
HTML
,
22 Oct 2019
--

Markov Decision Processes

State dependent rewards

pls ', r Is ,a) At s
,
actin a

leads to s ' with

Assume States, reward r
rewards are finite

Policy - "

strategy to choose action
"

Given a policy IT ,
ytls) - expected long term

value of state s
Over a path , we discount rewards

G
e
= Rtt, t V G Eti

YtG) = Ee [Get Se --s]
-

- Ettab)E pls'.ir/s.a7lrtrYoCsY
a s

'

,
r

gals,a) = . . .

Optimal policy
I , > it if Ys . Vitals) Z Vitals)

Optimal value function

6) = maax E (Rtt it rr (Seti) / sat .
= may {r pGirls,a) [rtrvxls'D

g.* (s ,a) = . .

VIT At A. B all
① 0 actions more

as shown

① All other rewards

Nis , E ,W q
are 0

Uniform Except , -1 for
policy TL hitting edge

I → uit

I
v

Same Example choose T →
with any probability

0 prob fr all nonoptimal dir.

Computing Vit from it

Ytls) -- Ea Flats) § pls'm Is ,a) frtrytfs'D
Bellman Eqn

Provided VC 1
,
this set of eques has a

unique solution

If we have episodic system with finite
paths , assume a terminal state with value O

S original States, St nih. added terminal state

Iterative Solin

Treat equation as update
rule

Yeti G) = Eatlots) §, plsirls,a) frt rupees'D

Update all yet, (s) in parallel

rutty
TAI

YetiT#

Repeat until convergence (O E e)
{heh update -

.

D= Msas (Mutis)-Vu 1)
IT → Up : Policy evaluation

Convergence guaranteed
In practice - need not update

in parallel

Sequentially update Yeti (si), Vien (sa) - -
-

Goal is to reach V* , IT*

Policy update
IT → Hit

At s
,

choose action ItYs) instead of Ifs) sit.

q(s , it
'LD) Z ¥67

⇒ Vs Viti (s) Z VI(s)
Greedy policy update

"
works

"

⇐
00 greedy update ,

t o
→ 00000

O →

§-0
=

Proof that greedy policy update
is sound

Policy iteration
Initial policy greedy
to Vito⇒ Ei

evaluation

+ /
C

iterative Vit, -3 Iz
calculation

Expensive ,
but theoretically /L

feasible Vita→ As
I

Treating Bellman equations as update rules

Dynamic Programming

Policy evaluation - repeatedly sweep across all

States

Simplifying Policy Herahni

Don't need to fully evaluate tht for each
t in the iteration

Suffices to compute
v't → it (I sweep)

Collapse Yt → IT
'
→ Viti [I step]

Yeti Gl -- meant ¥, pls'M s,a) frtrv,
Value Iteration

In practice

Asynchronous D. P.

Need not update V (s) Vs in eachpass

"

Fairness
"

In an infinite sequence of updates ,
every state is updated infinitely often

