AMI, 15 Oct 2019
Reinforcement learning
Supervised and unsupervised barring Labeled tramin date Look for patterns

RL - pooogrees is based on rewards eg. the basis of Alphalio
States (of the mold), Actors available

States, Actions
State, acton \longrightarrow "reward" probabilistic
Coal: maximize rewards over a sequence of stops
Challeyc: Estimate the rewards
Strategy to choose an achoo in a gwen state "Policy"

States, achous
Policy: In a state, what acton to close
Reward: Immediate feedback of choosing a gwen action at a state
Value: Long term cohmated reward at a state
Model : Of the "environment"
Strength of RL is that model is optional

Situations
Game playing
Motion planning
"Feedback control" - eq. balancing an object
Generally - we have a current cotimete of rewards L choose best reward action "greedy"
Chose to improve our knowledge of non-mapimal
rewards

Explovation vs Exploitation tradesof
Search for new
\downarrow achon/reward info

Choose dest reward kenoun

Probabilistic settrij

- Rewards are probabilishc $N(\mu, \sigma)$
- Policues may be probabilishie $\underset{a}{\operatorname{argmax}}$ Exotmated Ruvard (a) Exploitatice

1. Muttuple maxima -choose randomly
2. ε - explore

1-を - exploit

Simplest concrete setting - only me state
One state, some achous, reward for each action, static in time
k-armed bandit problem
Sack aron i has reward $R_{i}=N\left(\mu_{i}, \sigma_{i}\right)$ For i in $1,2, \ldots, k$

Choose $m_{i} \in N(0,1)$
Set $R_{i}=N\left(m_{i}, 1\right)$
At time $t=1,2, \ldots$ we select actor A_{t} Corresponding reward is R_{t}

Eshmates au $q_{*}(a) \stackrel{\operatorname{def}}{=} \mathbb{E}\left[R_{t} \mid A_{t}=a\right]$ By repeatedly choosing a, we get a good collimate If its mean

$$
Q_{t}(a)=\frac{\text { sum of rewards for a at time } \leq t}{\# \text { If times we choose } a \leq t}
$$

Greedy strategy

$$
\text { Choose } A_{t}=\underset{a}{\operatorname{argmax}} Q_{t}(a)
$$

lnsteed - E-greedy
Choose argras mita prod $1-\varepsilon$
Readouly choose non-max m th prob. \&
[Graphs nith $\varepsilon=0,0.01,0.1$]
Seen action a n tmis

$$
\begin{aligned}
Q_{n+1} & =\frac{1}{n} \sum_{i=1}^{n} R_{i} \\
& =\frac{1}{n}\left[R_{n}+\sum_{i=1}^{n-1} R_{i}\right]
\end{aligned}
$$

$$
\begin{aligned}
Q_{n+i} & =\frac{1}{n}\left[R_{n}+(n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_{i}\right] \\
Q_{n+1} & =\frac{1}{n}\left[R_{n}+n Q_{n}-Q_{n}\right] \\
& =Q_{n}+\frac{1}{n}\left[R_{n}-Q_{n}\right]
\end{aligned}
$$

Now istmatic $=$ Old estinck $+\alpha\left[D_{d b b}\right]$ decrean'y wis thise $\frac{1}{n}$

Non stationary case - reward varies oven tim

$$
\begin{aligned}
Q_{n+1} & =Q_{n}+\alpha\left[R_{n}-Q_{n}\right] \\
& =\alpha R_{n}+(1-\alpha) \frac{Q_{n}}{\alpha R_{n-1}}+(1-\alpha) Q_{n-1} \\
& =\alpha R_{n}+\alpha(1-\alpha) R_{n-1}+(1-\alpha)^{2} \cdot Q_{n-1} \\
& \vdots \\
& =(1-\alpha)^{n} Q_{1}+\sum_{i=1}^{n} \alpha(1-\alpha)^{n-i} R_{i}
\end{aligned}
$$

Check that $(1-\alpha)^{n}+\sum_{L=1}^{n} \alpha(1-\alpha)^{n-2}=1$

$$
\begin{aligned}
& (1-\alpha)^{n} Q_{1}+\sum_{l=1}^{n} \alpha(1-\alpha)^{n-i} R_{i} \\
& \downarrow \\
& <1 \text { - decays is } n \text { increases }
\end{aligned}
$$

"Exponential recency -weighted average"
Non stationary - choose $\alpha_{n}=\alpha$ (constant) vs $\frac{1}{n}$

Some strategies
Ophenshe Initial Values
Choose large initial estimates
With high probability each early greedy croce produces a lowe than expected reward

- Reduce estimate
- Forces exploration
- Converges faster

Systematic Exploration
Non greedy - choose an acton uniformly Instead $\underset{\substack{\text { Incing }}}{\operatorname{argmax}}\left[Q_{t}(a)+c \sqrt{\frac{\ln t}{N_{t}(a)}}\right]$ time

Acton not picked often get so far a higher chance of being explored

