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Abstract

We show that the commutative closure of a star-free language is either
star-free or not regular anymore. Actually, this property is shown to hold
exactly for the closure with respect to a partial commutation corresponding
to a transitive dependence relation.

Moreover, the question whether the closure of a star-free language re-
mains star-free is decidable precisely for transitive partial commutation
relations.

It is well-known that the commutative closure of regular languages need not
be regular. A typical example is the star-free(!) language (ab)*, the commutative
closure of which consists of all words over {a,b} with equal number of a and
b. Moreover, as soon as the closure of languages under partial commutation is
considered the question whether the closure of a given regular language remains
regular or not is in general undecidable [9]. On the other hand, the question
whether the closure of the star of a closed regular language remains regular or
not is still an open question for partial commutations. Recently, some progress
has been achieved towards a solution for this problem [6, 8] (for a survey and
further references see also [2, Chapter 6]).

The aim of this paper is to clarify another aspect concerning the still mys-
terious behaviour of recognizable languages with respect to closure operations,
namely the relationship between star-freeness and closure under commutation.
We show that surprisingly there are no star-free languages, where the commu-
tative closure is regular, but not star-free. In fact, we can show a more general
result concerning the closure of star-free languages under partial commutations.
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Definition Let ¥ be a finite alphabet and I C ¥ x ¥ be a symmetric relation.
The closure of a language L C ¥* with respect to the partial commutation relation
I is denoted by [L];. It is defined as the least language of ¥* containing L, which
satisfies uabv € [L]; < ubav € [L]; for all u,v € ¥*, (a,b) € 1.

Note that if I =X x X, then [L]; is the commutative closure, whereas in the
other extreme, [L]y = L.

Recall that the syntactic congruence ~ of a language L C X* is given by
u ~p v if and only if zuy € L < zvy € L, for all z;y € ¥*. A language
L C ¥* is aperiodic, if both the syntactic congruence ~, is of finite index and the
syntactic monoid of L, ¥*/~p, satisfies the equation z" = 2" for some integer
n > 0. Equivalently, aperiodic languages are precisely the star-free resp. first-
order definable languages (see [10, 5, 7]).

Assume that D = (X x X) \ [ is transitive and let =; C ¥* x X* be the
congruence generated by the set {(ab, ba) | (a,b) € I'}. Then the quotient monoid
M(X,I) := ¥*/=; is a direct product of free monoids, i.e., M(X, ) = [I¥, 22
for the partition ¥ = Uf:lEi of the alphabet corresponding to the connected
components of (3, D). By abuse of notation we will identify in this case the
closure [L]; C ¥* of a language L C X* with the subset L/=; of M(X, I). Hence
in this case we will consider [L]; as a subset of [[¥_, ¥*. By m; : ©* — ¥ for
1 <1 < k we denote the canonical projections.

Theorem 1 Let ¥ be a finite alphabet, I C ¥ X X a partial commutation and
D = (X x X)\ I the complementary relation. Then the following assertions hold:
If D is transitive, then the closure [L]; of a star-free language L C ¥* is either
star-free or not regular.
Conversely, if D is not transitive, then there exist star-free languages L C ¥*
such that [L] is regular, but not star-free.

Proof: Let us first assume that D C ¥ x X is transitive and the closure
[L]; of the star-free language L is regular. We have to show the existence of
some integer n > 0 such that zv"y € [L]; = zv"y € [L];, for all z,v,y € ¥¥,
de{-1,+1}.

By Mezei’s theorem [1] we can express [L]; as a finite union [L]; = Ug, 1%, Ls,
where every L; C 37 is recognizable. Moreover, different L;, L, C X7 in this union
are either disjoint or equal. Let S be the set of all languages L; occurring in the
above representation of [L];. Let m > 0 denote the integer maxy g (ming,ep |w)).
Further an integer p > 0 is chosen such that u? ~7 uP*° for allu and 6§ € {—1,+1}
(recall, L is aperiodic). We let n = [(k—1)m+1]p and show that this value suffices
in order to obtain the desired property for [L];.

Consider zv"y € [L];, § € {—1,+1}, with 2oy = (w,...,w;) and let
o™y = (w],...,w}). Suppose, we have already shown that (w],...,w!_,,
ws, ..., wy) € [L]; for i > 1. Therefore we have for some [[*_, L; in the above



representation of [L];: (w),...,w! |, w;,...,wy) € [1¥, L;. Let z; = w; and con-
sider z; € X7, 1 < j <k, j # i, of minimal length satisfying z; € L;. Note that
we also have (z1,...,2,) € [L];. Hence, there exists some z € L with m;(z) = z,
for every 1 <i <k.

Let ¢ = X0;4; 25| < (K — 1)m, then we can factorize z such that

Z = UpT1UL * - TqlUg,

with w;, € 3¥F and z; € ¥\ X; for all [. Due to the choice of n, there remain
at least [(k — 1)m + 1](p — 1) + 1 occurences of v; being factors of at most
(k—1)m + 1 words u;, 0 <1 < ¢. Applying the pigeon-hole principle, we obtain
that at least one u; can be decomposed as u; = x'vf'y/, for suitable 2/,y" € 7.

This yields inevitably the word factor ! in z. Hence, z = 2"v’y"” and we have
+5
2"PTy" € L. Thus, (21,...,2i 1,25 241, --+,2k) € [L];, where 2z, = wi. Tt

follows that z; € L, j # i, and 2{ € L; hold for some 1%, L! in the finite union
representing [L];. For j # i we have from L; N L, # () also L; = L;. This
is due to the property of the representation given by Mezei’s theorem noticed
above. Hence, we obtain (w!),...,w} |, w}, wisy,...,w) € [I¥, L}. In particular,
it follows (w!, ..., wi |, wiwiy,...,wg) € [L]r.

For the converse, consider a monoid M(X, I) where D = (X x X)) \ I is non-
transitive. Hence, there are distinct letters a,b, ¢ € ¥ with {(a,c¢), (b,¢)} C D,
but (a,b) € I. Now, it is easy to check that the language (abcbac)* is aperiodic
(star-free):

(abcbac)™ = (abeX* N X bac) \ (X abe(X* \ bacX™) U X bac(X* \ abeX™)).

However, the closure K := [(abcbac)*] = [(ab + ba)c(ab + ba)c|* is obviously not
aperiodic since for every n > 0 we have (abc)™ 2y (abe)™ . m

Remark Note that this result cannot be extended to languages over ¥“. As
soon as we have a pair (a,b) € I we can exhibit the star-free language (aab)*b*,
where the closure {w € {a,b}* | w contains an even number of a’s and an infinite
number of b’s } is regular, but not star-free anymore.

It is natural to look for a decision procedure for the question, whether the
closure of a given star-free language remains star-free. We can show that this
problem is in general undecidable following [4, 9]. We follow directly the proof
given in [9] for the undecidability of the question whether the closure of a regular
language is still regular. We included the proof below in order to examine the
languages involved in the construction and show that they are star-free.

Let B and C be disjoint alphabets. An instance of Post’s correspondence
problem (PCP) will be encoded by two homomorphisms g,h : B* — C*. A
solution for this instance is a word w € B such that g(w) = h(w).

Consider now the language W, (and analogously, 17,,) which has been used in
the reduction given in [9]:

Wy = {(wg(w), ")) [ w e B*}.
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Let our commutation relation be I = {(z, ¢), (¢, z) | x € BUC}. We define below
a star-free language L, such that [L,]; = W, (analogously for Lj).

The following technical remark yields a concise star-free description of L, (and
Ly).

Remark Let X be an alphabet, X C ¥ a set of symbols, ¢ ¢ X, and M C X{c}*
a finite set. Then M* is a star-free language.

The last remark is justified by the fact that M is a very pure code and therefore
M™ is locally testable (i.e. it can be characterized by its suffixes, prefixes, and
factors up to some given length) [7, p.120].

Now, L, is formed as a union of sets described in the following. The first set
takes care of the case that a symbol from C' precedes a symbol from B, which is
easily seen to be star-free. In the following sets we consider four ways in which the
number of ¢’s can differ from the correct one. (There could be strictly less/more
¢’s than in the g-images of all symbols from B, respectively strictly less/more ¢’s
than symbols from C. It is not difficult to form the corresponding sets using the
remark above.) Finally, the last set describes—under the assumption that the
number of ¢’s agrees with both numbers mentioned above—those words that fail
to be encodings of solutions because some symbol x is not properly mapped to
its image g(x). This set is defined by the following expression (again using the
remark):

B* (U xclg(x)l{yclg(y)\ |y € B}Y{zc|ze C}{w|w#g(x),|w| = |g(:z:)|}> C*

reB

Since star-free languages are by definition closed with respect to union we have
shown that L, (and Lj) are star-free languages.

Theorem 2 Let ¥ be a finite alphabet and I C X X X a partial commutation.
It is decidable whether the closure [L]; of a star-free language L is star-free if
and only if I is transitive.

Proof: With the notations introduced above note that the language [L, U
Lplr = W,U W), is equal to (BUC)* x ¢* (and hence star-free) if the PCP
encoded by g, h has no solution. On the other hand, if the PCP instance has a
solution consider some w € BT such that g(w) = h(w). Then

(BUC)" x "\ [LgU Lplp) Nw*g(w)* x ¢* = {(w”g(w)”,cn‘g(“’)l) |n>1}

is not recognizable, hence [L, U L] is not recognizable (and thus not star-free).

Finally, we note that B and C' can be encoded as usual by two letters. More-
over, if I C ¥ x ¥ is not transitive, then there exist different letters a, b, ¢ in
such that (a,c) € I, (b,c) € I, but (a,b) € D. This yields the first part of the
claim, i.e., the undecidability of the question for I non-transitive.
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For the second part we note that the closure [L]; of a regular language L C 3*
can be identified with a rational subset of the monoid M (3, I) (i.e., a subset gen-
erated from () and the singleton sets using the operations concatenation, union
and Kleene star). If I is transitive, then M(X, I) is a free product of free com-
mutative monoids. Moreover, the question whether a rational subset of a free
product of free commutative monoids is recognizable (i.e., saturated by a congru-
ence of finite index) is effectively decidable [9]. More precisely, given a rational
expression for [L]; a finite automaton can be computed, which recognizes exactly
[L]; whenever [L]; is recognizable, which in turn is decidable. If the answer is pos-
itive, we can compute the syntactic monoid and decide whether [L]; is star-free
or not. |

Remark Concerning the different assumptions in Thms. 1, 2 note that both I
and D = (X x X) \ I are transitive if and only if the quotient monoid M(X, I) is
either free or free commutative.
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