
Determinizing Asynchronous Automata

Nils Klarlund1⋆ Madhavan Mukund2⋆⋆, Milind Sohoni2

1 BRICS Center, Aarhus University, Ny Munkegade,
DK 8000 Aarhus C, Denmark. E-mail: klarlund@daimi.aau.dk

2 School of Mathematics, SPIC Science Foundation, 92 G N Chetty Rd
Madras 600 017, India. E-mail: {madhavan,sohoni}@ssf.ernet.in

Abstract. An asynchronous automaton consists of a set of processes
that cooperate in processing letters of the input. Each letter read prompts
some of the processes to synchronize and decide on a joint move according
to a non-deterministic transition relation.

Zielonka’s theorem tells us that these automata can be determinized
while retaining the synchronization structure. Unfortunately, this con-
struction is indirect and yields a triple-exponential blow-up in size.

We present a direct determinization procedure for asynchronous au-
tomata which generalizes the classical subset construction for finite-state
automata. Our construction is only double-exponential and thus is the
first to essentially match the lower bound.

Introduction

Asynchronous automata, introduced by Zielonka [Zie1], are a natural generaliza-
tion of finite-state automata for concurrent systems. An asynchronous automa-
ton consists of a set of processes which periodically synchronize to process their
input. Each letter a in the alphabet is associated with a subset θ(a) of processes
which jointly decide on a move on reading a.

A distributed alphabet of this type gives rise to an independence relation I
between letters: (a, b) ∈ I iff a and b are processed by disjoint sets of components.

Alphabets equipped with independence relations, also called concurrent al-
phabets, were introduced by Mazurkiewicz for studying concurrent systems from
the viewpoint of formal language theory [Maz]. Given a concurrent alphabet
(Σ, I), I induces a equivalence relation ∼ on Σ∗: for any two words w and w′,
w ∼ w′ iff w′ can be obtained from w by a sequence of permutations of adjacent
independent letters. The equivalence class [w] containing w is called a trace.

A language L ⊆ Σ∗ is said to be a trace language if L is ∼-consistent—i.e.,
for each w ∈ Σ∗, if w is in L then all of [w] is contained in L. A trace language
is recognizable if it is accepted by a conventional finite state automaton.

Asynchronous automata are natural machines for recognizing trace languages.
Given a conventional finite automaton recognizing a trace language over (Σ, I),

⋆ The author is supported by a fellowship from the Danish Research Council.
⋆⋆ The author was partially supported by IFCPAR Project 502-1

we can construct a deterministic asynchronous automaton over a distributed
alphabet (Σ, θ) recognizing the same language, such that the independence re-
lation induced by θ is precisely I. This result was first proved by Zielonka [Zie1].

Contributions of this paper

In this paper, we generalize the classical subset construction of Rabin and Scott
and obtain a direct procedure for determinizing an asynchronous automaton A.
This construction is the first that involves only a double-exponential blow-up in
the size of the state spaces. We also show that this bound is essentially optimal.

The only other known way to determinize a non-deterministic asynchronous
automaton A is indirect : view it as a normal non-deterministic automaton at
the level of “global states” and then apply Zielonka’s construction to obtain a
deterministic asynchronous automaton. This route leads to a triple exponential
blowup in general, even if we use the newer constructions of [CMZ, MS].

Our determinization construction is important for dealing with asynchronous
automata over infinite traces [GP]. These automata generalize automata on in-
finite strings and lead to a nice theory of ω-regular trace languages. However,
Büchi asynchronous automata [GP] are necessarily non-deterministic and lack
an effective complementation construction. With a Muller acceptance condition,
deterministic automata suffice [DM], but an effective determinization procedure
is still missing. We believe that our subset construction will lead to direct con-
structions for determinizing and complementing these automata.

Recently, Muscholl [Mus] has described a subset construction for asynchronous
cellular automata [Zie2], as part of a complementation procedure for Büchi asyn-
chronous cellular automata. Though asynchronous cellular automata are expres-
sively equivalent to asynchronous automata, the operational intuition underlying
the two models is quite different and there appears to be no obvious way to con-
nect the construction in [Mus] to the one presented here.

1 Preliminaries

Distributed alphabet Let P be a finite set of processes. A distributed alphabet
is a pair (Σ, θ) where Σ is a finite set of actions and θ : Σ → 2P assigns a non-
empty set of processes to each a ∈ Σ.

State spaces With each process p, we associate a finite set of states denoted
Vp. Each state in Vp is called a local state. For P ⊆ P, we use VP to denote the
product

∏

p∈P Vp. An element ~v of VP is called a P -state. A P-state is also called
a global state. Given ~v ∈ VP , and P ′ ⊆ P , we use ~vP ′ to denote the projection
of ~v onto VP ′ . Also, ~vP ′ abbreviates ~vP−P ′ . For a singleton p ∈ P , we write ~vp
for ~v{p}. For a ∈ Σ, we write Va to mean Vθ(a) and Va to mean V

θ(a)
. Similarly,

if ~v ∈ VP and θ(a) ⊆ P , we write ~va for ~vθ(a) and ~va for ~v
θ(a)

.

Asynchronous automaton An asynchronous automaton A over (Σ, θ) is of
the form ({Vp}p∈P, {→a}a∈Σ,V0,VF), where→a ⊆ Va×Va is the local transition

relation for a, and V0,VF ⊆ VP are sets of initial and final global states. Each
relation →a specifies how the processes θ(a) that meet on a may decide on a
joint move. Other processes do not change their state. Thus we define the global
transition relation ⇒ ⊆ VP ×Σ × VP by ~v

a
=⇒ ~v′ if ~va →a ~v′a and ~va = ~v′a.

A is called deterministic if the global transition relation of A is a function
from VP ×Σ to VP and if the set of initial states V0 is a singleton.

Runs Let u ∈ Σ∗ be of length of m. It is convenient to think of u as a function
u : [1..m] → Σ, where for i ≤ j, [i..j] abbreviates the set {i, i+1, . . . , j}.

A (global) run of A on u is a function ρ : [0..m] → VP such that ρ(0) ∈ V0

and for i ∈ [1..m], ρ(i− 1)
u(i)
=⇒ ρ(i).

The word u is accepted by A if there is a run ρ of A on u such that ρ(m) ∈ VF .
L(A), the language recognized by A, is the set of words accepted by A.

The problem For a given non-deterministic asynchronous automaton A over
(Σ, θ), construct a deterministic asynchronous automaton B over (Σ, θ), such
that L(A) = L(B).

For sequential finite automata, the determinization problem can be solved
using the classical subset construction of Rabin and Scott. At the end of any word
u, the subset automaton maintains the set of possible states that the original
(non-deterministic) automaton could be in after reading u.

To determinize a non-deterministic asynchronous automaton A, we have to
modify the subset construction to work at the level of local states. The main
hurdle is the following: In general, the set of reachable global states of A after
reading u is not just the product of the subsets of reachable local states of the
individual processes.

For instance, suppose we have two processes p and q with local state spaces
Vp = {0p, 1p, 2p} and Vq = {0q, 1q, 2q}. Let a be a letter such that θ(a) = {p, q}
and →a= {(〈0p, 0q〉, 〈1p, 1q〉), (〈0p, 0q〉, 〈2p, 2q〉)}. Suppose p and q start in the
local states 0p and 0q respectively. After reading a, the state of p could be either
1p or 2p. Similarly, local state of q could either be 1q or 2q. However, the set of
possible {p, q}-states after reading a is not the näıve product {1p, 2p}×{1q, 2q}—
the only reachable {p, q}-states are 〈1p, 1q〉 and 〈2p, 2q〉.

So, to determinize an asynchronous automaton A, we need to record more
than just the subset of reachable local states for each process in order to keep
track of the valid global states of A. We also have to “remember” how each
current local state arose. We then need to compose these histories so that each
consistent composition of histories yields a valid global state of A and, moreover,
all the reachable global states of A can be obtained in this manner.

2 Local and global views

We represent words as labelled partial orders. The notions we use are essentially
those of trace theory [Maz].

Events With u : [1..m] → Σ, we associate a set of events Eu. Each event e
is of the form (i, u(i)), where i ∈ [1..m]. In addition, we define an initial event

denoted 0. The initial event marks the beginning when all processes synchronize
and agree on an initial global state. Usually, we will write E for Eu. If e = (i, a)
is an event, then we may use e instead of a in abbreviations such as Ve, which
stands for Va, i.e., Vθ(a), or →e, which is just →a. For p ∈ P and e ∈ E, we write
p ∈ e to denote that p ∈ θ(u(i)) when e = (i, u(i)); for e = 0, we define p ∈ e to
hold for all p ∈ P. If p ∈ e, then we say that e is a p-event .

Ordering relations on E The word u imposes a total order on events: define
e < f if e 6= f and either e = 0 or e = (i, u(i)), f = (j, u(j)), and i < j. We write
e ≤ f if e = f or e < f . Moreover, each process p orders the events in which it
participates: define ⊳p to be the strict ordering

e ⊳p f iff e < f, p ∈ e ∩ f and for all e < g < f, p /∈ g.

The set of all p-events in E is totally ordered by ⊳∗p, the reflexive, transitive
closure of ⊳p.

Define e < f if for some p, e ⊳p f and e ⊑ f if e = f or e < f . The causality
relation ⊑∗ is the transitive closure of ⊑. If e ⊑∗ f then we say that e is below
f . Note that 0 is below any event. The set of events below e is denoted e↓.
These represent the only synchronizations in E that may have affected the state
of the processes in e when e occurs. The neighbourhood of e, nbd(e), consists of
e together with all its “<-predecessors”—i.e., nbd(e) = {e} ∪ {f | f < e}.

• -• -• -•

• -• -• -• -•

• -• -• -• -•

• -• -•

p

q

r

s

b a c b a c d

e0 e1 e2 e3 e4 e5 e6 e7

Fig. 1. An example

Example 1. Consider the word bacbacd over the alphabet (Σ, θ) for P = {p, q, r, s},
where Σ = {a, b, c, d} and θ(a) = {p, q}, θ(b) = {q, r}, θ(c) = {r, s} and θ(d) =
{p}. The set of events Eu is then {e0, e1, e2, e3, e4, e5, e6, e7} =
{0, (1, b), (2, a), (3, c), (4, b), (5, a), (6, c), (7, d)}.

Figure 1 describes (Eu,⊑∗). The arrows between the events indicate the rela-
tions ⊳p, ⊳q, ⊳r and ⊳s. For example, e0 ⊳r e1 holds, but e0 ⊳p e1 does not hold.

The set of events e7↓ is {e0, e1, e2, e3, e4, e5, e7} while e6↓ is {e0, e1, e2, e3, e4, e6}.
Thus e6↓ ∪ e7↓= E. The neighbourhood of e5, nbd(e5), is {e2, e4, e5}.

Ideals I ⊆ E is called an (order) ideal if I is closed with respect to ⊑∗—i.e.,
e ∈ I and f ⊑∗ e implies f ∈ I as well.

Clearly, the entire set E is an ideal, as is e↓ for any e ∈ E.

P -views Let I be an ideal. The ⊑∗-maximum p-event in I is denoted max p(I).
The p-view of I is the set I|p = max p(I)↓. So, I|p is the set of all events in I
which p can “see”. For P ⊆ P, the P -view of I, denoted I|P , is

⋃

p∈P I|p. Notice
that I|P is always an ideal. In particular, we have I|P = I.

Example 2. In the example of Figure 1, max r(E) = e6. So E|r = e6 ↓=
{e0, e1, e2, e3, e4, e6}. On the other hand, max p(E) = e7 and E|p = e7 ↓=
{e0, e1, e2, e3, e4, e5, e7}.

3 Local runs and histories

Local runs Let I be an ideal. A local run on I is a function r that assigns to
each e ∈ I an e-state—i.e., a state in Ve—such that r(0) ∈ V0 and for all e 6= 0,
r is consistent with →e in nbd(e). In other words, for e 6= 0 we have ~v →e r(e),
where ~v is the e-state such that for all q ∈ e, ~vq = r(f)q , where f ⊳q e.

So, a local run on E assigns an e-state to each e ∈ E in such a way that
all neighbourhoods in E are consistently labelled. Let R(I) denote the set of all
local runs on I. The following is easy to verify.

Proposition1. Given u : [1..m] → Σ, there is a 1-1 correspondence between
R(Eu), the set of local runs on Eu, and the set of global runs on u.

Example 3. Let A = ({Vp}p∈P, {→a}a∈Σ,V0,VF) be an asynchronous automa-
ton over (Σ, θ), where P and (Σ, θ) are as in our previous example. Each process
has four local states. Thus, Vp = {1p, 2p, 3p, 4p}, Vq = {1q, 2q, 3q, 4q} etc.

Let the local transition relations of A be defined as in the table below:

→a →b →c →d

{(〈1p, 2q〉, 〈3p, 3q〉) {(〈1q, 1r〉, 〈2q, 2r〉) {(〈2r, 1s〉, 〈4r, 4s〉) {(〈3p〉, 〈4p〉)
(〈1p, 3q〉, 〈4p, 4q〉) (〈1q, 1r〉, 〈3q, 3r〉) (〈2r, 3s〉, 〈4r, 4s〉) (〈4p〉, 〈3p〉)}
(〈3p, 2q〉, 〈4p, 4q〉) (〈3q, 4r〉, 〈2q, 2r〉) (〈2r, 4s〉, 〈1r, 1s〉)
(〈4p, 2q〉, 〈3p, 3q〉)} (〈4q, 3r〉, 〈2q, 2r〉)} (〈3r, 1s〉, 〈3r, 3s〉)}

V0 = {〈1p, 1q, 1r, 1s〉} and VF = {〈4p, 3q, 1r, 1s〉, 〈3p, 4q, 4r, 4s〉}.
Then, the local runs corresponding to the only two possible global runs of A

on u = bacbacd are shown in Figure 2. The left half of each event is labelled by
the first run and the right half by the second run. Neither run leads to a state in
VF so A does not accept u.

- - -

- - - -

- - - -

- -

p

q

r

s

b a c b a c d

e0 e1 e2 e3 e4 e5 e6 e7

1p1p 3p4p 4p3p 3p4p

1q 1q 2q 3q 3q 4q 2q 2q 4q 3q

1r 1r 2r 3r 4r 3r 2r 2r 1r 4r

1s 1s 4s 3s 1s 4s

Fig. 2. Local runs

Histories Let I be an ideal. A history on I is a partial function h which assigns
states to some of the events in I; i.e., domain(h) ⊆ I and h(e) ∈ Ve for each
e ∈ domain(h). A history h is reachable if there is some local run r on I such
that h(e) = r(e) for all e ∈ domain(h). Let H(I) denote the set of all histories
on I. Clearly, every local run on I is a history; i.e., R(I) ⊆ H(I).

Choices Let I be an ideal. Given a collection {Hp}p∈P of sets of histories
on the p-views I|p, a P -choice {hp}p∈P of {Hp}p∈P assigns to each p ∈ P ,
a history hp from Hp. The choice is consistent if for each p, q ∈ P , for every
e ∈ domain(hp) ∩ domain(hq), hp(e) = hq(e).

Let {Hp}p∈P be a collection of sets of histories for P ⊆ P. We define the product

⊗

p∈P

Hp = {h ∈ H(I|P) | There exists a consistent P -choice {hp}p∈P of
{Hp}p∈P such that domain(h) =

⋃

p domain(hp) and

∀p ∈ P. ∀e ∈ domain(hp). h(e) = hp(e)}.

So,
⊗

p∈P Hp contains all the histories on I|P which may be pieced together
using mutually consistent histories from the sets Hp.

Example 4. Consider the local runs shown in Figure 2. For p, let h1
p and h2

p be
two histories where

h1
p = {(e3 7→ 〈4r, 4s〉, e4 7→ 〈2q, 2r〉, e5 7→ 〈4p, 4q〉, e7 7→ 〈3p〉)}, and

h2
p = {(e3 7→ 〈3r, 3s〉, e4 7→ 〈2q, 2r〉, e5 7→ 〈3p, 3q〉, e7 7→ 〈4p〉)}.

For s, let h1
s and h2

s be two histories where
h1
s = {(e2 7→ 〈3p, 3q〉, e4 7→ 〈2q, 2r〉, e6 7→ 〈4r, 4s〉)}, and

h2
s = {(e2 7→ 〈4p, 4q〉, e4 7→ 〈2q, 2r〉, e6 7→ 〈1r, 1s〉)}.

All four of these histories are reachable. There are four possible {p, s}-choices
for

{

{h1
p, h

2
p}, {h

1
s, h

2
s}
}

. Each of these choices is consistent. However, only two
of the runs in {h1

p, h
2
p}

⊗

{h1
s, h

2
w} are reachable—those generated by the choices

(h1
p, h

1
s) and (h2

p, h
2
s). The “bad” choice (h2

p, h
1
s) implies that 〈4p, 3q, 1r, 1s〉 is a

valid global state of A after u, which leads to the erroneous conclusion that A

accepts u. The task is to rule out such bad choices by maintaining reachable
histories whose products are also reachable.

In particular, for P ⊆ P we may form the product
⊗

p∈P R(I|p), which generates
the set R(I|P) of local runs on I|P .

Lemma2. Let I be an ideal and P ⊆ P. Then, R(I|P) =
⊗

p∈P R(I|p).

Proof The fact that R(I|P) ⊆
⊗

p∈P R(I|p) is obvious.
To show the converse, let r ∈

⊗

p∈P R(I|p) where the consistent P -choice is
{rp}p∈P . Clearly domain(r) = I|P . We just have to check that nbd(e) is labelled
consistently by r for each e ∈ I|P . But, if e ∈ I|P then e ∈ I|p for some p ∈ P
and so nbd(e) ⊆ I|p as well. Since r = rp on I|p and rp is a local run on I|p, rp
must have assigned consistent values to nbd(e). 2

4 Finite histories and frontiers

Frontiers Let I be an ideal and p, q, s ∈ P. We say that event e ∈ I|p is an
s-sentry for p with respect to q if e ∈ I|p ∩ I|q and e ⊳s f for some f ∈ I|q − I|p.
Thus e is an event known to p and q whose s-successor is known only to q.

Define frontierpq(I) to be the set of all s-sentries which exist for p with respect
to q. Observe that this definition is asymmetric—frontierpq(I) 6= frontier qp(I).

Example 5. In the example of Figure 1, E|p ∩ E|s = {e0, e1, e2, e3, e4}. Then
frontierps(E) = {e3, e4}, whereas frontier sp(E) = {e2, e4}. So, e4 belongs to both
frontiers—it is an r-sentry in frontierps(E) and a q-sentry in frontier sp(E).

In general, e ∈ frontierpq(I) could simultaneously be an s-sentry for several
different s. However, frontierpq(I) is always a bounded set, since for each s ∈ P

there is at most one s-sentry e ∈ frontierpq(I).
For P ⊆ P and p ∈ P , define the P -frontier of p at I to be the set

⋃

q∈P−{p}

frontierpq(I) ∪ frontierqp(I).

Lemma3. Let I be an ideal and {hp}p∈P be a consistent P -choice of {H(I|p)}p∈P

such that for each p ∈ P ,
(i) hp is reachable; and
(ii) the P -frontier of p is included in domain(hp).

Then
⊗

p∈P {hp} is a reachable history in H(I|P).

Proof Order the processes in P as p1, p2, . . . , pk. For i ∈ [1..k], let Pi =
⋃

j∈[1..i]{pj}. By assumption, for each pi, hpi
is a reachable history. So, we have

a local run rpi
on I|pi

which agrees with hpi
on domain(hpi

). To show that
h =

⊗

p∈P {hp} is reachable, we must construct a local run r on I|P which
agrees with h on domain(h) =

⋃

p∈P domain(hp).
Define r as follows:

– For all e ∈ I|p1 , r(e) = rp1(e).

– For i ∈ [2..k], for all e ∈ I|pi
− I|Pi−1 , r(e) = rpi

(e).

So, we “sweep across” I|P starting from I|p1 and ending at I|pk
, assigning

states according to rp1 , rp2 , . . . , rpk
in k “stages”. Clearly domain(r) = I|P and

r agrees with h on domain(h). We have to show that r is a local run; i.e., we
have to show that r is consistent with →e across nbd(e) for each e ∈ I|P .

Let e ∈ I|P . We know that r(e) was assigned at some stage i ∈ [1..k]. Clearly,
e ∈ I|pi

and so nbd(e) ⊆ I|pi
as well. If nbd(e) ⊆ I|pi

−I|Pi−1 , then all the events
in nbd(e) are assigned r values at stage i according to rpi

. Since rpi
is a local

run on I, these values must be consistent with →e.
The crucial case is when some f ∈ nbd(e) lies in I|Pi−1 and so has al-

ready been assigned a value. But then f ∈ I|Pi−1 ∩ I|pi
which is the same

as
⋃

j∈[1..i−1](I|pj
∩ I|pi

). In other words, for some pℓ, ℓ ∈ [1..i−1], f belongs to

frontierpℓpi
(I). So f ∈ domain(hpℓ

) ∩ domain(hpi
), by assumption. Therefore,

the value r(f) must agree with hpℓ
(f) = hpi

(f) and hence must agree with rpi
(f)

as well. So, even though f ∈ nbd(e) has already been assigned a value before
stage i, the value agrees with rpi

. Thus, effectively, nbd(e) is assigned values as
given by rpi

and these must be consistent with →e since rpi
is a local run on I. 2

This is a finite version of Lemma 2 above. Suppose that at the end of a word
u, each process p maintains all reachable histories on a finite (bounded) set of
events spanning the P-frontier of p in Eu. Then, by the previous lemma, the
product of these histories will generate all the reachable global states of A after
u. Further, the number of possible histories on a bounded set is also finite.

The problem now is with maintaining frontier information locally—i.e., how
can a process p compute and locally update its frontier? This is done using
slightly larger, but still bounded, sets of events called primary and secondary
information, which between them subsume the frontier. It turns out that these
sets can be updated locally with each synchronization between processes. These
then will be the domains of the histories maintained by each process.

5 Primary and secondary information

Primary information Let I be an ideal and p, q ∈ P. Then latestp→q(I)
denotes the maximum q-event in I|p. So, latestp→q(I) is the latest q-event in I
that p knows about. The primary information of p after I, primaryp(I), is the
set {latestp→q(I)}q∈P. As usual, for P ⊆ P, primaryP (I) =

⋃

p∈P primaryp(I).

Secondary information The secondary information of p after I, secondaryp(I),
is the set

⋃

q∈P
primaryq(latestp→q(I)↓). In other words, this is the latest infor-

mation that p has in I about the primary information of q, for each q ∈ P. Once
again, for P ⊆ P, secondaryP (I) =

⋃

p∈P secondaryp(I).
Each event in secondaryp(I) is of the form latestq→s(latestp→q(I) ↓) for

some q, s ∈ P. This is the latest s-event which q knows about upto the event
latestp→q(I). We abbreviate latestq→s(latestp→q(I)↓) by latestp→q→s(I). Notice
that each primary event latestp→q(I) is also a secondary event latestp→p→q(I).

Example 6. In Figure 1, latests→p(E) = e2 whereas latestp→s(E) = e3. Also,
latests→p→r(E) = e1 while latestp→s→r(E) = e3.

The following result, which is proved in [KMS, MS], lets us identify all the
frontier events in E using primary and secondary information.

Lemma4. Let I be an ideal, p, q, s ∈ P and e ∈ frontierpq(I) an s-sentry. Then
e = latestp→s(I). Also, for some s′ ∈ P, e = latestq→s′→s(I).

So, for every p ∈ P and u ∈ Σ∗, each process p maintains all reachable histories
over the finite set secondaryp(Eu). By the preceding lemma, this set includes
all events in the P-frontier of Eu as well as the maximal event max p(Eu) =
latestp→p→p(Eu).

We now need to show that these sets may be updated locally—i.e., if w = ua,
then secondaryp(Ew) may be computed from secondaryp(Eu) for each process
p ∈ a using only the information available with the processes in a. (Note that
secondaryP(Eua) is a subset of secondaryP(Eu) together with the new a-event.)

Since we are manipulating events, in general, we require a mechanism for
assigning “unambiguous” labels to the events in Eu while u is being read. In
our context, “unambiguous” means that distinct events in secondaryP(Eu) are
assigned distinct labels. It turns out that we can maintain such a labelling us-
ing a finite set of labels L and simultaneously update the labels assigned to
secondaryP(Eu) in a consistent way with each local synchronization. This in-
volves running the “gossip automaton” [MS] in the background. We will suppress
the details here but assume that there is an asynchronous automaton AG with
the same structure as the automaton A which works as follows.

Let u ∈ Σ∗. Each process p in AG inductively maintains a labelling function
λp(u) : P× P → L such that:

1. Let q, s ∈ P. Then for all q′, q′′, s′, s′′ ∈ P, λq(u)(q
′, q′′) = λs(u)(s

′, s′′) iff
latestq→q′→q′′(Eu) = latests→s′→s′′(Eu).

2. If w = ua and q, q′, q′′, s, s′, s′′ ∈ P such that latestq→q′→q′′ (Ew) =
latests→s′→s′′ (Eu) then λq(w)(q

′, q′′) = λs(u)(s
′, s′′).

So, after reading u, each process p in AG maintains a labelling λp(u) of
secondaryp(Eu) such that, across the system, distinct events in secondaryP(Eu)
are assigned distinct labels. The map λp(u) is a finite object and can be incorpo-
rated into the local state of p. Further, all the processes which synchronize on an
action a can consistently update their primary and secondary information and
extend the labellings {λp(u)}p∈a to new labellings {λp(ua)}p∈a which maintain
the inductive assertion. The second condition ensures that the new labellings
{λp(ua)}p∈a do not reassign fresh labels to “old” events in secondary

P
(Eua).

6 The determinization algorithm

We are now ready to present our deterministic asynchronous automaton B =
({V B

p }p∈P, {→B
a }a∈Σ,V

B
0 ,VB

F) corresponding to our original non-deterministic

asynchronous automaton A such that L(A) = L(B). B will incorporate the
gossip automaton AG.

Formally, a state in V B
p consists of the following information:

– A labelling λp : (P× P) → L.
– A set of histories RHp where each h ∈ RHp is a partial function on L

that maps a label ℓ to a P -state (where P ⊆ P is the set of processes that
participated in the event that ℓ was assigned to) such that domain(h) =
range(λp).

Intuitively, after reading a word u, process p has computed λp as the labelling
of secondaryp(Eu) given by the gossip automaton AG. Thus, the label λp(q, r)
represents the secondary event latestp→q→r(Eu).

The set RHp is supposed to contain all reachable histories over the secondary
events secondaryp(Eu). Since distinct events in secondaryp(Eu) are assigned dis-
tinct labels, each history in RHp is a function from range(λp) to P -states.

Initially, each p ∈ P stores the following:

– For each pair of processes q, r ∈ P, λp(q, r) = ℓ0, where ℓ0 is some arbitrary
but fixed label from L.

– For each initial state ~v of A, there is a history h in RHp such that h(ℓ0) = ~v.

The initial state VB
0 is the product of the initial states of the individual processes.

We now describe the transition rules {→B
a }a∈Σ. Suppose B reads a when the

global state of B is {〈λ′
p,RH

′
p〉}p∈P. Then the local states of processes in a are

updated as follows.

– For each p ∈ a, construct a new labelling function λ′′
p : P × P → L. This is

done by the gossip automaton, AG. For the new event ea, let λ
′′
p(ea) = ℓa.

– Compute new histories RH′′
p for each p ∈ a as follows. Consider ha ∈

⊗

p∈a{RH
′
p}. Let ~v be the global a-state corresponding to ha—i.e., ~vp =

(hp(λ
′
p(p, p)))p for each p ∈ a (recall that latestp→p→p(I) = maxp(I)). Let

Vha
= {~v′ | ~v →a ~v′}. So, Vha

is the set of all possible a-states v′ which can
be used to extend ha to cover the new event ea so that nbd(ea) is consistently
labelled with respect to →a.
Each element ~v′ ∈ Vha

together with ha generates a history h′
p in RH′′

p :

∀ℓ ∈ range(λ′′
p). h

′
p(ℓ) =

{

~v′ if ℓ = ℓa
ha(ℓ) otherwise

So, the new a-event is assigned the a-tuple ~v′ while the other secondary
events of p (after reading a) inherit their h′

p values from ha. Repeat this
procedure for each ha ∈

⊗

p∈){RH
′
p} to generate the entire set RH′′

p for
each p ∈ a.

We now define the final states of B. Let ~σ be a global state of B, where
~σp = 〈λ′

p,RH
′
p〉 for each p ∈ P. Each history h ∈

⊗

p∈P
RH

′
p gives rise to a

global state ~v of A as follows: for each p ∈ P, ~vp = (h(λ′
p(p, p)))p. Let subset(~σ)

denote the set of global states of A generated from ~σ in this manner. Then we
can define VB

F = {~σ | subset(~σ) ∩ VF 6= ∅}.

Theorem 5. L(A) = L(B).

Proof For u ∈ Σ∗, let ~σ be the global state of B after reading u such that
~σp = 〈λ′′

p ,RH
′′
p 〉 for each p ∈ P. We claim the following:

Claim For each p ∈ P, RH′′
p is precisely the set of all reachable histories on the

set of events secondaryp(Eu).

Assuming the claim, we know from Proposition 1 and Lemmas 2, 3 and 4
that the global states in subset(~σ) are precisely the global states that A could
be in after u. So, B accepts u iff subset(~σ) ∩ VF 6= ∅ iff there is a run of A on u
leading to a final state iff A accepts u and we are done.

Proof of Claim To prove the claim, we proceed by induction on |u|.

(|u| = 0). Then u = ε, the empty word. The claim is trivially true at this state
since all the secondary events in Eu are the initial event 0 and each process
maintains a set of histories which assigns all possible initial states of A to the
initial event.

(|u| > 0). Let u = wa and assume inductively that after reading w, the local
states {〈λ′

p,RH
′
p〉}p∈P satisfy the Claim. We have to argue that the procedure

for updating the local states of p ∈ a maintains the property asserted in the
Claim.

Now, assume RH′
p contains all reachable histories over secondaryp(Ew) for

each p ∈ a. The gossip automaton AG guarantees that λ′′
p labels precisely the

events in secondaryp(Eu). We have to show that RH′′
p contains all reachable

histories over secondaryp(Eu).
For all p ∈ a, Eu|p = Ew |a ∪ {ea}, where ea is the new a-event. So, any

local run on Eu|p consists of a local run on Ew|a extended to cover ea such that
nbd(ea) is consistently labelled.

We argue that the product
⊗

p∈a RH
′
p is precisely the projection of R(Ew|a)

onto secondarya(Ew). By Lemma 3, every history h ∈
⊗

p∈a RH
′
p is a reach-

able history on Ew|a and so is the projection of some local run on Ew|a onto
secondarya(E|w).

Conversely, consider any local run r on Ew|a. Decompose r into local runs rp
over Ew|p for each p ∈ a by looking at r restricted to Ew|p. Since RH

′
p has all

reachable histories on secondaryp(Ew), the projection hp of rp on secondaryp(Ew)
belongs to RH′

p. So, the projection of r onto secondarya(Ew) belongs to
⊗

p∈a RH
′
p.

So, we can reconstruct all possible a-moves of A after w by looking at
⊗

p∈a RH
′
p. The procedure for updating RH′

p to RH′′
p in the definition of →B

p

then guarantees that RH′′
p contains all reachable p-histories over secondaryp(Eu)

for each p ∈ a. 2

7 The complexity of determinization

Theorem 6. Let A = ({Vp}p∈P, {→a}a∈Σ,V0,VF) be a non-deterministic asyn-
chronous automaton with N processes such that max p∈P|Vp| = M . Then, in the

corresponding deterministic automaton B that we construct, each process has at

most 2M
O(N3)

states.

Proof Each local state of B is of the form 〈λp,RHp〉. From [MS], AG can
maintain and update λp consistently using O(N3 logN) bits.

We now need to maintain histories over secondary events. Each history h con-
sists of N2 P -states. Since a P -state can be written down using N logM bits, h
can be written down using N3 logM bits. The number of different histories pos-

sible over N2 events is
(

MO(N)
)N2

= MO(N3). A set of histories can therefore be

written down using MO(N3) bits. So, in total we need MO(N3) +O(N3 logN) =

MO(N3) bits. 2

The upper bound we describe above is essentially optimal because of the follow-
ing double-exponential lower bound, which is proved in [KMS].

Theorem 7. There is a sequence of languages LKN over distributed alphabets
(ΣKN , θKN), K,N ≥ 2, such that LKN is recognized by a non-deterministic
asynchronous automaton with local state spaces and transition relations whose
sizes are polynomial in K and N , whereas any deterministic asynchronous au-

tomaton recognizing LKN must have at least one process with 2K
N/N states.

References

[CMZ] R. Cori, Y. Metivier, W. Zielonka: Asynchronous mappings and asynchronous
cellular automata, Inf. and Comput., 106 (1993) 159–202.

[DM] V. Diekert, A. Muscholl: Deterministic asynchronous automata for infinite
traces, Proc. STACS ’93, LNCS 665 (1993) 617–628.

[GP] P. Gastin, A. Petit: Asynchronous cellular automata for infinite traces, Proc.
ICALP ’92, LNCS 623 (1992) 583–594.

[KMS] N. Klarlund, M. Mukund, M. Sohoni: Determinizing asynchronous automata,
Report DAIMI-PB 460, Computer Science Department, Aarhus University,
Aarhus, Denmark (1993).

[Maz] A. Mazurkiewicz: Basic notions of trace theory, in: J.W. de Bakker, W.-
P. de Roever, G. Rozenberg (eds.), Linear time, branching time and partial

order in logics and models for concurrency, LNCS 354, (1989) 285–363.
[MS] M. Mukund, M. Sohoni: Gossiping, asynchronous automata and Zielonka’s the-

orem, Report TCS-94-2, School of Mathematics, SPIC Science Foundation,
Madras (1994). See also “Keeping track of the latest gossip: Bounded time-
stamps suffice”, Proc. FST&TCS ’93, LNCS 761 (1993) 388–399.

[Mus] A. Muscholl: On the complementation of Büchi asynchronous cellular au-
tomata, Proc. ICALP 1994.

[Zie1] W. Zielonka: Notes on finite asynchronous automata, R.A.I.R.O.—Inf. Théor.

et Appl., 21 (1987) 99–135.
[Zie2] W. Zielonka: Safe executions of recognizable trace languages, in Logic at Botik,

LNCS 363 (1989) 278–289.

