Concurrency Theory, August-November 2019

Assignment 2, 13 November, 2019 Due: 24 November, 2019

Note: Only electronic submissions accepted, via Moodle.

1 Trace theory and distributed automata

Notation

- For $w \in \Sigma^*$ and $X \subseteq \Sigma$, $w \downarrow_X$ denotes the projection of w with respect to X—that is, the word obtained by erasing all letters not in X from w. Formally, $\varepsilon \downarrow_X = \varepsilon$ and $wa \downarrow_X = w \downarrow_X \cdot a$, if $a \in X$ and $wa \downarrow_X = w \downarrow_X$ otherwise.
- A trace alphabet is a pair (Σ, I) where $I \subseteq (\Sigma \times \Sigma)$ is an irreflexive, symmetric independence relation. The complement of $I, D = (\Sigma \times \Sigma) \setminus I$, is called the dependence relation.
- Given a trace alphabet (Σ, I) , $u \sim v$ denotes that u and v are trace equivalent.
- Given a distributed alphabet $(\Sigma_1, \Sigma_2, \ldots, \Sigma_k)$,
 - $-\Sigma = \bigcup_{i \in \{1, 2, \dots, k\}} \Sigma_i. \text{ For } a \in \Sigma, \text{ loc}(a) = \{i \mid a \in \Sigma_i\}.$
 - $-I_{loc} = \{(a,b) \mid loc(a) \cap loc(b) = \emptyset\}$ is the independence relation induced by loc and $D_{loc} = (\Sigma \times \Sigma) \setminus I_{loc}$ is the corresponding dependence relation.

Questions

- 1. Given a distributed alphabet $(\Sigma_1, \Sigma_2, \ldots, \Sigma_k)$ and a pair of words u, v, prove that $u \sim v$ if and only if $u \downarrow_{\{a,b\}} = v \downarrow_{\{a,b\}}$ for every pair of letters $(a,b) \in D$.
- 2. Let $(\Sigma_1, \Sigma_2, \ldots, \Sigma_k)$ and $(\Sigma'_1, \Sigma'_2, \ldots, \Sigma'_m)$ be two distributed alphabets with location functions loc and loc', respectively, that induce the same independence relation—that is, $I_{\text{loc}} = I_{\text{loc'}}$.
 - (a) Suppose \mathcal{A} is an asynchronous automaton over $(\Sigma_1, \Sigma_2, \ldots, \Sigma_k)$. Show that there exists another asynchronous automaton \mathcal{A}' over $(\Sigma'_1, \Sigma'_2, \ldots, \Sigma'_m)$ such that $L(\mathcal{A}) = L(\mathcal{A}')$.
 - (b) Suppose \mathcal{A} is a direct product automaton over $(\Sigma_1, \Sigma_2, \ldots, \Sigma_k)$. Will there always another direct product automaton \mathcal{A}' over $(\Sigma'_1, \Sigma'_2, \ldots, \Sigma'_m)$ such that $L(\mathcal{A}) = L(\mathcal{A}')$? Prove the statement or construct a counterexample.
 - (c) What happens in the case of synchronized product automata?

2 Equivalences on transition systems

- 3. Show that failure equivalence is decidable for finite-state transition systems. Think of representing a failure pair (w, X) as a word w.X over $\Sigma \cup 2^{\Sigma}$.
- 4. Consider the following extension of failure equivalence.
 - Given a transition system $TS = (Q, \rightarrow, q_{in})$ over Σ and a state $q \in Q$, define L(q) to be the language of TS with the initial state shifted to q — that is, L(q) is the language of $TS_q = (Q, \rightarrow, q)$.

- A language future is a pair (w, L) such that $w \in \Sigma^*$ and $L \subseteq \Sigma^*$. Given a transition system $TS = (Q, \rightarrow, q_{in})$, we associate the set of language futures $LF(TS) = \{(w, L) \mid \exists q.q_{in} \xrightarrow{w} q, L = L(q)\}$. As usual, we say that TS_1 and TS_2 are language future equivalent if $LF(TS_1) = LF(TS_2)$.
- (a) Compare the discriminating power of failure equivalence and language future equivalence.
- (b) Compare the discriminating power of language future equivalence and strong bisimulation equivalence.