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Markov Decision Processes

State dependent rewards
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Optimal policy
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Computing Vit from it
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Bellman Eqn

Provided VC 1
,
this set of eques has a

unique solution

If we have episodic system with finite
paths , assume a terminal state with value O

S original States, St nih. added terminal state



Iterative Solin

Treat equation as update
rule
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Update all yet, (s) in parallel
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Repeat until convergence ( O E e)
{heh update -

.

D= Msas (Mutis)-Vu 1)
IT → Up : Policy evaluation

Convergence guaranteed
In practice - need not update

in parallel

Sequentially update Yeti (si), Vien (sa) - -
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Goal is to reach V* , IT*

Policy update
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Proof that greedy policy update
is sound



Policy iteration
Initial policy greedy
to Vito⇒ Ei

evaluation
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Treating Bellman equations as update rules

Dynamic Programming

Policy evaluation - repeatedly sweep across all

States

Simplifying Policy Herahni

Don't need to fully evaluate tht for each
t in the iteration



Suffices to compute
v't → it (I sweep)

Collapse Yt → IT
'
→ Viti [I step]
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Value Iteration



In practice

Asynchronous D. P.

Need not update V (s) Vs in eachpass

"

Fairness
"

In an infinite sequence of updates ,
every state is updated infinitely often


