We have the following list of definitions.

Definition 4.1.1. Let E be a pointed continuous domain. We say thatE is

1. an L-domain, if each pair e1, e2 ∈ E bounded by e ∈ E has a supremum in ↓e;

2. a bounded-complete domain (or bc-domain), if each bounded pair e1, e2 ∈ E
has a supremum;
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Figure 11: Separating examples for the categories of lattice-like domains.

3. (repeated for comparison) a continuous lattice, if each pair e1, e2 ∈ E has a
supremum.

We denote the full subcategories of CONT⊥ corresponding to these definitions by
L, BC, and LAT. For the algebraic counterparts we use aL, aBC, and aLAT.

All this still makes sense if we forget about approximation but, surely, at this point
the reader does not suffer from a lack of variety as far as categories are concerned.
We would like to point out that continuous lattices are the main objects of study in
[GHK+80], a mathematically oriented text, whereas the objects of ω-aBC are often
the domains of choice in semantics, where they appear under the name Scott-domain.
Typical examples are depicted in Figure 11. They even characterize the corresponding
categories, see Exercise 4.3.11(3).

Since domains have directed joins anyway, we see that in L-domains every subset
of a principal ideal has a supremum in that ideal. We also know that complete lattices
can alternatively be characterized by infima. The same game can be played for the
other two definitions:

Proposition 4.1.2. Let D be a pointed continuous domain. Then D is an L-domain, a
bc-domain, or a continuous lattice if and only if it has infima for bounded non-empty,
non-empty, or arbitrary subsets, respectively.

The consideration of infima may seem a side issue in the light of the problem of
turning function spaces into domains. Its relevance becomes clear when we remember
that upper adjoints preserve infima. The second half of the following is therefore a
simple observation. The first half follows from Proposition 3.1.2 and Theorem 3.1.4.

Proposition 4.1.3. Retracts and bilimits of L-domains (bc-domains, continuous lat-
tices) are again L-domains (bc-domains, continuous lattices).

We can treat continuous and algebraic lattice-like domains nicely in parallel be-
cause the ideal completion respects these definitions:
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Proposition 4.1.4. Let D be an L-domain (bc-domain, continuous lattice). Then
Idl(D,&) is an algebraic L-domain (bc-domain, lattice).

Thus L, BC, and LAT contain precisely the retracts of objects of aL, aBC, and
aLAT, respectively. We conclude this section by stating the desired closure property
of lattice-like domains.

Proposition 4.1.5. Let D be a continuous domain and E an L-domain (bc-domain,
continuous lattice). Then [D −→ E] is again an L-domain (bc-domain, continuous
lattice).

Corollary 4.1.6. The categories L, BC, LAT, and their algebraic counterparts are
cartesian closed.

4.2 Finite choice: Compact domains
Let us now turn our attention to the first argument of the function space construction,
which means by the general considerations from the beginning of this chapter, the study
of open sets and their finite intersections. Step functions are defined using basic open
sets of the form ↑↑d, and the fact that there is a single generator d was crucial in the
proof that (d ↘ e) approximates f whenever e approximates f(d). Arbitrary open
sets are unions of such basic opens (Proposition 2.3.6) but in general this is an infinite
union and so the proof of Proposition 4.0.2 will no longer work. For the first time
we have now reached a point in our exposition where the theory of algebraic domains
is definitely simpler and better understood than that of continuous domains. Let us
therefore treat this case first.

4.2.1 Bifinite domains

Step functions (d ↘ e) may in the algebraic case be defined using compact elements
only, where the characteristic pre-image ↑↑d is actually equal to ↑d. Taking up our
line of thought from above, we want for the algebraicity of the function space that
the intersection A = ↑d1 ∩ ↑d2 is itself generated by finitely many compact points:
A = ↑c1 ∪ . . . ∪ ↑cn. Note that the ci must be minimal upper bounds of {d1, d2}. For
each ci we choose a compact element below f(ci) and above e1, e2. New intersections
then come up, this time between the different ↑ci’s. Let us therefore further assume that
after finitely many iterations this process stops. It is an easy exercise to show that the
function constructed in this way is a compact element below f and above (d1 ↘ e1)
and (d2 ↘ e2). We hope that this provides sufficient motivation for the following list
of definitions.

Definition 4.2.1. Let P be a poset. (Think of P as the basis of an algebraic domain.)

1. We say that P is mub-complete (or: has property m) if for every upper bound x
of a finite subset M of P there is a minimal upper bound ofM below x. Written
as a formula: ∀M ⊆fin P.

⋂

m∈M ↑m = ↑mub(M).

2. For a subset A of P let its mub-closure mc(A) be the smallest superset of A
which for every finiteM ⊆ mc(A) also containsmub(M).
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3. We say that P has the finite mub property if it is mub-complete and if every finite
subset has a finite mub-closure. If, in addition, P has a least element, then we
call it a Plotkin-order.

4. An algebraic domain whose basis of compact elements is a Plotkin-order is
called a bifinite domain. The full subcategory of ALG⊥ of bifinite domains we
denote by B.

With this terminology we can formulate precisely how finitely many step functions
combine to determine a compact element in the function space [Abr91b].

Definition 4.2.2. Let D be a bifinite domain and let E be pointed and algebraic. A
finite subset F of K(D) × K(E) is called joinable if

∀G ⊆ F ∃H ⊆ F. (π1(H) = mub(π1(G)) ∧ ∀c ∈ π2(G), d ∈ π2(H). c & d).

The function which we associate with a joinable family F is

x 9→
⊔

{e | ∃d ∈ K(D). d & x ∧ (d, e) ∈ F}.

Lemma 4.2.3. If D is a bifinite domain and E is pointed and algebraic, then every
joinable subset of K(D) × K(E) gives rise to a compact element of [D −→ E].

If F andG are joinable families then the corresponding functions are related if and
only if

∀(d, e) ∈ G ∃(d′, e′) ∈ F. d′ & d and e & e′.

The expected result, dual to Proposition 4.1.5 above, then is:

Proposition 4.2.4. If D is a bifinite domain and E is pointed and algebraic, then
[D −→ E] is algebraic. All compact elements of [D −→ E] arise from joinable fami-
lies.

Comment: Proof sketch: Let f be a continuous function from D to E, and M be a finite mub-closed
set of compact elements of D. Let (em)m∈M be a collection of compact elements of E such that
for all m ∈ M , em ≤ f(m). Then there exists a collection (êm)m∈M of compact elements of E
such that the assignment m $→ êm is order-preserving. The new elements can be found by repeatedly
considering a minimal elementm ofM for which êm has not yet been chosen, and by picking an upper
bound for {em}∪ {êm′ | m′ < m}. With this construction one finds a directed collection of compact
elements of [D −→ E] arbitrarily close to f .

Note that this is strictly weaker than Proposition 4.1.5 and we do not immediately
get that B is cartesian closed. For this we have to find alternative descriptions. The
fact that we can get an algebraic function space by making special assumptions about
either the argument domain or the target domain was noted in a very restricted form in
[Mar81].

The concept of finite mub closure is best explained by illustrating what can go
wrong. In Figure 12 we have the three classical examples of algebraic domains which
are not bifinite; in the first one the basis is not mub-complete, in the second one there is
an infinite mub-set for two compact elements, and in the third one, although all mub-
sets are finite, there occurs an infinite mub-closure. On a more positive note, it is clear
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Figure 12: Typical non-bifinite domains.

that every finite and pointed poset is a Plotkin-order and hence bifinite. This trivial
example contains the key to a true understanding of bifiniteness; we will now prove
that bifinite domains are precisely the bilimits of finite pointed posets.

Proposition 4.2.5. Let D be an algebraic domain with mub-complete basis K(D) and
let A be a set of compact elements. Then there is a least kernel operator pA on D
which keeps A fixed. It is given by pA(x) =

⊔

↑{c ∈ mc(A) | c & x}.

Proof. First note that pA is well-defined because the supremum is indeed over a di-
rected set. This follows from mub-completeness. Continuity follows from Corol-
lary 2.2.16. On the other hand, it is clear that a kernel operator which fixes A must
also fix each element of the mub-closure mc(A), and so pA is clearly the least mono-
tone function with the desired property.

In a bifinite domain finite sets of compact elements have finite mub-closures. By
the preceding proposition this implies that there are many kernel operators on such a
domainwhich have a finite image. In fact, we get a directed family of them, because the
order on kernel operators is completely determined by their images, Proposition 3.1.17.
For the sake of brevity, let us call a kernel operator with finite image an idempotent
deflation.

Theorem 4.2.6. Let D be a pointed dcpoD. The following are equivalent

1. D is a bifinite domain.

2. There exists a directed collection (fi)i∈I of idempotent deflations of D whose
supremum equals idD.

3. The set of all idempotent deflations is directed and yields idD as its join.
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Proof. What we have not yet said is how algebraicity ofD follows from the existence
of idempotent deflations. For this observe that the inclusion of the image of a kernel
operator is a lower adjoint and as such preserves compactness. For the implication
‘2 =⇒ 3’ we use the fact that idempotent deflations are in any case compact elements
of the function space.

It is now only a little step to the promised categorical characterization.

Theorem 4.2.7. A dcpo is bifinite if and only if it is a bilimit of an expanding system
of finite pointed posets.

Proof. Let D be bifinite and let (fi)i∈I be a family of idempotent deflations gener-
ating the identity. Construct an expanding system by taking as objects the images of
the deflations and as connecting embeddings the inclusion of images. The associated
upper adjoint is given by fi restricted to im(fj). D is the bilimit of this system by
Lemma 3.3.8.

If, conversely, 〈D, (fi)i∈I〉 is a bilimit of finite posets then clearly the compositions
fi ◦ gi, where gi is the upper adjoint of fi, satisfy the requirements of Theorem 4.2.6.

So we have three characterizations of bifiniteness, the original one, which may
be called an internal description, a functional description by Theorem 4.2.6, and a
categorical one by Theorem 4.2.7. Often, the functional characterization is the most
handy one in proofs. We should also mention that bifinite domains were first defined
by Gordon Plotkin in [Plo76] using expanding sequences. (In our taxonomy these are
precisely the countably based bifinite domains.) The acronym he used for them, SFP,
continues to be quite popular.

Theorem 4.2.8. The category B of bifinite domains is closed under cartesian product,
function space, coalesced sum, and bilimits. In particular, B is cartesian closed.

Proof. Only function space and bilimit are non-trivial. We leave the latter as an exer-
cise. For the function space let D and E be bifinite with families of idempotent defla-
tions (fi)i∈I and (gj)j∈J . A directed family of idempotent deflations on [D −→ E] is
given by the maps Fij : h 9→ gj ◦ h ◦ fi, 〈i, j〉 ∈ I × J .

4.2.2 FS-domains

Let us now look at continuous domains. The reasoning about what the structure of D
should be in order to ensure that [D −→ E] is continuous is pretty much the same as
for algebraic domains. But at the point where we there introduced the mub-closure of
a finite set of compact elements, we must now postulate the existence of some finite
and finitely supported partitioning of D. This is clearly an increase in the logical
complexity of our definition and also of doubtful practical use. It is more satisfactory
to generalise the functional characterization.

Definition 4.2.9. Let D be a dcpo and f : D → D be a Scott-continuous function.
We say that f is finitely separated from the identity on D, if there exists a finite set M
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such that for any x ∈ D there is m ∈ M with f(x) & m & x. We speak of strong
separation if for each x there are elements m, m′ ∈ M with f(x) & m : m′ & x.

A pointed dcpoD is called an FS-domain if there is a directed collection (fi)i∈I of
continuous functions on D, each finitely separated from idD, with the identity map as
their supremum.

It is relatively easy to see that FS-domains are indeed continuous. Thus it makes
sense to speak of FS as the full subcategory of CONT where the objects are the FS-
domains.

We have exact parallels to the properties of bifinite domains, but often the proofs
are trickier.

Proposition 4.2.10. If D is an FS-domain and E is pointed and continuous then
[D −→ E] is continuous.

Comment: Unfortunately, the proof of this is not only “trickier” but as yet unknown. What is true,
is that when both D and E are FS-domains, then [D −→ E] is also an FS-domains. This was shown
in [Jun90]. The following theorem is therefore still valid.

Theorem 4.2.11. The category FS is closed under the formation of products, function
spaces, coalesced sums, and bilimits. It is cartesian closed.

What we do not have are a categorical characterization or a description of FS-
domains as retracts of bifinite domains. All we can say is the following.

Proposition 4.2.12. 1. Every bifinite domain is an FS-domain.

2. A retract of an FS-domain is an FS-domain.

3. An algebraic FS-domain is bifinite.

To fully expose our ignorance, we conclude this subsection with an example of a
well-structured FS-domain of which we do not know whether it is a retract of a bifinite
domain.
Example. Let Disc be the collection of all closed discs in the plane plus the plane

itself, ordered by reversed inclusion. One checks that the filtered intersection of discs
is again a disc, so Disc is a pointed dcpo. A disc d1 approximates a disc d2 if and only
if d1 is a neighborhood of d2. This proves that Disc is continuous. For every ε > 0
we define a map fε on Disc as follows. All discs inside the open disc with radius 1

ε
are

mapped to their closed ε-neighborhood, all other discs are mapped to the plane which
is the bottom element of Disc. Because the closed discs contained in some compact
set form a compact space under the Hausdorff subspace topology, these functions are
finitely separated from the identity map. This proves that Disc is a countably based
FS-domain.

4.2.3 Coherence

This is a good opportunity to continue our exposition of the topological side of domain
theory, which we began in Section 2.3. We need a second tool complementing the
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lattice σD of Scott-open sets, namely, the compact saturated sets. Here ‘compact’ is to
be understood in the classical topological sense of the word, i.e. a setA of a topological
space is compact if every covering of A by open sets contains a finite subcovering.
Saturated are those sets which are intersections of their neighborhoods. In dcpo’s
equipped with the Scott-topology these are precisely the upper sets, as is easily seen
using opens of the formD \ ↓x.

Theorem 4.2.13. Let D be a continuous domain. The sets of open neighborhoods of
compact saturated sets are precisely the Scott-open filters in σD .

By Proposition 7.2.27 this is a special case of the Hofmann-MisloveTheorem 7.2.9.
Let us denote the set of compact saturated sets of a dcpo D, ordered by reverse

inclusion, by κD. We will refer to families in κD which are directed with respect to
reverse inclusion, more concretely as filtered families. The following, then, is only a
re-formulation of Corollary 7.2.11.

Proposition 4.2.14. Let D be a continuous domain.

1. κD is a dcpo. Directed suprema are given by intersection.

2. If the intersection of a filtered family of compact saturated sets is contained in a
Scott-open set O then some element of it belongs to O already.

3. κD \ {∅} is a dcpo.

Proposition 4.2.15. Let D be a continuous domain.

1. κD is a continuous domain.

2. A : B holds in κD if and only if there is a Scott-open set O with B ⊆ O ⊆ A.

3. O : U holds in σD if and only if there is a compact saturated set A with
O ⊆ A ⊆ U .

Proof. All three claims are shown easily using upper sets generated by finitely many
points: If O is an open neighborhood of a compact saturated set A then there exists a
finite setM of points of O with A ⊆ ↑↑M ⊆ ↑M ⊆ O.

The interesting point about FS-domains then is, that their space of compact sat-
urated sets is actually a continuous lattice. We already have directed suprema (in
the form of filtered intersections) and continuity, so this boils down to the property
that the intersection of two compact saturated sets is again compact. Let us call do-
mains for which this is true, coherent domains. Given the intimate connection between
σD and κD , it is no surprise that we can read off coherence from the lattice of open
sets.

Proposition 4.2.16. A continuous domain D is coherent if and only if for all
O, U1, U2 ∈ σD with O : U1 and O : U2 we also have O : U1 ∩ U2.

(In Figure 6 we gave an example showing that the condition is not true in arbitrary
continuous lattices.)

This result specializes for algebraic domains as follows:
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Proposition 4.2.17. An algebraic domain D is coherent if and only if K(D) is mub-
complete and finite sets of K(D) have finite sets of minimal upper bounds.

This proposition was named ‘2/3-SFP Theorem’ in [Plo81] because coherence
rules out precisely the first two non-examples of Plotkin-orders, Figure 12, but not
the third. The only topological characterization of bifinite domains we have at the
moment, makes use of the continuous function space, see Lemma 4.3.2.

We observe that for algebraic coherent domains, σD and κD have a common sub-
lattice, namely that of compact-open sets. These are precisely the sets of the form
↑c1 ∪ . . . ∪ ↑cn with the ci compact elements. This lattice generates both σD and κD

when we form arbitrary suprema. This pleasant coincidence features prominently in
Chapter 7.

Theorem 4.2.18. FS-domains (bifinite domains) are coherent.

Let us reformulate the idea of coherence in yet another way.

Definition 4.2.19. The Lawson-topology on a dcpo D is the smallest topology con-
taining all Scott-open sets and all sets of the formD \ ↑x. It is denoted by λD.

Proposition 4.2.20. Let D be a continuous domain.

1. The Lawson-topology on D is Hausdorff. Every Lawson-open set has the form
O \ A where O is Scott-open and A is Scott-compact saturated.

2. The Lawson-topology on D is compact if and only if D is coherent.

3. A Scott-continuous retract of a Lawson-compact continuous domain is Lawson-
compact and continuous.

So we see that FS-domains and bifinite domains carry a natural compact Hausdorff
topology. We will make use of this in Chapter 6.

4.3 The hierarchy of categories of domains
The purpose of this section is to show that there are no other ways of constructing a
cartesian closed full subcategory ofCONT orALG than those exhibited in the previous
two sections. The idea that such a result could hold originated with Gordon Plotkin,
[Plo81]. For the particular class ω-ALG⊥ it was verified by Mike Smyth in [Smy83a],
for the other classes by Achim Jung in [Jun88, Jun89, Jun90]. All these classification
results depend on the Axiom of Choice.

4.3.1 Domains with least element

Let us start right away with the crucial bifurcation lemma on which everything else in
this section is based.

Lemma 4.3.1. Let D and E be continuous domains, where E is pointed, such that
[D −→ E] is continuous. ThenD is coherent or E is an L-domain.
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Proof. By contradiction. Assume D is not coherent and E is not an L-domain. By
Proposition 4.2.16 there exist open sets O, U1, and U2 in D such that O : U1 and
O : U2 hold but notO : U1 ∩U2. Therefore there is a directed collection (Vi)i∈I of
open sets covering U1 ∩ U2, none of which covers O. We shall also need interpolating
sets U ′

1 and U ′
2, that is, O : U ′

1 : U1 and O : U ′
2 : U2.

The assumption aboutE not being an L-domain can be transformed into two special
cases. EitherE contains the algebraic domainA from Figure 12 (where the descending
chain in A may generally be an ordinal) or X from Figure 11 as a retract. We have left
the proof of this as Exercise 4.3.11(3). Note that if E′ is a retract of E then [D −→ E′]
is a retract of [D −→ E] and hence the former is continuous if the latter is. Let us now
prove for both cases that [D −→ E] is not continuous.

Case 1: E = A. Consider the step functions f1 = (U ′
1 ↘ a) and f2 = (U ′

2 ↘ b).
They clearly approximate f , which is defined by

f(x) =















c0, if x ∈ U1 ∩ U2;
a, if x ∈ U1 \ U2;
b, if x ∈ U2 \ U1;
⊥, otherwise.

Since approximating sets are directed we ought to find an upper bound g for f1 and f2

approximating f . But this impossible: Given an upper bound of {f1, f2} below f we
have the directed collection (hi)i∈I defined by

hi(x) =







c0, if x ∈ Vi;
cn+1, if x ∈ (U1 ∩ U2) \ Vi and g(x) = cn;
g(x), otherwise.

No hi is above g because (U1∩U2)\Vi must contain a non-empty piece ofO and there
hi is strictly below g. The supremum of the hi, however, equals f . Contradiction.

Case 2: E = X . We choose open sets in D as in the previous case. The various
functions, giving the contradiction, are now defined by f1 = (U ′

1 ↘ a), f2 = (U ′
2 ↘

b),

f(x) =















c1, if x ∈ U1 ∩ U2;
a, if x ∈ U1 \ U2;
b, if x ∈ U2 \ U1;
⊥, otherwise.

hi(x) =







=, if x ∈ Vi;
c2, if x ∈ (U1 ∩ U2) \ Vi;
g(x), otherwise.

The remaining problem is that coherence does not imply that D is an FS-domain
(nor, in the algebraic case, that it is bifinite). It is taken care of by passing to higher-
order function spaces:

Lemma 4.3.2. Let D be a continuous domain with bottom element. Then D is an
FS-domain if and only if both D and [D −→ D] are coherent.
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(The proof may be found in [Jun90].)
Combining the preceding two lemmas with Lemmas 3.2.5 and 3.2.7 we get the

promised classification result.

Theorem 4.3.3. Every cartesian closed full subcategory of CONT⊥ is contained in
FS or L.

Adding Proposition 4.2.12 we get the analogue for algebraic domains:

Theorem 4.3.4. Every cartesian closed full subcategory of ALG⊥ is contained in B
or aL.

Forming the function space of an L-domain may in general increase the cardinality
of the basis (Exercise 4.3.11(17)). If we restrict the cardinality, this case is ruled out:

Theorem 4.3.5. Every cartesian closed full subcategory of ω-CONT⊥ (ω-ALG⊥) is
contained in ω-FS (ω-B).

4.3.2 Domains without least element

The classification of pointed domains, as we have just seen, is governed by the di-
chotomy between coherent and lattice-like structures. Expressed at the element level,
and at least for algebraic domains we have given the necessary information, it is the
distinction between finite mub-closures and locally unique suprema of finite sets. It
turns out that passing to domains which do not necessarily have bottom elements im-
plies that we also have to study the mub-closure of the empty set. We get again the
same dichotomy. Coherence in this case means that D itself, that is, the largest ele-
ment of σD, is a compact element. This is just the compactness of D as a topological
space. And the property that E is lattice-like boils down to the requirement that each
element of E is above a unique minimal element, so E is really the disjoint union of
pointed components.

Lemma 4.3.6. LetD andE be continuous domains such that [D −→ E] is continuous.
Then D is compact or E is a disjoint union of pointed domains.

The proof is a cut-down version of that of Lemma 4.3.1 above. The surprising
fact is that this choice can be made independently from the choice between coher-
ent domains and L-domains. Before we state the classification, which because of this
independence, will now involve 2 × 2 = 4 cases, we have to refine the notion of com-
pactness, because just like coherence it is not the full condition necessary for cartesian
closure.

Definition 4.3.7. A dcpoD is a finite amalgam if it is the union of finitely many pointed
dcpo’sD1, . . . , Dn such that every intersection of Di’s is also a union of Di’s. (Com-
pare the definition of mub-complete.)

For categories whose objects are finite amalgams of objects from another cate-
gory C we use the notation F-C. Similarly, we write U-C if the objects are disjoint
unions of objects of C.
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Proposition 4.3.8. A mub-complete dcpo is a finite amalgam if and only if the mub-
closure of the empty set is finite.

Lemma 4.3.9. If bothD and [D −→ D] are compact and continuous thenD is a finite
amalgam.

Theorem 4.3.10. 1. The maximal cartesian closed full subcategories ofCONT are
F-FS, U-FS, F-L, and U-L.

2. The maximal cartesian closed full subcategories of ALG are F-B, U-B, F-aL,
and U-aL.

At this point we can answer a question that may have occurred to the diligent reader
some time ago, namely, why we have defined bifinite domains in terms of pointed finite
posets, where clearly we never needed the bottom element in the characterizations of
them. The answer is that we wanted to emphasize the uniform way of passing from
pointed to general domains. The fact that the objects of F-B can be represented as
bilimits of finite posets is then just a pleasant coincidence.

Exercises 4.3.11. 1. [Jun89] Show that a dcpo D is continuous if the function
space [D −→ D] is continuous.

2. LetD be a bounded-complete domain. Show that ‘3’ is a Scott-continuous func-
tion from D × D to D.

3. Characterize the lattice-like (pointed) domains by forbidden substructures:

(a) E is ω-continuous but not mub-complete if and only if domain A in Fig-
ure 12 is a retract of E.

(b) E is mub-complete but not an L-domain if and only if domain X in Fig-
ure 11 is a retract of E.

(c) E is an L-domain but not bounded-complete if and only if domain C in
Figure 11 is a retract of E.

(d) E is a bounded-complete domain but not a lattice if and only if domain V
in Figure 11 is a retract of E.

4. Find a poset in which all pairs have finite mub-closures but in which a triple of
points exists with infinite mub-closure.

5. Show that if for an algebraic domain D the basis is mub-complete then D itself
is not necessarily mub-complete.

6. Show that in a bifinite domain finite sets of non-compact elements may have
infinitely many minimal upper bounds and, even if these are all finite, may have
infinite mub-closures.

7. Show that if A is a two-element subset of an L-domain then A ∪ mub(A) is
mub-closed.

8. Prove that bilimits of bifinite domains are bifinite.
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9. Prove the following statements about retracts of bifinite domains.

(a) A pointed dcpo D is a retract of a bifinite domain if and only if there is a
directed family (fi)i∈I of functions on D such that each fi has a finite im-
age and such that

⊔

↑
i∈I fi = idD. (You may want to do this for countably

based domains first.)
(b) The ideal completion of a retract of a bifinite domain need not be bifinite.
(c) If D is a countably based retract of a bifinite domain then it is also the

image of a projection from a bifinite domain. (Without countability this is
an open problem.)

(d) The category of retracts of bifinite domains is cartesian closed and closed
under bilimits.

10. Prove that FS-domains have infima for downward directed sets. As a conse-
quence, an FS-domain which has binary infima, is a bc-domain.

11. Show that in a continuous domain the Lawson-closed upper sets are precisely
the Scott-compact saturated sets.

12. Characterize Lawson-continuous maps between bifinite domains.

13. We have seen that every bifinite domain is the bilimit of finite posets. As such,
it can be thought of as a subset of the product of all these finite posets. Prove
that the Lawson-topology on the bifinite domain is the restriction of the product
topology if each finite poset is equipped with the discrete topology.

14. Prove that a coherent L-domain is an FS-domain.

15. Characterize those domains which are both L-domains and FS-domains.

16. Characterize Scott-topology and Lawson-topology on both L-domains and FS-
domains by the ideal of functions approximating the identity.

17. [Jun89] Let E be an L-domain such that [E −→ E] is countably based. Show
that E is an FS-domain.
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5 Recursive domain equations
The study of recursive domain equations is not easily motivated by reference to other
mathematical structure theories. So we shall allow ourselves to deviate from our gen-
eral philosophy and spend some time on examples. Beyond motivation, our examples
represent three different (and almost disjoint) areas in which recursive domain equa-
tions arise, in which they serve a particular role, and in which particular aspects about
solutions become prominent. It is an astonishing fact that within domain theory all
these aspects are dealt with in a unified and indeed very satisfactory manner. This rich-
ness and interconnectedness of the theory of recursive domain equations, beautiful as it
is, may nevertheless appear quite confusing on a first encounter. As a general guideline
we offer the following: Recursive domain equations and the domain theory for solv-
ing them comprise a technique that is worth learning. But in order to understand the
meaning of a particular recursive domain equation, you have to know the context in
which it came up.

5.1 Examples
5.1.1 Genuine equations

The prime example here is X ∼= [X −→ X ]. Solving this equation in a cartesian
closed category gives a model for the untyped λ-calculus [Sco80, Bar84], in which, as
we know, no type distinction is made between functions and arguments. When setting
up an interpretation of λ-terms with values in D, where D solves this equation, we
need the isomorphisms φ : D → [D −→ D] and ψ : [D −→ D] → D explicitly. We
conclude that even in the case of a genuine equation we are looking not only for an
object but an object plus an isomorphism. This is a first hint that we shall need to
treat recursive domain equations in a categorical setting. However, the function space
operator is contravariant in its first and covariant in its second argument and so there
is definitely an obstacle to overcome. A second problem that this example illustrates
is that there may be many solutions to choose from. How do we recognize a canonical
one? This will be the topic of Section 5.3.

Besides this classical example, genuine equations are rare. They come up in se-
mantics when one is confronted with the ability of computers to treat information both
as program text and as data.

5.1.2 Recursive definitions

In semantics we sometimes need to make recursive definitions, for very much the same
reasons that we need recursive function calls, namely, we sometimes do not know how
often the body of a definition (resp. function) needs to be repeated. To give an example,
take the following definition of a space of so-called ‘resumptions’:

R ∼= [S −→ (S ⊕ S × R)].

We read it as follows: A resumption is a map which assigns to a state either a final state
or an intermediary state together with another resumption representing the remaining
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computation. Such a recursive definition is therefore nothing but a shorthand for an
infinite (but regular) expression. Likewise, awhile loop could be replaced by an infinite
repetition of its body. This analogy suggests that the way to give meaning to a recursive
definition is to seek a limit of the repeated unwinding of the body of the definition
starting from a trivial domain. No doubt this is in accordance with our intuition, and
indeed this is how we shall solve equations in general. But again, before we can do
this, we need to be able to turn the right hand side of the specification into a functor.

5.1.3 Data types

Data types are algebras, i.e. sets together with operations. The study of this notion is
known as ‘Algebraic Specification’ [EM85] or ‘Initial Algebra Semantics’ [GTW78].
We choose a formulation which fits nicely into our general framework.

Definition 5.1.1. Let F be a functor on a categoryC. An F -algebra is given by an ob-
ject A and a map f : F (A) → A. A homomorphism between algebras f : F (A) → A
and f ′ : F (A′) → A′ is a map g : A → A′ such that the following diagram commutes:

F (A)
F (g)& F (A′)

A

f

' g & A′

f ′

'

For example, if we let F be the functor over Set which assigns I
.
∪ A × A to A

(where I is the one-point dcpo as discussed in Section 3.2.1), then F -algebras are pre-
cisely the algebras with one nullary and one binary operation in the sense of universal
algebra. Lehmann and Smyth [LS81] discuss many examples. Many of the data types
which programming languages deal with are furthermore totally free algebras, or term
algebras on no generators. These are distinguished by the fact that there is precisely
one homomorphism from them into any other algebra of the same signature. In our cat-
egorical language we express this by initiality. Term algebras (alias initial F -algebras)
are connected with the topic of this chapter because of the following observation:

Lemma 5.1.2. If i : F (A) → A is an initial F -algebra then i is an isomorphism.

Proof. Consider the following composition of homomorphisms:

F (A)
F (f)& F 2(A)

F (i)& F (A)

A

i

' f & F (A)

F (i)

' i & A

i

'

where f is the unique homomorphism from i : F (A) → A to F (i) : F 2(A) → F (A)
guaranteed by initiality. Again by initiality, i ◦ f must be idA. And from the first
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quadrangle we get f ◦ i = F (i) ◦ F (f) = F (idA) = idF (A). So f and i are inverses
of each other.

So in order to find an initial F -algebra, we need to solve the equationX ∼= F (X).
But once we get a solution, we still have to check initiality, that is, we must validate
that the isomorphism from F (X) to X is the right structure map.

In category theory we habitually dualize all definitions. In this case we get (final)
co-algebras. Luckily, this concept is equally meaningful. Where the map f : F (A) →
A describes the way how new objects of type A are constructed from old ones, a map
g : A → F (A) stands for the opposite process, the decomposition of an object into its
constituents. Naturally, we want the two operations to be inverses of each other. In
other words, if i : F (A) → A is an initial F -algebra, then we require i−1 : A → F (A)
to be the final co-algebra.

Peter Freyd [Fre91] makes this reasoning the basis of an axiomatic treatment of
domain theory. Beyond and above axiomatizing known results, he treats contravariant
and mixed variant functors and offers a universal property encompassing both initial-
ity and finality. This will allow us to judge the solution of general recursive domain
equations with respect to canonicity.

5.2 Construction of solutions
Suppose we are given a recursive domain equation X ∼= F (X) where the right hand
side defines a functor on a suitable category of domains. As suggested by the ex-
ample in Section 5.1.2, we want to repeat the trick which gave us fixpoints for Scott-
continuous functions, namely, to take a (bi-)limit of the sequence I, F (I), F (F (I)), . . . .
Remember that bilimits are defined in terms of e-p-pairs. This makes it necessary that
we, at least temporarily, switch to a different category. The convention that we adopt
for this chapter is to let D stand for any category of pointed domains, closed under
bilimits. All the cartesian closed categories of pointed domains mentioned in Chapter 4
qualify. We denote the corresponding subcategory where the morphisms are embed-
dings by De. Some results will only hold for strict functions. Recall that our notation
for these were f : D

⊥!
−→ E andD⊥! for categories. Despite this unhappy (but unavoid-

able) proliferation of categories, recall that the central limit-colimit Theorem 3.3.7 and
Corollary 3.3.10 state a close connection: Colimits of expanding sequences in De are
also colimits in D and, furthermore, if the embeddings defining the sequence are re-
placed by their upper adjoints, the colimit coincides with the corresponding limit. This
will bear fruit when we analyze the solutions we get in De from various angles as
suggested by the examples in the last subsection.

Let us now start by just assuming that our functor restricts to De.

5.2.1 Continuous functors

Definition 5.2.1. A functor F : De → De is called continuous, if for every ex-
panding sequence 〈(Dn)n∈N, (emn : Dn → Dm)n/m∈N〉 with colimit 〈D, (en)n∈N〉
we have that 〈F (D), (F (en))n∈N〉 is a colimit of the sequence 〈(F (Dn))n∈N,
(F (emn) : F (Dn) → F (Dm))n/m∈N〉.
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This, obviously, is Scott-continuity expressed for functors. Whether we formulate
it in terms of expanding sequences or expanding systems is immaterial. The question is
not, what is allowed to enter the model, but rather, how much do I have to check before
I can apply the theorems in this chapter. And sequences are all that is needed.

This, then, is the central lemma on which our domain theoretic technique for solv-
ing recursive domain equations is based (recall that f∗ is our notation for the upper
adjoint of f ):

Lemma 5.2.2. Let F be a continuous functor on a category De of domains. For each
embedding e : A → F (A) consider the colimit 〈D, (en)n∈N〉 of the expanding se-
quence A

e
−→ F (A)

F (e)
−→ F (F (A))

F (F (e))
−→ · · · . Then D is isomorphic to F (D) via

the maps

fold =
⊔

↑
n∈N

en+1 ◦ F (en)∗ : F (D) → D, and
unfold =

⊔

↑
n∈N

F (en) ◦ e∗n+1 : D → F (D).

For each n ∈ N they satisfy the equations

F (en) = unfold ◦ en+1

F (en)∗ = e∗n+1 ◦ fold .

Proof. We know that 〈D, (en)n∈N\{0}〉 is a colimit over the diagram

F (A)
F (e)
−→ F (F (A))

F (F (e))
−→ · · ·

(clipping off the first approximation makes no difference), where there is also the co-
cone 〈F (D), (F (en))n∈N〉. The latter is also colimiting by the continuity of F . In
this situation Theorem 3.3.7 provides us with unique mediating morphisms which are
precisely the stated fold and unfold. They are inverses of each other because both co-
cones are colimiting. The equations follow from the explicit description of mediating
morphisms in Theorem 3.3.7.

Note that since we have restricted attention to pointed domains, we always have the
initial embedding e : I → F (I). The solution to X ∼= F (X) based on this embedding
we call canonical and denote it by FIX(F ).

5.2.2 Local continuity

Continuity of a functor is a hard condition to verify. Luckily there is a property which
is stronger but nevertheless much easier to check. It will also prove useful in the next
section.

Definition 5.2.3. A functor F from D to E, where D and E are categories of domains,
is called locally continuous, if the maps Hom(D, D′) −→ Hom(F (D), F (D′)), f 9→
F (f), are continuous for all objectsD andD′ from D.

Proposition 5.2.4. A locally continuous functor F : D → E restricts to a continuous
functor from De to Ee.
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We will soon generalize this, so there is no need for a proof at this point.
Typically, recursive domain equations are built from the basic constructions listed

in Section 3.2. The strategy is to check local continuity for each of these individually
and then rely on the fact that composition of continuous functors yields a continuous
functor. However, we must realize that the function space construction is contravariant
in its first and covariant in its second variable, and so the technique from the preceding
paragraph does not immediately apply. Luckily, it can be strengthened to cover this
case as well.

Definition 5.2.5. A functor F : Dop × D’ → E, contravariant in its first, covariant in
its second variable, is called locally continuous, if for directed setsA ⊆ Hom(D2, D1)
andA′ ⊆ Hom(D′

1, D
′
2) (whereD1, D2 are objects inD andD′

1, D
′
2 are objects inD’)

we have
F (

⊔

↑A,
⊔

↑A′) =
⊔

↑

f∈A,f ′∈A′

F (f, f ′)

in Hom(F (D1, D′
1), F (D2, D′

2)).

Proposition 5.2.6. If F : Dop × D’→ E is a mixed variant, locally continuous functor,
then it defines a continuous covariant functor F̂ from De × D’e to Ee as follows:

F̂ (D, D′) = F (D, D′) for objects, and
F̂ (e, e′) = F (e∗, e′) for embeddings.

The upper adjoint to F̂ (e, e′) is given by F (e, e′∗).

Proof. Let (e, e∗) and (e′, e′∗) be e-p-pairs in D and D’, respectively. We calculate
F (e, e′∗) ◦ F̂ (e, e′) = F (e, e′∗) ◦ F (e∗, e′) = F (e∗ ◦ e, e′∗ ◦ e′) = F (id, id) = id and
F̂ (e, e′) ◦ F (e, e′∗) = F (e∗, e′) ◦ F (e, e′∗) = F (e ◦ e∗, e′ ◦ e′∗) & F (id, id) = id, so
F̂ maps indeed pairs of embeddings to embeddings.

For continuity, let 〈(Dn), (emn)〉 and 〈(D′
n), (e′mn)〉 be expanding sequences in

D and D’ with colimits 〈D, (en)〉 and 〈D′, (e′n)〉, respectively. By Lemma 3.3.8
this implies

⊔

↑
n∈N

en ◦ e∗n = idD and
⊔

↑
n∈N

e′n ◦ e′∗n = idD′ . By lo-
cal continuity we have

⊔

↑
n∈N

F̂ (en, e′n) ◦ F̂ (en, e′n)∗ =
⊔

↑
n∈N

F (e∗n, e′n) ◦
F (en, e′∗n) =

⊔

↑
n∈N

F (en ◦ e∗n, e′n ◦ e′∗n) = F (
⊔

↑
n∈N

en ◦ e∗n,
⊔

↑
n∈N

e′n ◦ e′∗n) =

F (idD, idD′) = idF (D,D′) and so 〈F̂ (D, D′), (F̂ (en, e′n))n∈N〉 is a colimit of
〈(F̂ (Dn, D′

n))n∈N, (F̂ (emn, e′mn))n/m∈N〉.

While it may seem harmless to restrict a covariant functor to embeddings in order
to solve a recursive domain equation, it is nevertheless not clear what the philosophical
justification for this step is. For mixed variant functors this question becomes even
more pressing since we explicitly change the functor. As already mentioned, a satis-
factory answer has only recently been found, [Fre91, Pit93b]. We present Peter Freyd’s
solution in the next section.

Let us take stock of what we have achieved so far. Building blocks for recursive
domain equations are the constructors of Section 3.2, ×,⊕,→, etc. , each of which is
readily seen to define a locally continuous functor. Translating them to embeddings
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via the preceding proposition, we get continuous functors of one or two variables. We
further need the diagonal ∆ : De → De × De to deal with multiple occurrences of
X in the body of the equation. Then we note that colimits in a finite power of De

are calculated coordinatewise and hence the diagonal and the tupling of continuous
functors are continuous. Finally, we include constant functors to allow for constants to
occur in an equation. Two more operators will be added below: the bilimit in the next
section and various powerdomain constructions in Chapter 6.

5.2.3 Parameterized equations

Suppose that we are given a locally continuous functor F in two variables. Given
any domain D we can solve the equation X ∼= F (D, X) using the techniques of
the preceding sections. Remember that by default we mean the solution according
to Lemma 5.2.2 based on e : I → F (D, I), so there is no ambiguity. Also, we have
given a concrete representation for bilimits in Theorem 3.3.7, so FIX(F (D, ·)) is also
well-defined in this respect. We want to show that it extends to a functor.

Notation is a bit of a problem. Let F : D⊥! × E⊥! → E⊥! be a functor in two
variables. We set FD for the functor on E⊥! which maps E to F (D, E) for objects and
g : E

⊥!
−→ E′ to F (idD, g) for morphisms. Similarly for FD′ . The embeddings into the

canonical fixpoint of FD , resp. FD′ , we denote by e0, e1, . . . and e′0, e
′
1, . . . , and we

use e and e′ for the unique strict function from I intoD andD′, respectively.

Proposition 5.2.7. Let F : D⊥! × E⊥! → E⊥! be a locally continuous functor. Then
the following defines a locally continuous functor from D⊥! to E⊥!:

On objects : D 9→ FIX(FD),

on morphisms : (f : D → D′) 9→
⊔

↑

n∈N

e′n ◦ fn ◦ e∗n

where the sequence (fn)n∈N is defined recursively by f0 = idI, fn+1 = F (f, fn).

Proof. Let D and D′ be objects of D⊥! and let f : D
⊥!
−→ D′ be a strict function. The

solution toX ∼= F (D, X) is given by the bilimit

FIX(FD)

"
"

"
"

e0

: ;!
!

!
!

e2 . . .

I
e& FD(I)

e1

<

FD(e)& F 2
D(I) & · · ·

and similarly for D′. Corresponding objects of the two expanding sequences are con-
nected by fn : Fn

D(I) ⊥!
−→ Fn

D′(I). They commute with the embeddings of the expand-
ing sequences: For n = 0 we have F 0

D′(e′) ◦ f0 = e′ ◦ idI = e′ = f1 ◦ e = f1 ◦ F 0
D(e)

because there is only one strict map from I to F 1(D′). Higher indices follow by induc-

73



tion:

Fn+1
D′ (e′) ◦ fn+1 = F (idD′ , Fn

D′(e′)) ◦ F (f, fn)

= F (f, Fn
D′(e′) ◦ fn)

= F (f, fn+1 ◦ Fn
D(e))

= F (f, fn+1) ◦ F (idD, Fn
D(e))

= fn+2 ◦ Fn+1
D (e).

So we have a second cocone over the sequence defining FIX(FD) and using the fact
that colimits in E⊥!

e are also colimits in E⊥!, we get a (unique) mediating morphism
from FIX(FD) to FIX(FD′). By Theorem 3.3.7 it has the postulated representation.

Functoriality comes for free from the uniqueness of mediating morphisms. It re-
mains to check local continuity. So let A be a directed set of maps from D to D′. We
easily get (

⊔

↑A)n =
⊔

↑
f∈A fn by induction and the local continuity of F . The supre-

mum can be brought to the very front by the continuity of composition and general
associativity.

Note that this proof works just as well for mixed variant functors. As an application,
suppose we are given a system of simultaneous equations

X1
∼= F1(X1, . . . , Xn)

...
...

Xn
∼= Fn(X1, . . . , Xn).

We can solve these one after the other, viewing X2, . . . , Xn as parameters for the
first equation, substituting the result for X1 in the second equation and so on. It is
more direct to pass from D to Dn, for which Theorem 3.3.7 and the results of this
chapter remain true, and then solve these equations simultaneously with the tupling of
the Fi. The fact that these two methods yield isomorphic results is known as Bekič’s
rule [Bek69].

5.3 Canonicity
We have seen in the first section of this chapter that recursive domain equations arise
in various contexts. After having demonstrated a technique for solving them, we must
now check whether the solutions match the particular requirements of these applica-
tions.

5.3.1 Invariance and minimality

Let us begin with a technique of internalizing the expanding sequence I → F (I) →
F (F (I)) → · · · into the canonical solution. This will allow us to do proofs about
FIX(F ) without (explicit) use of the defining expanding sequence.

Lemma 5.3.1. Let F be a locally continuous functor on a category of domains D and
let i : F (A) → A be an isomorphism. Then there exists a least homomorphism hC,A
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from A to every other F -algebra f : F (C) → C. It equals the least fixpoint of the
functional φC,A on [A −→ C] which is defined by

φC,A(g) = f ◦ F (g) ◦ i−1 .

Least homomorphisms compose: If j : F (B) → B is also an isomorphism, then
hC,A = hC,B ◦ hB,A.

Proof. The functional φ = φC,A is clearly continuous because F is locally continu-
ous and composition is a continuous operation. Since we have globally assumed least
elements, the function space [A −→ C] contains c⊥ as a least element. So the least
fixpoint hC,A of φC,A calculated as the supremum of the chain c⊥ & φ(c⊥) & · · ·
exists. We show by induction that it is below every homomorphism h. For c⊥ this is
obvious. For the induction step assume g & h. We calculate: φ(g) = f ◦F (g) ◦ i−1 &
f ◦F (h) ◦ i−1 = h. It follows that fix(φ) = hC,A & h holds. On the other hand, every
fixpoint of φ is a homomorphism: h ◦ i = φ(h) ◦ i = f ◦ F (h) ◦ i−1 ◦ i = f ◦ F (h).

The claim about composition of least homomorphisms can also be shown by in-
duction. But it is somewhat more elegant to use the invariance of least fixpoints,
Lemma 2.1.21. Consider the diagram

[B −→ C]
H& [A −→ C]

[B −→ C]

φC,B

' H& [A −→ C]

φC,A

'

whereH is the strict operation which assigns g ◦hB,A to g ∈ [B −→ C]. The diagram
commutes, because H ◦ φC,B(g) = f ◦ F (g) ◦ j−1 ◦ hB,A = f ◦ F (g ◦ hB,A) ◦ i−1

(because hB,A is an homomorphism) = φC,A(H(g)). Lemma 2.1.21 then gives us
the desired equality: hC,A = fix(φC,A) = H(fix(φC,B)) = fix(φC,B) ◦ hB,A =
hC,B ◦ hB,A.

Specializing the second algebra in this lemma to be i : F (A) → A itself, we de-
duce that on every fixpoint of a locally continuous functor there exists a least endomor-
phism hA,A. Since the identity is always an endomorphism, the least endomorphism
must be below the identity and idempotent, i.e. a kernel operator and in particular strict.
This we will use frequently below.

Theorem 5.3.2. (Invariance, Part 1) Let F be a locally continuous functor on a cate-
gory of domains D and let i : F (A) → A be an isomorphism. Then the following are
equivalent:

1. A is isomorphic to the canonical fixpoint FIX(F );

2. idA is the least endomorphism of A;

3. idA = fix(φA,A) where φA,A : [A −→ A] → [A −→ A] is defined by φA,A(g) =
i ◦ F (g) ◦ i−1;
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4. idA is the only strict endomorphism of A.

Proof. (1=⇒ 2) The least endomorphism on D = FIX(F ) is calculated as the least
fixpoint of φD,D : g 9→ fold◦F (g)◦unfold. With the usual notation for the embeddings
of Fn(I) into D we get (by induction): c⊥ = e0 ◦ e∗0 and φn(c⊥) = φ(φn−1(c⊥)) =
φ(en−1 ◦e∗n−1) = fold◦F (en−1)◦F (e∗n−1)◦unfold = en ◦e∗n, where the last equality
follows because fold and unfold are mediating morphisms. Lemma 3.3.8 entails that
the supremum of the φn(c⊥) is the identity.

The equivalence of (2) and (3) is a reformulation of Lemma 5.3.1.
(3=⇒ 4) Suppose h : A

⊥!
−→ A defines an endomorphism of the algebra

i : F (A) → A. We apply the invariance property of least fixpoints, Lemma 2.1.21,
to the diagram (where φ now stands for φA,A)

[A −→ A]
H& [A −→ A]

[A −→ A]

φ

' H& [A −→ A]

φ

'

whereH maps g ∈ [A −→ A] to h◦g. This is a strict operation because h is assumed to
be strict. The diagram commutes: H ◦φ(g) = H(i◦F (g)◦ i−1) = h◦ i◦F (g)◦ i−1 =
i ◦ F (h) ◦ F (g) ◦ i−1 = φ(H(g)). By Lemma 2.1.21 we have idA = fix(φ) =
H(fix(φ)) = h ◦ idA = h.

(4=⇒ 1) By the preceding lemma we have homomorphisms between A and
FIX(F ). They compose to the least endomorphisms on A, resp. FIX(F ), which we
know to be strict. But then they must be equal to the identity as we have just shown for
FIX(F ) and assumed for A.

If, in the last third of this proof, we do not assume that idA is the only strict endo-
morphism onA, then we still get an embedding-projectionpair between FIX(F ) andA.
Thus we have:

Theorem 5.3.3. (Minimality, Part 1) The canonical fixpoint of a locally continuous
functor is a sub-domain of every other fixpoint.

So we have shown that the canonical solution is the least fixpoint in a relevant
sense. This is clearly a good canonicity result with respect to the first class of examples.
For pedagogical reasons we have restricted attention to the covariant case first, but, as
we will see in section 5.3.3, this characterization is also true for functors of mixed
variance.

5.3.2 Initiality and finality

By a little refinement of the proofs of the preceding subsection we get the desired
result that the canonical fixpoint together with fold is an initial F -algebra. One of the
adjustments is that we have to pass completely to strict functions, because Lemma 5.3.1
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does not guarantee the existence of strict homomorphisms and only of these can we
prove unicity.
Theorem 5.3.4. (Initiality) Let F : D⊥! → D⊥! be a locally continuous functor on
a category of domains with strict functions. Then fold : F (D) → D is an initial F -
algebra where D is the canonical solution to X ∼= F (X).

Proof. Let f : F (A)
⊥!
−→ A be a strict F -algebra. The homomorphism h : D → A we

get from Lemma 5.3.1 is strict as we see by inspecting its definition. That there are no
others is shown as in the proof of Theorem 5.3.2, (3=⇒ 4). The relevant diagram for
the application of Lemma 2.1.21 is now:

[D −→ D]
H& [D −→ A]

[D −→ D]

φD,D

' H& [D −→ A].

φA,D

'

By dualizing Lemma 5.3.1 and the proof of Theorem 5.3.2, (3=⇒ 4), we get the
final co-algebra theorem. It is slightly stronger than initiality since it holds for all
co-algebras, not only the strict ones.

Theorem 5.3.5. (Finality) Let F : D→ D be a locally continuous functor with canon-
ical fixpointD = FIX(F ). Then unfold : D → F (D) is a final co-algebra.

5.3.3 Mixed variance

Let us now tackle the case that we are given an equation in which the variableX occurs
both positively and negatively in the body, as in our first example X ∼= [X −→ X ].
We assume that by separating the negative occurrences from the positive ones, we have
a functor in two variables, contravariant in the first and covariant in the second. As
the reader will remember, solving such an equation required the somewhat magical
passage to adjoints in the first coordinate. We will now see in how far we can extend
the results from the previous two subsections to this case. Note that for a mixed variant
functor the concept of F -algebra or co-algebra is no longer meaningful, as there are no
homomorphisms. The idea is to pass to pairs of mappings. Lemma 5.3.1 is replaced by

Lemma 5.3.6. Let F : Dop × D → D be a mixed variant, locally continuous functor
and let i : F (A, A) → A and j : F (B, B) → B be isomorphisms. Then there exists a
least pair of functions h : A → B and k : B → A such that

F (A, A)
F (k, h)& F (B, B) F (B, B)

F (h, k)& F (A, A)

and

A

i

' h & B

j

'
B

j

' k & A

i

'
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commute.
The composition of two such least pairs gives another one.

Proof. Define a Scott-continuous function φ on [A −→ B] × [B −→ A] by φ(f, g) =
(j ◦F (g, f) ◦ i−1, i ◦F (f, g) ◦ j−1) and let (h, k) be its least fixpoint. Commutativity
of the two diagrams is shown as in the proof of Lemma 5.3.1.

Comment: The statement about composition of least pairs of functions is certainly true for constant
bottom maps, and this is lifted to the limits by induction over the fixpoint computation.

By equating A and B in this lemma, we get a least endofunction h which satisfies
h◦f = f ◦F (h, h). Again, it must be below the identity. Let us call such endofunctions
mixed endomorphisms.

Theorem 5.3.7. (Invariance, Part 2) Let F : Dop × D → D be a mixed variant and
locally continuous functor and let i : F (A, A) → A be an isomorphism. Then the
following are equivalent:

1. A is isomorphic to the canonical fixpoint FIX(F );

2. idA is the least mixed endomorphism of A;

3. idA = fix(φA,A) where φA,A : [A −→ A] → [A −→ A] is defined by φA,A(g) =
i ◦ F (g, g) ◦ i−1;

4. idA is the only strict mixed endomorphism of A.

Proof. The proof is of course similar to that of Theorem 5.3.2, but let us
spell out the parts where mixed variance shows up. Recall from Sec-
tion 5.2.2 how the expanding sequence defining D = FIX(F ) looks like:
I e& F (I, I) F (e∗,e)& F (F (I, I), F (I, I)) & · · · . If e0, e1, . . . are the col-
imiting maps into D, then F (e∗0, e0), F (e∗1, e1), . . . form the cocone into F (D, D),
which, by local continuity, is also colimiting. The equations from Lemma 5.2.2 read:
F (e∗n, en) = unfold ◦ en+1 and F (e∗n, en)∗ = F (en, e∗n) = e∗n+1 ◦ fold. We show that
the n-th approximation to the least mixed endomorphism equals en ◦ e∗n. For n = 0 we
get c⊥ = e0 ◦ e∗0, and for the induction step:

φn+1(c⊥) = φ(φn(c⊥))

= φ(en ◦ e∗n)

= fold ◦ F (en ◦ e∗n, en ◦ e∗n) ◦ unfold

= fold ◦ F (e∗n, en) ◦ F (en, e∗n) ◦ unfold

= en+1 ◦ e∗n+1.

(Note how contravariance in the first argument of F shuffles en and e∗n in just the right
way.)

(3=⇒ 4) The diagram to which Lemma 2.1.21 is applied is as before, but
H : [A −→ A] → [A −→ A] now maps g : A → A to h ◦ g ◦ h.

The rest can safely be left to the reader.
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Theorem 5.3.8. (Minimality, Part 2) The canonical fixpoint of a mixed variant and
locally continuous functor is a sub-domain of every other fixpoint.

Now that we have some experience with mixed variance, it is pretty clear how
to deal with initiality and finality. The trick is to pass once more to pairs of (strict)
functions.

Theorem 5.3.9. (Free mixed variant algebra) Let F : D⊥!
op × D⊥! → D⊥! be a

mixed variant, locally continuous functor and let D be the canonical solution to
X ∼= F (X, X). Then for every pair of strict continuous functions f : A

⊥!
−→ F (B, A)

and g : F (A, B)
⊥!
−→ B there are unique strict functionsh : A

⊥!
−→ D and k : D

⊥!
−→ B

such that

F (B, A)
F (k, h)& F (D, D) F (D, D)

F (h, k) & F (A, B)

and

A

f

<

h & D

unfold

<

D

fold

' k & B

g

'

commute.

We should mention that the passage from covariant to mixed-variant functors,
which we have carried out here concretely, can be done on an abstract, categorical
level as was demonstrated by Peter Freyd in [Fre91]. The feature of domain theory
which Freyd uses as his sole axiom is the existence and coincidence of initial algebras
and final co-algebras for “all” endofunctors (“all” to be interpreted in some suitable
enriched sense, in our case as “all locally continuous endofunctors”). Freyd’s results
are the most striking contribution to date towards Axiomatic Domain Theory, for which
see 8.4 below.

5.4 Analysis of solutions
We have worked hard in the last section in order to show that our domain theoretic
solutions are canonical in various respects. Besides this being reassuring, the advantage
of canonical solutions is that we can establish proof rules for showing properties of
them. This is the topic of this section.

5.4.1 Structural induction on terms

This technique is in analogy with universal algebra. While one has no control over
arbitrary algebras of a certain signature, we feel quite comfortable with the initial or
term algebra. There, every element is described by a term and no identifications are
made. The first property carries over to our setting quite easily. For each of the finitary
constructions of Section 3.2, we have introduced a notation for the basis elements of the
constructed domain, to wit, tuples 〈d, e〉, variants (d : i), one-element constant ⊥ ∈ I,
and step-functions (d ↘ e). Since our canonical solutions are built as bilimits, starting
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from I, and since every basis element of a bilimit shows up at a finite iteration already,
Theorem 3.3.11, these can be denoted by finite expressions. The proof can then be
based on structural induction on the length of these terms.

Unicity, however, is hard to achieve and this is the fault of the function space. One
has to define normal forms and prove conversion rules. A treatment along these lines,
based on [Abr91b], is given in Chapter 7.3.

5.4.2 Admissible relations

This is a more domain-theoretic formulation of structural induction, based on certain
relations. The subject has recently been expanded and re-organized in an elegant way
by Andrew Pitts [Pit93b, Pit94]. We follow his treatment closely but do not seek the
same generality. We start with admissible relations, which we have met shortly in
Chapter 2 already.

Definition 5.4.1. A relation R ⊆ Dn on a pointed domain D is called admissible if it
contains the constantly-bottom tuple and if it is closed under suprema of ω-chains. We
write R

n(D) for the set of all admissible n-ary relations on D, ordered by inclusion.
Unary relations of this kind are also called admissible predicates.

This is tailored to applications of the Fixpoint Theorem 2.1.19, whence we pre-
ferred the slightly more inclusive concept of ω-chain over directed sets. If we are given
a strict continuous function f : D

⊥!
−→ E, then we can apply it to relations pointwise in

the usual way:

f rel(R) = {〈f(x1), . . . , f(xn)〉 | 〈x1, . . . , xn〉 ∈ R}.

Proposition 5.4.2. For dcpo’sD and E and admissible n-ary relationsR onD and S

on E the set {f | f rel(R) ⊆ S} is an admissible predicate on [D
⊥!
−→ E].

We also need to say how admissible relations may be transformed by our locally
continuous functors. This is a matter of definition because there are several – and
equally useful – possibilities.

Definition 5.4.3. Let F : D⊥!
op × D⊥! → D⊥! be a mixed variant and locally contin-

uous functor on a category of domains and strict functions. An admissible action on
(n-ary) relations for F is given by a function F rel which assigns to each pair 〈D, E〉
a map F rel

〈D,E〉 from R(D) × R(E) to R(F (D, E)). These maps have to be compatible

with strict morphisms in D⊥! as follows: If f : D2
⊥!
−→ D1 and g : E1

⊥!
−→ E2 and if

R1 ∈ R(D1) etc., such that f rel(R2) ⊆ R1 and grel(S1) ⊆ S2, then

F (f, g)rel(F rel
〈D1,E1〉

(R1, S1)) ⊆ F rel
〈D2,E2〉

(R2, S2).

(Admittedly, this is a bit heavy in terms of notation. But in our concrete examples
it is simply not the case that the behaviour of F rel

〈D,E〉 on R and S is the same as – or
in a simple way related to – the result of applying the functor to R and S viewed as
dcpo’s.)

Specializing f and g to identity mappings in this definition, we get:
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Proposition 5.4.4. The maps F rel
〈D,E〉 are antitone in the first and monotone in the

second variable.

Theorem 5.4.5. Let D⊥! be a category of domains and let F be a mixed variant and
locally continuous functor fromD⊥!

op×D⊥! to D⊥! together with an admissible action
on relations. Abbreviate FIX(F ) by D. Given two admissible relationsR, S ∈ R

n(D)
such that

unfoldrel(R) ⊆ F rel(S, R) and foldrel(F rel(R, S)) ⊆ S

then R ⊆ S holds.

Proof. We know from the invariance theorem that the identity onD is the least fixpoint
of φ, where φ(g) = fold◦F (g, g)◦unfold. Let P = {f ∈ [D

⊥!
−→ D] | f rel(R) ⊆ S},

which we know is an admissible predicate. We want that the identity on D belongs
to P and for this it suffices to show that φ maps P into itself. So suppose g ∈ P :

φ(g)rel(R) = foldrel ◦ F (g, g)rel ◦ unfoldrel(R) by definition
⊆ foldrel ◦ F (g, g)rel(F rel(S, R)) by assumption
⊆ foldrel(F rel(R, S)) because g ∈ P
⊆ S by assumption

Indeed, φ(g) belongs again to P .

In order to understand the power of this theorem, we will study two particular
actions in the next subsections. They, too, are taken from [Pit93b].

5.4.3 Induction with admissible relations

Definition 5.4.6. Let F be a mixed variant functor as before. We call an admissible
action on (n-ary) relations logical, if for all objectsD and E andR ∈ R

n(D) we have
F rel
〈D,E〉(R, En) = F (D, E)n.

Specializing R to be the whole D in Theorem 5.4.5 and removing the assumption
unfoldrel(R) ⊆ F rel(S, R), which for this choice of R is always satisfied for a logical
action, we get:

Theorem 5.4.7. (Induction) Let D⊥! be a category of domains and let F : D⊥!
op ×

D⊥! → D⊥! be a mixed variant and locally continuous functor together with a logical
action on admissible predicates. LetD be the canonical fixpoint of F . If S ∈ R

1(D) is
an admissible predicate, for which x ∈ F rel(D, S) implies fold(x) ∈ S, then S must
be equal to D.

The reader should take the time to recognize in this the principle of structural in-
duction on term algebras.

We exhibit a particular logical action on admissible predicates for functors which
are built from the constructors of Section 3.2. If R, S are admissible predicates on the
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pointed domainsD and E, then we set

R⊥ = up(R) ∪ {⊥} ⊆ D⊥,

R × S = {〈x, y〉 ∈ D × E | x ∈ R, y ∈ S},

[R −→ S] = {f ∈ [D −→ E] | f(R) ⊆ S},

R ⊕ S = inl(R) ∪ inr(S) ⊆ D ⊕ E,

and analogously for⊗ and [·
⊥!
−→ ·]. (This is not quite in accordancewith our notational

convention. For example, the correct expression for [R −→ S] is [· −→ ·]rel
〈D,E〉(R, S).)

The definition of the action for the function space operator should make it clear why
we chose the adjective ‘logical’ for it.

We get more complicated functors by composing the basic constructors. The
actions also compose in a straightforward way: If F , G1, and G2 are mixed vari-
ant functors on a category of domains then we can define a mixed variant composi-
tion H = F ◦ 〈G1, G2〉 by setting H(X, Y ) = F (G1(Y, X), G2(X, Y )) for objects
and similarly for morphisms. Given admissible actions for each of F , G1, and G2, we
can define an action for H by setting Hrel(R, S) = F rel(Grel

1 (S, R), Grel
2 (R, S)). It

is an easy exercise to show that this action is logical if all its constituents are.

5.4.4 Co-induction with admissible relations

In this subsection we work with another canonical relation on domains, namely the
order relation. We again require that it is dominant if put in the covariant position.

Definition 5.4.8. Let F be a mixed variant functor. We call an admissible action on
binary relations extensional, if for all objects D and E and R ∈ R

n(D) we have
F rel
〈D,E〉(R,&E) = &F (D,E).

Theorem 5.4.9. (Co-induction) Let D⊥! be a category of domains and let
F : D⊥!

op × D⊥! → D⊥! be a mixed variant and locally continuous functor together
with an extensional action on binary relations. Let D be the canonical fixpoint of F .
If R ∈ R

2(D) is an admissible relation such that for all 〈x, y〉 ∈ R we have
〈unfold(x), unfold(y)〉 ∈ F rel(&D, R), then R is contained in &D.

If we call an admissible binary relation R on D a simulation, if it satisfies the
hypothesis of this theorem, then we can formulate quite concisely:

Corollary 5.4.10. Two elements of the canonical fixpoint of a mixed variant and lo-
cally continuous functor are in the order relation if and only if they are related by a
simulation.

We still have to show that extensional actions exist. We proceed as in the last
subsection and first give extensional actions for the primitive constructors and then
rely on the fact that these compose. So let R, S be admissible binary relations on D,
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resp. E. We set:

R⊥ = {〈x, y〉 ∈ D2 | x = ⊥ or 〈x, y〉 ∈ R}

R × S = {〈〈x, y〉, 〈x′, y′〉〉 ∈ (D × E)2 |

〈x, x′〉 ∈ R and 〈y, y′〉 ∈ S}

[R −→ S] = {〈f, g〉 ∈ [D −→ E]2 | ∀x ∈ D. 〈f(x), g(x)〉 ∈ S}

R ⊕ S = {〈x, y〉 ∈ (D ⊕ E)2 | x = ⊥ or
(x = inl(x′), y = inl(y′) and 〈x′, y′〉 ∈ R) or
(x = inr(x′), y = inr(y′) and 〈x′, y′〉 ∈ S)}

and similarly for ⊗ and [·
⊥!
−→ ·]. We call this family of actions ‘extensional’ because

the definition in the case of the function space is the same as for the extensional order
on functions.

Exercises 5.4.11. 1. Find recursive domain equations which characterize the three
versions of the natural numbers from Figure 2.

2. [Ern85] Find an example which demonstrates that the ideal completion functor
is not locally continuous. Characterize the solutions toX ∼= Idl(X,&).

3. [DHR71] Prove that only the one-point poset satisfies P ∼= [P
m
−→ P ].

4. Verify Bekič’s rule in the dcpo case. That is, let D, E be pointed dcpo’s and let
f : D × E → D and g : D × E → E be continuous functions. We can solve the
equations

x = f(x, y) y = g(x, y)

directly by taking the simultaneous fixpoint (a, b) = fix(〈f, g〉). Or we can solve
for one variable at a time by defining

h(y) = fix(λx.f(x, y)) k(y) = g(h(y), y)

and setting
d = fix(k) c = h(d) .

Verify that (a, b) = (c, d) holds by using fixpoint induction.

5. Find an example which shows that the Initiality Theorem 5.3.4 may fail for non-
strict algebras.

6. Why does Theorem 5.3.5 hold for arbitrary (non-strict) co-algebras?

7. What are initial algebra and final co-algebra for the functor X 9→ I
.
∪ X on the

category of sets? Show that they are not isomorphic as algebras.

8. (G. Plotkin) Let F be the functor which mapsX to [X −→ X ]⊥ and letD be its
canonical fixpoint. This gives rise to a model of the (lazy) lambda calculus (see
[Bar84, Abr90c, AO93]). Prove that the denotation of the Y combinator in this
model is the least fixpoint function fix. Proceed as follows:
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(a) Define a multiplication on D by x · y = unfold(x)(y).
(b) The interpretation yf of Yf is ωf · ωf where ωf = fold(x 9→ f(x · x)).

Check that this is a fixpoint of f . It follows that fix(f) & yf holds.
(c) Define a subset E of [D −→ D]⊥ by

E = {e | e & idD and e(ωf ) · ωf & fix(f)} .

(d) Use Theorem 5.3.7 to show that idD ∈ E. Then yf & fix(f) is also valid.

9. Given an action on relations for a functor in four variables, contravariant in the
first two, covariant in the last two, define an action for the functor (D, E) 9→
FIX(F (D, ·, E, ·)). Prove that the resulting action is logical (extensional) if the
original action was logical (extensional).
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6 Equational theories
In the last chapter we saw how we can build initial algebras over domains. It is a nat-
ural question to ask whether we can also accommodate equations, i.e. construct free
algebras with respect to equational theories. In universal algebra this is done by factor-
ing the initial or term algebra with respect to the congruence generated by the defining
equations, and we will see that we can proceed in a similar fashion for domains. Bases
will play a prominent role in this approach.

The technique of the previous chapter, namely, to generate the desired algebra in
an iterative process, is no longer applicable. A formal proof for this statement may
be found in [AT89], Section III.3, but the result is quite intuitive: Recall that an F -
algebra α : F (A) → A encodes the algebraic structure on A by giving information
about the basic operations on A, where F (A) is the sum of the input domains for each
basic operation. Call an equation flat if each of the equated terms contains precisely
one operation symbol. For example, commutativity of a binary operation is expressed
by a flat equation while associativity is not. Flat equations can be incorporated into
the concept of F -algebras by including the input, on which the two operations agree,
only once in F (A). For non-flat equations such a trick is not available. What we need
instead of just the basic operations is a description of all term operations overA. In this
case, F (A) will have to be the free algebra over A, the object we wanted to construct!

Thus F -algebras are not the appropriate categorical concept to model equational
theories. The correct formalization, rather, is that of monads and Eilenberg-Moore
algebras.

We will show the existence of free algebras for dcpo’s and continuous domains in
the first section of this chapter. For the former, we use the Adjoint Functor Theorem
(see [Poi92], for example), for the latter, we construct the basis of the free algebra as a
quotient of the term algebra.

Equational theories come up in semantics when non-deterministic languages are
studied. They typically contain a commutative, associative, and idempotent binary
operation, standing for the union of two possible branches a program may take. The
associated algebras are known under the name ‘powerdomains’ and they have been the
subject of detailed studies. We shall present some of their theory in the second section.

6.1 General techniques
6.1.1 Free dcpo-algebras

Let us recall the basic concepts of universal algebra so as to fix the notation for this
chapter. A signature Σ = 〈Ω,α〉 consists of a set Ω of operation symbols and a map
α : Ω → N, assigning to each operation symbol a (finite) arity. AΣ-algebraA = 〈A, I〉
is given by a carrier set A and an interpretation I of the operation symbols, in the sense
that for f ∈ Ω, I(f) is a map from Aα(f) to A. We also write fA or even f for the
interpreted operation symbol and speak of the operation f on A. A homomorphism
between two Σ-algebras A and B is a map h : A → B which commutes with the
operations:

∀f ∈ Ω. h(fA(a1, . . . , aα(f))) = fB(h(a1), . . . , h(aα(f)))
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We denote the term algebra over a set X with respect to a signature Σ by TΣ(X). It
has the universal property that each map from X to A, where A = 〈A, I〉 is a Σ-
algebra, can be extended uniquely to a homomorphism h̄ : TΣ(X) → A. Let V be
a fixed countable set whose elements we refer to as ‘variables’. Pairs of elements of
TΣ(V ) are used to encode equations. An equation τ1 = τ2 is said to hold in an algebra
A = 〈A, I〉 if for each map h : V → Awe have h̄(τ1) = h̄(τ2). The pair 〈h̄(τ1), h̄(τ2)〉
is also called an instance of the equation τ1 = τ2. The class of Σ-algebras in which
each equation from a set E ⊆ TΣ(V ) × TΣ(V ) holds, is denoted by Set(Σ, E).

Here we are interested in dcpo-algebras, characterized by the property that the
carrier set is equipped with an order relation such that it becomes a dcpo, and such that
each operation is Scott-continuous. Naturally, we also require the homomorphisms to
be Scott-continuous. Because of the order we also can incorporate inequalities. So
from now on we let a pair 〈τ1, τ2〉 ∈ E ⊆ TΣ(V ) × TΣ(V ) stand for the inequality
τ1 & τ2. We use the notation DCPO(Σ, E) for the class of all dcpo-algebras over the
signature Σ which satisfy the inequalities in E. For these we have:

Proposition 6.1.1. For every signature Σ and set E of inequalities, the class
DCPO(Σ, E) with Scott-continuous homomorphisms forms a complete category.

Proof. It is checked without difficulties thatDCPO(Σ, E) is closed under products and
equalizers, which both are defined as in the ordinary case.

This proves that we have one ingredient for the Adjoint Functor Theorem, namely, a
complete category DCPO(Σ, E) and a (forgetful) functor U : DCPO(Σ, E) → DCPO
which preserves all limits. The other ingredient is the so-called solution set condition.
For this setup it says that each dcpo can generate only set-many non-isomorphic dcpo-
algebras. This is indeed the case: Given a dcpo D and a continuous map i : D → A,
where A is the carrier set of a dcpo-algebra A, we construct the dcpo-subalgebra of A
generated by i(D) in two stages. In the first we let S be the (ordinary) subalgebra of
A which is generated by i(D). Its cardinality is bounded by an expression depending
on the cardinality of D and Ω. Then we add to S all suprema of directed subsets
until we get a sub-dcpo S̄ of the dcpo A. Because we have required the operations
on A to be Scott-continuous, S̄ remains to be a subalgebra. The crucial step in this
argument now is that the cardinality of S̄ is bounded by 2|S| as we asked you to show
in Exercise 2.3.9(34). All in all, given Σ, the cardinality of S̄ has a bound depending
on |D| and so there is only room for a set of different dcpo-algebras. Thus we have
shown:

Theorem 6.1.2. For every signature Σ and set E of inequalities, the forgetful functor
U : DCPO(Σ, E) → DCPO has a left adjoint.

Equivalently: For each dcpo D the free dcpo-algebra over D with respect to Σ
and E exists.

The technique of this subsection is quite robust and has been used in [Nel81] for
proving the existence of free algebras under more general notions of convergence than
that of directed-completeness. This, however, is not the direction we are interested in,
and instead we shall now turn to continuous domains.
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6.1.2 Free continuous domain-algebras

None of the categories of approximated dcpo’s, or domains, we have met so far is
complete. Both infinite products and equalizers may fail to exist. Hence we cannot rely
on the Adjoint Functor Theorem. While this will result in a more technical proof, there
will also be a clear advantage: we will gain explicit information about the basis of the
constructed free algebra, which may help us to find alternative descriptions. In the case
of dcpo’s, such concrete representations are quite complicated, see [Nel81, ANR82].

We denote the category of dcpo-algebras, whose carriers form a continuous do-
main, by CONT(Σ, E) and speak of (continuous) domain-algebras. Again there is the
obvious forgetful functor U : CONT(Σ, E) → CONT. To keep the notation manage-
able we shall try to suppress mention of U , in particular, we will write A for U(A) on
objects and make no distinction between h and U(h) on morphisms. Let us write down
the condition for adjointness on which we will base our proof:

D
η & F (D) F (D)

CONT

/
/

/
/

/
/

g
=

A

ext(g)

'
A

∃!ext(g) CONT(Σ, E)

'

In words: Suppose a signature Σ and a set E of inequalities has been fixed. Then
given a continuous domain D we must construct a dcpo-algebra F (D), whose carrier
set F (D) is a continuous domain, and a Scott-continuous function η : D → F (D)
such that F (D) satisfies the inequalities in E and such that given any such domain-
algebra A and Scott-continuous map g : D → A there is a unique Scott-continuous
homomorphism ext(g) : F (D) → A for which ext(g) ◦ η = g. (It may be instructive
to compare this with Definition 3.1.9.)

Comment: In fact, what is shown below is that the free domain-algebra is also free for all dcpo-algebras,
in other words, the adjunction between CONT and CONT(Σ, E) is (up to isomorphism) the restriction
of the adjunction between DCPO and DCPO(Σ, E) established in Theorem 6.1.2.

The idea for solving this problem is to work explicitly with bases (cf. Section 2.2.6).
So assume that we have fixed a basis 〈B,:〉 for the continuous domain D. We will
construct an abstract basis 〈FB,≺〉 for the desired free domain-algebra F (D). The
underlying set FB is given by the set TΣ(B) of all terms overB. On FB we have two
natural order relations. The first, which we denote by$∼, is induced by the defining set E
of inequalities. We can give a precise definition in the form of a deduction scheme:
Axioms:

(A1) t $∼ t for all t ∈ FB.

(A2) s $∼ t if this is an instance of an inequality from E.

Rules:

(R1) If f ∈ Ω is an n-ary function symbol and if s1 $∼ t1, . . . , sn $∼ tn then
f(s1, . . . , sn) $∼ f(t1, . . . , tn).
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(R2) If s $∼ t and t $∼ u then s $∼ u.

The relation $∼ is the ‘least substitutive preorder’ in the terminology of [Sto88]. It
is the obvious generalization of the concept of a congruence relation to the preordered
case, and indeed, 〈FB, $∼〉 is the free preordered algebra over B. The associated equiv-
alence relation we denote by ≈. The factor set FB/≈ is ordered by $∼ and this is the
free ordered algebra over B.

Let us now turn to the second relation on FB, namely, the one which arises from
the order of approximation on B. We set t ≺s t′ if t and t′ have the same structure and
corresponding constants are related by:. Formally,≺s is given through the deduction
scheme:
Axioms:

(A) a ≺s b if a : b in B.

Rules:

(R) If f ∈ Ω is an n-ary function symbol and if s1 ≺s t1, . . . , sn ≺s tn then
f(s1, . . . , sn) ≺s f(t1, . . . , tn).

Our first observation is that ≺s satisfies the interpolation axiom:

Proposition 6.1.3. 〈FB,≺s〉 is an abstract basis.

Proof. Since ≺s relates only terms of the same structure, it is quite obvious that it
is a transitive relation. For the interpolation axiom assume that s ≺s t holds for all
elements s of a finite setM ⊆ FB. For each occurrence of a constant a in t letMa be
the set of constants which occur in the same location in one of the terms s ∈ M . Since
Ma is finite and since Ma : a holds by the definition of ≺s, we find interpolating
elements a′ betweenMa and a. Let t′ be the term in which all constants are replaced
by the corresponding interpolating element. This is a term which interpolates between
M and t in the relation ≺s.

The question now is how to combine $∼ and ≺s. As a guideline we take Propo-
sition 2.2.2(2). If the inequalities tell us that t1 should be below s1 and s2 should be
below t2 and if s1 approximates s2 then it should be the case that t1 approximates t2.
Hence we define ≺, the order of approximation on FB, to be the transitive closure of
$∼ ◦ ≺s ◦ $∼. The following, somewhat technical properties will be instrumental for
the free algebra theorem:

Proposition 6.1.4. 1. ≺s ◦ $∼ is contained in ≺s ◦ $∼ ◦ ≺s.

2. For every n ≤ m ∈ N we have ($∼ ◦ ≺s ◦ $∼)n ⊆ ($∼ ◦ ≺s ◦ $∼)m.

Proof. (1) Assume s ≺s t $∼ u. Let C ⊆ B be the set of all constants which appear in
the derivation of t $∼ u. For each c ∈ C let Mc be the set of constants which appear
in s at the same place as c appears in t. Of course, c may not occur in t at all; in this
case Mc will be empty. If it occurs several times then Mc can contain more than one
element. In any case,Mc is finite andMc : c holds. Let c′ be an interpolating element
between Mc and c. We now replace each constant c in the derivation of t $∼ u by the
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corresponding constant c′ and we get a valid derivation of a formula t′ $∼ u′. (The
catch is that an instance of an inequality is transformed into an instance of the same
inequality.) It is immediate from the construction that s ≺s t′ $∼ u′ ≺s u holds.

(2) Using (1) and the reflexivity of $∼ we get

$∼ ◦ ≺s ◦ $∼ ⊆ $∼ ◦(≺s ◦ $∼ ◦ ≺s) ⊆ $∼ ◦ ≺s ◦ $∼ ◦ $∼ ◦ ≺s ◦ $∼ .

The general case follows by induction.

Lemma 6.1.5. 〈FB,≺〉 is an abstract basis.

Proof. Transitivity has been built in, so it remains to look at the interpolation axiom.
Let M ≺ t for a finite set M . From the definition of ≺ we get for each s ∈ M a
sequence of terms s $∼ s1 ≺s s2 $∼ . . . $∼ sn(s)−1 ≺s sn(s) $∼ t. The last two steps
may be replaced by sn(s)−1 ≺s s′ $∼ s′′ ≺s t as we have shown in the preceding
proposition. The collection of all s′′ is finite and we find an interpolating term t′

between it and t according to Proposition 6.1.3. Because of the reflexivity of $∼ we
haveM ≺ t′ ≺ t.

So we can take as the carrier set of our free algebra over D the ideal completion of
〈FB,≺〉 and from Proposition 2.2.22 we know that this is a continuous domain. The
techniques of Section 2.2.6 also help us to fill in the remaining pieces. The operations
on F (D) are defined pointwise: If A1, . . . , An are ideals and if f ∈ Ω is an n-ary
function symbol then we let fF (D)(A1, . . . , An) be the ideal which is generated by
{f(t1, . . . , tn) | t1 ∈ A1, . . . , tn ∈ An}. We need to know that this set is directed. It
will follow if the operations on FB are monotone with respect to ≺. So assume we
are given an operation symbol f ∈ Ω and pairs s1 ≺ t1, . . . , sn ≺ tn. By definition,
each pair translates into a sequence si $∼ s1

i ≺s s2
i

$∼ . . . ≺s sm(i)
i

$∼ ti. Now we use
Proposition 6.1.4(2) to extend all these sequences to the same lengthm. Then we can
apply f step by step, using Rules (R1) and (R) alternately:

f(s1, . . . , sn) $∼ f(s1
1, . . . , s

1
n) ≺s f(s2

1, . . . , s
2
n) $∼ . . .

. . . ≺s f(sm
1 , . . . , sm

n ) $∼ f(t1, . . . , tn).

Using the remark following Proposition 2.2.24 we infer that the operations fF (D) de-
fined this way are Scott-continuous functions. Thus F (D) is a continuous domain-
algebra. The generating domainD embeds into F (D) via the extension η of the mono-
tone inclusion of B into FB.

Theorem 6.1.6. F (D) is a continuous domain algebra and is the free continuous dcpo-
algebra overD with respect to Σ and E.

Proof. We already know the first part. For the secondwemust show that F (D) satisfies
the inequalities in E and that it has the universal property with respect to all objects in
DCPO(Σ, E).

For the inequalities let 〈τ1, τ2〉 ∈ E and let h : V → F (D) be a map. It assigns to
each variable an ideal in FB. We must show that h̄(τ1) is a subset of h̄(τ2). As we
have just seen, the ideal h̄(τ1) is generated by terms of the form k̄(τ1)where k is a map
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from V to FB, such that for each variable x ∈ V , k(x) ∈ h(x). So suppose s ≺ k̄(τ1)
for such a k. Then k̄(τ1) $∼ k̄(τ2) is an instance of the inequality in the term algebra
FB = TΣ(B) and so we know that s ≺ k̄(τ2) also holds. The term k̄(τ2) belongs to
h̄(τ2), again because the operations on F (D) are defined pointwise. So s ∈ h̄(τ2) as
desired.

To establish the universal property assume that we are given a continuous map
g : D → A for a dcpo-algebraAwhich satisfies the inequalities from E. The restriction
of g to the set B ⊆ D has a unique monotone extension ḡ to the preordered algebra
〈FB, $∼〉. We want to show that ḡ also preserves ≺s. For an axiom a ≺s b this is clear
because g is monotone on 〈B,:〉. For the rules (R) we use that ḡ is a homomorphism
and that the operations on A are monotone:

ḡ(f(s1, . . . , sn)) = fA(ḡ(s1), . . . , ḡ(sn))

& fA(ḡ(t1), . . . , ḡ(tn))

= ḡ(f(t1, . . . , tn)) .

Together this says that ḡ translates the order of approximation≺ on FB to& onA, and
therefore it can be extended to a homomorphism ext(g) on the ideal completion F (D).
Uniqueness of ext(g) is obvious. What we have to show is that ext(g), when restricted
to B, equals g, because Proposition 2.2.24 does not give an extension but only a best
approximation. We can nevertheless prove it here because g arose as the restriction of
a continuous map on D. An element d of D is represented in F (D) as the ideal η(d)
containing at least all of Bd = B ∩ ↓↓d because of the axioms of our second deductive
system. So we have: ext(g)(η(d)) =

⊔

↑ḡ(η(d)) +
⊔

↑ḡ(Bd) =
⊔

↑g(Bd) = g(d).

Theorem 6.1.7. For any signature Σ and set E of inequalities the forgetful functor
U : CONT(Σ, E) → CONT has a left adjoint F . It is equivalent to the restriction
and corestriction of the left adjoint from Theorem 6.1.2 to CONT and CONT(Σ, E),
respectively.

In other words: Free continuous domain-algebras exist and they are also free with
respect to dcpo-algebras.

The action of the left adjoint functor on morphisms is obtained by assigning to a
continuous function g : D → E the homomorphism which extends ηE ◦ g.

D
ηD& F (D)

E

g

' ηE& F (E)

F (g)

'

We want to show that F is locally continuous (Definition 5.2.3). To this end let us
first look at the passage from maps to their extension.
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Proposition 6.1.8. The assignment g 9→ ext(g), as a map from [D −→ A] to
[F (D) −→ A] is Scott-continuous.

Proof. By Proposition 2.2.25 it is sufficient to show this for the restriction of g to the
basis B of D. Let G be a directed collection of monotone maps from B to A and let
t ∈ FB be a term in which the constants a1, . . . , an ∈ B occur. We calculate:

⊔

↑G(t) = t[
⊔

↑G(a1)/a1, . . . ,
⊔

↑G(an)/an]

=
⊔

↑

g∈G

t[g(a1)/a1, . . . , g(an)/an]

=
⊔

↑

g∈G

ḡ(t),

where we have written t[b1/a1, . . . , bn/an] for the term in which each occurrence of
ai is replaced by bi. Restriction followed by homomorphic extension followed by ex-
tension to the ideal completion gives a sequence of continuous functions [D −→ A] →
[B

m
−→ A] → [FB

m
−→ A] → [F (D) −→ A] which equals ext.

Cartesian closed categories can be viewed as categories in which the Hom-functor
can be internalized. The preceding proposition formulates a similar closure property
of the free construction: if the free construction can be cut down to a cartesian closed
category then there the associated monad and the natural transformations that come
with it can be internalized. This concept was introduced by Anders Kock [Koc70,
Koc72]. It has recently found much interest under the name ‘computational monads’
through the work of Eugenio Moggi [Mog91].

Theorem 6.1.9. For any signature Σ and set E of inequalities the composition U ◦ F
is a locally continuous functor on CONT.

Proof. The action of U ◦ F on morphisms is the combination of composition with ηE
and ext.

If e : D → E is an embedding then we can describe the action of F , respec-
tively U ◦ F , quite concretely. A basis element of F (D) is the equivalence class of
some term s. Its image under F (e) is the equivalence class of the term s′, which we
get from s by replacing all constants in s by their image under e.

If we start out with an algebraic domain D then we can choose as its basis K(D),
the set of compact elements. The order of approximation on K(D) is the order relation
inherited from D, in particular, it is reflexive. From this it follows that the constructed
order of approximation ≺ on FB is also reflexive, whence the ideal completion of
〈FB,≺〉 is an algebraic domain. This gives us:

Theorem 6.1.10. For any signature Σ and set E of inequalities the forgetful functor
from ALG(Σ, E) to ALG has a left adjoint.

Finally, let us look at η, which maps the generating domainD into the free algebra,
and let us study the question of when it is injective. What we can say is that if injectivity
fails then it fails completely:
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Proposition 6.1.11. For any in-equational theory the canonical map η from a dcpoD
into the free algebra F (D) overD is order-reflecting if and only if there exists a dcpo-
algebra A for this theory for which the carrier dcpoA is non-trivially ordered.

Proof. Assume that there exists a dcpo-algebraA which contains two elements a $ b.
LetD be any dcpo and x 8& y two distinct elements. We can define a continuous map g
fromD to A, separating x from y by setting

g(d) =

{

a, if d & y;
b, otherwise.

Since g equals ext(g) ◦ η, where ext(g) is the unique homomorphism from F (D) to A,
it cannot be that η(x) & η(y) holds.

The converse is trivial, because η must be monotone.

6.1.3 Least elements and strict algebras

We have come across strict functions several times already. It therefore seems worth-
while to study the problem of free algebras also in this context. But what should a strict
algebra be? There are several possibilities as to what to require of the operations on
such an algebra:

1. An operation which is applied to arguments, one of which is bottom, returns
bottom.

2. An operation applied to the constantly bottom vector returns bottom.

3. An operation of arity greater than 0 applied to the constantly bottom vector re-
turns bottom.

Luckily, we can leave this open as we shall see shortly. All we need is:

Definition 6.1.12. A strict dcpo-algebra is a dcpo-algebra for which the carrier set
contains a least element. A strict homomorphism between strict algebras is a Scott-
continuous homomorphism which preserves the least element.

For pointed dcpo’s the existence of free strict dcpo-algebras can be established as
before through the Adjoint Functor Theorem. For pointed domains the construction of
the previous subsection can be adapted by adding a further axiom to the first deduction
scheme:

(A3) ⊥ $∼ t for all t ∈ FB.

Thus we have:

Theorem 6.1.13. Free strict dcpo- and domain-algebras exist, that is, the forgetful
functors

DCPO⊥!(Σ, E) −→ DCPO⊥!,

CONT⊥!(Σ, E) −→ CONT⊥!,

and ALG⊥!(Σ, E) −→ ALG⊥!

have left adjoints.
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Let us return to the problem of strict operations. The solution is that we can add
a nullary operation 0 to the signature and the inequality 0 & x to E without changing
the free algebras. Because of axiom (A3) we have ⊥ $∼ 0 and because of the new
inequality we have 0 $∼ ⊥. Therefore the new operation must be interpreted by the
bottom element. The advantage of having bottom explicitly in the signature is that
we can now formulate equations about strictness of operations. For example, the first
possibility mentioned at the beginning can be enforced by adding to E the inequality

f(x1, . . . , xi−1, 0, xi+1, . . . , xα(f)) & 0

for all operation symbols f of positive arity and all 1 ≤ i ≤ α(f). The corresponding
free algebras then exist by the general theorem.

More problematic is the situation with DCPO⊥ (respectively CONT⊥ and
ALG⊥). The existence of a least element in the generating dcpo does not imply the
existence of a least element in the free algebra (Exercise 6.2.23(2)). Without it, we
cannot make use of local continuity in domain equations. Furthermore, even if the free
algebra has a least element, it need not be the case that η is strict (Exercise 6.2.23(3)).
The same phenomena appears if we restrict attention to any of the cartesian closed cat-
egories exhibited in Chapter 4. The reason is that we require a special structure of the
objects of our category but allow morphisms which do not preserve this structure. It is
therefore always an interesting fact if the general construction for a particular algebraic
theory can be restricted and corestricted to one of these sub-categories. In the case
that the general construction does not yield the right objects it may be that a different
construction is needed. This has been tried for the Plotkin powerdomain in several
attempts by Karel Hrbacek but a satisfactory solution was obtained only at the cost of
changing the morphisms between continuous algebras, see [Hrb87, Hrb89, Hrb88].

On a more positive note, we can say:

Proposition 6.1.14. If the free functor maps finite pointed posets to finite pointed posets
then it restricts and corestricts to bifinite domains.

6.2 Powerdomains
6.2.1 The convex or Plotkin powerdomain

Definition 6.2.1. The convex or Plotkin powertheory is defined by a signature with one
binary operation ∪ and the equations

1. x ∪ y = y ∪ x (Commutativity)

2. (x ∪ y) ∪ z = x ∪ (y ∪ z) (Associativity)

3. x ∪ x = x (Idempotence)

The operation ∪ is called formal union.
A dcpo-algebra with respect to this theory is called a dcpo-semilattice. The free

dcpo-semilattice over a dcpo D is called the Plotkin powerdomain of D and it is de-
noted by PP(D).
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Every semilattice can be equipped with an order by setting

x ≤ y if x ∪ y = y.

Formal union then becomes the join in the resulting ordered set. On a dcpo-semilattice
this order has little to do with the domain ordering and it is not in the focus of our
interest.

The free semilattice over a set X is given by the set of all non-empty finite subsets
of X , where formal union is interpreted as actual union of sets. This gives us the
first half of an alternative description of the Plotkin powerdomain over a continuous
domain D with basis B. Its basis FB, which we constructed as the term algebra
over B, is partitioned into equivalence classes by ≈, the equivalence relation derived
from $∼, that is, from the defining equations. These equivalence classes are in one-to-
one correspondence with finite subsets of B. Indeed, given a term from FB, we can
re-arrange it because of associativity and commutativity, and because of idempotence
we can make sure that each constant occurs just once.

Remember that we have set up the order of approximation≺ onFB as the transitive
closure of $∼ ◦ ≺s ◦ $∼. This way we have ensured that an ideal in FB contains only
full equivalence classes with respect to ≈. We may therefore replace FB by Pf (B),
the set of finite subsets of B, where we associate with a term t ∈ FB the set [t] of
constants appearing in t.

Let us now also transfer the order of approximation to the new basis.

Definition 6.2.2. Two subsets M and N of a set equipped with a relation R are in
the Egli-Milner relation, written as M REM N , if the following two conditions are
satisfied:

∀a ∈ M ∃b ∈ N. a R b

∀b ∈ N ∃a ∈ M. a R b.

Here we are talking about finite subsets of 〈B,:〉, so we write:EM for the Egli-
Milner relation between finite subsets of B. Let us establish the connection between
:EM on Pf (B) and ≺ on FB. Firstly, if s ≺s t then by definition each constant
in t is matched by a constant in s which approximates it and vice versa. These are just
the conditions for [s] :EM [t]. Since:EM is transitive, we find that s ≺ t implies
[s] :EM [t] in general. Conversely, if two finite subsets M = {a1, . . . , am} and
N = {b1, . . . , bn} ofB are related by:EM then we can build terms s and t, such that
[s] = M , [t] = N , and s ≺s t hold. This is done as follows. For each ai ∈ M let bj(i)

be an element of N such that ai : bj(i) and for each bj ∈ N let ai(j) be an element
ofM such that ai(j) : bj . Then we can set

s = (a1 ∪ . . . ∪ am) ∪ (ai(1) ∪ . . . ∪ ai(n))

and t = (bj(1) ∪ . . . ∪ bj(m)) ∪ (b1 ∪ . . . ∪ bn).

We have proved:

Theorem 6.2.3. The Plotkin powerdomain of a continuous domain D with basis
〈B,:〉 is given by the ideal completion of 〈Pf (B),:EM 〉.
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An immediate consequence of this characterization is that the Plotkin powerdomain
of a finite pointed poset is again finite and pointed. By Proposition 6.1.14, the Plotkin
powerdomain of a bifinite domain is again bifinite. This is almost the best result we
can obtain. The Plotkin power construction certainly destroys all properties of being
lattice-like, see Exercise 6.2.23(8). It is, on the other hand, not completely haphazard,
in the sense that not every finite poset is a sub-domain of a powerdomain of some other
poset. This was shown in [Nüß92].

The passage from terms to finite sets has reduced the size of the basis for the pow-
erdomain drastically. Yet, it is still possible to get an even leaner representation. We
present this for algebraic domains only. For continuous domains a similar treatment is
possible but it is less intuitive. Remember that abstract bases for algebraic domains are
preordered sets.

Definition 6.2.4. For a subsetM of a preordered set 〈B,&〉 let the convex hull Cx(M)
be defined by

{a ∈ B | ∃m, n ∈ M. m & a & n}.

A set which coincides with its convex hull is called convex.

The following properties are easily checked:

Proposition 6.2.5. Let 〈B,&〉 be a preordered set andM, N be subsets of B.

1. Cx(M) = ↑M ∩ ↓M .

2. M ⊆ Cx(M).

3. Cx(Cx(M)) = Cx(M).

4. M ⊆ N =⇒ Cx(M) ⊆ Cx(N).

5. M =EM Cx(M).

6. M =EM N if and only if Cx(M) = Cx(N).

Comment: In (5) and (6) we have used the notation “=EM ” as an abbreviation for “(EM ∩ *EM ”;
it is not the EM -version of equality as defined in 6.2.2 (which would be nothing more than equality on
the powerset).

While 〈Pf (K(D)),&EM 〉 is only a preordered set, parts (5) and (6) of the preced-
ing proposition suggests how to replace it with an ordered set. Writing PCx,f (K(D))
for the set of finitely generated convex subsets of K(D), we have:

Proposition 6.2.6. The Plotkin powerdomain of an algebraic domainD is isomorphic
to the ideal completion of 〈PCx,f (K(D)),&EM 〉.

This explains the alternative terminology ‘convex powerdomain’. We will sharpen
this description in 6.2.3 below.

For examples of how the Plotkin powerdomain can be used in semantics, we refer
to [HP79, Abr91a].
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6.2.2 One-sided powerdomains

Definition 6.2.7. If the Plotkin powertheory is augmented by the inequality

x & x ∪ y

then we obtain the Hoare or lower powertheory. Algebras for this theory are called
inflationary semilattices. The free inflationary semilattice over a dcpo D is called the
lower or Hoare powerdomain of D, and it is denoted by PH(D).

Similarly, the terminology concerning the inequality

x + x ∪ y

is upper or Smyth powerdomain, deflationary semilattice, and PS(D).

It is a consequence of the new inequality that the semilattice ordering and the do-
main ordering coincide in the case of the Hoare powertheory. For the Smyth powerthe-
ory the semilattice ordering is the reverse of the domain ordering. This forces these
powerdomains to have additional structure.

Proposition 6.2.8. 1. The Hoare powerdomain of any dcpo is a lattice which has
all non-empty suprema and bounded infima. The sup operation is given by formal
union.

2. The Smyth powerdomain of any dcpo has binary infima. They are given by formal
union.

Unfortunately, the existence of binary infima does not force a domain into one of
the cartesian closed categories of Chapter 4. We take up this question again in the next
subsection.

Let us also study the bases of these powerdomains as derived from a given basis
〈B,:〉 of a continuous domain D. The development proceeds along the same lines
as for the Plotkin powertheory. The equivalence relation induced by the equations and
the new inequality has not changed, so we may again replace FB by the set Pf (B) of
finite subsets of B. The difference is wholly in the associated preorder on Pf (B).

Proposition 6.2.9. For M andN finite subsets of a basis 〈B,:〉 we have

M $∼ N if and only if M ⊆ ↓N

in the case of the Hoare powertheory and

M $∼ N if and only if N ⊆ ↑M

for the Smyth powertheory.

The restricted order of approximation ≺s is as before given by the Egli-Milner
relation:EM . As prescribed by the general theory we must combine it with inclusion
(for the lower theory) and with reversed inclusion (for the upper theory), respectively.
Without difficulties one obtains the following connection

s ≺H t if and only if ∀a ∈ [s] ∃b ∈ [t]. a : b
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and
s ≺S t if and only if ∀b ∈ [t] ∃a ∈ [s]. a : b.

So each of the one-sided theories is characterized by one half of the Egli-Milner order-
ing. Writing:H and:S for these we can formulate:

Theorem 6.2.10. Let D be a continuous domain with basis 〈B,:〉.

1. The Hoare powerdomain of D is isomorphic to the ideal completion of
〈Pf (B),:H〉.

2. The Smyth powerdomain of D is isomorphic to the ideal completion of
〈Pf (B),:S〉.

For algebraic domains we can replace the preorders on Pf(B) by an ordered set in
both cases.

Proposition 6.2.11. For subsets M andN of a preordered set 〈B,≤〉 we have

1. M =H ↓M ,

2. M ≤H N if and only if ↓M ⊆ ↓N ,

and

3. M =S ↑M ,

4. M ≤S N if and only if ↑M ⊇ ↑N .

Writing PL,f(B) for the set of finitely generated lower subsets of B andPU,f(B)
for the set of finitely generated upper subsets of B, we have:

Proposition 6.2.12. Let D be an algebraic domain.

1. The Hoare powerdomain PH(D) of D is isomorphic to the ideal completion of
〈PL,f (K(D)),⊆〉.

2. The Smyth powerdomain PS(D) of D is isomorphic to the ideal completion of
〈PU,f (K(D)),⊇〉.

From this description we can infer through Proposition 6.1.14 that the Smyth pow-
erdomain of a bifinite domain is again bifinite. Since a deflationary semilattice has
binary infima anyway, we conclude that the Smyth powerdomain of a bifinite domain
is actually a bc-domain. For a more general statement see Corollary 6.2.15.

6.2.3 Topological representation theorems

The objective of this subsection is to describe the powerdomains we have seen so far
directly as spaces of certain subsets of the given domain, without recourse to bases
and the ideal completion. It will turn out that the characterizations of Proposition 6.2.6
and Proposition 6.2.12 can be extended nicely once we allow ourselves topological
methods.
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Theorem 6.2.13. The Hoare powerdomain of a continuous domainD is isomorphic to
the lattice of all non-empty Scott-closed subsets of D. Formal union is interpreted by
actual union.

Proof. Let 〈B,:〉 be a basis for D. We establish an isomorphism with the repre-
sentation of Theorem 6.2.10. Given an ideal I of finite sets in PH(D) we map it to
φH(I) = Cl(

⋃

I), the Scott-closure of the union of all these sets. Conversely, for a
non-empty Scott-closed set A we let ψH(A) = Pf (↓↓A ∩ B), the set of finite sets of
basis elements approximating some element in A. We first check that ψH(A) is in-
deed an ideal with respect to:H . It is surely non-empty as A was assumed to contain
elements. Given two finite subsets M and N of ↓↓A ∩ B then we can apply the inter-
polation axiom to get finite subsets M ′ and N ′ with M :EM M ′ and N :EM N ′.
An upper bound forM andN with respect to:H is then given byM ′ ∪N ′. It is also
clear that the Scott closure of ↓↓A ∩ B gives A back again because every element ofD
is the directed supremum of basis elements. Hence φH ◦ψH = id. Starting out with an
ideal I , we must show that we get it back from φH(I). So letM ∈ I . By the roundness
of I (see the discussion before Definition 2.2.21) there is another finite setM ′ ∈ I with
M :H M ′. So for each a ∈ M there is b ∈ M ′ with a : b. Since all elements of I
are contained in φH(I), we have that a belongs to ↓↓φ(I) ∩ B. Conversely, if a is an
element of ↓↓φ(I) ∩ B then ↑↑a ∩ φ(I) is not empty and therefore must meet

⋃

I as
D \ ↑↑a is closed. The set {a} is then below some element of I under the:H -ordering.
Monotonicity of the isomorphisms is trivial and the representation is proved.

Formal union applied to two ideals returns the ideal of unions of the constituting
sets. Under the isomorphism this operation is transformed into union of closed subsets.

This theorem holds not just for continuous domains but also for all dcpo’s and even
all T0-spaces. See [Sch93] for this. We can also get the full complete lattice of all
closed sets if we add to the Hoare powertheory a nullary operation e and the equations

e ∪ x = x ∪ e = x.

Alternatively, we can take the strict free algebra with respect to the Hoare powertheory.
If the domain has a least element then these adjustments are not necessary, a least
element for the Hoare powerdomain is {⊥}. Homomorphisms, however, will only
preserve non-empty suprema.

The characterization of the Smyth powerdomain builds on the material laid out in
Section 4.2.3. In particular, recall that a Scott-compact saturated set in a continuous
domain has a Scott-open filter of open neighborhoods and that each Scott-open filter
in σD arises in this way.

Theorem 6.2.14. The Smyth powerdomain of a continuous domain D is isomorphic
to the set κD \ {∅} of non-empty Scott-compact saturated subsets ordered by reversed
inclusion. Formal union is interpreted as union.

Proof. Let 〈B,:〉 be a basis forD. We show that κD \ {∅} is isomorphic to PS(D) =
Idl(Pf (B),:S). Given an ideal I we let φS(I) be

⋂

M∈I ↑M . This constitutes a
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monotone map from PS(D) to κD \ {∅} by Proposition 4.2.14. In the other direction,
we assign to a compact saturated set A the set ψS(A) of all finite setsM ⊆ B such that
A ⊆ ↑↑M . Why is this an ideal? For every open neighborhood O of A we find a finite
setM of basis elements contained in O such that A ⊆ ↑↑M because A is compact and
O =

⋃

b∈O∩B
↑↑b (Proposition 2.3.6). Then given two finite sets M and N in ψS(A)

an upper bound for them is any such finite set P with A ⊆ ↑↑P ⊆ ↑↑M ∩ ↑↑N . Clearly,
ψS is monotone as κD \ {∅} is equipped with reversed inclusion.

Let us show that ψS ◦φS is the identity on PS(D). ForM ∈ I letM ′ ∈ I be above
M in the:S-ordering. Then φS(I) ⊆ ↑M ′ ⊆ ↑↑M and soM belongs to ψS ◦ φS(I).
Conversely, every neighborhood of φS(I) contains some ↑M with M ∈ I already as
we saw in Proposition 4.2.14. So if φS(I) is contained in ↑↑N for some finite setN ⊆ B
then there are M and M ′ in I with M ⊆ ↑↑N andM :S M ′. Hence N :S M ′ and
N belongs to I .

The composition φS ◦ψS is clearly the identity as we just saw that every neighbor-
hood of a compact set contains a finitely generated one and as every saturated set is the
intersection of its neighborhoods.

The claim about formal union follows because on powersets union and intersection
completely distribute: φS(I ∪ J) =

⋂

M∈I,N∈J ↑(M ∪ N) =
⋂

M∈I,N∈J(↑M ∪

↑N) =
⋂

M∈I ↑M ∪
⋂

N∈J ↑N = φS(I) ∪ φS(J).

For this theorem continuity is indispensable. A characterization of the free defla-
tionary semilattice over an arbitrary dcpo is not known. The interested reader may
consult [Hec90, Hec93a] and [Sch93] for a discussion of this open problem.

Corollary 6.2.15. The Smyth powerdomain of a coherent domain with bottom is a
bc-domain.

Proof. That two compact saturated sets A and B are bounded by another one, C, sim-
ply means C ⊆ A ∩ B. In this case A ∩ B is not empty. It is compact saturated by the
very definition of coherence.

Let us now turn to the Plotkin powerdomain. An ideal I of finite sets ordered
by :EM will generate ideals with respect to both coarser orders :H and :S . We
can therefore associate with I a Scott-closed set φH(I) = Cl(

⋃

I) and a compact
saturated set φS(I) =

⋂

M∈I ↑M . However, not every such pair arises in this way; the
Plotkin powerdomain is not simply the product of the two one-sided powerdomains.
We will be able to characterize them in two special cases: for countably based domains
and for coherent domains. The general situation is quite hopeless, as is illustrated
by Exercise 6.2.23(11). In both special cases we do want to show that I is faithfully
represented by the intersection φ(I) = φH(I) ∩ φS(I). In the first case we will need
the following weakening of the Egli-Milner ordering:

Definition 6.2.16. For a dcpo D we let Lens(D) be the set of all non-empty subsets
of D which arise as the intersection of a Scott-closed and a compact saturated subset.
The elements of Lens(D) we call lenses. On Lens(D) we define the topological Egli-
Milner ordering,&TEM , by

K &TEM L if L ⊆ ↑K andK ⊆ Cl(L).
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Proposition 6.2.17. Let D be a dcpo.

1. Every lens is convex and Scott-compact.

2. A canonical representation for a lens L is given by ↑L ∩ Cl(L).

3. The topological Egli-Milner ordering is anti-symmetric on Lens(D).

Proof. Convexity is clear as every lens is the intersection of a lower and an upper set.
An open covering of a lens L = C ∩ U , where C is closed and U compact saturated,
may be extended to a covering of U by adding the complement of C to the cover.
This proves compactness. Since all Scott-open sets are upwards closed, compactness
of a set A implies the compactness of ↑A. Using convexity, we get L = ↑L ∩ ↓L ⊆
↑L ∩ Cl(L) and using boolean algebra we calculate ↑L = ↑(C ∩ U) ⊆ ↑U = U and
Cl(L) = Cl(C ∩U) ⊆ Cl(C) = C, so ↑L∩Cl(L) ⊆ U ∩C = L. Then ifK =TEM L
we have ↑K = ↑L and Cl(K) = Cl(L). Equality ofK and L follows.

Before we can prove the representation theorem we need yet another description of
the lens φ(I).

Lemma 6.2.18. Let D be a continuous domain with basis B and let I be an ideal in
〈Pf (B),:EM 〉. Then φ(I) = {

⊔

↑A | A ⊆
⋃

I directed and A ∩ M 8= ∅ for all
M ∈ I}.

Proof. The elements of the set on the right clearly belong to the Scott-closure of
⋃

I .
They are also contained in φS(I) because

⊔

↑A is above some element in A ∩ M for
eachM ∈ I .

Conversely, let x ∈ φ(I) and let a ∈ A = ↓↓x ∩ B. The set ↑↑a is Scott-open and
must therefore meet some M ∈ I . From the roundness of I we get M ′ ∈ I with
M :EM M ′. The set M ∪ {a} also approximates M ′ and so it is contained in I .
Hence a ∈

⋃

I . Furthermore, given any M ∈ I , let again M ′ ∈ I be such that
M :EM M ′. Then x is above some element of M ′ as φ(I) ⊆ ↑M ′ and therefore
m : x holds for somem ∈ M .

Theorem 6.2.19. LetD be an ω-continuous domain. The Plotkin powerdomainPP(D)
is isomorphic to 〈Lens(D),&TEM 〉. Formal union is interpreted as union followed by
topological convex closure.

Proof. Let 〈B,:〉 be a countable basis of D. We have already defined the map
φ : PP(D) → Lens(D). In the other direction we take the functionψ which assigns to a
lensK the set ψH(Cl(K))∩ ψS(↑K). Before we can prove that these maps constitute
a pair of isomorphisms, we need the following information about reconstructing φH(I)
and φS(I) from φ(I).

1. φS(I) = ↑φ(I): Since φS(I) is an upper set which contains φ(I), only one
inclusion can be in doubt. Let x ∈ φS(I) and I ′ = {M ∩ ↓x | M ∈ I}. Firstly,
each set in I ′ is non-empty and, secondly, we have M ∩ ↓x :S N ∩ ↓x whenever
M :EM N . Calculating φS(I ′) in the continuous domain φH(I) gives us a non-
empty set which is below x and contained in the lens φ(I).
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2. φH(I) = Cl(φ(I)): Again, only one inclusion needs an argument. We show that
every element of ↓↓φH(I)∩B belongs to ↓φ(I). Given a basis element a approximating
some element of φH(I) then we already know that it belongs to

⋃

I . Let M ∈ I be
some set which contains a. Using countability of the basis we may assume that M
extends to a cofinal chain in I (Proposition 2.2.13): M = M0 :EM M1 :EM

M2 :EM . . . . König’s Lemma then tells us that we can find a chain of elements
a = a0 : a1 : a2 : . . . where an ∈ An. The supremum x =

⊔

↑
n∈N

an belongs to
φ(I) and is above a.

3. φ is monotone: Let I ⊆ I ′ be two ideals in 〈Pf (B),:EM 〉. The larger ideal
results in a bigger lower set φH(I ′) and a smaller upper set φS(I ′). Using 1 and 2 we
can calculate for the corresponding lenses:

φ(I) ⊆ φH(I) ⊆ φH(I ′) = Cl(φ(I ′)),

φ(I ′) ⊆ φS(I ′) ⊆ φS(I) = ↑φ(I).

So φ(I) &TEM φ(I ′) as desired.
4. The monotonicity of ψ follows by construction and one half of the topological

Egli-Milner ordering: K ⊆ ↑M implies L ⊆ ↑M if we assumeK &TEM L.
5. φ ◦ ψ = id: Given a lens L = C ∩ U we clearly have φS(ψ(L)) ⊇ L. Using

the continuity of D and the compactness of L we infer that φS(ψ(L)) must equal ↑L.
Every basis element approximating some element of L occurs in some set of ψ(L), so
φH(ψ(L)) = Cl(L) is clear. Proposition 6.2.17 above then implies that φ ◦ψ(L) gives
back L.

6. ψ ◦ φ = id: Given an ideal I we know that each M ∈ I covers the lens φ(I)
in the sense of ↑↑M ⊇ φ(I). So M is contained in ψS(φ(I)). By (2), we also have
that M is contained in ψH(Cl(φ(I))). Conversely, if ↑↑M ⊇ φ(I) for a finite set M
of basis elements contained in ↓↓φ(I), then for some N ∈ I we have ↑↑M ⊇ N by the
Hofmann-Mislove Theorem 4.2.14. For thisN we haveM :S N . On the other hand,
each element a ofM approximates some x ∈ φ(I) and hence belongs to someNa ∈ I .
An upper bound for N and all Na in I , therefore, is above M in:EM which shows
thatM must belong to I .

7. In the representation theorems for the one-sided powerdomains we have shown
that formal union translates to actual union. We combine this for the convex setting:
φ(I ∪ J) = φH(I ∪ J) ∩ φS(I ∪ J) = (φH(I) ∪ φH(J)) ∩ (φS(I) ∪ φS(J)) =
(Cl(φ(I)) ∪ Cl(φ(J))) ∩ (↑φ(I) ∪ ↑φ(J)) = Cl(φ(I) ∪ φ(J)) ∩ ↑(φ(I) ∪ φ(J)).

Note that we used countability of the basis only for showing that φH(I) can be
recovered from φ(I). In general, this is wrong. Exercise 6.2.23(11) discusses an ex-
ample.

The substitution of topological closure for downward closure was also necessary,
as the example in Figure 13 shows. There, the set A = ↑a is a lens but its downward
closure is not Scott-closed, c is missing. The set A ∪ {c} is also a lens. It is below A
in the topological Egli-Milner order but not in the plain Egli-Milner order. The convex
closure of the union of the two lenses {⊥} and A is not a lens, c must be added.

A better representation theorem is obtained if we pass to coherent domains (Sec-
tion 4.2.3). (Note that the example in Figure 13 is not coherent, because the set
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Figure 13: An algebraic domain in which topological Egli-Milner ordering and ordi-
nary Egli-Milner ordering do not coincide.

{c1, a} has infinitely many minimal upper bounds, violating the condition in Proposi-
tion 4.2.17.) We first observe that lenses are always Lawson closed sets. If the domain
is coherent then this implies that they are also Lawson-compact. Compactness will
allow us to use downward closure instead of topological closure.

Lemma 6.2.20. Let L be a Lawson-compact subset of a continuous domain D. Then
↓L is Scott-closed.

Proof. Let x be an element of D which does not belong to ↓L. For each y ∈ L there
exists by : x such that by 8& y. The set D \ ↑by is Lawson-open and contains y.
By compactness, finitely many such sets cover L. Let b be an upper bound for the
associated basis elements approximating x. Then ↑↑b is an open neighborhood of x
which does not intersect L. Hence ↓L is closed.

Corollary 6.2.21. The lenses of a coherent domain are precisely the convex Lawson-
compact subsets. For these, topological Egli-Milner ordering and Egli-Milner ordering
coincide.

Theorem 6.2.22. Let D be a coherent domain. The Plotkin powerdomain of D is
isomorphic to 〈Lens(D),&EM 〉. Formal union is interpreted as union followed by
convex closure.

Proof. The differences to the proof of Theorem 6.2.19, which are not taken care of
by the preceding corollary, concern part 2. We must show that Cl(φ(I)) = ↓φ(I)
contains all of ↓↓φH(I) ∩ B. In the presence of coherence this can be done through
the Hofmann-Mislove Theorem 4.2.14. The lower set φH(I) is a continuous domain
in itself. For an element a of ↓↓φH(I) ∩ B we look at the filtered collection of upper
sets J = {↑a ∩ ↑M | M ∈ I}. Each of these is non-empty, because a belongs to some
M ∈ I , and compact saturated because of coherence. Hence

⋂

J is non-empty. It is
also contained in φ(I) and above a.
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6.2.4 Hyperspaces and probabilistic powerdomains

In our presentation of powerdomains we have emphasized the feature that they are free
algebras with respect to certain (in-)equational theories. From the general existence
theorem for such algebras we derived concrete representations as sets of subsets. This
is the approach which in the realm of domain theory was suggested first by Matthew
Hennessy and Gordon Plotkin in [HP79] but it has a rather long tradition in algebraic
semantics (see e.g. [NR85]). However, it is not the only viewpoint one can take. One
may also study certain sets of subsets of domains in their own right. In topology,
this study of ‘hyperspaces’, as they are called, is a long-standing tradition, starting
with Felix Hausdorff [Hau14] and Leopold Vietoris [Vie21, Vie22]. It is also how the
subject started in semantics and, indeed, continues to be developed. A hyperspace can
be interesting even if an equational characterization cannot be found or can be found
only in restricted settings. Recent examples of this are the set-domains introduced by
Peter Buneman [BDW88, Gun92a, Hec90, Puh93, Hec91, Hec93b] in connection with
a general theory of relational databases. While these are quite natural from a domain-
theoretic point of view, their equational characterizations (which do exist for some of
them) are rather bizarre and do not give us much insight. The hyperspace approach is
developed in logical form in Section 7.3.

We should also mention the various attempts to define a probabilistic version of
the powerdomain construction, see [SD80, Mai85, Gra88, JP89, Jon90]. (As an aside,
these cannot be restricted to algebraic domains; the wider concept of continuous do-
main is forced upon us through the necessary use of the unit interval [0, 1].) They do
have an equational description in some sense but this goes beyond the techniques of
this chapter.

One can then ask abstractly what constitutes a powerdomain construction and build
a theory upon such a definition. This approach was taken in [Hec90, Hec91]. The
most notable feature of this work is that under this perspective, too, many of the known
powerdomains turn out to be canonical in a precise sense. How this (very natural)
formulation of canonicity is connected with concerns in semantics, however, is as yet
unclear.

Exercises 6.2.23. 1. For the proof of Theorem 6.1.6 we can equip FB also with
the transitive closure of≺s ◦ $∼. Show:

(a) This relation≺′ satisfies the interpolation axiom.
(b) In general,≺′ is different from ≺.
(c) The ideal completions of 〈FB,≺〉 and 〈FB,≺′〉 are isomorphic. (Use

Exercise 2.3.9(27).)
(d) What is the advantage of ≺ over ≺′?

2. Describe the free domain algebra for an arbitrary domain D and an arbitrary
signature Σ in the case that E is empty.

3. Set up an algebraic theory such that all its dcpo-algebras have least elements
but the embeddings η are not strict.
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Figure 14: Part of an algebraic domain where Theorem 6.2.19 fails.

4. Let 〈Σ, E〉 be the usual equational theory of groups (or boolean algebras). Show
that any dcpo-algebra with respect to this theory is trivially ordered. Conclude
that the free construction collapses each connected component of the generating
dcpo into a single point.

5. Given signatures Σ and Σ′ and sets of inequalities E and E′ we call the pair
〈Σ, E〉 a reduct of 〈Σ′, E′〉 if Σ ⊆ Σ′ and E ⊆ E′. In this case there is an obvious
forgetful functor from C(Σ′, E′) to C(Σ, E), where C is any of the categories
considered in this chapter. Show that the general techniques of Theorem 6.1.2
and 6.1.7 suffice to prove that this functor has a left adjoint.

6. Likewise, show that partial domain algebras can be completed freely.

7. Let A be a free domain-algebra over an algebraic domain. Is it true that every
operation, if applied to compact elements of A, returns a compact element?

8. Let D = {⊥ & a, b & =} be the four-element lattice (Figure 1) and let E =
D×D. The sets {〈⊥, a〉, 〈⊥, b〉} and {〈a,⊥〉, 〈b,⊥〉} are elements of the Plotkin
powerdomain of E. Show that they have two minimal upper bounds. Since
{〈=,=〉} is a top element, PP(E) is not an L-domain.

9. Is the Plotkin powerdomain closed on F-B, the category whose objects are bilim-
its of finite (but not necessarily pointed) posets?

10. Define a natural isomorphism between PH(D)⊥−◦E and [D −→ E] whereD is
any continuous domain, E is a complete lattice, and ·−◦· stands for the set of
functions which preserve all suprema (ordered pointwise).

11. We want to construct an algebraic domain D to which Theorem 6.2.19 cannot
be extended. The compact elements ofD are arranged in finite sets already such
that they form a directed collection in the Egli-Milner ordering, generating the
ideal I . We take one finite set for each element of Pf(R), the finite powerset
of the reals (or any other uncountable set), and we will have Mα :EM Mβ if
α ⊆ β ⊆ R. So we can arrange the Mα in layers according to the cardinality
of α. Each Mα contains one ‘white’ and |α|! many ‘black’ elements. If α " β
then the white element of Mα is below every element of Mβ . For the order
between black elements look at adjacent layers. There are |β| many subsets of β
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with cardinality |β| − 1. The |β|! many black elements of Mβ we partition into
|β| many classes of cardinality (|β| − 1)!. So we can let the black elements of a
lower neighbor of Mβ be just below the equally many black elements of one of
these classes. (The idea being that no two black elements have an upper bound.)
Figure 14 shows a tiny fraction of the resulting ordered set K(D). Establish the
following facts about this domain:

(a) Above a black element there are only black, below a white element there
are only white elements.

(b) i. An ideal inK(D) can contain at most one black element from each set.
ii. An ideal can contain at most one black element in each layer.
iii. An ideal can contain at most countably many black elements.

(c) i. An ideal meeting all sets must contain all white elements.
ii. If an ideal contains a black element, then it contains the least black

element a.
iii. If an ideal meeting all sets contains a then it must contain upper

bounds for a and the uncountably many white elements of the first
layer. These upper bounds must form an uncountable set and consist
solely of black elements.

(d) From the contradiction between b-iii and c-iii conclude that only one ideal
in KD meets all sets, the ideal W of white elements. Therefore, φ(I) con-
tains precisely one element, say b. Show that ↓b equalsW ∪ {b} and that it
is Scott-closed. Hence it is far from containing all elements of

⋃

I = KD.
(e) Go a step farther and prove that the lenses of D are not even directed-

complete by showing that the ideal I we started out with does not have an
upper bound.

12. (R. Heckmann) Remove idempotence from the Hoare powertheory and study free
domain algebras with respect to this theory. These are no longer finite if the
generating domain is finite. Show that the free algebra over the four-element
lattice (Figure 1) is neither bifinite nor an L-domain.
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7 Domains and logic
There are at least three ways in which the idea of a function can be formalized. The first
is via algorithms, which is the Computer Science viewpoint. The second is via value
tables or, in more learned words, via graphs. This is the – rather recent – invention of
Mathematics. The third, finally, is via propositions: We can either take propositions
about the function itself or view a function as something which maps arguments which
satisfy φ to values which satisfy ψ. The encoding in the latter case is by the set of all
such pairs (φ,ψ). The beauty of the subject, then, lies in the interplay between these
notions.

The passage from algorithms (programs) to the extensional description via graphs
is called denotational semantics. It requires sophisticated structures, precisely domains
in the sense of this text, because of, for example, recursive definitions in programs. The
passage from algorithms to propositions about functions is called program logics. If
we take the computer scientist’s point of view as primary then denotational semantics
and program logics are two different ways of describing the behaviour of programs.
It is the purpose of this chapter to lay out the connection between these two forms of
semantics. As propositionswe allow all those formulaewhose extensions in the domain
under consideration are (compact) Scott-open sets. This choice is well justified because
it can be argued that such propositions correspond to properties which can be detected
in a finite amount of time [Abr87]. The reader will find lucid explications of this point
in [Smy92] and [Vic89].

Mathematically, then, we have to study the relation between domains and their
complete lattices of Scott-open sets. Stated for general topological spaces, this is the
famous Stone duality. We treat it in Section 7.1. The restriction to domains introduces
several extra features which we discuss in a one by one fashion in Section 7.2. The
actual domain logic, as a syntactical theory, is laid out in Section 7.3.

The whole open-set lattice, however, is too big to be syntactically represented.
We must, on this higher level, once more employ ideas of approximation and bases.
There is a wide range of possibilities here, which can be grouped under the heading
of information systems. We concentrate on one of these, namely, the logic of compact
open subsets. This is well motivated by the general framework of Stone duality and
also gives the richest logic.

7.1 Stone duality
7.1.1 Approximation and distributivity

We start out with a few observations concerning distributivity. So far, this didn’t play a
role due to the poor order theoretic properties of domains. Now, in the context of open
set lattices, it becomes a central theme, because, as we shall see, it is closely related
with the concept of approximation. The earliest account of this connection is probably
[Ran53].

A word on notation: We shall try to keep a clear distinction between spaces, which
in the end will be our domains, and their open-set lattices. We shall emphasize this
by using ≤ for the less-than-or-equal-to relation whenever we speak of lattices, even
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though these do form a special class of domains, too, as you may remember from
Section 4.1.

Recall that a lattice L is said to be distributive if for all x, y, z ∈ L the equality

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

holds. The dual of this axiom is then satisfied as well. For the infinitary version of
distributivity, we introduce the following notation for choice functions: If (Ai)i∈I is a
family of sets then we write f : I

4
−→

⋃

Ai if f(i) takes its value inAi for every i ∈ I .
Complete distributivity can then be expressed by the equation

∧

i∈I

∨

Ai =
∨

f : I
$

−→∪Ai

∧

i∈I

f(i).

It, too, implies its order dual, see Exercise 7.3.19(1). There is a lot of room for varia-
tions of this and we shall meet a few of them in this section. Here comes the first:

Theorem 7.1.1. A complete lattice L is continuous if and only if
∧

i∈I

∨

↑Ai =
∨

↑

f : I
$

−→∪Ai

∧

i∈I

f(i)

holds for all families (Ai)i∈I of directed subsets of L.

Proof. The reader should check for himself that the supremum on the right hand side
is indeed over a directed set. Let now x be an element approximating the left hand
side of the equation. Then for each i ∈ I we have x :

∨

↑Ai and so there is ai ∈
Ai with x ≤ ai. Let f be the choice function which selects these ai. Then x ≤
∧

i∈I f(i) and x is below the right hand side as well. Assuming L to be continuous,
this proves

∧

i∈I

∨

↑Ai ≤
∨

↑
f : I

$
−→∪Ai

∧

i∈I f(i). The reverse inequality holds in
every complete lattice.

For the converse fix an element x ∈ L and let (Ai)i∈I be the family of all directed
sets A for which x ≤

∨

↑A. From the equality, which we now assume to hold, we get
that x =

∨

↑
f : I

$
−→∪Ai

∧

f(i). We claim that for each choice function f : I
4
−→

⋃

Ai,
the corresponding element y =

∧

i∈I f(i) is approximating x. Indeed, ifA is a directed
set with x ≤

∨

↑A then A = Ai0 for some i ∈ I and so y ≤ f(i0) ∈ A.

Let us now look at completely distributive lattices which, by the preceding the-
orem, are guaranteed to be continuous. We can go further and express this stronger
distributivity by an approximation axiom, too.

Definition 7.1.2. For a complete lattice L define a relation≪ on L by

x ≪ y if ∀A ⊆ L. (y ≤
∨

A =⇒ ∃a ∈ A. x ≤ a).

Call L prime-continuous if for every x ∈ L, x =
∨

{y | y ≪ x} holds.
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Note that the relation ≪ is defined in just the same way as the order of approxi-
mation, except that directed sets are replaced by arbitrary subsets. All our fundamental
results about the order of approximation hold, mutatis mutandis, for ≪ as well. In
particular, we shall make use of Proposition 2.2.10 and Lemma 2.2.15. Adapting the
previous theorem we get George N. Raney’s characterization of complete distributivity
[Ran53].

Theorem 7.1.3. A complete lattice is prime-continuous if and only if it is completely
distributive.

Let us now turn our attention to ‘approximation’ from above. The right concept for
this is:

Definition 7.1.4. A complete lattice L is said to be ∧-generated by a subset A if for
every x ∈ L, x =

∧

(↑x ∩ A) holds. (Dually, we can speak of ∨-generation.)

We will study ∧-generation by certain elements only, which we now introduce in
somewhat greater generality than actually needed for our purposes.

Definition 7.1.5. An element x of a lattice L is called ∧-irreducible if whenever x =
∧

M for a finite set M ⊆ L then it must be the case that x = m for some m ∈ M .
We say x is ∧-prime if x ≥

∧

M implies x ≥ m for some m ∈ M , where M is
again finite. Stating these conditions for arbitrary M ⊆ L gives rise to the notions
of completely ∧-irreducible and completely ∧-prime element. The dual notions are
obtained by exchanging supremum for infimum.

Note that neither ∧-irreducible nor ∧-prime elements are ever equal to the top ele-
ment of the lattice, because that is the infimum of the empty set.

Proposition 7.1.6. A ∧-prime element is also ∧-irreducible. The converse holds if the
lattice is distributive.

Theorem 7.1.7. A continuous (algebraic) lattice L is ∧-generated by its set of (com-
pletely) ∧-irreducible elements.

Proof. If x and y are elements of L such that x is not below y then there is a Scott-
open filter F which contains x but not y, because ↓y is closed and the Scott-topology is
generated by open filters, Lemma 2.3.8. Employing the Axiom of Choice in the form
of Zorn’s Lemma, we find a maximal element above y in the inductive set L \ F . It
is clearly ∧-irreducible. In an algebraic lattice we can choose F to be a principal filter
generated by a compact element. The maximal elements in the complement are then
completely ∧-irreducible.

Theorem 7.1.8. If L is a complete lattice which is ∧-generated by ∧-prime elements,
then L satisfies the equations

∧

m∈M

∨

Am =
∨

f : M
$

−→∪Am

∧

m∈M

f(m)
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and
∨

i∈I

∧

Mi =
∧

f : I
$

−→∪Mi

∨

i∈I

f(i)

where the sets M andMi are finite.
A dual statement holds for lattices which are ∨-generated by ∨-prime elements.

Proof. The right hand side is certainly below the left hand side, so assume that p is a ∧-
prime element above

∨

f : M
$

−→∪Am

∧

m∈M f(m). Surely, p is above
∧

m∈M f(m) for

every f : M
4
−→ ∪Am and because it is ∧-prime it is above f(mf ) for someMf ∈ M .

We claim that the set B of all f(mf ) covers at least one Am. Assume the contrary.
Then for eachm ∈ M there exists am ∈ Am \ B and we can define a choice function
f0 : m 9→ am. Then f0(mf0

) ∈ B contradicts our construction of f0. So we know
that for some m ∈ M all elements of Am are below p and hence p is also above
∧

m∈M

∨

Am. The proof for the second equation is similar and simpler.

Note that the two equations are not derivable from each other because of the side
condition on finiteness. The first equation is equivalent to

x ∧
∨

i∈I

yi =
∨

i∈I

(x ∧ yi)

which can be stated without choice functions. In this latter form it is known as the
frame distributivity law and complete lattices, which satisfy it, are called frames. The
basic operations on a frame are those which appear in this equation, namely, arbitrary
join and finite meet.

7.1.2 From spaces to lattices

Given a topology τ on a set X then τ consists of certain subsets of X . We may think
of τ as an ordered set where the order relation is set inclusion. This ordered set is a
complete lattice because arbitrary joins exist. Let us also look at continuous functions.
In connection with open-set lattices it seems right to take the inverse image operation
which, for a continuous function, is required to map opens to opens. Set-theoretically,
it preserves all unions and intersections of subsets, and hence all joins and finite meets
of opens. This motivates the following definition.
Definition 7.1.9. A frame-homomorphism between complete latticesK andL is a map
which preserves arbitrary suprema and finite infima.

We letCLat stand for the category of complete lattices and frame-homomorphisms.
We want to relate it to Top, the category of topological spaces and continuous func-
tions. The first half of this relation is given by the contravariant functor Ω, which
assigns to a topological space its lattice of open subsets and to a continuous map the
inverse image function.

For an alternative description let 2 be the two-element chain⊥ ≤ = equipped with
the Scott-topology. The open sets of a spaceX are in one-to-one correspondence with
continuous functions fromX to 2, if for each open set O ⊆ X we set χO to be the map
which assigns = to an element x if and only if x ∈ O. The action of Ω on morphisms
can then be expressed by Ω(f)(χO) = χO ◦ f .
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Figure 15: A ‘point’ in a complete lattice.

7.1.3 From lattices to topological spaces

For motivation, let us look at topological spaces first. An element of a topological
space X is naturally equipped with the following three pieces of information. We can
associate with it its filter Fx of open neighborhoods, the complement of its closure, or
a map from 1, the one-element topological space, toX . Taking the filter, for example,
we observe that it has the additional property that if a union of open sets belongs to it
then so does one of the opens. Also, the closure of a point has the property that it cannot
be contained in a union of closed sets without being contained in one of them already.
The map 1 → X, which singles out the point, translates to a frame-homomorphism
from Ω(X) to Ω(1) = 2. Let us fix this new piece of notation:

Definition 7.1.10. A filter F ⊆ L is called prime if
∨

M ∈ F implies F ∩ M 8= ∅
for all finite M ⊆ L. Allowing M to be an arbitrary subset we arrive at the notion of
completely prime filter. Dually, we speak of (completely) prime ideals.

Proposition 7.1.11. Let L be a complete lattice and let F be a subset of L. The
following are equivalent:

1. F is a completely prime filter.

2. F is a filter and L \ F = ↓x for some x ∈ L.

3. L \ F = ↓x for a ∧-prime element x ∈ L.

4. χF is a frame-homomorphism from L to 2.

This proposition shows that all three ways of characterizing points through opens
coincide (see also Figure 15). Each of them has its own virtues and we will take
advantage of the coincidence. As our official definition we choose the variant which is
closest to our treatment of topological spaces.
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Definition 7.1.12. Let L be a complete lattice. The points of L are the completely
prime filters of L. The collection pt(L) of all points is turned into a topological space
by requiring all those subsets of pt(L) to be open which are of the form

Ox = {F ∈ pt(L) | x ∈ F}, x ∈ L .

Proposition 7.1.13. The sets Ox, x ∈ L, form a topology on pt(L).

Proof. We have
⋂

m∈M Oxm
= O∧m∈Mxm

, M finite, because points are filters and
⋃

i∈I Oxi
= O∨i∈Ixi

because they are completely prime.

Observe the perfect symmetry of our setup. In a topological space an element x
belongs to an open set O if x ∈ O; in a complete lattice a point F belongs to an open
set Ox if x ∈ F .

By assigning to a complete lattice L the topological space of all points, and to a
frame-homomorphism h : K → L the map pt(h) which assigns to a point F the point
h−1(F ) (which is readily seen to be a completely prime filter), we get a contravariant
functor, also denoted by pt, from CLat to Top.

Again, we give the alternative description based on characteristic functions. The
fact is that we can use the same object 2 for this purpose, because it is a complete
lattice as well. One speaks of a schizophrenic object in such a situation. As we saw in
Proposition 7.1.11, a completely prime filter F gives rise to a frame-homomorphism
χF : L → 2. The action of the functor pt on morphisms can then be expressed, as
before, by pt(h)(χF ) = χF ◦ h.

7.1.4 The basic adjunction

A topological space X can be mapped into the space of points of its open set lattice,
simply map x ∈ X to the completely prime filter Fx of its open neighborhoods. This
assignment, which we denote by ηX : X → pt(Ω(X)), is continuous and open onto its
image: Let U be an open set in X . Then we get by simply unwinding the definitions:
Fx ∈ OU ⇐⇒ U ∈ Fx ⇐⇒ x ∈ U . It also commutes with continuous functions
f : X → Y : pt(Ω(f))(ηX(x)) = Ω(f)−1(Fx) = Ff(x) = ηY ◦ f(x). So the family
of all ηX constitutes a natural transformation from the identity functor to pt ◦ Ω.

The same holds for complete lattices. We let εL : L → Ω(pt(L)) be the map
which assigns Ox to x ∈ L. It is a frame-homomorphism as we have seen in the
proof of Proposition 7.1.13. To see that this, too, is a natural transformation, we
check that it commutes with frame-homomorphisms h : K → L: Ω(pt(h))(εK(x)) =
pt(h)−1(Ox) = Oh(x) = εL ◦ h(x), which is essentially the same calculation as for η.
We have all the ingredients to formulate the Stone Duality Theorem:

Theorem 7.1.14. The functors Ω : Top → CLat and pt : CLat → Top are dual ad-
joints of each other. The units are η and ε.
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Proof. It remains to check the triangle equalities

Ω(X)
εΩ(X)& Ω(pt(Ω(X))) and pt(L)

ηpt(L)& pt(Ω(pt(L)))
##########

id

?

##########
id

?
Ω(X)

Ω(ηX)

'
pt(L)

pt(εL)

'

For the left diagram let O be an open set inX .

Ω(ηX)(εΩ(X)(O)) = η−1
X (OO) = {x ∈ X | ηX(x) ∈ OO}

= {x ∈ X | Fx ∈ OO}

= {x ∈ X | O ∈ Fx}

= {x ∈ X | x ∈ O} = O.

The calculation for the right diagram is verbatim the same if we exchange η and ε, Ω
and pt, X and L, and O and F.

While our concrete representation through open sets and completely prime filters,
respectively, allowed us a very concise proof of this theorem, it is nevertheless instruc-
tive to see how the units behave in terms of characteristic functions. Their type is from
X to (X → 2) → 2 and from L to (L → 2) → 2, whereby the right hand sides are
revealed to be second duals. The canonical mapping into a second dual is, of course,
point evaluation: x 9→ evx, where evx(χ) = χ(x). This is indeed what both η and ε
do.

7.2 Some equivalences
7.2.1 Sober spaces and spatial lattices

In this subsection we look more closely at the units η and ε. We will need the following
concept:

Definition 7.2.1. A closed subset of a topological space is called irreducible if it is
non-empty and cannot be written as the union of two closed proper subsets.

Clearly, an irreducible closed set corresponds via complementation to a ∧-
irreducible (and hence ∧-prime) element in the lattice of all open sets.

Proposition 7.2.2. Let X be a topological space. Then ηX : X → pt(Ω(X)) is in-
jective if and only if X satisfies the T0-separation axiom. It is surjective if and only if
every irreducible closed set is the closure of an element ofX .

Proof. The first half is just one of the various equivalent definitions of T0-separation:
different elements have different sets of open neighborhoods.

For the second statement observe that the ∧-prime elements of Ω(X) are in one-
to-one correspondence with completely prime filters of open sets. The condition then
simply says that every such filter arises as the neighborhood filter of an element of X .
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Definition 7.2.3. A topological space X is called sober if ηX is bijective.

Note that if ηX is bijective then it must be a homeomorphism because we know
from Section 7.1.4 that it is always continuous and open onto the image. By the
preceding proposition, a space is sober if and only if it is T0 and every irreducible
closed set is the closure of a point. The intuitive meaning is, of course, that a space is
sober if it can be recovered from its lattice of open sets.

Proposition 7.2.4. For any complete latticeL the unit εL : L → Ω(pt(L)) is surjective
and monotone. Furthermore, the following are equivalent:

1. εL is injective.

2. The elements of L are separated by completely prime filters.

3. L is ∧-generated by ∧-prime elements.

4. If x 8≤ y then there exists a completely prime filterF such that x ∈ F and y 8∈ F .

5. εL is order-reflecting.

Proof. We have seen in Proposition 7.1.13 that all open sets on pt(L) are of the form
Ox for some x ∈ L. This proves surjectivity. Monotonicity is clear because filters are
upper sets.

Turning to the equivalent conditions for injectivity, we note that Ox = Oy is equiv-
alent to x ∈ F ⇐⇒ y ∈ F for all completely prime filters F . In other words, εL
is injective if and only if the elements of L are separated by completely prime filters.
Given x ∈ L let x′ be the infimum of all ∧-primes above x. We want to show that
x = x′. If x′ is strictly above x then there exists a completely prime filter contain-
ing x′ but not x. Using the equivalence of Proposition 7.1.11, we see that this is the
same as the existence of a ∧-prime element in ↑x \ ↑x′, a contradiction. From (3) the
last two statements follow easily. They, in turn, imply injectivity (which, in a general
order-theoretic setting, is strictly weaker than order-reflection).

Definition 7.2.5. A complete lattice L is called spatial if εL is bijective.

The intuitive meaning in this case is that a spatial lattice can be thought of as a
lattice of open sets for some topological space. A direct consequence of Theorem 7.1.8
is the following:

Theorem 7.2.6. A spatial lattice is a frame. In particular, it is distributive.

Theorem 7.2.7. For any complete lattice L the topological space pt(L) is sober. For
any topological spaceX the lattice Ω(X) is spatial.

Proof. The space of points of a lattice L is certainly T0, because if we are given dif-
ferent completely prime filters then there is x ∈ L which belongs to one of them but
not the other. Hence, Ox contains one but not the other. For surjectivity of ηpt(L) let
A be an irreducible closed set of filters. First of all, the union A of all filters in A is a
non-empty upper set in L which is unreachable by joins. Hence the complement of A
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is a principal ideal ↓x. Also, the complement of A in pt(L) certainly contains Ox. We
claim that x must be ∧-prime. Indeed, if y ∧ z ≤ x then A is covered by the comple-
ments of Oy and Oz , whence it is covered by one of them, say the complement of Oy,
which means nothing else than y ≤ x. It follows that A is contained in the closure of
the point L \ ↓x. On the other hand, L \ ↓x belongs to the closed set A as each of its
open neighborhoods contains an element of A.

The second statement is rather easier to argue for. If O and O′ are different open
sets then there is an element x of X contained in one but not the other. Hence the
neighborhood filter of x, which is always completely prime, separates O and O′.

Corollary 7.2.8. The functors Ω and pt form a dual equivalence between the category
of sober spaces and the category of spatial lattices.

This result may suggest that a reasonable universe of topological spaces ought to
consist of sober spaces, or, if one prefers the lattice-theoretic side, of spatial lattices.
This is indeed true as far as spaces are concerned. For the lattice side, however, it
has been argued forcefully that the right choice is the larger category of frames (which
are defined to be those complete lattices which satisfy the frame distributivity law,
Section 7.1.1). The basis of these arguments is the fact that free frames exist, see
[Joh82], Theorem II.1.2, a property which holds neither for complete lattices nor for
spatial lattices. (More information on this is in [Isb72, Joh82, Joh83].) The choice
of using frames for doing topology has more recently found support from theoretical
computer science, because it is precisely the frame distributivity law which can be
expected to hold for observable properties of processes. Even though this connection
is to a large extent the raison d’être for this chapter, we must refer to [Abr87, Abr91b,
Vic89, Smy92] for an in-depth discussion.

7.2.2 Properties of sober spaces

Because application of pt ◦ Ω to a space X is an essentially idempotent operation, it
is best to think of pt(Ω(X)) as a completion of X . It is commonly called the soberifi-
cation of X . Completeness of this particular kind is also at the heart of the Hofmann-
Mislove Theorem, which we have met in Section 4.2.3 already and which we are now
able to state in its full generality.

Theorem 7.2.9. Let X be a sober space. The sets of open neighborhoods of compact
saturated sets are precisely the Scott-open filters in Ω(X).

Proof. It is pretty obvious that the neighborhoods of compact subsets are Scott-open
filters in Ω(X). We are interested in the other direction. Given a Scott-open fil-
ter F ⊆ Ω(X) then the candidate for the corresponding compact set is K =

⋂

F.
We must show that each open neighborhood of K belongs to F already. For the sake
of contradiction assume that there exists an open neighborhood O 8∈ F. By Zorn’s
Lemma we may further assume that O is maximal with this property. Because F is
a filter, O is ∧-prime as an element of Ω(X) and this is tantamount to saying that its
complement A is irreducible as a closed set. By sobriety it must be the closure of a
single point x ∈ X . The open sets which do not contain x are precisely those which
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are contained in O. Hence every open set from the filter F contains x and so x belongs
toK . This, finally, contradicts our assumption that O is a neighborhood ofK .

This appeared first in [HM81]. Our proof is taken from [KP94]. Note that it relies,
like almost everything else in this chapter, on the Axiom of Choice.

Saturated sets are uniquely determined by their open neighborhoods, so we can
reformulate the preceding theorem as follows:

Corollary 7.2.10. Let X be a sober space. The poset of compact saturated sets or-
dered by inclusion is dually isomorphic to the poset of Scott-open filters in Ω(X) (also
ordered by inclusion).

Corollary 7.2.11. Let X be a sober space. The filtered intersection of a family of
(non-empty) compact saturated subsets is compact (and non-empty). If such a filtered
intersection is contained in an open set O then some element of the family belongs to
O already.

Proof. By the Hofmann-MisloveTheoremwe can switch freely between compact satu-
rated sets and open filters in Ω(X). Clearly, the directed union of open filters is another
such. This proves the first statement. For the intersection of a filtered family to be con-
tained in O means that O belongs to the directed union of the corresponding filters.
Then O must be contained in one of these already. The claim about the intersection of
non-empty sets follows from this directly because we can take O = ∅.

Every T0-space can be equipped with an order relation, called the specialization
order, by setting x & y if for all open sets O, x ∈ O implies y ∈ O. We may then
compare the given topology with topologies defined on ordered sets. One of these
which plays a role in this context, is the weak upper topology. It is defined as the
coarsest topology for which all sets of the form ↓x are closed.

Proposition 7.2.12. For an T0-spaceX the topology onX is finer than the weak upper
topology derived from the specialization order.

Proposition 7.2.13. A sober space is a dcpo in its specialization order and its topology
is coarser than the Scott-topology derived from this order.

Proof. By the equivalence between sober spaces and spatial lattices we may think of
X as the points of a complete lattice L. It is seen without difficulties that the special-
ization order on X then translates to the inclusion order of completely prime filters.
That a directed union of completely prime filters is again a completely prime filter is
immediate.

Let
⋃

↑
i∈I Fi be such a directed union. It belongs to an open set Ox if and only if

x ∈ Fi for some i ∈ I . This shows that each Ox is Scott-open.

A dcpo equipped with the Scott-topology, on the other hand, is not necessarily
sober, see Exercise 7.3.19(7). We also record the following fact although we shall not
make use of it.

Theorem 7.2.14. The category of sober spaces is complete and cocomplete. It is also
closed under retracts formed in the ambient category Top.
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For the reader’s convenience we sum up our considerations in a table comparing
concepts in topological spaces to concepts in pt(L) for L a complete lattice.

space pt(L)

point completely prime filter (c. p. filter)
specialization order inclusion order

open set c. p. filters containing some x ∈ L
saturated set c. p. filters containing some upper set

compact saturated set c. p. filters containing a Scott-open filter

7.2.3 Locally compact spaces and continuous lattices

We already know that sober spaces may be seen as dcpo’s with an order-consistent
topology. We move on to more special kinds of spaces with the aim to characterize our
various kinds of domains through their open-set lattices. Our first step in this direction
is to introduce local compactness. We have:

Lemma 7.2.15. Distributive continuous lattices are spatial.

Proof. We have shown in Theorem 7.1.7 that continuous lattices are ∧-generated by
∧-irreducible elements. In a distributive lattice these are also ∧-prime.

Now recall that a topological space is called locally compact if every element has
a fundamental system of compact neighborhoods. This alone does not imply sobriety,
as the ascending chain of natural numbers, equipped with the weak upper topology,
shows. But in combination with sobriety we get the following beautiful result:

Theorem 7.2.16. The functors Ω and pt restrict to a dual equivalence between the
category of sober locally compact spaces and the category of distributive continuous
lattices.

Proof. We have seen in Section 4.2.3 already that O : O′ holds in Ω(X) if there
is a compact set between O and O′. This proves that the open-set lattice of a locally
compact space is continuous.

For the converse, let F be a point in an open set Ox, that is, x ∈ F . A completely
prime filter is Scott-open, therefore there is a further element y ∈ F with y : x.
Lemma 2.3.8 tells us that there is a Scott-open filter G contained in ↑↑y which con-
tains x. We know by the previous lemma that a distributive continuous lattice can be
thought of as the open-set lattice of its space of points, which, furthermore, is guaran-
teed to be sober. So we can apply the Hofmann-Mislove Theorem 7.2.9 and get that
the set A of points of L, which are supersets of G, is compact saturated. In summary,
F is contained in Oy which is a subset ofA and this is a subset of Ox.

From now on, all our spaces are locally compact and sober. The three properties
introduced in the next three subsections, however, are independent of each other.
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7.2.4 Coherence

We have introduced coherence in Section 4.2.3 for the special case of continuous do-
mains. The general definition reads as follows:

Definition 7.2.17. A topological space is called coherent, if it is sober, locally compact,
and the intersection of two compact saturated subsets is compact.

Definition 7.2.18. The order of approximation on a complete lattice is called multi-
plicative if x : y and x : z imply x : y ∧ z. A distributive continuous lattice for
which the order of approximation is multiplicative is called arithmetic.

As a generalization of Proposition 4.2.16 we have:

Theorem 7.2.19. The functors Ω and pt restrict to a dual equivalence between the
category of coherent spaces and the category of arithmetic lattices.

Proof. The same arguments as in Proposition 4.2.15 apply, so it is clear that the open-
set lattice of a coherent space is arithmetic. For the converse we may, just as in the
proof of Theorem 7.2.16, invoke the Hofmann-Mislove Theorem. It tells us that com-
pact saturated sets of pt(L) are in one-to-one correspondence with Scott-open filters.
Multiplicativity of the order of approximation is just what we need to prove that the
pointwise infimum of two Scott-open filters is again Scott-open.

7.2.5 Compact-open sets and spectral spaces

By passing from continuous lattices to algebraic ones we get:

Theorem 7.2.20. The functors Ω and pt restrict to a dual equivalence between the
category of sober spaces, in which every element has a fundamental system of compact-
open neighborhoods, and the category of distributive algebraic lattices.

The proof is the same as for distributive continuous lattices, Theorem 7.2.16. We
now combine this with coherence.

Definition 7.2.21. A topological space, which is coherent and in which every element
has a fundamental system of compact-open neighborhoods, is called a spectral space.

Theorem 7.2.22. The functors Ω and pt restrict to a dual equivalence between the
category of spectral spaces and the category of algebraic arithmetic lattices.

Having arrived at this level, we can replace the open-set lattice with the sublattice
of compact-open subsets. Our next task then is to reformulate Stone-duality with bases
of open-set lattices. For objects we have:

Proposition 7.2.23. Let L be an algebraic arithmetic lattice. The completely prime fil-
ters of L are in one-to-one correspondence with the prime filters ofK(L). The topology
on pt(L) is generated by the set of all Ox, where x is compact in L.
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Proof. Given a completely prime filter F in L, we let F ∩ K(L) be the set of compact
elements contained in it. This is clearly an upwards closed set in K(L). It is a filter,
because L is arithmetic. Primeness, finally, follows from the fact that F is Scott-open
and hence equal to ↑(F ∩ K(L)). Conversely, a filter G in K(L) generates a filter ↑G
in L. For complete primeness let A be a subset of L with join in ↑G. L is algebraic.
So we may replace A by B = ↓A ∩ K(L) and

∨

B ∈ ↑G will still hold. Because ↑G
is Scott-open, there is a finite subset M of B with

∨

M ∈ ↑G. Some element of G
must be below

∨

M and primeness then gives us that some element ofM belongs toG
already.

The statement about the topology on pt(L) follows from the fact that every element
of L is a join of compact elements.

A frame-homomorphism between algebraic arithmetic lattices need not preserve
compact elements, so in order to represent it through bases we need to resort to re-
lations, as in Section 2.2.6, Definition 2.2.27. Two additional axioms are needed,
however, because frame-homomorphisms are more special than Scott-continuous func-
tions.

Definition 7.2.24. A relationR between lattices V andW is called join-approximable
if the following conditions are satisfied:

1. ∀x, x′ ∈ V ∀y, y′ ∈ W. (x′ ≥ x R y ≥ y′ =⇒ x′ R y′);

2. ∀x ∈ V ∀N ⊆fin W. (∀y ∈ N. x R y =⇒ x R (
∨

N));

3. ∀M ⊆fin V ∀y ∈ W. (∀x ∈ M. x R y =⇒ (
∧

M) R y);

4. ∀M ⊆fin V ∀x ∈ W. ((
∨

M) R x =⇒ ∃N ⊆fin W.
(x =

∨

N ∧ ∀n ∈ N∃m ∈ M. m R n)).

The following is then easily established:

Proposition 7.2.25. The category of algebraic arithmetic lattices and frame-
homomorphisms is equivalent to the category of distributive lattices and join-
approximable relations.

By Proposition 7.2.23 we can replace the compound functor pt ◦ Idl by a direct
construction of a topological space out of a distributive lattice. We denote this functor
by spec, standing for the spectrum of a distributive lattice. We also contract K ◦ Ω to
KΩ. Then we can say:

Theorem 7.2.26. The category of spectral spaces and continuous functions is dually
equivalent to the category of distributive lattices and join-approximable relations via
the contravariant functors KΩ and spec.

We supplement the table in Section 7.2.2 with the following comparison of con-
cepts in a topological space and concepts in the spectrum of a distributive lattice.
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space spec(L)

point prime filter
specialization order inclusion order
compact-open set prime filters containing some x ∈ L

open set union of compact open sets
saturated set prime filters containing some upper set

compact saturated set prime filters containing a filter

It has been argued that the category of spectral spaces is the right setting for deno-
tational semantics, precisely because these have a finitary ‘logical’ description through
their distributive lattices of compact-open subsets, see [Smy92], for example. However,
this category is neither cartesian closed, nor does it have fixpoints for endofunctions,
and hence does not provide an adequate universe for the semantics of computation. An
intriguing question arises, of how the kinds of spaces traditionally studied in topology
and analysis can best be reconciled with the computational intuitions reflected in the
very different kinds of spaces which arise in Domain Theory. An interesting recent
development is Abbas Edalat’s use of Domain Theory as the basis for a novel approach
to the theory of integration [Eda93a].

7.2.6 Domains

Let us now see how continuous domains come into the picture. First we note that
sobriety no longer needs to be assumed:

Proposition 7.2.27. Continuous domains eqipped with the Scott-topology are sober
spaces.

Proof. Let A be an irreducible closed set in a continuous domain D and let B = ↓↓A.
We show that B is directed. Indeed, given x and y in B, then neither D \ ↑↑x nor
D \ ↑↑y contain all of A. By irreducibility, then, they can’t cover A. Hence there is
a ∈ A∩ ↑↑x∩ ↑↑y. But since ↑↑x∩ ↑↑y is Scott-open, there is also some b : a in this set.
This gives us the desired upper bound for x and y. It is plain from Proposition 2.2.10
that A is the closure of

⊔

↑B.

The following result of Jimmie Lawson and Rudolf-Eberhard Hoffmann, [Law79,
Hof81], demonstrates once again the central role played by continuous domains.

Theorem 7.2.28. The functorsΩ and pt restrict to a dual equivalence betweenCONT
and the category of completely distributive lattices.

Proof. A Scott-open set O in a continuous domain D is a union of sets of the form
↑↑x where x ∈ O. For each of these we have ↑↑x ≪ O in σD . This proves complete
distributivity, as we have seen in Theorem 7.1.3.

For the converse, let L be completely distributive. We already know that the points
of L form a dcpo (where the order is given by inclusion of filters) and that the topol-
ogy on pt(L) is contained in the Scott-topology of this dcpo. Now we show that ev-
ery completely prime filter F has enough approximants. Observe that F ′ : F cer-
tainly holds in all those cases where

∧

F ′ is an element of F as directed suprema
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of points are unions of filters. Now given x ∈ F we get from prime-continuity
that x =

∨

{y | y ≪ x} and so there must be some y ∈ F with y ≪ x. Suc-
cessively interpolating between y and x gives us a sequence of elements such that
y ≪ . . . ≪ yn ≪ . . . ≪ y1 ≪ x, just as in the proof of Lemma 2.3.8. The
set

⋃

n∈N
↑yn then is a completely prime filter containing x with infimum in F . The

directedness of these approximants is clear because F is filtered. As a consequence,
we have that F ′ : F holds if and only if

∧

F ′ belongs to F .
We are not quite finished, though, because we also need to show that we get the

Scott-topology back. To this end let O be a Scott-open set of points, that is, F ⊇ F ′ ∈
O implies F ∈ O and

⋃

↑
i∈I Fi ∈ O implies Fi ∈ O for some i ∈ I . Let x be the

supremum of all elements of the form
∧

F , F ∈ O. We claim that O = Ox. First of
all, for each F ∈ O there is F ′ ∈ O with F ′ : F , which, as we have just seen, is
tantamount to

∧

F ′ ∈ F , hence x belongs to all F and O ⊆ Ox is proved.
Conversely, if a pointG contains x then it must contain some

∧

F , F ∈ O, because
it is completely prime. HenceG belongs to O, too, and we have shown Ox ⊆ O.

To this we can add coherence and we get a dual equivalence between coherent
domains and completely distributive arithmetic lattices. Or we can add algebraicity and
get a dual equivalence between algebraic domains and algebraic completely distributive
lattices. Adding both properties characterizes what can be called 2/3-bifinite domains
in the light of Proposition 4.2.17. We prefer to speak of coherent algebraic domains.
As these are spectral spaces, we may also ask how they can be characterized through
the lattice of compact open subsets. The answer is rather simple: A compact open set
in an algebraic domain D is a finite union of sets of the form ↑c for c ∈ K(D). These,
in turn, are characterized by being ∨-irreducible and also ∨-prime.

Theorem 7.2.29. The dual equivalence of Theorem 7.2.26 cuts down to a dual equiv-
alence of coherent algebraic domains and lattices in which every element is the join of
finitely many ∨-primes.

Proof. We only need to show that if a lattice satisfies the condition stated in the theo-
rem, then its ideal completion is completely distributive. But this is trivial because a
principal ideal generated by a ∨-prime is completely ∨-prime in the ideal completion
and so the result follows from Theorem 7.1.3.

All the combined strength of complete distributivity, algebraicity and multiplica-
tivity of the order of approximation, however, does still not restrict the corresponding
spaces far enough so as to bring us into one of our cartesian closed categories of do-
mains. Let us therefore see what we have to add in order to characterize bifinite do-
mains. The only solution in this setting appears to be a translation of mub-closures
into the lattice of compact-open subsets, that is to say, the subset of ∨-primes has the
upside-down finite mub property (Definition 4.2.1). Let us sum up these considerations
in a theorem:

Theorem 7.2.30. A lattice V is isomorphic to the lattice of compact-open subsets of
an F-B-domain (Definition 4.3.7) if and only if, firstly, V has a least element, secondly,
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each element of V is the supremum of finitely many ∨-primes and, thirdly, for every
finite set M of ∨-primes there is a finite superset N of ∨-primes such that

∀A ⊆ M ∃B ⊆ N.
∧

A =
∨

B.

The additional requirement that there be a largest element which is also ∨-prime, char-
acterizes the lattices of compact-open subsets of bifinite domains.

The extra condition about finite mub-closures is not a first-order axiom and cannot
be replaced by one as was shown by Carl Gunter in [Gun86]. The smaller class of
algebraic bc-domains has a rather nicer description:

Theorem 7.2.31. A lattice V is isomorphic to the lattice of compact-open subsets of
an algebraic bc-domain if and only if it has a least element, each element of V is the
supremum of finitely many∨-primes and the set of∨-primes plus least element is closed
under finite infima.

7.2.7 Summary

We have summarized the results of this section in Figure 16 and Table 1. As labels
we have invented a few mnemonic names for categories. We won’t use them outside
this subsection. The filled dots correspond to categories for which there is also a char-
acterization in terms of compact-open subsets (spectral spaces). A similar diagram
appears in [GHK+80] but there not everything, which appears to be an intersection of
categories, really is one.

7.3 The logical viewpoint
This material is based on [Abr91b].

7.3.1 Working with lattices of compact-open subsets

Having established the duality between algebraic domains and their lattices of
compact-open subsets we can now ask to what extent we can do domain theory through
these lattices. We have already indicated that such an approach offers many new in-
sights but for the moment our motivation could simply be that working with lattices is
a lot easier than working with dcpo’s. ‘Doing domain theory’ refers to performing the
domain constructions of Sections 3.2, 3.3, 5 and 6, at least in a first approximation.

Let us try this out. Suppose you know KΩ(D) for some bifinite domainD, how do
you construct KΩ(D⊥), the lattice of compact-open subsets of the lifted domain? The
answer is simple, just add a new top element: KΩ(D⊥) = KΩ(D)9. Coalesced sum
also works fine:

KΩ(D ⊕ E) = (KΩ(D) \ {D}) × (KΩ(E) \ {E}) ∪ {D ⊕ E}.

We encounter the first problemswhen we look at the cartesian product. While it is clear
that every compact-open subset ofD×E is a finite union of products of compact-open
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TOP Topological spaces. No Stone-dual.

SOB Sober spaces vs. spatial lattices.

L-C Locally-compact sober spaces vs. continuous distributive
lattices.

COH Coherent spaces (= locally compact, sober, and intersection of
compact saturated is compact) vs. arithmetic lattices (= distribu-
tive, continuous, and order of approximation is multiplicative).

C-O Sober spaces with a base of compact-open sets vs. distributive
algebraic lattices.

CONT Continuous domains with Scott-topology vs. completely dis-
tributive lattices.

SPEC Spectral spaces vs. algebraic arithmetic lattices vs. distributive
lattices.

C-CONT Coherent domains vs. arithmetic completely distributive lattices.

ALG Algebraic domains vs. algebraic completely distributive lattices.

C-ALG Coherent algebraic domains vs. algebraic arithmetic completely
distributive lattices vs. distributive lattices in which every ele-
ment is the finite join of ∨-primes.

F-B F-B-domains (Definition 4.3.7) (= bilimits of finite posets).
Stone-dual only described through the basis (or base) of
compact-open subsets, which is a distributive lattice with extra
properties as stated in Theorem 7.2.30.

B Bifinite domains. Stone-dual only described through the basis of
compact-open subsets, which is a distributive lattice with extra
properties as stated in Theorem 7.2.30.

aBC Algebraic bounded-complete domains. Stone-dual only de-
scribed through the basis of compact-open subsets, which is
a distributive lattice with extra properties as stated in Theo-
rem 7.2.31.

Table 1: The categories and their Stone-duals.
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Figure 16: An overview of Stone-dualities in domain theory.

subsets in the factors, there seems to be no simple criterion on such unions which would
guarantee unique representation.

The moral then is that we must allow for multiple representations of compact-open
subsets. Instead of lattices we shall study certain preordered structures. At first glance
this may seem as an unwanted complication but we will soon see that it really makes
the whole programme work much more smoothly.

Lattices are determined by either their order structure or their algebraic structure
but this equivalence no longer holds in the preordered case. Instead we must mention
both preorder and lattice operations. We also make ∨-primeness explicit in our axiom-
atization. The reason for this is that we want to keep all our definitions inductive. This
point will become clearer when we discuss the function space construction below.

Definition 7.3.1. A coherent algebraic prelocale A is a preordered algebra with two
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binary operations ∨ and ∧, two nullary operations 0 and 1, and a unary predicate C
on A, such that a ∨ b is a supremum for {a, b}, a ∧ b is an infimum for {a, b}, 0 is a
least, and 1 is a largest element. The preorder onA is denoted by&, the corresponding
equivalence relation by ≈. The predicate C(a) is required to hold if and only if a is
∨-prime. Finally, every element of A must be equivalent to a finite join of ∨-primes.

We will not distinguish between a prelocale and its underlying set. The set
{a ∈ A | C(a)} is abbreviated as C(A).

This is essentially the definition which appears in [Abr91b]. There another pred-
icate is included. We can omit this because we will not look at the coalesced sum
construction. The expressions ‘a supremum’, ‘an infimum’, etc., may seem contra-
dictory but they are exactly appropriate in the preordered universe. It is seen without
difficulties that every coherent algebraic prelocale A gives rise to a lattice A/≈ which
is ∨-generated by ∨-primes and hence distributive.

A domain prelocale is gotten by incorporating the two extra conditions from The-
orem 7.2.30:

• ∀u ⊆fin C(A) ∃v ⊆fin C(A). u ⊆ v and (∀w ⊆ u ∃z ⊆ v.
∧

w =
∨

z);

• C(1).

Definition 7.3.2. Let A and B be domain prelocales. A function φ : A → B is called
a pre-isomorphism if it is surjective, order-preserving and order-reflecting. If A is a
domain prelocale and D is a bifinite domain and if further there is a pre-isomorphism
#·$ : A → KΩ(D) then we say that A is a localic description of D via #·$.

A pre-isomorphism φ : A → B must preserve suprema, infima, and least and
largest element (up to equivalence). Furthermore, it restricts and corestricts to a surjec-
tive map φ0 : C(A) → C(B). Let us lookmore closely at the case of a pre-isomorphism
#·$ : A → KΩ(D). A diagram may be quite helpful:

C(A) ⊂ & A

K(D) ∼=dual C(KΩ(D))

#·$0

'
⊂ & KΩ(D)

#·$

'

Remember that C(KΩ(D)) are just those compact-open subsets which are of the
form ↑c for c ∈ K(D). The inclusion order between such principal filters is dual to the
usual order on K(D).

Let us now lift the pre-isomorphism to the domain level. In the previous chapters,
the natural approach would have been to apply the ideal completion functor to the pre-
isomorphism between C(A)op and K(D). Here we use Stone-duality and apply spec
to #·$. This yields an isomorphism between spec(A) and spec(KΩ(D)). Composed
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with the inverse of the unit η it gives us the isomorphism τ : spec(A) → D.

spec(A)
##########

τ

?
spec(KΩ(D))

spec(#·$)−1

' η−1
& D

It will be good to have a concrete idea of the behaviour of τ , at least for compact
elements of spec(A). These are filters in A which are generated by ∨-prime elements.
So let F = ↑a with a ∈ C(A). It is easily checked that τ(F ) equals that compact
element c ofD which is least in the compact-open subset #a$0.

Proposition 7.3.3. There exists a map #·$ : A → KΩ(D) such that the domain prelo-
cale A is a localic description of the bifinite domain D if and only if spec(A) and D
are isomorphic.

Proof. We have just described how to derive an isomorphism from a pre-isomorphism.
For the converse observe that the unit ε : A → KΩ(spec(A)) is surjective, order-
preserving and order-reflecting (Proposition 7.2.4).

For more general functions between domains, we can translate join-approximable
relations into the language of domain prelocales. The following is then just a slight
extension of Theorem 7.2.30.

Theorem 7.3.4. The category of domain prelocales and join-approximable relations
is dually equivalent to the category of bifinite domains and Scott-continuous functions.

Our attempt to mimic the cartesian product construction forced us to pass to pre-
ordered structures but once we have accepted this we can go one step farther and make
the prelocales syntactic objects in which no identifications are made at all. More pre-
cisely, it is no loss of generality to assume that the underlying algebra is a term algebra
with respect to the operations ∨,∧, 0, and 1. As an example, let us describe the one-
point domain I in this fashion. We take the term algebra on no generators, that is, every
term is a combination of 0’s and 1’s. The preorder is the smallest relation compatible
with the requirements in Definition 7.3.1. The effect of this is that there are exactly two
equivalence classes with respect to ≈, the terms equivalent to 1 and the terms equiva-
lent to 0. The former are precisely the ∨-prime terms. We denote the resulting domain
prelocale by 1.

The syntactic approach also suggests that we look at the following relation between
domain prelocales:

Definition 7.3.5. Let A and B be domain prelocales. We say that A is a sub-prelocale
of B if the following conditions are satisfied:

1. A is a subalgebra of B with respect to ∨,∧, 0 and 1.

2. The preorder on A is the restriction of the preorder on B to A.
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3. C(A) equalsA ∩ C(B).
We write A % B if A is a sub-prelocale of B.
Proposition 7.3.6. If A is a sub-prelocale of B then the following defines an embed-
ding projection pair between spec(A) and spec(B):

e : spec(A) → spec(B), e(F ) = ↑B(F );

p : spec(B) → spec(A), p(F ) = F ∩ A.

Proof. It is clear that both e and p are continuous because directed joins of elements in
spec(A), resp. spec(B), are just directed unions of prime filters. We have p ◦ e = id
because the preorder on A is the restriction of that on B. For e ◦ p & id we don’t need
any special assumptions.

The crucial point is that the two functions are well-defined in the sense that they
indeed produce prime filters. The filter part follows again from the fact that both oper-
ations and preorder on A are the restrictions of those on B. For primeness assume that
∨

M ∈ ↑B(F ) for some finite M ⊆ B. This means x &
∨

M for some x ∈ F . This
element itself is a supremum of ∨-primes of A and because F is a prime filter in A we
have some ∨-prime element x′ below

∨

M in F . But we have also required that the
∨-prime elements of A are precisely those ∨-prime elements of B which lie in A and
therefore somem ∈ M must be above x′.

Primeness of F ∩ A, on the other hand, follows easily because suprema in A are
also suprema in B.

Corollary 7.3.7. Assume thatA is a localic description ofD via #·$A, thatB describes
E via #·$B , and that A % B. Then the following defines an embedding e of D into E:

If c ∈ K(D), a ∈ C(A), #a$0A = ↑c, #a$0B = ↑d, then e(c) = d.
Proof. If we denote by e′ the embedding from spec(A) into spec(B) as defined in the
preceding proposition, then the embedding e : D → E is nothing else but τB ◦ e′ ◦
τ−1
A .

Of course, it happens more often that spec(A) is a sub-domain of spec(B) than
that A is a sub-prelocale of B but the fact is that it will be fully sufficient and even
advantageous to work with the stronger relation when it comes to solving recursive
domain equations.

7.3.2 Constructions: The general technique

Before we demonstrate how function space and Plotkin powerdomain can be con-
structed through prelocales, let us outline the general technique. The overall picture
is in the following diagram. We explain how to get its ingredients step by step below.

C(T (A, A′)) ⊂ & T (A, A′)

K(FT (D, D′)) ∼=dual C(KΩ(FT (D, D′)))

#·$0

'
⊂& KΩ(FT (D, D′))

#·$

'
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1. The set-up. We want to study a construction T on (bifinite) domains. This
could be any one from the table in Section 3.2.6 or a bilimit or one of the powerdomain
constructions from Section 6.2. The diagram illustrates a binary construction. We can
assume that we understand the action of the associated functor FT on bifinite domains.
In particular, we knowwhat the compact elements ofFT (D, D′) are, how they compare
and how FT acts on embeddings (Proposition 5.2.6). Thus we should have a clear
understanding of the bottom row of the diagram, in detail:

• FT (D, D′) is the effect of the functor FT on objectsD andD′.

• K(FT (D, D′)) are the compact elements of FT (D, D′).

• KΩ(FT (D, D′)) are the compact-open subsets of FT (D, D′) and these are pre-
cisely those upper sets which are of the form ↑u for a finite set u of compact
elements.

• C(KΩ(FT (D, D′))) are the ∨-prime elements of KΩ(FT (D, D′)) and these are
precisely those subsets of FT (D, D′) which are of the form ↑c for c a compact
element. The order is inclusion which is dual to the usual order on compact
elements.

Furthermore, we assume that we are given domain prelocales A andA′ which describe
the bifinite domains D and D′, respectively. These descriptions are encoded in pre-
isomorphisms #·$A : A → KΩ(D) and #·$A′ : A′ → KΩ(D′).
2.The goal. We want to define a domain prelocale T (A, A′) which is a localic

description of FT (D, D′). This is achieved in the following series of steps.
3. Definition of T (A, A′). This is the creative part of the enterprise. We search

for a description of compact-open subsets of FT (D, D′) based on our knowledge of
the compact-open subsets of D and D′. The point is to do this directly, not via the
compact elements ofD,D′, and FT (D, D′). There will be an immediate payoff, as we
will gain an understanding of the construction in terms of properties rather than points.
Our treatment of the Plotkin powerdomain below illustrates this most convincingly.

The definition of T (A, A′) will proceed uniformly in all concrete instances. First
a set GT of generators is defined and then T (A, A′) is taken to be the term alge-
bra over GT with respect to ∨,∧, 0, and 1. An interpretation function #·$ : GT →
KΩ(FT (D, D′)) is defined based on the interpretations #·$A and #·$A′ . It is extended
to all of T (A, A′) as a lattice homomorphism: #a ∨ b$ = #a$∪#b$, etc. Finally, axioms
and rules are given which govern the preorder and ∨-primeness predicate.

Next we have to check that our definitions work. This task is also broken into a
series of steps as follows.
4. Soundness. We check that axioms and rules translate via #·$ into valid state-

ments about compact-open subsets of FT (D, D′). This is usually quite easy. From
soundness we infer that #·$ is monotone and can be restricted and corestricted to a map
#·$0 : C(T (A, A′)) → C(KΩ(FT (D, D′))).
5. Prime generation. Using the axioms and rules, we prove that every element

of T (A, A′) can be transformed (effectively) into an equivalent term which is a finite
supremum of expressions which are asserted to be ∨-prime. This is the crucial step
and usually contains the main technical work. It allows us to prove the remaining
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properties of #·$ through #·$0 and for the latter we can use our knowledge of the basis
of FT (D, D′).
6. Completeness for ∨-primes. We show that #·$0 is order reflecting.
7. Definability for ∨-primes. We show that #·$0 is surjective.
At this point we can fill in the remaining pieces without reference to the concrete

construction under consideration.
8. Completeness. The interpretation function #·$ itself is order-reflecting.

Proof. Let a, b ∈ T (A, A′) be such that #a$ ⊆ #b$. By 5 we can replace these ex-
pressions by formal joins of ∨-primes: a ≈ a1 ∨ . . . ∨ an and b ≈ b1 ∨ . . . ∨ bm.
Soundness ensures that the value under the interpretation function remains unchanged
and that each #ai$ (resp. #bj$) is of the form ↑ci (resp. ↑dj) for ci, dj compact elements
in FT (D, D′). The inclusion order on KΩ(FT (D, D′)) translates into the formula
∀i ∃j. ↑ci ⊆ ↑dj which by the completeness for ∨-primes can be pulled back into
T (A, A′): ∀i ∃j. ai & bj . In every preordered lattice it must follow that a & b
holds.

9. Definability. The surjectivity of #·$ is an easy consequence of the surjectivity
of #·$0 because we know that compact-open subsets in an algebraic domain are finite
unions of compactly generated principal filters.
10. Well-definedness. Of course, KΩ(FT (D, D′)) is a domain prelocale and we

have just shown that preorder and primeness predicate on T (A, A′) are preserved and
reflected by #·$. This constitutes a semantic proof that T (A, A′) satisfies the two extra
conditions for domain prelocales. In other words, T is a well-defined operation on
domain prelocales.
11. Stone-duality. At this point we have shown that #·$ is a pre-isomorphism. As

in the previous subsection we lift it to an isomorphism τ between spec(T (A, A′)) and
FT (D, D′) via Stone duality:

spec(T (A, A′))
##########

τ

?
spec(KΩ(FT (D, D′)))

spec(#·$)−1

' η−1
& FT (D, D′)

So much for the correspondence on the object level. We also want to see how
the construction T harmonizes with the sub-prelocale relation, one the one hand,
and the isomorphism τ , on the other hand. Thus we assume that we are given
two more prelocales, B and B′, which are localic descriptions of bifinite domains
E and E′, such that A % B and A′ % B′ hold. In Corollary 7.3.7 we have seen
how to define from this embeddings e : D → E and e′ : D′ → E′. In Proposi-
tion 5.2.6 we have shown how the functors associated with different constructions
act on embeddings, hence we may unambiguously write FT (e, e′) for the result of
this action, which is an embedding from FT (D, D′) to FT (E, E′). Embeddings pre-
serve compact elements so FT (e, e′) restricts and corestricts to a monotone function
FT (e, e′)0 : K(FT (D, D′)) → K(FT (E, E′)). Now for both T (A, A′) and T (B, B′)
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we have a diagram such as depicted at the beginning of this subsection. We connect
the lower left corners of these by FT (e, e′)0. This gives rise also to a map i from
C(KΩ(FT (D, D′))) to C(KΩ(FT (E, E′))). Our way of defining T (A, A′) will be
such that it is immediate that C(T (A, A′)) is a subset of C(T (B, B′)) and hence there
is an inclusion map connecting the upper left corners. Our next technical step then is
the following.
12. Naturality.We show that the diagram

C(T (A, A′)) ⊂ & C(T (B, B′))

C(KΩ(FT (D, D′)))

#·$0T (A,A′)

' i& C(KΩ(FT (E, E′)))

#·$0T (B,B′)

'

commutes. On the element level this reads: If a ∈ C(T (A, A′)) and #a$0T (A,A′) = ↑c

and #a$0T (B,B′) = ↑d then FT (e, e′)0(c) = d. Now we can again get the remaining
missing information in a general manner.
13. Monotonicity. We show that T (A, A′) % T (B, B′). From the form of our

construction it will be clear that T (A, A′) is a subset of T (B, B′) and the axioms and
rules will be such that whatever can be derived in T (A, A′) can also be derived in
T (B, B′). We must show that in the larger prelocale nothing extra can be proved for
elements of T (A, A′). The argument is a semantic one.

Proof. Let a, a′ ∈ C(T (A, A′)) such that a & a′ holds in T (B, B′). Let #a$0T (A,A′) =

↑c, #a$0T (B,B′) = ↑d and similarly for a′. Correctness says that ↑d ⊆ ↑d′ and hence
d + d′. By naturality we have FT (e, e′)0(c) = d + d′ = FT (e, e′)0(c′). Embeddings
are order reflecting so c + c′ follows. Completeness then allows us to conclude that
a & a′ holds in T (A, A′) as well.

In the same way it is seen that the predicate C on T (A, A′) is the restriction of that
on T (B, B′).

14. Least prelocale. It follows from the correctness of the construction that 1 %
T (A, A′) holds.
15. Naturality of τ . Having established the relation T (A, A′) % T (B, B′) we

can look at the embedding I : spec(T (A, A′)) → spec(T (B, B′)) which we defined in
Proposition 7.3.6. We claim that the following diagram commutes:

spec(T (A, A′))
I & spec(T (B, B′))

FT (D, D′)

τA

' FT (e, e′)& FT (E, E′)

τB

'

In other words, FT (e, e′) equals the embedding which can be derived from T (A, A′) %
T (B, B′) in the general manner of Corollary 7.3.7.
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Proof. This is a diagram of bifinite domains and Scott-continuous functions. It there-
fore suffices to check commutativity for compact elements. A compact element in
spec(T (A, A′)) is a filter F generated by a term a ∈ C(T (A, A′)). Its image under τA
is the compact element c which generates the compact-open subset #a$0T (A,A′). The
filter I(F ) is generated by the same term a. Applying τB to it gives us a compact
element d which is least in #a$0T (A,A′). Step 12 ensures that FT (e, e′) maps c to d.

7.3.3 The function space construction

We start out with two preparatory lemmas. The following notation will be helpful. We
write (A ⇒ B) for the set of functions which map all of A into B.

Lemma 7.3.8. The Scott-topology on the function space [D −→ D′] for bifinite do-
mainsD andD′ equals the compact-open topology.

Proof. Let A ⊆ D be compact and O ⊆ D′ be open and let F ⊆ [D −→ D′] be a
directed set of continuous functions for which

⊔

↑F maps A into O. For every x ∈ A
we have (

⊔

↑F )(x) ∈ O and because O is open, there is fx ∈ F with fx(x) ∈ O. The
collection of open sets of the form f−1

x (O), x ∈ A, covers A. By compactness, this
is true for finitely many f−1

x (O) already. If we let f be an upper bound in F for these
fx, then A ⊆ f−1(O) holds which is equivalent to f(A) ⊆ O. Hence (A ⇒ O) is a
Scott-open set in [D −→ D′].

If, on the other hand, f belongs to a Scott-open open set O ⊆ [D −→ D′] then
this is true also for some approximation g′m ◦ f ◦ gn with gn an idempotent deflation
on D, g′m an idempotent deflation on D′. For each element x in the image of gn we
have the set (↑x ⇒ (↑↑g′m ◦ f ◦ gn(x))). The intersection of all these belongs to the
compact-open topology, contains f , and is contained in O.

Lemma 7.3.9. LetD andD′ be bifinite and letA ⊆ D andA′ ⊆ D′ be compact-open.
Then (A ⇒ A′) is compact-open in [D −→ D′].

Proof. We know that (A ⇒ A′) defines an open set by the previous lemma. From
bifiniteness we get idempotent deflations gn onD and g′m onD′ such thatA = ↑gn(A)
and A′ = ↑g′m(A′). It follows that (A ⇒ A′) = ↑Gnm(A ⇒ A′) for the idempotent
deflationGnm on [D −→ D′] which maps f to g′m ◦ f ◦ gn.

Now let A and A′ be domain prelocales describing bifinite domains D and D′, as
outlined in the general scheme in the previous subsection. The two lemmas justify
the following choice of generators and interpretation function for our localic function
space construction:

G→ = {(a → a′) | a ∈ A, a′ ∈ A′};

#(a → a′)$ = (#a$A ⇒ #a′$A′)

Note that the elements (a → a′) are just syntactic expressions. Here are axioms
and rules for the preorder and C-predicate.
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Axioms.
(→ − ∧) (a →

∧

i∈I a′
i) ≈

∧

i∈I(a → a′
i).

(→ − ∨ − l) (
∨

i∈I ai → a′) ≈
∧

i∈I(ai → a′).
(dist) a ∧ (b ∨ c) ≈ (a ∧ b) ∨ (a ∧ c).
Rules.
(→ − ∨ − r) If C(a) then (a →

∨

i∈I a′
i) ≈

∨

i∈I(a → a′
i).

(→ − &) If b & a and a′ & b′ then (a → a′) & (b → b′).
(→ − C) If ∀i ∈ I. (C(ai) and C(a′

i)) and if ∀K ⊆ I ∃L ⊆ I.
(
∧

k∈K ak ≈
∨

l∈L al and (∀k ∈ K, l ∈ L. a′
k & a′

l)) then
C(

∧

i∈I(ai → a′
i)).

A few comments about these formulae are in place. First a convention: we assume
that all index sets are finite, so that the expressions

∧

i∈I ai, etc., do indeed belong to
the term algebra overG→. Observe the use of the C-predicate in the rule (→ − ∨ − r).
Without it, it would be very difficult to express this property. Also note that we enforce
distributivity. This will be a prerequisite to prove prime generation below.

It is clear that the rules are sound for the given interpretation, in particular, (→ − C)
is the exact mirror image of our definition of joinable families of step functions, Def-
inition 4.2.2. Let us therefore immediately turn to the crucial step 5. We cannot use
Lemma 7.3.9 directly because we have not encoded the idempotent deflations. We
must find the minimal elements of a compact-open subset explicitly. We illustrate the
general technique in an example.

Suppose #a$A is of the form ↑c ∪ ↑d and #a′$A′ is of the form ↑c′ ∪ ↑d′. We get
a minimal element of ((↑c ∪ ↑d) ⇒ (↑c′ ∪ ↑d′)) by choosing a value f(c) and a value
f(d) from {c′, d′}. Then we must look at the intersection ↑c ∩ ↑d which again is of
the form ↑e1 ∪ . . . ∪ ↑en by coherence. For each ei we must choose a value from
mub{f(c), f(d)} = {e′1, . . . , e

′
m}. And so on. Bifiniteness of the argument domain

ensures that this process stops after a finite number of iterations and that the result is
a joinable family of pairs 〈x, f(x)〉. Coherence of the result domain guarantees that
all in all only finitely many choices are possible. (Note that it can happen that a set of
minimal upper bounds in the image domain is empty. In this case we have just been
unlucky with our choices. If #a′$A′ is not empty then some minimal function exists.)

We can mimic this procedure in the prelocale as follows. For simplicity and to make
the analogy apparent, we let c, d stand for terms such that C(c), C(d) and a ≈ c ∨ d.
Similarly for a′. We get:

(a → a′) ≈
≈ ((c ∨ d) → (c′ ∨ d′)) (→ − &)
≈ (c → (c′ ∨ d′)) ∧ (d → (c′ ∨ d′)) (→ − ∨ − l)
≈ ((c → c′) ∨ (c → d′)) ∧ ((d → c′) ∨ (d → d′)) (→ − ∨ − r)
≈ ((c → c′) ∧ (d → d′)) ∨ . . . (3 more terms) (dist)

We follow up only the first of these four terms. The trick is to smuggle in the ∨-prime
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terms e1, . . . , en whose join equals c ∧ d.

(c → c′) ∧ (d → d′) ≈
≈ ((c ∨ e1 ∨ . . . ∨ en) → c′) ∧ ((d ∨ e1 ∨ . . . ∨ en) → d′) (→ − &)
≈ (c → c′) ∧ (d → d′) ∧ ((e1 ∨ . . . ∨ en) → (c′ ∧ d′)) (→ − ∨ − l)
≈ (c → c′) ∧ (d → d′) ∧ ((e1 ∨ . . . ∨ en) → (e′1 ∨ . . . ∨ e′m))

and now induction may do its job. Eventually we will have transformed (a → a′)
into a disjunction of joinable families. For these, ∨-primeness may be inferred through
rule (→ − C). Note that distributivity allows us to replace every term by an equivalent
term of the form

∨

(
∧

(ai → a′
i)) and for each term of the form

∧

(ai → a′
i) the

transformation works as illustrated.
Next we show completeness for ∨-primes. So assume a and b are terms for which

the C-predicate holds and for which #a$ ⊆ #b$. It must be the case that a and b are
equivalent to joinable families

∧

i∈I(ai → a′
i) and

∧

j∈J (bj → b′j) as there is no
other way of deriving ∨-primeness in [A −→ A′]. The order relation between joinable
families has been characterized in Lemma 4.2.3. Here it says: ∀i ∈ I ∃j ∈ J. (#bj$ ⊆
#ai$ and #a′

i$ ⊆ #b′j$). Since we assume completeness for the constituting prelocales
A and A′, we may infer ∀i ∈ I ∃j ∈ J. (bj & ai and a′

i & b′j). The relation a & b is
now easily derived from (→ − &).

Definability for∨-primes is immediate because we know that all compact functions
arise from joinable families (Lemma 4.2.3 and Proposition 4.2.4).

Properties 8 through 11 follow for all constructions uniformly. We are left with
proving Naturality, Property 12. To this end, let us first see how the embedding
[e −→ e′] transforms a step function (a ↘ a′). We have: [e −→ e′]((a ↘ a′)) =
(a ↘ e′(a′))◦e∗ and (a ↘ e′(a′))◦e∗(x) = e′(a′) ⇐⇒ a & e∗(x) ⇐⇒ e(a) & x.
We get the step function (e(a) ↘ e′(a′)).

Now let a ≈
∧

i∈I(ai → a′
i) be an element of [A −→ A′] for which C(a) holds.

The interpretation #a$0
[A −→ A′]

of a is the upper set generated by the joinable family

of step functions (ci ↘ c′i), where #ai$0A = ↑ci and #a′
i$0A′ = ↑c′i for all i ∈ I . Ap-

plying the embedding [e −→ e′] to these gives us the step functions (e(ci) ↘ e′(c′i))
as we have just seen. By Corollary 7.3.7 we can rewrite these as (di ↘ d′i), where
#ai$0B = ↑di and #a′

i$0B′ = ↑d′i. The supremum of the joinable family ((di ↘ d′i))i∈I

is least in #a$0
[B −→ B′]

. This was to be proved.
Taking D to be spec(A) and E to be spec(B) we can express the faithfulness of

our localic construction quite concisely as follows:

Theorem 7.3.10. Let A and B be domain prelocales. Then

[spec(A) −→ spec(B)] ∼= spec([A −→ B])

and this isomorphism is natural with respect to the sub-prelocale relation.

7.3.4 The Plotkin powerlocale

Next we want to describe the lattice of compact-open subsets of the Plotkin powerdo-
main of a bifinite domain D. By Theorem 6.2.22 we know that PP(D) is concretely
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represented as the set of lenses in D, ordered by the Egli-Milner ordering (Defini-
tion 6.2.2). The compact elements in PP(D) are those lenses which are convex clo-
sures of finite non-empty subsets of K(D) (Proposition 6.2.6). Idempotent deflations d
onD can be lifted to PP(D) because PP is a functor. They map a lens L to the convex
closure of d(L).

The compact-open subsets of PP(D), however, are not so readily described. The
problem is that one half of the Egli-Milner ordering refers to closed lower sets rather
than upper sets. We do not follow this up as there is no logical pathway from the order
theory to the axiomatization we are aiming for. It is much more efficient to either
consult the mathematical literature on hyperspaces (see [Vie21, Vie22, Smy83b]) or
to remind ourselves that powerdomains were introduced to model non-deterministic
behaviour. If we think of the compact-open subsets in D as observations that can be
made about outcomes of a computation, then it is pretty clear that there are two ways
of using these to make statements about non-deterministic programs: It could be the
case that all runs of the program satisfy the property or it could be that at least one run
satisfies it. Let us check the mathematics:

Lemma 7.3.11. If D is a bifinite domain and O is compact-open in D, then the fol-
lowing are compact-open subsets in PP(D):

A(O) = {L ∈ Lens(D) | L ⊆ O},

E(O) = {L ∈ Lens(D) | L ∩ O 8= ∅},

Furthermore, if we let O range over all compact-open subsets inD then the collection
of all A(O) and E(O) forms a base for the Scott-topology on PP(D).

Proof. Let O be compact-open. Then O is the upper set of finitely many compact
elements and we find an idempotent deflation d such that O = ↑d(O). It is clear that
for d̂ = PP(d) we have both A(O) = ↑d̂(A(O)) and E(O) = ↑d̂(E(O)). Hence these
sets are compact-open, too.

LetK be a compact lens, that is, of the form Cx(u) for u ⊆fin K(D). The upper set
ofK in PP(D) can be written as A(↑u) ∩

⋂

c∈u E(↑c).

The following definition then comes as no surprise:

Definition 7.3.12. Let A be a domain prelocale which is a localic description of the
bifinite domainD. We define the Plotkin powerlocalePP(A) overA as the term algebra
over the generators

GP = {!a | a ∈ A} ∪ {"a | a ∈ A}

with the interpretation function #·$ : PP(A) → KΩ(PP(D)) defined by

#!a$ = A(#a$), #"a$ = E(#a$)

on the generators and extended to PP(A) as a lattice homomorphism.
Preorder and C-predicate are defined as follows
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Axioms.
(! − ∧) !(

∧

i∈I ai) =
∧

i∈I !ai,
(! − 0) !0 = 0,
(" − ∨) "(

∨

i∈I ai) =
∨

i∈I "ai,
(" − 1) "1 = 1,
(! − ∨) !(a ∨ b) & !a ∨ "b,
(" − ∧) !a ∧ "b & "(a ∧ b),
(dist) a ∧ (b ∨ c) ≈ (a ∧ b) ∨ (a ∧ c).

Rules.
(P − &) If a & b then !a & !b and"a & "b,
(P − C) If C(ai) holds for all i ∈ I and I is non-empty, then

C(!(
∨

i∈I ai) ∧
∧

i∈I "ai).

Note that we again require distributivity explicitly. The derivation scheme is almost
minimal (in combination with the rest, (! − 0) and (" − 1) are equivalent). The
following derived axioms are more useful than (! − ∨) and (" − ∧):

(D1) !(a ∨ b) ≈ !a ∨ (!(a ∨ b) ∧ "b),
(D2) !a ∧ "b ≈ !a ∧ "(a ∧ b).
We leave it to the interested reader to check soundness and pass straight on to the

central Step 5, which is generation by ∨-prime elements.

Proof. Given an expression in PP(A) we first transform it into a disjunction of con-
junctions by using the distributivity axiom. Thus it suffices to represent a term of the
form

∧

i∈I

!ai ∧
∧

j∈J

"bj

as a disjunction of ∨-primes. But we can simplify further. Using (! − ∧) we can pack
all !-generators into a single term !a and by (D2) we can assume that for each j ∈ J
we have bj & a. We represent each bj as a disjunction of ∨-primes of A and applying
(" − ∨) and distributivity again we arrive at a disjunction of terms of the form

!a ∧
m
∧

j=1

"dj

where each dj ∈ C(A). Now we write a as a disjunction of ∨-primes ci. Since each dj

is below a, it doesn’t hurt to add these, too. We get:

!(c1 ∨ . . . ∨ cn ∨ d1 ∨ . . . ∨ dm) ∧
m
∧

j=1

"dj .

As yet we can not apply the ∨-primeness rule (P − C) because the two sets
{c1, . . . , cn, d1, . . . , dm} and {d1, . . . , dm} may fail to coincide. Looking at the se-
mantics for a moment, we see that in the compact-open subset thus described the min-
imal lenses are (the convex closures of) the least elements from each #dj$0A plus some
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of the generators of the #ci$0A. We therefore take our term further apart so as to have
a ∨-prime expression for each subset of {c1, . . . , cn}. For this we use (D1). One
application (plus some distributivity) yields

(

!(c2 ∨ . . . ∨ cn ∨ d1 ∨ . . . ∨ dm) ∧
m
∧

j=1

"dj

)

∨

(

!(c1 ∨ . . . ∨ cn ∨ d1 ∨ . . . ∨ dm) ∧ "c1 ∧
m
∧

j=1

"dj

)

and the picture becomes obvious.

Next we check that #·$0 is order-reflecting.

Proof. Assume #!(
∨

i∈I ai) ∧
∧

i∈I "ai$0 ⊆ #!(
∨

i∈I bj) ∧
∧

j∈J "bj$0 and let
ci and dj be the least compact elements in #ai$0A, respectively #bj$0A. Then we have
{dj | j ∈ J} &EM {ci | i ∈ I}, that is,

∀i ∈ I ∃j ∈ J. ↑ci ⊆ ↑dj ,
∀j ∈ J ∃i ∈ I. ↑ci ⊆ ↑dj .

Since we assume that #·$0A is order-reflecting, we get from the first equation
∨

i∈I ai &
∨

j∈J bj and from the second
∧

i∈I "ai &
∧

j∈J "bj .

The definability for ∨-primes was shown in Lemma 7.3.11 already. Hence we are
left with checking Naturality, which is Step 12.

Proof. Let t = !(
∨

i∈I ai) ∧
∧

i∈I "ai be a ∨-prime element in PP(A) and let A
be a sub-prelocale of B. Let e be the associated embedding from D to E. The least
element in #t$0PP

(A)
is the convex closure of the set of minimal elements ci in #ai$0A.

Applying PP(e) to it gives the convex closure of {e(ci) | i ∈ I}, as we have argued
in the remark following Theorem 6.1.9. Corollary 7.3.7 tells us that this is the least
element in #t$0PP

(B)
.

As in the case of the function space construction we summarize:

Theorem 7.3.13. Let A be a domain prelocale. Then

PP(spec(A)) ∼= spec(PP(A))

and this isomorphism is natural with respect to the sub-prelocale relation.

The prelocales for Hoare and Smyth powerdomain are much easier to describe. All
we have to do is to elide all generators and rules which refer to !, respectively".
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7.3.5 Recursive domain equations

In this subsection we will treat bilimits in the same fashion as we have studied finitary
constructions. We assume that we are given domain prelocales A0 % A1 % A2 % . . .
such that each An describes some bifinite domain Dn. Corollary 7.3.7 states how the
sub-prelocale relation between An and Am, for n ≤ m, translates into an embedding
emn : Dn → Dm. It is seen easily that 〈(Dn)n∈N, (emn)n≤m〉 is an expanding system,
that is, for n ≤ m ≤ k, ekn = ekm ◦ emn holds. We claim that the directed union
A =

⋃

n∈N
An is a domain prelocale which describes D = bilimDn. The first claim

is fairly obvious as all requirements about prelocales refer to finitely many elements
only and hence a property of A can be inferred from its validity in some An. For the
second claim we need to specify the interpretation function. To this end let lm be the
embedding of Dm into the bilimit (as defined in Theorem 3.3.7). Then we can set
#a$ = lm(#a$Am

) where m ∈ N is such that a is contained in Am. The exact choice
ofm does not matter; ifm ≤ k then by Corollary 7.3.7 we have: #a$Ak

= ekm(#a$Am
)

and applying lk to this yields lk(#a$Ak
) = lk ◦ ekm(#a$Am

) = lm(#a$Am
). The in-

terpretation function is well-defined because embeddings preserve the order of approx-
imation (Proposition 3.1.14), hence compact elements and compact-open subsets are
also preserved.

In order to see that #·$ is a pre-isomorphism we proceed as before, checking Steps
4, 5, 6, 7, and 12. It is, actually, rather simple. Soundness holds because the lm are
monotone and map compact elements to compact elements. Prime generation holds
because it holds in eachAm. Since the lm are also order-reflectingwe get completeness
from the completeness of the #·$Am

. Definability follows from Theorem 3.3.11; the
only compact elements in D are the images (under ln) of compact elements in the
approximating Dn. If we are given a second sequence B0 % B1 % B2 % . . . of
prelocales (describing E0, E1, . . .) such that for each n ∈ N we have An % Bn then it
is clear that A % B =

⋃

n∈N
Bn holds, too. For Naturality (Step 12) we must relate

this to the embedding e from D to E = bilimEn. The exact form of the latter can be
extracted from Theorem 3.3.7: e =

⊔

n∈N
kn ◦ en ◦ l∗n, where kn is the embedding of

En into E and en : Dn → En is the embedding derived from An % Bn. Now let a be
∨-prime in A. We have

e(#a$0A) = (
⊔

n∈N

kn ◦ en ◦ l∗n)(lm(#a$0Am
))

=
⊔

n≥m

kn ◦ en(#a$0Am
)

=
⊔

n≥m

kn(#a$0Bm
)

= #a$0B ,

and our proof is complete.

Theorem 7.3.14. If A0 % A1 % A2 % . . . is a chain of domain prelocales, then

spec(
⋃

n∈N

An) ∼= bilim(spec(An))n∈N .
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Observe how simple the limit operation for prelocales is if compared with a bilimit.
This comes to full flower if we look at recursive domain equations. If T is a construc-
tion built from those which can be treated localically (we have seen function space,
Plotkin powerdomain, and bilimit, but all the others from Section 3.2 can also be in-
cluded) then we can find the initial fixpoint of the functor FT on the localic side by
simply taking the union of 1 % T (1) % T (T (1)) % . . . . Why does this work and why
does the result describe the canonical fixpoint of FT ? First of all, we have 1 % T (1) by
Step 14. Successively applying T to this relation gives us T n(1) % T n+1(1) by Mono-
tonicity (Step 13). Hence we do have a chain 1 % T (1) % T (T (1)) % . . . as stated and
we can form its union A. It obviously is a fixpoint of the construction T and therefore
the domain D described by it is a fixpoint of the functor FT . But notice that we have
T (A) = A rather than merely T (A) ∼= A. This is not so surprising as it may seem at
first sight. Domain prelocales are only representations of domains and what we are ex-
ploiting here is the simple idea that we can let A represent both D and FT (D) via two
different interpretation functions. Let us now address the question about canonicity. It
suffices to check that the embedding corresponding to T (1) % T 2(1) is equal to FT (e)
where e : I → FT (I) corresponds to 1 % T (1). This is precisely the naturality of τ
which we listed as Step 15. It follows that the bilimit is the same as the one constructed
in Chapter 5.

7.3.6 Languages for types, properties, and points

We define a formal language of type expressions by the following grammar:

σ : : = 1 | X | (σ→σ) | (σ×σ) | (σ⊕σ) | (σ)⊥ | PP(σ) | recX.σ

where X ranges over a set TV of type variables. More constructions can be added to
this list, of course, such as strict function space, smash product, Hoare powerdomain,
and Smyth powerdomain. On the other hand, we do not include expressions for basic
types, such as integers and booleans, as these can be encoded in our language by simple
formulae.

We have seen two ways to interpret type expressions. The first interpretation takes
values directly in B, the category of bifinite domains, and is based on the constructions
in Sections 3.2, 3.3, 5.1, and 6.2. Since a type expression may contain free variables,
the interpretation can be defined only relative to an environment ρD : TV → B, which
assigns to each type variable a bifinite domain. The semantic clauses corresponding to
the individual rules of the grammar are as follows:

ID(1; ρD) = I;
ID(X ; ρD) = ρD(X);

ID((σ → τ); ρD) = [ID(σ; ρD) −→ ID(τ ; ρD)];

etc.
ID(recX.σ; ρD) = FIX(FT ),

where FT (D) = ID(σ; ρD[X 9→ D]).

The expression ρD[X 9→ D] denotes the environment which maps X to D and coin-
cides with ρD at all other variables .
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Our work in the preceding subsections suggests that we can also interpret type
expressions in the category DomPreloc of domain prelocales. Call the corresponding
mappings IL and ρL. The semantic clauses for this localic interpretation are:

IL(1; ρL) = 1;
IL(X ; ρL) = ρL(X);

IL((σ → τ); ρL) = [IL(σ; ρL) → IL(τ ; ρL)];

etc.
IL(recX.σ; ρL) =

⋃

T n(1),
where T (A) = IL(σ; ρL[X 9→ A]).

The preceding subsections were meant to convince the reader of the following:

Theorem 7.3.15. If ρL and ρD are environments such that for each X ∈ TV the
domain prelocale ρL(X) is a localic description of ρD(X), then for every type expres-
sion σ it holds that IL(σ; ρL) is a localic description of ID(σ; ρD). As a formula:

spec(IL(σ; ρL)) ∼= ID(σ; ρD) .

The next step is to define for each type expression σ a formal language L(σ) of
(computational or observational) properties. This is done through the following induc-
tive definition:

=⇒ true, false ∈ L(σ);

φ,ψ ∈ L(σ) =⇒ φ ∧ ψ,φ ∨ ψ ∈ L(σ);

φ ∈ L(σ),ψ ∈ L(τ) =⇒ (φ→ψ) ∈ L(σ→τ),

φ ∈ L(σ),ψ ∈ L(τ) =⇒ (φ×ψ) ∈ L(σ×τ);

φ ∈ L(σ) =⇒ (φ⊕false) ∈ L(σ⊕τ);

ψ ∈ L(τ) =⇒ (false⊕ψ) ∈ L(σ⊕τ);

φ ∈ L(σ) =⇒ (φ)⊥ ∈ L((σ)⊥);

φ ∈ L(σ) =⇒ !φ, "φ ∈ L(PP(σ));

φ ∈ L(σ[recX.σ/X ]) =⇒ φ ∈ L(σ).

Here we have used the expression σ[τ/X ] to denote the substitution of τ for X
in σ. The usual caveat about capture of free variables applies but let us not dwell on
this. The rules exhibited above will generate for each σ the carrier set of a (syntactical)
domain prelocale in the style of the previous subsections. Note that we don’t need
special properties for a recursively defined type as these are just the properties of the
approximating domains bundled together (Theorem 7.3.14).

On each L(σ) we define a preorder & and predicates C and T (the latter is needed
for the coalesced sum construction) through yet another inductive definition. For exam-
ple, the following axioms and rules enforce that each L(σ) is a preordered distributive
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lattice.

=⇒ φ & φ;

φ & ψ,ψ & χ =⇒ φ & χ;

=⇒ φ & true;

φ & ψ1,φ & ψ2 =⇒ φ & ψ1 ∧ ψ2;

=⇒ φ ∧ ψ & φ;

=⇒ φ ∧ ψ & ψ;

=⇒ false & φ;

φ1 & ψ,φ2 & ψ =⇒ φ1 ∨ φ2 & ψ;

=⇒ φ & φ ∨ ψ;

=⇒ ψ & φ ∨ ψ;

=⇒ φ ∧ (ψ ∨ χ) & (φ ∧ ψ) ∨ (φ ∧ χ);

We have seen some type specific axioms and rules in the definition of the function
space prelocale and the Plotkin powerlocale. For the full list we refer to [Abr91b],
p. 49ff. If σ is a closed type expression then the domain prelocale L(σ) describes the
intended bifinite domain:

Theorem 7.3.16. If σ is a closed type expression then

spec(L(σ)) ∼= ID(σ) .

(Note that this is a special case of Theorem 7.3.15.)
The whole scheme for deriving &, C, and T is designed carefully so as to have

finite positive information in the premise of each rule only. Hence the whole system
can be seen as a monotone inductive definition (in the technical sense of e.g. [Acz77]).
Furthermore, we have already established close connections between the syntactical
rules and properties of the described domains. This is the basis of the following result.

Theorem 7.3.17. The language of properties is decidable.

Proof. The statement is trivial for the domain prelocale 1 because only combinations
of true and false occur in L(1). For composite types we rely on the general develop-
ment in Section 7.3.2, which at least for three concrete instances we have verified in
Sections 7.3.3–5. First of all, every expression in L(σ) can be effectively transformed
into a finite disjunction of ∨-primes (i.e. expressions satisfying the C-predicate); this
is Step 5, ‘prime generation’. Soundness and completeness ensure that the expressions
satisfying the C-predicate are precisely the ∨-primes in the preordered lattice L(σ).
Hence we can decide the preorder between arbitrary expressions if we can decide the
preorder between ∨-primes. For the latter we note that our constructions accomplish
more than we have stated so far. All ∨-primes, which are produced by the transfor-
mation algorithms, are of the explicit form occuring in the rules for deriving the C-
predicate; rather than merely expressions which happen to be equivalent to ∨-primes.
The preorder between these explicit ∨-primes is (for each construction) easily charac-
terized through the semantic interpretation function #·$0. The task of establishing the
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preorder between these primes is then reduced to establishing some formula defined by
structural induction on the type σ. Since every expression in L(σ) is derived from true
and false in finitely many steps, we will eventually have reduced our task to checking
the preorder between certain expressions in L(1).

Finally, we introduce a formal language to speak about points of domains. So far,
we have done this in a rather roundabout way, trusting in the reader’s experience with
sets and functions. Doing it formally will allow us to establish a precise relationship
between (expressions for) points and (expressions for) properties.

We assume that for each (closed) type expression σ we have a denumerable set
V (σ) = {xσ, yσ, zσ, . . .} of typed variables. The terms are defined as follows (where
M : σ stands for ‘M is a term of type σ’):

=⇒ ∗σ : σ;

=⇒ xσ : σ;

M : τ =⇒ λxσ.M : (σ→τ);

M : (σ→τ), N : σ =⇒ (MN) : τ ;

M : σ, N : τ =⇒ 〈M, N〉 : (σ×τ);

M : (σ×τ), N : ν =⇒ let M be 〈xσ , yτ 〉.N : ν;

M : σ =⇒ inl(M) : (σ⊕τ) and inr(M) : (τ⊕σ);

M : (σ⊕τ), N1 : ν, N2 : ν =⇒ cases M of inl(xσ).N1 else inr(yτ ).N2 : ν;

M : σ =⇒ up(M) : (σ)⊥;

M : (σ)⊥, N : τ =⇒ lift M to up(xσ).N : τ ;

M : σ =⇒ {|M |} : PP(σ);

M : PP(σ), N : PP(τ) =⇒ over M extend {|xσ|}.N : PP(τ);

M : PP(σ), N : PP(σ) =⇒ M ∪ N : PP(σ);

M : PP(σ), N : PP(τ) =⇒ M ⊗ N : PP(σ × τ);

M : σ[recX.σ/X ] =⇒ fold(M) : recX.σ;

M : recX.σ =⇒ unfold(M) : σ[recX.σ/X ];

M : σ =⇒ µxσ.M : σ.

In the same fashion as for type expressions we have two alternatives for interpreting
a term M of type σ. We can either give a direct denotational semantics in the bifinite
domain ID(σ) or we can specify a prime filter in the corresponding domain prelo-
cale L(σ). The denotational semantics suffers from the fact that in order to single out
a particular element in a domain we use a mathematical language which looks embar-
rassingly similar to the formal language we intend to interpret. Some of the semantic
clauses to follow will therefore appear to be circular.

Again we need environments to deal with free variables. They are maps
ρ :

⋃

σ V (σ) →
.
⋃

σ ID(σ) which we assume to respect the typing. In the following
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clauses we will also suppress the type information.

#∗σ$ρ = ⊥, the least element in ID(σ);

#x$ρ = ρ(x);

#λx.M $ρ = (d 9→ #M$ρ[x9→d]);

#(MN)$ρ = #M$ρ(#N$ρ);
#〈M, N〉$ρ = 〈#M$ρ, #N$ρ〉;

#let M be 〈x, y〉.N$ρ = #N$ρ[x9→d, y 9→e],

where d = π1(#M$ρ),
e = π2(#M$ρ);

#inl(M)$ρ = inl(#M$ρ);
#inr(M)$ρ = inr(#M$ρ);

#cases M of inl(x).N1 else inr(y).N2$ρ =







#N1$ρ[x9→d], #M$ρ = (d : 1);
#N2$ρ[y 9→e], #M$ρ = (e : 2);
⊥, #M$ρ = ⊥;

#up(M)$ρ = up(#M$ρ);

#lift M to up(xσ).N$ρ =

{

#N$ρ[x9→d], #M$ρ = up(d);
⊥, #M$ρ = ⊥;

#{|M |}$ρ = {#M$ρ};
#over M extend {|xσ|}.N$ρ = ↑X ∩ Cl(X),

where X =
⋃

{#N$ρ[x9→d] | d ∈ #M$ρ};

#M ∪ N$ρ = #M$ρ ∪ #N$ρ;
#M ⊗ N$ρ = {〈d, e〉 | d ∈ #M$ρ, e ∈ #N$ρ};
#fold(M)$ρ = fold(#M$ρ);

#unfold(M)$ρ = unfold(#M$ρ);
#µx.M $ρ = fix(f),

where f(d) = #M$ρ[x9→d].

Now let us give the localic, or, as we are now justified in saying, logical interpre-
tation. We use a sequent calculus style of presenting this domain logic. The problem
of free variables is dealt with this time by including a finite list Γ of assumptions on
variables. We write them in the form x9→φ and assume that Γ contains at most one of
these for each variable x. A sequent then takes the form Γ J M : φ and should be read
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as ‘M satisfies φ under the assumptions in Γ’.

{Γ J M : φi}i∈I =⇒ Γ J M :
∧

i∈I

φ;

φ′ & φ,ψ & ψ′,

(Γ, x9→φ J M : ψ) =⇒ Γ, x9→φ′ J M : ψ′;

{Γ, x9→φi J M : ψ}i∈I =⇒ Γ, x9→
∨

i∈I

φi J M : ψ;

Γ J M : ψ =⇒ Γ, x9→φ J M : ψ;

=⇒ x9→φ J x : φ;

Γ, x9→φ J M : ψ =⇒ Γ J λx.M : (φ→ψ);

Γ J M : (φ→ψ); Γ J N : φ =⇒ Γ J (MN) : ψ;

Γ J M : φ; Γ J N : ψ =⇒ Γ J 〈M, N〉 : (φ× ψ);

Γ J M : (φ×ψ),

Γ, x9→φ, y 9→ψ J N : χ =⇒ Γ J let M be 〈x, y〉.N : χ;

Γ J M : φ =⇒ Γ J inl(M) : (φ⊕false);

Γ J M : φ =⇒ Γ J inr(M) : (false⊕φ);

Γ J M : (φ⊕false),T(φ),

Γ, x9→φ J N1 : ψ =⇒ Γ J cases M of inl(x).N1

else inr(y).N2 : ψ;

Γ J M : (false⊕φ), T(φ),

Γ, y 9→φ J N2 : ψ =⇒ Γ J cases M of inl(x).N1

else inr(y).N2 : ψ;

Γ J M : φ =⇒ Γ J up(M) : (φ)⊥;

Γ J M : (φ)⊥; Γ, x9→φ J N : ψ =⇒ Γ J lift M to up(xσ).N : ψ;

Γ J M : φ =⇒ Γ J {|M |} : !φ;

Γ J M : φ =⇒ Γ J {|M |} : "φ;

Γ J M : !φ; Γ, x9→φ J N : !ψ =⇒ Γ J over M extend {|xσ|}.N : !ψ;

Γ J M : "φ; Γ, x9→φ J N : "ψ =⇒ Γ J over M extend {|xσ|}.N : "ψ;

Γ J M : !φ; Γ J N : !φ =⇒ Γ J M ∪ N : !φ;

Γ J M : "φ =⇒ Γ J M ∪ N : "φ;

Γ J N : "φ =⇒ Γ J M ∪ N : "φ;

Γ J M : "φ; Γ J N : "ψ =⇒ Γ J M⊗N : "(φ×ψ);

Γ J M : !φ; Γ J N : !ψ =⇒ Γ J M⊗N : !(φ×ψ);

Γ J M : φ =⇒ Γ J fold(M) : φ;

Γ J M : φ =⇒ Γ J unfold(M) : φ;

Γ J µx.M : φ; Γ, x9→φ J M : ψ =⇒ Γ J µx.M : ψ.

A few comments may help in reading these clauses. The first two rules guarantee
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that the set of properties which can be deduced for a term M forms a filter in the
domain prelocale. The third rule expresses the fact that every particular x will satisfy
properties from a prime filter. In particular, it entails that Γ, x9→false J M : φ is always
true. The fourth rule (which is the last of the structural rules) is ordinary weakening.
We need it to get started in a derivation. In the two rules for the cases-construct the
predicate T shows up. Instead of T(φ) we could have written φ 8≈ false but as we
said before, we want to keep the whole logic positive, that is to say, we want to use
inductive definitions only. The two rules for fold and unfold may seem a bit boring,
but it is precisely at this point where we take advantage of the fact that in the world
of domain prelocales we solve domain equation up to equality. The last rule, finally,
has to be applied finitely many times, starting from Γ J µx.M : true, in order to yield
something interesting. Here we may note with regret that our whole system is based on
the logic of observable properties. A standard proof principle such as fixpoint induction
for admissible predicates, Lemma 2.1.20, does not fit into the framework. On the other
hand, it is hopefully apparent how canonical the whole approach is. For applications,
see [Abr90c, Abr91a, Bou91, Hen93, Ong93, Jen91, Jen92].

Let us now compare denotational and logical semantics. We need to say how en-
vironments ρ and assumptions Γ fit together. First of all, we assume that ρ maps each
variable xσ into spec(L(σ)). Secondly, we want that ρ(x) belongs to the compact-
open subset described by the corresponding entry in Γ. But since environments are
functions defined on the whole set of variables while assumptions are finite lists, the
following definition is a bit delicate. We write ρ ' Γ if for all entries x9→φ in Γ we
have ρ(x) ∈ #φ$. Using this convention, we can formulate validity for assertions about
terms:

Γ ' M : φ if and only if ∀ρ.(ρ ' Γ =⇒ #M$ρ ∈ #φ$) .

The final tie-up between the two interpretations of type expressions and terms then is
the following:

Theorem 7.3.18. The domain logic is sound and complete. As a formula:

∀M, Γ,φ. Γ J M : φ if and only if Γ ' M : φ .

Exercises 7.3.19. 1. Prove that a completely distributive lattice also satisfies the
dual distributivity axiom:

∨

i∈I

∧

Ai =
∧

f : I
$

−→∪Ai

∨

i∈I f(i).

2. [Ran60] Prove that a complete lattice L is completely distributive if and only if
the following holds for all x ∈ L:

x =
∨

a:≥x

∧

b:≤a

b .

(Hint: Use Theorem 7.1.3.)

3. Show that a topological space is sober if and only if every irreducible closed set
is the closure of a unique point.

4. Find a complete lattice L for which pt(L) is empty.
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5. Show that every Hausdorff space is sober. Find a T1-space which is not sober.
The converse, a sober space, which is not T1, ought to be easy to find.

6. Find a dcpo which is not sober in the Scott-topology. (Reference: [Joh81]. For
an example which is a complete lattice, see [Isb82]. There is no known example
which is a distributive lattice.)

7. Describe the topological space pt(L) in terms of ∧-prime elements of the com-
plete lattice L.

8. Let D be a continuous domain. Identify D with the set of ∧-prime elements in
Ω(D). Prove that the Lawson-topology on D is the restriction of the Lawson-
topology on Ω(D) to D.

9. Suppose f : V → W is a lattice homomorphism. Show thatR defined by xRy if
y ≤ f(x) is a join-approximable relation. Characterize the continuous functions
between spectral spaces which arise from these particular join-approximable
relations.

10. Extend Lemma 7.3.8 to other classes of domains.

11. Try to give a localic description of the coalesced sum construction.
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8 Further directions
Our coverage of Domain Theory is by no means comprehensive. Twenty-five years
after its inception, the field remains extremely active and vital. We shall try in this
Section to give a map of the parts of the subject we have not covered.

8.1 Further topics in “Classical Domain Theory”
We mention four topics which the reader is likely to encounter elsewhere in the litera-
ture.

8.1.1 Effectively given domains

As we mentioned in the Introduction, domain-theoretic continuity provides a qualita-
tive substitute for explicit computability considerations. In order to evaluate this claim
rigorously, one should give an effective version of Domain Theory, and check that the
key constructions on domains such as product, function space, least fixpoints, and solu-
tions of recursive domain equations, all “lift” to this effective setting. For this purpose,
the use of abstract bases becomes quite crucial; we say (simplifying a little for this
thumbnail sketch) that an ω-continuous domain is effectively given if it has an abstract
basis (B,≺) which is numbered as B = {bn}n∈ω in such a way that ≺ is recursive
in the indices. Similarly, a continuous function f : D → E between effectively given
domains is effective if the corresponding approximablemapping is recursively enumer-
able. We refer to [Smy77, Kan79, WD80] and the chapter on Effective Structures in
this Handbook for developments of effective domain theory on these lines.

There have also been some more sophisticated approaches which aim at making
effectivity “intrinsic” by working inside a constructive universe for set theory based
on recursive realizability [McC84, Ros86, Pho91]. We shall return to this idea in sub-
section 8.5.

8.1.2 Universal Domains

LetC be a cartesian closed category of domains, and U a domain inC. We say thatU is
universal for C if, for everyD in C, there is an embedding e : D → U . Thus universal-
ity means that we can, in effect, replace the category C by the single domain U . More
precisely, we can regard the domain D as represented by the idempotent eD = e ◦ p,
where p is the projection corresponding to e. Since eD : U → U , and [U −→ U ] is
again in C and hence embeddable in U , we can ultimately identifyD with an element
uD ∈ U , which we can think of as a “code” for D. Moreover, constructions such as
product and function space induce continuous functions

fun, prod : U2 −→ U

which act on these codes, so that e.g.

fun(uD, uE) = u[D −→ E] .
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In this way, the whole functorial level of Domain Theory which we developed as a
basis for the solution of recursive domain equations in Section 5 can be eliminated,
and we can solve domain equations up to equality on the codes by finding fixpoints of
continuous functions over U .

This approach was introduced by Scott in [Sco76], and followed in the first text-
book on denotational semantics [Sto77]. However, it must be said that, as regards appli-
cations, universal domains have almost fallen into disuse. The main reason is probably
that the coding involved in the transition fromD to uD is confusing and unappealing;
while more attractive ways of simplifying the treatment of domain equations, based on
information systems, have been found (see 8.1.4). However, there have been two recent
developments of interest. Firstly, a general approach to the construction of universal
domains, using tools from Model Theory, has been developed by Gunter and Jung and
Droste and Göbel, and used to construct universal domains for many categories, and to
prove their non-existence in some cases [GJ88, DG90, DG91, DG93].

Secondly, there is one application where universal domains do play an important
rôle: to provide models for type theories with a type of all types. Again, the original
idea goes back to [Sco76]. We say that a univeral domain U admits a universal type
if the subdomain V of all uD for D in C is itself a domain in C—and hence admits
a representation uV ∈ U . We can think of uV as a code for the type of all types. In
[Sco76], Scott studied the powersetP(ω) as a univeral domain for two categories: the
category of ω-continuous lattices (for which domains are taken to be represented by
idempotents onP(ω)), and the category of ω-algebraic lattices (for which domains are
represented by closures). Ershov [Ers75] and Hosono and Sato [HS77] independently
proved that P(ω) does not admit a universe for the former category; Hancock and
Martin-Löf proved that it does for the latter (reported in [Sco76]). For recent examples
of the use of universal domains to model a type of all types see [Tay87, Coq89, Ber91].

8.1.3 Domain-theoretic semantics of polymorphism

We have seen the use of continuity in Domain Theory to circumvent cardinality prob-
lems in finding solutions to domain equations such as

D ∼= [D −→ D] .

A much more recent development makes equally impressive use of continuity to give
a finitary semantics for impredicative polymorphism, as in the second-order lambda-
calculus (Girard’s “System F”) [Gir86, CGW87, Coq89]. This semantics makes essen-
tial use of the functorial aspects of Domain Theory. There have also been semantics
for implicit polymorphism based on ideals [MPS86] and partial equivalence relations
[AP90] over domains. We refer to the chapter in this volume of the Handbook on
Semantics of Types for comprehensive coverage and references.

8.1.4 Information Systems

Scott introduced information systems for bounded-completeω-algebraic dcpo’s (“Scott
domains”) in [Sco82]. The idea is, roughly, to represent a category of domains by
a category of abstract bases and approximable mappings as in Theorems 2.2.28 and
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2.2.29. One can then define constructions on domains in terms of the bases, as in
Propositions 3.2.4 and 4.2.4. This gives a natural setting for effective domain theory
as in 8.1.1 above. Moreover, bilimits are given by unions of information systems, and
domain equations solved up to equality, much as in 7.3.5. More generally, information
systems correspond to presenting just the coprime elements from the domain prelocales
of 7.3. Information system representations of various categories of domains can be
found in [Win88, Zha91, Cur93]. A general theory of information systems applicable
to a wide class of topological and metric structures can be found in [ES93].

8.2 Stability and Sequentiality
Recall the ε-δ style definition of continuity given in Proposition 2.2.11: given e ∈
Cf(x) it provides d ∈ Bx with f(d) & e. However, there is no canonical choice of d
from e. In an order-theoretic setting, it is natural to ask for there to be a least such d.
This leads to the idea of the modulus of stability: M(f, x, e), where f(x) + e, is the
least such d, if it exists. We say that a continuous function is stable if the modulus
always exists, and define the stable ordering on such functions by

f &s g ⇐⇒ f & g ∧ ∀x, e. e ∈ Cf(x). M(f, x, e) = M(g, x, e).

We can think of the modulus as specifying the minimum information actually required
of a given input x in order that the function f yields a given information y on the
output; the stable ordering refines the usual pointwise order by taking this intensional
information into account.

It turns out that these definitions are equivalent to elegant algebraic notions in the
setting of the lattice-like domains introduced (for completely different purposes!) in
Section 4.1. Let D, E be domains in L. Then a continuous function f : D → E is
stable iff it preserves bounded non-empty infima (which always exist in L; cf. Propo-
sition 4.1.2), and f &s g iff for all x & y, f(x) = f(y) 3 g(x). This is the first step in
an extensive development of “Stable Domain Theory” in which stable functions under
the stable ordering take the place which continuous functions play in standard Domain
Theory. Stable Domain theory was introduced by Berry [Ber78, Ber79]. Some more
recent references are [Gir86, CGW87, Tay90, Ehr93].

Berry’s motivation in introducing stable functions was actually to try to capture the
notion of sequentially computable function at higher types. For the theory of sequential
functions on concrete domains, we refer to [KP93, Cur93].

8.3 Reformulations of Domain Theory
At various points in our development of Domain Theory (see e.g. Section 3.2), we
have referred to the need to switch between different versions C, C⊥, C⊥! of some
category of domains, depending on whether bottom elements are required, and if so
whether functions are required to preserve them. In some sense C and C⊥! are the
mathematically natural categories, since what the morphisms must preserve matches
the structure that the objects are required to have; while C⊥ is the preferred category
for semantics, since endomorphisms f : D → D need not have fixpoints at all in C,
while least fixpoints in C⊥! are necessarily trivial.
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All this suggests that something is lacking from the mathematical framework in or-
der to get a really satisfactory tie-up with the applications. We shall describe a number
of attempts to make good this deficiency. While no definitive solution has yet emerged,
these proposals have contributed important insights to Domain Theory and its applica-
tions.

8.3.1 Predomains and partial functions

The first proposal is due to Gordon Plotkin [Plo85]. The idea is to use the objects of
C (“predomains”, i.e. domains without any requirement of bottom elements), but to
change the notion of morphism to partial continuous function: where we say that a
partial function f : D ⇀ E is continuous if its domain of definition is a Scott-open
subset of D, and its restriction to this subset is a (total) continuous function. The
resulting category is denoted by C∂ . This switch to partial continuous functions carries
with it a change in the type structure we can expect to have in our categories of domains:
they should be partial cartesian closed categories, as defined e.g. in [RR88, Ros86].

One advantage of this approach is that it brings the usage of Domain Theory closer
to that of recursion theory. For example, the hierarchy of (strict) partial continuous
functionals over the natural numbers will be given by

N, [N⇀ N], [[N⇀ N]⇀ N], . . .

rather than
N⊥, [N⊥

⊥!
−→ N⊥], [[N⊥

⊥!
−→ N⊥]

⊥!
−→ N⊥], . . . .

This avoidance of bottom elements also leads to a simpler presentation of product and
sum types. For example, there is just one notion of sum, the disjoint union D

.
∪ E,

which is indeed the coproduct in C∂ .
An important point is that there is a good correspondence between the operational

behaviour of functions with a call-by-value parameter-passing mechanism and the par-
tial function type [ ⇀ ]. For example, there is a good fit between [ ⇀ ] and the
function type constructor in Standard ML [MT91, MTH90].

To balance these advantages, we have the complication of dealing with partially de-
fined expressions and partial cartesian closure; and also a less straightforward treatment
of fixpoints. It is not the case that an arbitrary partial continuous function f : D ⇀ D
has a well-defined least fixpoint. However, if D itself is a partial function type, e.g.
D = [E ⇀ E], then f does have a well-defined least fixpoint. This is in accord with
computational intuition for call-by-value programming languages, but not so pleasant
mathematically.

As a final remark, note that in fact C∂ is equivalent to C⊥!! Thus, in a sense,
this approach brings nothing new. However, there is a distinct conceptual difference,
and also C∂ is more amenable to constructive proof and categorical axiomatization
[Ros86].

8.3.2 Computational Monads

Computational monads have been proposed by EugenioMoggi as a general structuring
mechanism for denotational semantics [Mog91]. A computational monad on a carte-
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sian category C is a monad (T, η, µ) together with a “tensorial strength”, i.e. a natural
transformation

tA,B : A × TB → T (A × B)

satisfying some equational axioms. The import of the strength is that the monad can be
internalised along the lines mentioned after Proposition 6.1.8. Now let C be a category
of (pre)domains and total continuous functions. Moggi’s proposal is to make a distinc-
tion between values and (denotations of) computations. An element of A is a value, an
element of TA is a computation. A (call-by-value) procedure will denote a morphism
A → TB which accepts an input value of type A and produces a computation over B.
Composition of such morphisms is by Kleisli extension: if f : A → TB, g : B → TC,
then composition is defined by

A
f

−→ TB
Tg
−→ TTC

µC−→ TC,

with identities given by the unit ηA : A → TA.
In particular, partiality can be captured in this way using the lifting monad, for

which see 3.2.5. Note that this particular example is really just another way of present-
ing the category C∂ of the previous subsection; there is a natural isomorphism

[D −→ E⊥] ∼= [D ⇀ E] .

The value of the monadic approach lies in its generality and in the type distinction it
introduces between values and computations. To illustrate the first point, note that the
various powerdomain constructions presented in Section 7.2 all have a natural structure
as strong monads, with the monad unit and multiplication given by suitable versions of
the singleton and big union operations. For the second point, we refer to the elegant
axiomatization of general recursion in terms of fixpoint objects given by Crole and Pitts
[CP92], which makes strong use of the monadic approach. This work really belongs to
Axiomatic Domain Theory, to which we will return in subsection 4 below.

8.3.3 Linear Types

Another proposal by Gordon Plotkin is to use Linear Types (in the sense of Linear
Logic [Gir87]) as a metalanguage for Domain Theory [Plo93]. This is based on the
following observation. Consider a category C⊥! of domains with bottom elements
and strict continuous functions. This category has products and coproducts, given by
cartesian products and coalesced sums. It also has a monoidal closed structure given
by smash product and strict function space, as mentioned in 3.2.4. Now lifting, which
is a monad on C by virtue of the adjunction mentioned in 3.2.5, is dually a comonad
on C⊥!; and the co-Kelisli category for this comonad is C⊥.

Indeed, Linear Logic has broader connections with Domain Theory. A key idea of
Linear Logic is the linear decomposition of the function space:

[A −→ B] ∼= [!A ( B] .

One of the cardinal principles of Domain Theory, as we have seen, is to look for carte-
sian closed categories of domains as convenient universes for the semantics of com-
putation. Linear Logic leads us to look for linear decompositions of these cartesian
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closed structures. For example, the cartesian closed category of complete lattices and
continuous maps has a linear decomposition via the category of complete lattices and
sup-lattice homomorphisms—i.e. maps preserving all joins, with !L = PH(L), the
Hoare powerdomain of L. There are many other examples [Hoo92, Ehr93, Hut94].

8.4 Axiomatic Domain Theory
We began our account of Domain Theory with requirements to interpret certain forms
of recursive definitions, and to abstract some key structural features of computable par-
tial functions. We then introduced some quite specific structures for convergence and
approximation. The elaboration of the resulting theory showed that these structures do
indeed work; they meet the requirements with which we began. The question remains
whether another class of structures might have served as well or better. To address
this question, we should try to axiomatize the key features of a category of domains
which make it suitable to serve as a universe for the semantics of computation. Such
an exercise may be expected to yield the following benefits:

• By making it clearer what the essential structure is, it should lead to an improved
meta-language and logic, a refinement of Scott’s Logic of Computable Functions
[Sco93].

• Having a clear axiomatization might lead to the discovery of different models,
which might perhaps be more convenient for certain purposes, or suggest new
applications. On the other hand, it might lead to a representation theorem, to the
effect that every model of our axioms for a “category of domains” can in fact
be embedded in one of the concrete categories we have been studying in this
Chapter.

Thus far, only a limited amount of progress has been made on this programme. One
step that can be made relatively cheaply is to generalize from concrete categories of do-
mains to categories enriched over some suitable subcategory ofDCPO. Much of the
force of Domain Theory carries over directly to this more general setting [SP82, Fre92].
Moreover, this additional generality is not spurious. A recent development in the se-
mantics of computation has been towards a refinement of the traditional denotational
paradigm, to reflect more intensional aspects of computational behaviour. This has
led to considering as semantic universes certain categories in which the morphisms
are not functions but sequential algorithms [Cur93], information flows [AJ94b], game-
theoretic strategies [AJ94a], or concurrent processes [Abr94]. These are quite different
from the “concrete” categories of domains we have been considering, in which the mor-
phisms are always functions. Nevertheless, they have many of the relevant properties
of categories of domains, notably the existence of fixpoints and of canonical solutions
of recursive domain equations. The promise of axiomatic domain theory is to allow the
rich theory we have developed in this Chapter to be transposed to such settings with a
minimum of effort.

The most impressive step towards Axiomatic Domain Theory to date has been Peter
Freyd’s work on algebraically compact categories [Fre91, Fre92]. This goes consider-
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ably beyond what we covered in Section 5. The work by Crole and Pitts on FIX-
categories should also be mentioned [CP92].

In another direction, there are limitative results which show that certain kinds of
structures cannot serve as categories of domains. One such result appeared as Exercise
5.4.11(3). For another, see [HM93].

8.5 Synthetic Domain Theory
A more radical conceptual step is to try to absorb all the structure of convergence and
approximation, indeed of computability itself, into the ambient universe of sets, by
working inside a suitable constructive set theory or topos. The slogan is: “Domains
are Sets”. This leads to a programme of “Synthetic Domain Theory”, by analogy with
Synthetic Differential Geometry [Koc81], in which smoothness rather than effectivity
is the structure absorbed into the ambient topos.

The programme of Synthetic Domain Theory was first adumbrated by Dana Scott
around 1980. First substantial steps on this programme were taken by Rosolini
[Ros86], and subsequently by Phoa [Pho91], and Freyd, Mulry, Rosolini and Scott
[FMRS90]. Axioms for Synthetic Domain Theory have been investigated by Hyland
[Hyl91] and Taylor [Tay91], and the subject is currently under active development.
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9 Guide to the literature
As mentioned in the Introduction, there is no book on Domain Theory. For systematic
accounts by the two leading contributors to the subject, we refer to the lecture notes of
Scott [Sco81] and Plotkin [Plo81]. There is also an introductory exposition by Gunter
and Scott in [GS90]. An exhaustive account of the theory of continuous lattices can
be found in [GHK+80]; a superb account of Stone duality, with a good chapter on
continuous lattices, is given in [Joh82]; while [DP90] is an excellent and quite gentle
introduction to the theory of partial orders.

Some further reading on the material covered in this Chapter:

Section 2: [DP90, Joh82];

Section 3: [Plo81, Gun92b, Win93];

Section 4: [Jun89, Jun90];

Section 5: [SP82, Fre91, Fre92, Pit93b, Pit93a];

Section 6: [Plo76, Smy78, Win83, Hec91, Sch93];

Section 7: [Abr90c, Abr91a, AO93, Ong93, Hen93, Bou94, Jen92, Jen91, Smy83b].

Applications of Domain Theory
There is by now an enormous literature on the semantics of programming languages,
much of it using substantial amounts of Domain Theory. We will simply list a number
of useful textbooks: [Sch86, Ten91, Gun92b, Win93].

In addition, a number of other applications of Domain Theory have arisen: in Ab-
stract Interpretation and static program analysis [Abr90a, BHA86, AJ91] (see also the
article on Abstract Interpretation in this Handbook); databases [BDW88, BJO91]; com-
putational linguistics [PS84, PM90]; artificial intelligence [RZ94]; fractal image gen-
eration [Eda93b]; and foundations of analysis [Eda93a].

Finally, the central importance of Domain Theory is well indicated by the num-
ber of other chapters of this Handbook which make substantial reference to Domain-
theoretic ideas: Topology, Algebraic Semantics, Semantics of Types, Correspondence
between Operational and Denotational Semantics, Abstract Interpretation, Effective
Structures.
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[DG93] M. Droste and R. Göbel. Universal domains and the amalgamation prop-
erty. Mathematical Structures in Computer Science, 3:137–159, 1993.

[DHR71] R. O. Davies, A. Hayes, and G. Rousseau. Complete lattices and the gen-
eralized Cantor theorem. Proceedings of the AMS, 27:253–258, 1971.

[DP90] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, Cambridge, 1990.

[Eda93a] A. Edalat. Domain theory and integration. draft paper, 1993.

[Eda93b] A. Edalat. Dynamical systems, measures and fractals via domain theory:
extended abstract. In G. Burn, S. Gay, and M. Ryan, editors, Theory and
Formal Methods 1993, Workshops in Computing, pages 82–99. Springer,
1993.

[Ehr93] T. Ehrhard. Hypercoherences: A strongly stable model of linear logic.
Mathematical Structures in Computer Science, 3:365–386, 1993.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1, vol-
ume 6 of EATCS Monographs on Theoretical Computer Science. Springer
Verlag, 1985.
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