Instead of Vot, cohinete
$$Q_T(S,a)$$

- Ensure all (s,a) pairs are visited often enough
- Exploring Starts : choose random withal (s,a)
- Or, used $\underline{\varepsilon}$ -soft (ε) -greedy strategies
 $\overline{U}(S,a) \ge \underbrace{\varepsilon}_{[N(s)]}$ Choose non-greedy
 $with \frac{1}{[N(s)]} \cdot \varepsilon$
always $\underbrace{+}_{actions}$ Choose greedy with
 $at \le (1 - \varepsilon + \frac{1}{[N(s)]})$

Basic constraint

n b(als) > 0 If Must be stochastic, In general Suppose we are at state SE At, St+1, At+1, ..., AT-1, ST Remaining trajection According to TL Pr(At, St+1..., Ar-1, St | St, At: T-1 ~兀) = TL(Atlst) P (St+1 | St, At) TU(Ath | St+1) ---= TC k=t TT (AK |SK) P (SKH | SK, AK)

Instead, if use & rahin than TT T-1 TL b(Ak|Sk) p(Skri|Sk,Ak) k=r

St:T-1 = K=t TU (Au Su) P(Sut Su, Au) Ti b(Aulsu) P(sutisu, Au) k-1 $\frac{T}{1} \frac{T}{b} \frac{T(A_{k}|S_{k})}{b(A_{k}|S_{k})}$

 $E[G_{t}|S_{t}=s] = V_{b}(s)$

Instead

 $E\left[S_{t:\tau-1} \cdot G_{t} \middle| S_{t} = s\right] = V_{\pi}(s)$

Importance Sampling

Previous ratio is called Ordinary importance sampling
Instead Weighted Importance Sampling

$$V(G) = \sum_{t \in Z(S)} S_{t} = T(t) - 1 \cdot G_{t}$$

 $\Sigma = \sum_{t \in Z(S)} S_{t} \cdot T(t) - 1$
Consider a single episode

Single observation Weighted Ordinary V(E) = St: T-1 · Gt St=T-1 Stati Gt V(s)≤ Higher bras Lower variance Lower bras Higher Variance

Off-policy MC prediction (policy evaluation) for estimating $Q \approx q_{\pi}$

Input: an arbitrary target policy π Initialize, for all $s \in S$, $a \in \mathcal{A}(s)$: $Q(s, a) \in \mathbb{R}$ (arbitrarily) $C(s,a) \leftarrow 0$ Loop forever (for each episode): $b \leftarrow$ any policy with coverage of π Generate an episode following b: $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$ $W \leftarrow 1$ Loop for each step of episode, $t = T - 1, T - 2, \ldots, 0$, while $W \neq 0$: $G \leftarrow \gamma G + R_{t+1}$ $C(S_t, A_t) \leftarrow C(S_t, A_t) + W \longleftarrow$ $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]$ $W \leftarrow W \frac{\pi(A_t|S_t)}{b(A_t|S_t)}$

Generalize this to do policy iteration

Monte Carlo Dynamic Programmy V_{L+1} replaces V_i Update Vito Viti NA Gootstrapped Bootstrapping 4 MDP Tenpral Difference learning theny a "tone" contribution of RL Sampling + Bootstrapping

Monte Carlo

$$V(St) \leftarrow V(St) + \alpha [Gt - V(St)]$$

TD
 $V(St) \leftarrow V(St) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_{t})]$
 $TD(0) - single step boleahead$

	Elapsed Time	Predicted	Predicted
State	(minutes)	Time to Go	Total Time
leaving office, friday at 6	0	30	30
reach car, raining	5	35	40
exiting highway	20	15	35
2ndary road, behind truck	30	10	40
entering home street	40	3	43
arrive home	43	0	43

