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Abstract 

It is established here that it is decidable whether a rational set of a free partially 
commutative monoid (i.e. trace monoid) is recognizable or not if and only if 
the commutation relation is transitive (i.e. if the trace monoid is isomorphic to 
a free product of free commutative monoids). The bulk of the paper consists 
in a characterization of recognizable sets of free products via generalized finite 
automata. 

I n t r o d u c t i o n  1 

Since the work of Mazurkiewiecz [12], trace monoids are currently recognized as a possible 
model for parallel or conct~rrent programs. This paper deals with the recognizability of 
rational sets in such monoids. In order to present the result and its interpretation in 
terms of programs, let us first recall the "standard" terrdnology and notations of the 
domain: A is an alphabet, 0 C_ A x A a symmetric relation on A is the commutation 
relation. The free partially commutative monoid, or trace monoid, M(A, 0) is the quotient 
of A* by [0] -- where [0] is the congruence of the free monoid A* generated by the set 
of pairs {(ab, ha) I (a, b) E 0}. Elements of M(A, 0) are called traces, subsets of M(A, 0) 
trace languages. The family of rational (or regular) subsets of M(A, 0) is denoted by 
Rat M(A, O). 

Trace monoids are a model for the behaviour of a parallel program in the sense that  
one computation of such a program is interpreted as the set of sequences (i. e. elements of 
A*) of operations that  can be obtained using all possible commutations between them. 
This set of equivalent computations is well represented by one element of the trace 
monoid. A rational subset of the trace monoid is a description of the set of computations 
which a parallel program performs (see [7,12]). We address here the problem of deciding 
whether a rational set of M(A, 0) is recognizable and we prove : 
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Theorem 1. Recognizability is decidable in Rat M(A, 0) iff 0 is transitive. 

In the context of parallel programs, recognizability of a rational set and thus of the 
behaviour of a parallel program is interpreted as the property that  the set of compu- 
tations of the program,' when expended via all possible commutations, forms a rational 
set of sequences of operations, that  is, the parallel program can be controlled by a finite 
automaton (see [7]). 

In the next section, we shall briefly review the other decision problems for rational 
trace languages. It is remarkable that  the condition "8 transitive" plays such a central 
r61e. The fact that it is a necessary condition follows from Ibarra's undecidability result 
[10] (cf. Theorem 3 below). The fact it is sufficient - -  which means that  these problems 
are decidable in free products of free commutative monoids - -  is based on two different 
classes of properties. 

The first ones, due to Ginsburg and Spanier [8,9], say that  all these problems are 
decidable in free commutative monoids. The second ones deal with rational sets in free 
products of monoids. Roughly speaking they state that  the constructions that  are possible 
on finite automata over a free monoid still hold for finite automata  over a free product  of 
monoids provided that  the basic pieces of these constructions are correctly changed. In a 
previous work ([13]) we had established that  a class of automata  over a free product  : the 
bipartite automata, made it possible to generalize the notion of deterministic automaton 
and thus to extend the constructions and results referring to determinization of automata  
and Boolean operations on rational sets. 

We go on here along the same line. The deterministic automata  over a free monoid 
that  recognize a given subset naturally form a (semi-)lattiee with a minimal element : the 
minimal automaton of the subset. We show here that  the same holds for deterministic 
bipartite automata : Proposition 1 states the existence of a minimal bipartite automaton 
that recognizes a given subset of a free product  and the main result (Proposition 3) states 
that,  under the hypothesis that  the factor monoids are without divisors of the identity - -  
and this is the ease for free commutative monoids - - ,  the labels of the minimal bipartite 
automaton of a recognizable subset of a free product are recognizable subsets of the 
factors. 

The paper is organized as follows. In section 1, after presenting the other decisions 
problems on rational trace languages we prove the necessary condition in Theorem 1 
and we also show how the sufficient condition in Theorem 1 can be reduced to a closure 
property of the free products (Theorem 6). The rest of the paper is then devoted to that  
latter result. In section 2 we fix the notations for free products and we define the equiva- 
lence 7R that  will be used to define the minimal bipartite automaton of R .  Before doing 
that,  in section 3, we have to recall the definition of bipartite automata;  the properties of 
rational subsets that  are deduced from the properties of bipartite automata  are recalled 
in section 5. In section 4 minimal bipartite automata  are defined and the recognizable 
subsets of a free product of monoids without divisors of the identity are characterized in 
section 6. 
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I D e c i s i o n  p r o b l e m s  f o r  r a t i o n a l  t r a c e  l a n g u a g e s  

Theorem 1 is certainly better  understood if it is compared to other decisions results in 
trace monoids. Given a relation 0 and two trace languages K and L in Rat M(A, 0) - -  
by means of rational expressions say m the following five decisions problems naturally 
arise (if we put apart membership which is obviously decidable) : 

Inclusion i.e. can one decide if K C_ L ? 
Equality " K = L ? 
Universality " K = M(A, 0) ? 
Intersection " K f3 L ~ 0 ? 
Recognizability " K is recognizable ? 

Note that  all these problems are known to be decidable in the two extreme cases 
of trace monoids: for free monoids (it follows from Kleene's theorem) and for the free 
commutative monoids (from Ginsburg and Spanier's work [8,9]). 

The solution for inclusion, equality, and universality is given by two different results. 
We first have : 

T h e o r e m  2. [2,3,13] Rat M(A, 0) is an (effective) Boolean algebra iff 0 is transitive. 

And thus the three problems are decidable if 0 is transitive. It follows from the next 
one that  none of them is decidable if 0 is not transitive : 

T h e o r e m  3. [10] Universality is undecidable in Rat ({a, b}* • {c}*). 

From Theorem 2 intersection is decidable when 0 is transitive but  this condition is 
not necessary : 

T h e o r e m 4 .  [1] Intersection in RatM(A,0)  /s decidable iff the graph of O is a transitive 
forest. 

Note that  0 is transitive iff M(A, 0) is isomorphic to a free product of free commuta- 
tive monoids (the definition of free products is recalled in section 2). In [13] we proved 
Theorem 2 by means of a closure property of free products, namely : 

T h e o r e m  5. Let M and N be two monoids such that Rat M and Rat N are effective 
Boolean algebras. Then Rat M , N is an effective Boolean algebra. 

As announced, we shall derive Theorem 1 from another closure property of free prod- 
ucts : 

T h e o r e m  6. Let M and N be two monoids with the following properties : 
i) neither M nor N have divisors of the identity; 
ii) Rat M and Rat N are effective Boolean algebras; 
iii) recognizability is decidable in both Rat M and Rat N .  

Then recognizability is decidable in Rat M * N .  
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Proof of Theorem 1. The condition is necessary. If 0 is not transitive there exist letters 
a, b and c in A such that (a,c) E 0, (b,c) E 0 and (a,b) ~ 0, i.e. S = {a,b}* x {c}* is a 
submonoid of M(A, 0). Note that S itself is a recognizable subset of M(A, 0). 

In the "classical" case of the monoid M = {a, b}* x {c, d}* the indecidability of the 
universe problem in Rat M is proved by reduction to a Post correspondence problem and 
the undecidability of recognizability within Rat M is then derived (cf. [4] for instance). We 
shall follow here a very similar procedure applied to S .  For that purpose it is convenient 
to adapt the proof of Theorem 3 by Lisovik ([11]) in order to make clear the reference to 
a Post correspondence problem. 

Let B and C be two alphabets (with at least two letters). Any Post correspondence 
problem ~ may be described as a pair (a,/~) of morphisms from B* into C* . The 
solutions o f ~  are the subset of words f in B* such that a ( f )  = ~ ( f ) .  Let c be a symbol 
that do not belong to (B O C) ; and define the subset W~ of (B U C)* x {c}* by 

Vlot = {(fot(f),cl~ ] f E B*}.  

Clearly the problem P has no solution iff Wa N W/~ is empty that is iff 

v w #  = ( B u c ) "  • {c}", 

where Wa denotes the complement of Wa �9 Theorem 3 (and the reason for the definition 
of Wa) follows then from the following. 

L e m m a  1. [11] Wa belongs to Rat ((B U C)* x {c}*) 
(and is effectively computable from a). 

Let Z = Wo fl W/~ . Note that (Wa and) Z is the graph of a function and that if Z 
is not empty it is infinite. Suppose now that Wa U W# is recognizable; then Z is also 
recognizable. The classical characterization of the recognizable subsets of a direct product 
(finite union of products of recognizable subsets of the factors) yields that a recognizable 
graph of a function is finite. Thus Z is recognizable iff it is empty, which is undecidable. 
Clearly W,, U Wa can be encoded in such a way it belongs to Rat ({a, b}* x {c}*). If it 
were recognizable in M(A, 0) it would be also recognizable in S and that terminates this 
part of the proof. 

The condition is sufficient. If# is transitive, then M(A, 0) is a free product of free com- 
mutative monoids. Since free commutative monoids are without divisors of the identity, 
since their rational subsets form an effective Boolean algebra ([8]) in which recognizabil- 
ity is decidable ([9]), this part is an immediate consequence of Theorem 6. n 

2 F r e e  p r o d u c t s  

If M is a monoid, its identity element is denoted 1M, and the complement of 1M is 
denoted M* : M* = M\ IM.  We say that a monoid M is without divisors of the identity 
if there is no element p and q in M* such that p q = 1M �9 

The free product of two monoids M and N, denoted M . N ,  can be identified with 
the monoid the elements of which are the finite sequences (ul, u2,- . . ,  up) of elements of 
M* U N* alternatively taken in M* and N*, i.e. ui E M* ~ ui+l E N*, where M* and 
N* are supposed to be disjoint. The product of two such sequences is recursively defined : 
(Ul, u2 , . . . ,  up)(vl, v2, . . . ,  vq) is equal to : 
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i) (11x, u 2 , . . . ,  up, vx, v2 , . . . ,  vq) if 11~ and vx do not belong to the same monoid ; 
ii) (11t, 112,..., up vt, v2 , . . . ,  vq) if 11p and vx belong to the monoid and up vx is different 

from the identity element; 
iii) (11t,112,. ,11p-t)(v2,...,vq) otherwise. 
Each of M and N is a submonoid of M . N  - -  sequences of length 1. This allows to 

write u = 11t 112 �9 .. up instead of 11 = (ux ,u2 , . . .  ,up) ; such a factorisation for an element 
11 of M * N  is unique and is called its canonical factorisation . We call initial monoid of 
u, denoted MI(u), the monoid, M or N, to which ux belongs; the final m o n o i d o f  u, 
denoted MF(11), is the monoid to which up belongs. The product uv of two elements 11 
and v of ( M . N ) "  is non miscible if MF(11) ~k MI(v), i.e. if the canonical factorisation of 
11v i s  11v " -  111 112 �9 �9 �9 u p  ~ 1  v 2  �9 �9 �9 Y r .  

In the sequel we keep the following notations : A and B are two alphabets; clearly 
(A U B)* = A* �9 B* if A and B are disjoint, which is understood from now on; M and 
N are two monoids, disjoint as well; ~o : A* ~ M and r : B* -* N are respectively two 
surjective morphisms that  naturaly define the surjeetive morphism 

by 

~0,0 : (A U B)* --* M . N  

VceAUB ~o,r162 c � 9  
=r if c � 9  

By inverse image of an element 11 of M , N  (resp. of M, of N) we understand the inverse 
image of 11 by ~ , r  (resp. by ~, by r With these notations we have : 

L e m m a  2. I f  M and N are without divisors of the identity, the inverse image of an 
element u of M . N is the product of the inverse images of the factors of its canonical 
lactorisation; i.e. if, for instance, MI(u) = M and MF(u) = N,  it holds: 

(~0 . r  -- ~0-1(111) r  ~0-1(U3),  "" ~0-1(11n_1) ~b-l(11n) . 

[] 

Let R be a subset of M * N .  We denote, as usual, by pR the coarsest right regular 
equivalence of M . N  that  saturates R. i.e. 

11~v m o d p n  ~ u -  l R = v - 1 R  

where 
u - t R  = {w e M * N  [ uw E R )  

i.e. 11 - v mod pR if 11 and v have the same right contexts for R. And by aR the coarsest 
congruence of M , N  that  saturates R. i.e. 

where 

11__.v m o d a R  * CR(11) = CR(v) 

CR(u) -- {(z, y) E ( M , N )  x ( M . N )  I x11U e R}  

i.e. 11 ~- v mod aR if11 and vhave the same contexts for R. The minimal automaton of 
R is defined by means of the equivalence PR �9 We shall define a (slightly) larger automaton 
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by means of another equivalence, denoted by 7R. In order to define 7a  it is convenient 
to consider first the equivalence r defined on M , N  by the equality of the final monoids, 
i.e. 

Yu, v e ( M * N ) * ,  u - - v  m o d r  "r M F ( u ) = M F ( v ) .  

The equivalence r corresponds to the following partition of M , N  : 

M * N  - {1} + {(N 'M* + M*)(N*M*)*}  + {(M'N*  + N * ) ( M * N * ) * } .  

It is worth noting that  r is a congruence when M and N have no divisors of the identity. 
The relation 7R is then defined by: 

i) u ~ - v  m o d r  
u~--v modTR r ii) u E R C $ . v E R  

iii) Vw M I ( w ) r  u w � 9  

that  is : 

u ~_ v mod 7R r [ u - l R  n {1 U X ( M , N ) }  = v - t R  n {1 U X ( M , N ) } ]  

w i t h X  = M* or N* a n d X  c MF(u). Which means that  u___v modTR i f u  a n d v  
have the same non miscible right contexts for R. Because of i), 1M.N is alone in its class 
mod 7R. The following assertions are immediate. 

P r o p e r t y  1. i) 7R is an equivalence relation that saturates R.  
ii) PR A r is thiner than 7R. 
iii) 7R is not necessarily right regular but it holds : 

u_~v mod7R =~ Vw MI(w) i ~ M F ( u ) ,  u w ~ _ v w  m o d 7 R  

3 B i p a r t i t e  a u t o m a t a  o n  a f r e e  p r o d u c t  

Recall first the definition of an automaton on a monoid M . An automaton 

. 4 =  < Q , M , E , I , T >  

is a labelled graph : Q is the set of the vertices called states, I and T are two distinguished 
subsets of Q : the initial states and the terminal states, and E is the set of the edges, 
labelled by elements, or - -  a generalization that  will be of importance here - -  by subsets 
of M. A computation c of .4 is a finite sequence of labelled edges that  form a path in the 
graph .4 : 

e ' - p o  U~ Pl U2 P2 Us} U~ 
' " ~  " ) P n  

The label of c is the subset Icl = U1 U2. . .  Un of M. The computation c is successful 
if P0 belongs to I and Pn to T. The result of .4 is the subset of M, denoted 1.41, equal 
to the union of the labels of the successful computations. An automaton ,4 is normalised 
if there is no edge arriving in an initial state ; an automaton is trimmed if every state is 
both accessible from an initial state and co-accessible f rom a terminal state. 

Recall that a graph is called bipartite if there exists a partition of the set of the vertices 
in two classes such that  no edge of the graph is adjacent to two vertices of a same class. 
We say that  .4 is a bipartite automaton on M . N  if the following conditions are met : 
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- i) ,4 is a bipartite graph ; let S - P + Q be the partition of the set of vertices. 
- ii) the edges from P to Q are labelled by subsets of M. 
- iii) the edges from Q to P are labelled by subsets of N. 

A bipartite automaton ,4 can then be denoted as : 

A-" < PUQ,  M . N ,  EpUEQ, IpUIQ,TpUTQ > 

with 
Ep - (Vp,q ](p, q) G P • Q} Vp,q c M ,  

EQ = {Wq,p [ (q,p) E Q x P} Wq,~ g N ,  

and these notations will be kept in the sequel. 
A bipartite automaton .4 is said : 

- proper ff no label contains the identity (of M or N) i.e. 

V p E P  YqEQ Vp,qC_M" Wg,pC_N* ; 

- deterministic if 
�9 i) two edges going out of the same state have disjoint labels i.e. 

V p E P  Vq~,q" EQ Vp,~,NVp,r  

VqEQ Vp' , f '  GP Wq~,NWq,p,,-O ; 
�9 ii) there is, at most, one initial state in each of the subsets P and Q i.e. 

[ I p ] < l  and [ I Q ] < I  ; 

- complete if 
�9 i) the union of the labels of all edges going out of every state is M e, or N*, i.e. 

V p E P  U V p , , - M *  VqEQ U w r  ; 
qEQ pEP 

�9 ii) neither [p nor IQ is empty. 
(N.B. This does not mean that  .4, as a graph, is a complete bipartite graph) 

It is always possible, and easy to make complete, and normalized, and trimmed any 
given automaton and such transformations are effective (see [5]). 

A proper bipartite automaton .4 should be understood as an automaton over a - -  
most often non finitely generated - -  free monoid : every element of M* or N* is considered 
as a single letter. Since , 4  is bipartite and proper, two consecutive edges on any path 
are labelled by elements taken in different monoids : their product is non miscible. The 
canonical factorization of an element of 1`4[ is "read" on the computation exactly in the 
same way as a word recognized by a classical automaton is "spelled" on the path that  
recognizes it. This identification makes it necessary to consider the whole set M* UN* as a 
(possibly infinite) alphabet even though M and N are finitely generated : the decidability 
result is still at hand but the decision procedure will be transformed (if compared to the 
equivalent one on classical automata). 

We end this section with the verification that  the classical properties of deterministic 
automata have their natural counterpart for the deterministic proper bipartite automata. 
Let thus ,4 be such an automaton that  is moreover chosen to be complete. [In the rest 
of the paper we write "automaton" for bipartfle automaton on M.N].  By induction on 
the length of the canonical factorization of the elements of (M.N)*,  it first holds: 
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P r o p e r t y  2. i) For every p in P,  and for every u in ( M . N ) S  such that MI(u) = M, 
there ezists a unique path in -4, with origin p and with label u ; we note p .  u = t the end 
of  this path. 

ii) For every q in Q, and for every u in ( M * N ) S  such that MI(u) -- N ,  there exists 
a unique path in ,4, with origin q and with label u ; we note q. u - t the end of  this path. 

The automaton ,4 thus determines a mapping, not everywhere defined, from (P U 
Q) x ( M , N ) "  to P U Q: in all the cases not covered by i) or ii) above, s . u  is undefined. 
This is not truly an action of the monoid M , N  on P U Q but the following property 
makes the notation sound. 

P r o p e r t y  3. Vu, w E M , N Vs E P U Q 
i) s .  u defined =:, [(s.  u ) . w  defined r MF(u) ~ MI(w)] . 
i i ) ( s . u ) . w d e f i n e d  =~ [ ( s . u ) . w = s . ( u w ) ] .  

We note I = Ip U I 0 and - -  it is a slight abuse of notation - -  I �9 u for the end of the 
unique path in A with label u the origine of which is either Ip, or IQ (according to 
MI(u) = M or N respectively), that is the state in which .4 stops after the "reading" of 
the element u. This path always exists since A is chosen complete. Note that one should 
not add a garbage state to P U Q in order to have a true action of the monoid M * N  on 
P O Q : the path starting in I and labelled by u would not be unique anymore. It should 
be clear that the result of.4 is defined by 

1.41 = {u e M , N  I I . u  E T = Tp UTQ} 

and we have: 

L e m m a  3. Let ,4  be a deterministic, complete and normalised proper automaton and R 
the result of-4. It holds 

Vu, v E M * N  I . u =  I . v  =:, u ~ _ v  mod-rR �9 

[] 

4 M i n i m a l  b i p a r t i t e  a u t o m a t a  

We go on in the analogies between the proper bipartite automata and the classical au- 
tomata with the construction of the minimal bipartite automaton of a subset R of M , N .  
It is convenient to denote by C and D the two classes, different from 1M,~, of the equiv- 
alence r : 

C =  (MSNS + N ' ) ( M S N S ) *  and D = (NSMS + M*)(NSMS)*  . 

With these conventions Property 1, iii) reads: 

V m E M  Vu, v E { 1 } + C  u _ v  mod71t =* u m " ~ v m  modTR 

V n E N  V u , v E { 1 } + D  u ' v  modTR =~ u n ~ - - v n  modTR 

which implies : 
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P r o p e r t y 4 .  Let R be any subset of M * N  and "fit the equivalence associated to R. Let 
P be the trace of'fit  on {1} + C and Q the trace of Tn on {1} + D. 

Let u E {1} + C and [u] its class modulo -lit. For every m in M,  

[ul .m [um] 

defines a mapping P x M --+ Q. Accordingly, for u in {1} + D and for every n in N ,  

[ u ] . .  

defines a mapping Q x N ~ P. 

The sets P and Q defined in Property 4 yield a proper bipartite automaton .Ait on 
M . N :  the states o f .As  are P u Q ;  for every pair (p,q) E P x Q, the edge p ~ q is 
labelled by 

V,,q= {me M" IP'm=q} 
and for every pair (q,p) E Q • P, the edge (q,p) is labelled by 

wq,, = { ,  e N" lq..=p} 

For every p in P,  {Vp,r ] q E Q) is a partition of M* and for every q in Q, {Wr ] p E P}  
is a partition of N*. Then .AR is deterministic and complete. The initial states are the 
clause of 1M,~r in P and in Q and .An is normalised ; the terminal states are the classes of 
P and Q that  are contained in R. This construction implies that  the result of .An is the 
subset R itself. We call .Ait the minimal bipartite automaton of R;  this denomination is 
justified by the following property. 

P r o p o s i t i o n  1. Every proper bipartite, deterministic, complete, normalised, and trimmed 
automaton the result of which is R, has .AR as homomorphic image. 

Proof. Let B be an automaton which meets the hypothesis of the proposition : 

B =  < X U Y ,  M * N , E x U E y , J x U J y , S x U S y  > . 

The mapping 

is defined by 

)~ : X U Y - ' *  P U Q  

w e x u Y  �9 = 

with u E M * N  and J .  u = z. For every z such a u exists since B is trimmed, and ~ is 
well defined - -  i.e. its value does not depend on the choice of u - -  since, from Lemma 3 

Vu, v E M * N  J . u = J . v  =~ u ~ - v  m o d T a  

Necessarily )~(Jx) - Ip and )~(Jy) - Iq hold. Finaly, if ( z ,w,y)  E E x ,  then, with a u 
such that  J .  u - z, it holds ( J .  u ) .  w - y in B and [u]- w = [uw] in Ait, that  is 

.w  = w) , 

which means that  ~ is a morphism of automata,  as desired. 13 

Note that  the automaton Ait, as well as the automaton B in Proposition 1 do not 
need to be finite since there is no condition on the subset R . The next section deals 
precisely with an important case where this antomaton .Ait is always finite. 
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5 R a t i o n a l  s u b s e t s  o f  a f r e e  p r o d u c t  

The family of rational subsets of any monoid M is the smallest family of subsets of M 
that contains the finite subsets and that is closed for the operations of union, product, 
and star. It is denoted Rat M. It is known ([6], see also [5] for instance) that the rational 
subsets of M can be defined by means of automata: 

Th eo rem 7. A subset of M is rational iff it is the result of a finite automaton on M, 
the labels of which are taken in any finite subset of generators of M. 

This is part of Kleene's Theorem, true in any monoid. Any rational subset of M * N  
is thus the result of an automaton on M * N  the edges of which are labelled by elements 
of M or of N. We have proved that this automaton can be chosen bipartite, under the 
condition that the labels may be subsets of M . N  : 

Propos i t ion  2. [13] Let M and N be two monoids with the property that, for any rational 
subset L (of M or of N), L \ I  - -  (with 1 = 1M or 1N) --  is a rational subset. Then any 
rational subset of M * N is the result of a finite proper bipartite automaton on M . N ,  the 
edges of which are labelled by rational subsets of M or of N.  

From Proposition 2 the following result is then derived : 

Propos i t ion  3. [13] Let M and N be two monoids with the property that Rat M and 
Rat N are two (effective) Boolean algebras. Then any rational subset R of M * N is the 
result of a deterministic and complete proper bipartite automaton the edges of which are 
labelled by rational subsets of M or of N (and that can be effectively computed from a 
finite automaton or from a rational expression the result of which is R). 

The core of the proof of Proposition 3 is a generalisation of the determinization of an 
automaton by the subset method. As in the classical case, the complement of the result 
of a complete deterministic bipartite automaton is obtained by exchanging the terminal 
and non terminal states and this gives the proof of Theorem 5. 

6 R e c o g n i z a b l e  s u b s e t s  o f  a f r e e  p r o d u c t  

Recall that a subset of any monoid M is recognizable if it is saturated by a finite index 
congruence of M. Kleene's Theorem asserts that the'rational subsets of a finitely generated 
free monoid coincide with the recognizable subsets. From which a characterisation of the 
recognizable subsets is derived: 

Propos i t ion  4. Let M be any finitely generated monoid, A a finite alphabet, and ~o : 
A* ~ M a surjective morphism. A subset P of M is recognizable iff ~o-l( P) is a rational 
subset of A*. 

The recognizable subsets of a free product can then be characterized. 

T h e o r e m 8 .  Let M and N be two monoids without divisors of the identity. A subset R 
of M * N  is recognizable iff it is the result of a bipartite automaton every label of which 
is a recognizable subset of M or of N. 
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Proof. The condition is sufficient. Let R be the result of a finite bipartite automaton ,4 
every label of which is recognizable subset of M or of N. Since ,4 is finite its result is a 
rational expression f in the labels of the edges of ,4 : 

R wq,p I p P, q E Q}) 

The inverse image of R in (A U B)* is equal, since the two monoids are without divisors 
of the identity, and from Lemma 1, to the same expression in the inverse images of these 
labels, i.e. 

(r162 = fCir I p P,q E Q}). 
Since the Vp,q and Wq,p are recognizable, the ~o-l(Vr,q) and the ~b-l(Wq,r) are rational 
and thus f({~-l(Vp,q),~b-l(Wq,p)] p E P,q E Q}) is rational. Thus R is recognizable. 

The following proposition implies that  the condition" is necessary and gives a more 
precise statement. 

P r o p o s i t i o n  5. Let M and N be two monoids without divisors of the identity. The min- 
imal bipartite automaton of a recognizable subset of M * N is a finite automaton every 
label of which is a recognizable subset of M or of N.  

Proof. Let R be a recognizable subset of M*N.  Let 

.As=  < P U Q , M * N ,  E p U E Q , I p U I Q , T p U T Q  > 

be the minimal bipartite automaton of R . The equivalence pn and the congruence an  
are of finite index thus so are also pR A r and an  A ~'. From Property 1 ii), 7n is of finite 
index and `4n is thus a finite automaton. 

For every p E P let 0 r be the coarsest right regular equivalence of M that  saturates 
the partition {Vp,q I q E Q} of M*, i.e. 

VI, g E M f ~_ g mod Op r ~h  E M Vq E Q f h  E Vr,~ C~ gh E Vr,q] . 

We show that  aR A ~" is thiner than every 0 r. Let p be fixed and let f and g be in M 
such that  

f~--g mod cRA 1". 

The element 1M is alone in its class rood r,  and alone also in its class rood 0 r since it 
is the only element of M that  does not belong to any Vp,q. We suppose then that  f and 
g are in M*. Since M and N are two monoids without divisors of the identity, ~" is a 
congruence and thus oR A r as well; it holds then : 

V u , w G M * N  u f w E R C V u g w E R  

which can be written as: 

V h E M  Vu, w E M * N  M I ( w ) = N ,  

Let u E M* N such that  J �9 u = p .  Then it holds : 

V h G M  V w E M , N  M I ( w ) = N ,  

that  is 
Vh E M ufh  ",, ugh 

u fhw E R r ughw E R 

u fhw E R r ughw E R 

mod "rR 
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or also 
v h  ~ M [~]..fh = [,.,]. gh 

which means exactly that  f h  and gh belong to the same label Vp,r with p = [u] and 
q = [~,lh]. 

It is thus established that  ~R A ~" is thiner than P~ which is thus of finite index and 
the  Vp,q are recognizable. It is shown in the same way that  the Wr are recognizable and 
this terminates the proof of Proposition 5 as well as the one of Theorem 8. D 

Note that  Proposition 5 does not hold any more for monoids having divisors of the 
identity. The following example will demonstrate this last assertion as well as it will 
illustrate the constructions called up in section 5. 

Ezamplel. Let F be the free group on two generators. It holds F = l = * Z y  where 7/= 
and Z U are two distinct copies of Z,  the group of integers. As a monoid, Z r  is generated 
by (z ,  ~} - -  with the defining relations z~ = ~z = 177= and Z U is generated by {y, ~). 

Let a be the application that  maps z on the circular permutation (p q r) over a three 
element set {p, q, r )  and that  maps y onto the transposition (pq)(r). The application 
a extends into a morphism from F onto 8z, the symmetric group over three elements. 
The kernel of a is a recognizable subset of F.  It is also the result of an automaton .A 
represented s below that  is obtained from the very definition of a.  It is convenient to give 
also the matrix representation of .4 . 

X 

( ~ I = ( 1 0 0 )  E =  ~ + y + ~  
X 

Fig. 1. The automaton .A and its matrix representation 

Let us take the following notations : 

Z= = l Tz= + U + V + W and 

with 
U = { z " [ n - - O  ( m o d 3 )  

V = { z  n l n = l  (mod3)}  and 

on one hand and, on the other hand, 

Zu = 17"1y + X + Y 

and n ~ O ) ,  

W = { z  n ] n - 2  ( m o d 3 ) )  

X = {y" [ n - 0 (mod 2) and n ~ OJ and Y = {y" I n _= 1 (rood 2)}.  

2 with the convention thxt an arrow (p, z, q) represents at the sxme time & tr~msition (q, ~, p) 
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for n E Z and with the convention that  z n = ~ - "  for a negative n. 

Having done all computations (as they are presented in [13]), it comes that  a deter- 
ministic, complete, and proper bipartite automaton equivalent to .4 is the one represented 
in Figure 2. 

I'=(Iooloo) E'= 

(vw) (1) 
0 w v v  o 

VW U T'= 0 
X Y  0 1 
y x  o 0 o 
o 0 X + Y  o 

Fig. 2. A proper bipartite automaton equivalent to .4 and its matrix representation 

It turns out that  this bipartite automaton is minimal; its result is recognizable and 
nevertheless its labels are not all recognizable (U, X, and X + Y are not recognizable). 

We are now in a position to prove Theorem 6. 

Proof of Theorem 6. Let R be a rational subset of M . N .  From Proposition 2, R is the 
result of a finite proper bipartite automaton .4 that  can be effectively computed from a 
rational expression, or from an automaton, that  specifies R .  

Since Rat M and Rat N are effective Boolean algebras, it is possible, from Proposi- 
tion 3, to effectively compute a finite automaton B, proper, deterministic, and complete, 
the result of which is again R. Since, from Proposition 1, the minimal bipartite automa- 
ton .AR is a homomorphic image of B, it can be effectively computed by trying all the 
possible partitions of the set of states of B and by testing the equality of the result of 
these automata with R; this last test is effective by Theorem 5. It remains to test whether 
the labels of the minimal automaton are recognizable, which is decidable by hypothesis 
on M and N, and necessary for R being recognizable by Proposition 5. [3 

And this terminates the proof of Theorem 1. 
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Conclusion 

For this decision problem on rational trace languages again the reference to properties of 
free products proved to be useful. (It may be noted that the original proof of Theorem 4 
in [1] might also be reduced to closure properties of free products.) Let us add one remark. 

The restriction of Theorem 6 to monoids without divisors of the identity is somewhat 
frustrating -- eventhough the key result does not hold anymore without this hypothesis. 
The free group on two generators F of our Example 1 is the free product of two copies 
of ~. And it is known that it is decidable whether a rational subset of F is recognizable 
([14]). The problem of generalizing Theorem 6 to a larger class of monoids is thus open. 
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