Concurrency Theory, August—November 2019

Assignment 2, 18 November, 2019
Due: 24 November, 2019

Note: Only electronic submissions accepted, via Moodle.

1 Trace theory and distributed automata

Notation

e For w € ¥* and X C ¥, wlx denotes the projection of w with respect to X—that
is, the word obtained by erasing all letters not in X from w. Formally, |y = ¢ and
walxy = wlx - a, if a € X and wal x = wlx otherwise.

e A trace alphabet is a pair (X,7) where I C (¥ x X)) is an irreflexive, symmetric inde-
pendence relation. The complement of I, D = (¥ x X) \ [, is called the dependence
relation.

e Given a trace alphabet (X, 1), u ~ v denotes that u and v are trace equivalent.

e Given a distributed alphabet (X1, 3o, ..., X%),

- Y= Uie{l,z,...,k} Y. Fora € ¥, loc(a) ={i | a € %;}.

— Tioe = {(a,b) | loc(a) Nloc(b) = 0} is the independence relation induced by loc and
Dipe = (£ X X) \ [ipc is the corresponding dependence relation.

Questions

1. Given a distributed alphabet (X1, Xs,..., %) and a pair of words u, v, prove that u ~ v if
and only if ul(,py = vi{apy for every pair of letters (a,b) € D.

2. Let (X1,39,...,%;) and (¥),X5,...,%7,) be two distributed alphabets with location func-
tions loc and loc’, respectively, that induce the same independence relation—that is, fjo. =
Iloc"

(a) Suppose A is an asynchronous automaton over (31, Yo, ..., %). Show that there exists
another asynchronous automaton A’ over (X, %5,..., X! ) such that L(A) = L(A’).

(b) Suppose A is a direct product automaton over (X1, 3s,..., ;). Will there always an-
other direct product automaton A" over (X7, %5, ..., X! ) such that L(A) = L(A")? Prove
the statement or construct a counterexample.

(c¢) What happens in the case of synchronized product automata?

2 Equivalences on transition systems

3. Show that failure equivalence is decidable for finite-state transition systems. Think of rep-
resenting a failure pair (w, X) as a word w.X over ¥ U 2*.

4. Consider the following extension of failure equivalence.

e Given a transition system 7'S = (Q, —, gin) over ¥ and a state g € @, define L(q) to be
the language of T'S with the initial state shifted to ¢ — that is, L(q) is the language of

TSq = (Qa _>7 Q)



e A language future is a pair (w, L) such that w € ¥* and L C ¥*. Given a transition
system T'S = (Q, —, ¢in), We associate the set of language futures LF(T'S) = {(w, L) |
39.gin — ¢, L = L(q)}.

As usual, we say that T'S; and T'Sy are language future equivalent if LF(TS;) =
LE(TSs).

(a) Compare the discriminating power of failure equivalence and language future equivalence.

(b) Compare the discriminating power of language future equivalence and strong bisimulation
equivalence.
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