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while the algorithm generates a pre�x of size O(2n). In this paper weprovide an algorithm which generates a minimal complete pre�x (in acertain sense to be de�ned). The pre�x is always smaller than or aslarge as the pre�x generated with the old algorithm, and it is neverlarger (up to small constant) than the state space of the Petri net.The paper is organised as follows. Section 2 and 3 contain basicde�nitions about Petri nets and branching processes, respectively. InSection 4 we show that McMillan's algorithm is just an element ofa whole family of algorithms for the construction of �nite completepre�xes. The algorithms of this family depend on the choice of a so-called adequate order; this is a partial order on the con�gurations ofa branching process. In Section 5 we improve McMillan's algorithm byexhibiting a �ner adequate order. In Section 6 we de�ne for 1-safe netsystems an adequate order which is total. Section 7 extends this idea ton-bounded systems; for the representation of the process net anotherpartial-order semantics is used, so-called executions. Finally, in Section8 we present aspects of an e�cient implementation of the algorithms,accompanied by experimental results.2. Petri netsA net is a triple (S; T;W ), where S and T are disjoint sets of places(Stellen in Petri's original notation) and transitions, respectively, andW is a function (S � T )[ (T � S)! f0; 1g. Places and transitions aregenerically called nodes. IfW (x; y) = 1 then we say that there is an arcfrom x to y. Thus, a net can be considered as a directed graph. A pathin such a graph is { as usual { a nonempty sequence of nodes withoutrepetitions such there is an arc from each node to the following (if thereis one).The preset of a node x, denoted by �x, is the set fy 2 S [ T jW (y; x) = 1g. The postset of x, denoted by x�, is the set fy 2 S [ T jW (x; y) = 1g.A marking of a net (S; T;W ) is a mapping M : S ! IN (whereIN denotes the natural numbers including 0). We identify M with themultiset containing M(s) copies of s for every s 2 S. For instance, ifS = fs1; s2g and M(s1) = 1, M(s2) = 2, we write M = fs1; s2; s2g.A 4-tuple � = (S; T;W;M0) is a net system if (S; T;W ) is a net andM0 is a marking of (S; T;W ) (called the initial marking of �).General assumptions In this paper we consider only nets in whichevery transition has a nonempty preset and a nonempty postset. Wefurther assume that all net systems are �nite.2



A markingM enables a transition t if it marks each place s 2 �t witha token, i.e. ifM(s) > 0 for each s 2 �t. If t is enabled atM , then it can�re or occur, and its occurrence leads to a new markingM 0, obtained byremoving a token from each place in the preset of t, and adding a tokento each place in its poset; formally, M 0(s) = M(s)�W (s; t) +W (t; s)for every place s. For each transition t the relation t�! is de�ned asfollows: M t�!M 0 if t is enabled at M and its occurrence leads to M 0.A sequence of transitions � = t1t2 : : : tn is an occurrence sequence ifthere exist markings M1, M2, . . . , Mn such thatM0 t1�!M1 t2�! : : :Mn�1 tn�!MnMn is the marking reached by the occurrence of �, also denoted byM0 ��! Mn. M is a reachable marking if there exists an occurrencesequence � such thatM0 ��!M . The reachability graph of a net systemis the labelled graph having the reachable markings of the system asnodes, and the t�! relations (more precisely, their restriction to the setof reachable markings) as arcs.A marking M of a net is n-safe if M(s) � n for every place s. A netsystem � is n-safe if all its reachable markings are n-safe, and safe if itis n-safe for some number n.Labelled nets A labelled net is a pair (N; l) (also represented as a 4-tuple (S; T;W; l)), where N is a net and l is a labelling function thatassigns to each node x of N a label l(x) taken from some set. Notice thatdi�erent nodes can carry the same label. For each label a we de�ne therelation a�! between markings as follows: M a�! M 0 if M t�! M 0 forsome transition t such that l(t) = a. The reachability graph of a labellednet system is the labelled graph having the reachable markings of thesystem as nodes, and the a�! relations (more precisely, their restrictionto the set of reachable markings) as arcs.3. Branching processesIn this section we describe branching processes, a partial-order seman-tics of Petri nets. Before giving any formal de�nitions, we give someintuitive ideas.Consider a directed graph G with a root node. It is well-knownthat such a graph can be \unfolded" into a labelled tree (whose nodesare the paths in G starting at the root). The nodes of the tree arelabelled with the nodes of the graph (i.e. with the last node of therespective path). The unfolding process can be stopped at di�erent3



times yielding di�erent trees, but there is a unique labelled tree, usuallyin�nite, obtained by unfolding \as much as possible". This labelled treeis called the unfolding of the graph.In the same way, net systems can be \unfolded" into labelled occur-rence nets, a subclass of nets with a particularly simple, tree-like struc-ture. The nodes of the occurrence net are labelled with the places andtransitions of the net. The labelled occurrence nets obtained throughunfolding of a net are called branching processes. The unfolding processcan be stopped at di�erent times yielding di�erent branching processes,but there is a unique, usually in�nite, branching process obtained byunfolding \as much as possible". This branching process is called theunfolding of the net system.In the next two subsections we formally de�ne occurrence nets,branching processes and the unfolding.3.1. Occurrence netsFirst of all, we need to de�ne the causal, conict, and concurrencyrelations between nodes of a net.� Two nodes x and y are in causal relation, denoted by x < y, if thenet contains a path with at least one arc leading from x to y.� x and y are in conict relation, or just in conict, denoted by x#y,if the net contains two paths st1 : : : x1 and st2 : : : x2 starting at thesame place s, and such that t1 6= t2. In words, x1 and x2 are inconict if the net contains two paths leading to x1 and x2 whichstart at the same place and immediately diverge (although lateron they can converge again).� x and y are in concurrency relation, denoted by x co y, if neitherx < y nor y < x nor x#y.An occurrence net is a net O = (B;E; F ) such that:(1) j�bj � 1 for every b 2 B;(2) O is acyclic, or, equivalently, the causal relation is a partial order;(3) O is �nitely preceded, i.e., for every x 2 B[E, the set of elementsy 2 B [E such that y < x is �nite;(4) no element is in conict with itself.It is easy to see that any two nodes of an occurrence net are eitherin causal, conict, or concurrency relation.4



The elements of B and E are usually called conditions (Bedingungenin Petri's original notation) and events, respectively.Min(O) denotes the set of minimal elements of B[E with respect tothe causal relation, i.e., the elements that have an empty preset. Sincewe only consider nets in which every transition has a nonempty preset,the elements of Min(O) are conditions.3.2. Branching processesThose labelled occurrence nets obtained from net systems by \un-folding" are called branching processes, and have the following formalde�nition:A branching process of a net system � = (S; T;W;M0) is a labelledoccurrence net � = (O; p) = (B;E; F; p) where the labelling function psatis�es the following properties:(i) p(B) � S and p(E) � T(p preserves the nature of nodes);(ii) for every e 2 E, the restriction of p to �e is a bijection between �e(in �) and �p(e) (in �), and similarly for e� and p(e)�(p preserves the environments of transitions);(iii) the restriction of p to Min(O) is a bijection between Min(O) andM0(� \starts" at M0);(iv) for every e1; e2 2 E, if �e1 = �e2 and p(e1) = p(e2) then e1 = e2(� does not duplicate the transitions of �).Figure 1 shows a 1-safe net system (part (a)), and two of its branch-ing processes (parts (b) and (c)).Branching processes di�er on \how much they unfold". It is naturalto introduce a pre�x relation formalising the idea \a branching processunfolds less than another".Let �0 = (O0; p0) and � = (O; p) be two branching processes of a netsystem. �0 is a pre�x of � if O0 is a subnet of O satisfying� Min(O) belongs to O0;� if a condition b belongs to O0, then its input event e 2 �b in O alsobelongs to O0 (if it exists); and� if an event e belongs to O0, then its input and output conditions�e [ e� in O also belong to O0,5



s1 s2t1 t2 t3t6 s3 s4 s5 t7t4 t5s5 s5(a)s1 s2t11 t22 t33s3 s4 s5t44 t55s6 s7 s6 s7t66 t77 t68 t79s1 s2 s1 s2(b)

s1 s2t11 t22 t33s3 s4 s5t44 t55s6 s7 s6 s7t66 t77 t68 t79s1 s2 s1 s2t110 t211 t312 t113 t214 t315s3 s4 s5 s3 s4 s5t416 t517 t418 t519s6 s7 s6 s7 s6 s7 s6 s7... ... ... ... ... ... ... ...(c)Figure 1. A net system (a) and two of its branching processes (b,c)and p0 is the restriction of p to O0.It is shown in [4] that a net system has a unique maximal branchingprocess with respect to the pre�x relation. To be precise, this processis unique up to isomorphism, i.e., up to renaming of the conditionsand the events. This is the branching process that \unfolds as much aspossible". We call it the unfolding of the system. The unfolding of the1-safe system of Figure 1 is in�nite.A branching process has a natural initial marking, namely the mark-ing that puts one token in each minimal condition, and no tokensanywhere else. When we talk of the reachable markings and the reach-ability graph of a branching process, we refer to the natural initialmarking.With this, we can formulate how an unfolding describes the be-haviour of a net as follows: Let � be a net system, and let � be itsunfolding. The reachability graphs of � and � have isomorphic un-foldings (as graphs as described above). More in detail, the reachable6



markings of � are those p(M) where M is a reachable marking of �;for a reachable marking M of � and a marking M 00 and a transition tof �, there are M 0 and e with p(M 0) =M 00, p(e) = t and M e�!M 0 in� if and only if p(M) t�!M 00 in �.3.3. Configurations and cutsIn order to work with branching processes we need the notions ofcon�guration and cut.A con�guration C of a branching process is a set of events satisfyingthe following two conditions:� e 2 C ) 8e0 � e: e0 2 C ( C is causally closed).� 8e; e0 2 C::(e#e0) (C is conict-free).The set of events f1; 3; 4; 6g in Figure 1(b) is a con�guration, butthe sets f3; 4g (not causally closed) and f1; 2g (non conict-free) arenot. Intuitively, a con�guration is a set of events `�rable' from thenatural initial marking, i.e., there is a �ring sequence from the naturalinitial marking in which each event of the set occurs exactly once. Forf1; 3; 4; 6g we can �rst �re 1 and 3, then 4 and then 6, but neither f3; 4gnor f1; 2g are �rable from the natural initial marking.A set of conditions of a branching process is a co-set if its elementsare pairwise in co relation. A maximal co-set with respect to set in-clusion is called a cut. In Figure 1(b), the set containing the (unique)output condition of event 6 and the output condition of event 4 labelledby s7 is a cut.A marking M of a system � is represented in a branching process� = (O; p) of � if � contains a cut c such that, for each place s of �,c contains exactly M(s) conditions b with p(b) = s. For instance, themarking fs1; s7g is represented in the branching process of Figure 1(b)because of the cut mentioned above. It is easy to prove using results of[1, 4] that every marking represented in a branching process is reach-able, and that every reachable marking is represented in the unfoldingof the net system. Observe in particular that fs1; s7g is reachable.Finite con�gurations and cuts are tightly related. Let C be a �-nite con�guration of a branching process � = (O; p). Then the co-setCut(C), de�ned below, is a cut:Cut(C) = (Min(O) [ C�) n �C:In particular, given a con�guration C the set of places Cut(C) rep-resents a reachable marking, which we denote by Mark(C). Looselyspeaking, Mark(C) is the marking we reach by �ring the con�guration7



C. In the branching process of Figure 1(b) we have Mark(f1; 3; 4; 6g) =fs1; s7g.4. An algorithm for the construction of a complete �nitepre�x4.1. Constructing the unfoldingWe give an algorithm for the construction of the unfolding of a netsystem. First of all, let us describe a suitable data structure for therepresentation of branching processes.We implement a branching process of a net system � as a setfn1; : : : ; nkg of nodes. A node is either a condition or an event. Acondition is a record containing two �elds: a place of �, and a pointerto an event (the unique input event of the condition), or to NIL, in casethe condition has an empty preset. In the pseudocode description of ouralgorithms we represent a condition as a pair (s; e) or (s; ;). An eventis also a record with two �elds: a transition of �, and a list of pointersto conditions (the input conditions of the event). In pseudocode werepresent an event as a pair (t;X).Notice that the ow relation and the labelling function of a branch-ing process are already encoded in its set of nodes. How to express thenotions of causal relation, con�guration or cut in terms of this datastructure is left to the reader.We need the notion of \events that can be added to a given branch-ing process". Let t be a transition of � with output places s1; : : : ; sn.Formally, a pair e = (t;X) is a possible extension of a branching pro-cess fn1; : : : ; nkg if fn1; : : : ; nk; e; (s1; e); : : : ; (sn; e)g is also a branchingprocess. PE (�) denotes the set of possible extensions of a branchingprocess �.The following characterisation follows easily from the de�nitions:PROPOSITION 4.1.Let � be a branching process of a net system �. The possible ex-tensions of � are the pairs (t;X), where X is a co-set of conditionsof � and t is a transition of � such that� p(X) = �t, and� (t;X) does not already belong to �. 4.1The algorithm for the construction of the unfolding starts with thebranching process having the conditions corresponding to the initial8



marking of � and no events. New events are added one at a timetogether with their output conditions. Observe that the initial markingM0 is a multiset, and so a place can appear several times in it. IfM0(s) = k, then Unf contains k minimal conditions labelled by s, i.e.,k elements (s; ;).ALGORITHM 4.2. The unfolding algorithminput: A net system � = (N;M0), where M0 = fs1; : : : ; sng:output: The unfolding Unf of �.beginUnf := f(s1; ;); : : : ; (sn; ;)g;pe := PE(Unf );while pe 6= ; doadd to Unf an event e = (t;X) of pe and a condition (s; e)for every output place s of t;pe := PE(Unf )endwhileend 4.2The algorithm does not necessarily terminate. In fact, it terminatesif and only if the input system � does not have any in�nite occurrencesequence. It is correct only under the fairness assumption that everyevent added to pe is eventually chosen to extend Unf (the correctnessproof follows easily from the de�nitions and from the results of [4]).Constructing a finite complete prefixWe say that a branching process � of a net system � is complete if forevery reachable marking M there exists a con�guration C in � suchthat:� Mark(C) =M (i.e., M is represented in �), and� for every transition t enabled by M there exists a con�gurationC [ feg such that e =2 C and e is labelled by t.The unfolding of a net system is always complete. A complete pre�xcontains as much information as the unfolding, in the sense that we canconstruct the unfolding from it as the least �xpoint of a suitable oper-ation. This property does not hold if we only require every reachablemarking to be represented. For instance, the net system of Figure 2(a)has Figure 2(b) as unfolding. Figure 2(c) shows a pre�x of the unfoldingin which every reachable marking is represented. The pre�x has lostthe information indicating that t2 can occur from the initial marking.Observe that the pre�x is not complete.9
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s1t1s2(c)Figure 2. A 1{safe net system (a), its unfolding (b), and a pre�x (c)Since an n-safe net system has only �nitely many reachable mark-ings, its unfolding contains at least one complete �nite pre�x. Wetransform the algorithm above into a new one whose output is sucha pre�x. The key idea (due to McMillan) is to identify certain events,called cut-o� events, at which the construction can be stopped withoutlosing information; stopped means that no new events causally relatedto the cut-o� event are added.We start with some Given a con�guration C of a branching process� = (O; p), we de�ne * C as the pair (O0; p0), where O0 is the uniquesubnet of O whose set of nodes is fx j x 62 C [ �C ^ 8y 2 C : :(x#y)gand p0 is the restriction of p to the nodes of O0. Loosely speaking, *Cis the part of � lying \after" C.The following result can be easily proved, directly from the de�ni-tions:PROPOSITION 4.3.If � is a branching process of (N;M0) and C is a con�guration of �,then *C is a branching process of (N;Mark (C)). Moreover, if � isthe unfolding of (N;M0), then *C is the unfolding of (N;Mark (C))(up to isomorphism). 4.3Given a con�guration C, we denote by C �E the fact that C [E isa con�guration such that C\E = ;. We say that C�E is an extensionof C, and that E is a su�x of C. Obviously, for a con�guration C 0, ifC � C 0 then there is a nonempty su�x E of C such that C �E = C 0.Now, let C1 and C2 be two �nite con�gurations leading to the samemarking, i.e. Mark(C1)=M = Mark(C2). By Proposition 4.3 *C1 and *C2 are isomorphic tothe unfolding of (N;M), and so they are isomorphic to each other. LetI21 be an isomorphism between *C1 and *C2. This isomorphism inducesa mapping from the �nite extensions of C1 onto the �nite extensionsof C2: it maps C1 �E onto C2 � I21 (E).10



s1t1 t2s2 s3 s4 s5t3 t4 t5 t6s6 s7 s8 s9t7 t8s10 s11t9s12(a)

s1t11 t22s2 s3 s4 s5t33 t54 t45 t66s6 s7 s8 s9 s6 s7 s8 s9t77 t810 t78 t89s10 s11 s10 s11
(b)Figure 3. A 1{safe net system (a) and a pre�x of its unfolding (b)We can now introduce the three basic notions needed by the al-gorithm: adequate order, local con�guration, and cut-o� event. Wepresent the formal de�nitions together with the intuition behing them.McMillan's idea [12] is to attach to each event e added by the un-folding algorithm a reachable marking of �. For this, we �rst computethe local con�guration [e] of e, de�ned below, and then we associate toe the marking Mark([e]).DEFINITION 4.4. Local con�gurationThe local con�guration [e] of an event e of a branching process isthe set of events e0 such that e0 � e.1 4.4Now, assume that a new event e is added to the current branchingprocess, such that some event e0 added before satis�es Mark([e]) =Mark([e0]). We know that * [e] and * [e0] are isomorphic, and so it issu�cient to pursue the construction of one of the two. Intuitively, itseems possible to mark e as \cut-o�" event, and so stop the construc-tion of * [e]. However, the following example (independently found byMcMillan and one of the authors) shows that this strategy is incorrect.Consider the 1-safe net system of Figure 3(a).The marking fs12g is reachable. However, we can generate the pre�xof Figure 3(b), in which this marking is not represented. The names1 It is immediate to prove that [e] is a con�guration.11



of the events are numbers which indicate the order in which they areadded to the pre�x. The events 8 and 10 are marked as \cut-o�" events,because their corresponding markings fs7; s9; s10g and fs6; s8; s11g arealso the markings corresponding to the events 7 and 9, respectively.Although no events can be added, the pre�x is not complete, becausefs12g is not represented in it.The choice between [e] and [e0] is made on the basis of a partialorder. We show below that all orders satisfying three properties makethe correctness proof work, i.e., lead to �nite complete pre�xes. We callthese orders adequate.DEFINITION 4.5. Adequate orderA partial order � on the �nite con�gurations of the unfolding of anet system is an adequate order if:� � is well-founded,� C1 � C2 implies C1 � C2, and� � is preserved by �nite extensions; ifC1 � C2 andMark(C1) =Mark(C2), then the isomorphism I21 from above satis�es C1�E � C2�I21 (E) for all �nite extensions C1�E of C1. 4.5In [12] [e0] is smaller than [e] if it contains less events, i.e. if j[e0]j <j[e]j. It is easy to see that this order is adequate. We can now formallyde�ne cut-o� events with respect to an adequate order.DEFINITION 4.6. Cut-o� eventLet � be an adequate order on the con�gurations of the unfoldingof a net system. Let � be a pre�x of the unfolding containing anevent e. The event e is a cut-o� event of � (with respect to �) if �contains a local con�guration [e0] such that(a) Mark([e]) = Mark([e0]), and(b) [e0] � [e]. 4.6The new algorithm is in fact a family of algorithms: each adequateorder � leads to a di�erent algorithm. Events are respecting the �order, and cut-o�s are identi�ed and marked. The algorithm terminateswhen no event can be added. 12



ALGORITHM 4.7. The complete �nite pre�x algorithminput: An n-safe net system � = (N;M0),where M0 = fs1; : : : ; skg.output: A complete �nite pre�x Fin of Unf.beginFin := (s1; ;); : : : ; (sk; ;);pe := PE(Fin);cut-o� := ;;while pe 6= ; dochoose an event e = (t;X) in pe such that [e] is minimalwith respect to �;if [e]\ cut-o� = ; thenappend to Fin the event e and a condition (s; e)for every output place s of t;pe := PE (Fin);if e is a cut-o� event of Fin thencut-o� := cut-o� [fegendifelse pe := pe n fegendifendwhileend 4.7The correctness of Algorithm 4.7 is proved in the next two proposi-tions.PROPOSITION 4.8.Fin is �nite.Proof: Given an event e of Fin, de�ne the depth of e as the length ofa longest chain of events e1 < e2 < : : : < e; the depth of e isdenoted by d(e). We prove the following results:(1) For every event e of Fin, d(e) � n + 1, where n is thenumber of reachable markings of �.Since cuts correspond to reachable markings, every chainof events e1 < e2 < : : : < en < en+1 of Unf contains twoevents ei, ej , i < j, such that Mark([ei]) = Mark([ej ]).Since [ei] � [ej ], we have [ei] � [ej ], and therefore [ej ] is acut-o� event of Unf. Should the �nite pre�x algorithm gen-erate ej , then it has generated ei before and ej is recognizedas a cut-o� event of Fin, too.13



(2) For every event e of Fin, the sets �e and e� are �nite.By the de�nition of pre�x, there is a bijection between e�and p(e)�, where p denotes the labelling function of Fin,and similarly for �e and �p(e). The result follows from the�niteness of N .(3) For every k � 0, Fin contains only �nitely many events esuch that d(e) � k.By complete induction on k. The base case, k = 0, is trivial.Let Ek be the set of events of depth at most k. We provethat if Ek is �nite then Ek+1 is �nite.By (2) and the induction hypothesis, E�k is �nite. Since�Ek+1 � E�k [ Min(Fin), we get by property (iv) in thede�nition of a branching process that Ek+1 is �nite.It follows from (1) and (3) that Fin only contains �nitely manyevents. By (2) it contains only �nitely many conditions. 4.8PROPOSITION 4.9.Fin is complete.Proof: (a) Every reachable marking of � is represented in Fin.Let M be an arbitrary reachable marking of �. There exists acon�guration C1 of Unf such that Mark(C1) =M . If C1 is not acon�guration of Fin, then it contains some cut-o� event e1, andso C1 = [e1]�E1 for some set of events E1. By the de�nition ofa cut-o� event, there exists a local con�guration [e2] such that[e2] � [e1] and Mark([e2]) = Mark([e1]).Consider the con�guration C2 = [e2] � I21 (E1). Since � is pre-served by �nite extensions, we have C2 � C1. Morever,Mark(C2)=M . If C2 is not a con�guration of Fin, then we can iterate theprocedure and �nd a con�guration C3 such that C3 � C2 andMark(C3) = M . The procedure cannot be iterated in�nitelyoften because � is well-founded. Therefore, it terminates in acon�guration of Fin.(b) If a transition t can occur in �, then Fin contains an eventlabelled by t.If t occurs in �, then some reachable marking M enables t.The marking M is represented in Fin. Let C be a minimalcon�guration with respect to � such that Mark(C) = M . If14
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Minimalcompletepre�x
Figure 4. A Petri net and its unfoldingC contains some cut-o� event, then we can apply the argumentsof (a) to conclude that Fin contains a con�guration C 0 � C suchthat Mark(C 0) = M . This contradicts the minimality of C. SoC contains no cut-o� events, and therefore Fin also contains acon�guration C � feg such that e is labelled by t. 4.9Notice that the adequacy of an order is a su�cient but not necessarycondition for the correctness of Algorithm 4.7. For example, a look atthe proof of Proposition 4.9 reveals that the preservation of the orderby �nite extensions is only applied to local con�gurations. So in thethird property of De�nition 4.5 C1 and C2 could be replaced by [e1]and [e2].5. An adequate order for arbitrary net systemsAs we mentioned in the introduction, McMillan's algorithm may beine�cient in some cases. An extreme example due to Kishinevsky andTaubin is the family of systems on the left of Figure 4. While a minimalcomplete pre�x has size O(n) in the size of the system (see the dashedline on the right of the �gure), the branching process generated byMcMillan's algorithm has size O(2n). The reason is that for everymarking M all the local con�gurations [e] satisfying Mark([e]) = Mhave the same size, and therefore there exist no cut-o� events withrespect to McMillan's order. 22 It is not important that the nets in Figure 4 are not simple, i.e. have transitionswith the same pre- and postset; we could also replace each transition by a sequenceof two transitions to obtain a suitable family of simple nets.15



Our parametric presentation of Algorithm 4.7 suggests how to im-prove this: we �nd a new adequate order that re�nes McMillan's order.Such an order induces a weaker notion of cut-o� event. More precisely,every cut-o� event with respect to McMillan's order is also a cut-o�event with respect to the new order, but maybe not the other wayround. Therefore, the instance of Algorithm 4.7 which uses the neworder generates at least as many cut-o� events as McMillan's instance,and maybe more. In the latter case, Algorithm 4.7 generates a smallerpre�x.Let � = (N;M0) be a net system, and let � be an arbitrary totalorder on the transitions of �. Given a set E of events, let '(E) be thatsequence of transitions which is ordered according to �, and containseach transition t as often as there are events in E with label t. Forinstance, if we have t1 � t2 � t3 � t4, and the set E containsfour events labelled by t1, t2, t2, and t3, then '(E) = t1t2t2t3. (' issomewhat similar to a Parikh-vector.) We say '(E1)� '(E2) if '(E1)is lexicographically smaller than '(E2) with respect to the order �.DEFINITION 5.1. Partial order �ELet C1 and C2 be two con�gurations of the unfolding of a netsystem. C1 �E C2 holds if� jC1j < jC2j, or� jC1j = jC2j, and '(C1)� '(C2). 5.1THEOREM 5.2.Let � be the unfolding of a net system. �E is an adequate order onthe �nite con�gurations of �.Proof: It is easy to show that �E is a well-founded partial order impliedby inclusion. To show that �E is preserved by �nite extensions,assume C1 �E C2. For every �nite extension C1 � E of C1we have jEj = jI21 (E)j, since I21 is a bijection, and '(E) ='(I21 (E)), since I21 preserves the labelling of events. If jC1j <jC2j, then jC1�Ej < jC2 � IC2C1 (E)j. If '(C1)� '(C2), then bythe properties of the lexicographic order '(C1 � E) � '(C2 �I21 (E)). 5.2If we take �E as adequate order, the complete pre�x generatedby Algorithm 4.7 for the net system of Figure 4 is the minimal onecorresponding to the dotted line. 16



s1 s2 s3t1 t2(a)
s1 s2 s3t1e1 t2e2s2 s2t2e3 t1e4s2 s2(b)Figure 5. A 1{safe net system (a) and its unfolding (b)The question is whether there can be other examples in which �Eperforms poorly. We would like to have an adequate order which guar-antees that the complete pre�x is at most as large as the reachabilitygraph. A slightly weaker guarantee is provided by total adequate orders.In this case, whenever an event e is generated after some other event e0such that Mark([e]) = Mark([e0]), we have [e0] � [e] (because events aregenerated in accordance with the total order �), and so e is marked asa cut-o� event. So total adequate orders have the following importantproperty:PROPOSITION 5.3. A property of total adequate ordersLet � be an adequate total order, and let Fin be the output ofAlgorithm 4.7 on input �. The number of non-cut-o� events of Findoes not exceed the number of reachable markings of �. 5.3Unfortunately, �E is not total. Consider the net system on the leftof Figure 5, and its unfolding on the right of the same �gure. Thecon�gurations C1 = fe1; e3g and C2 = fe2; e4g have size 2, and wehave '(C1) = t1t2 = '(C2) (assuming t1 � t2). So neither C1 �E C2nor C2 �E C1.The existence of a total adequate order for arbitrary net systems isan open problem. However, in the next section we provide a total ade-quate order �F for 1-safe systems, the most relevant case in practice.Moreover, in Section 7 we show that the unfolding of a net system canalso be de�ned in another way; with this new de�nition the order �Fis total for arbitrary net systems, and Theorem 5.3 holds.
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6. A total order for 1-safe systemsIn the sequel, let � = (N;M0) be a �xed net system, and let � bean arbitrary total order on the transitions of �. We �rst introduce theFoata normal form of a con�guration. Given a �nite con�guration C,its Foata normal form FC is the list of sets of events constructed bythe following algorithm [3]:ALGORITHM 6.1. Foata normal form of a con�gurationinput: A con�guration C of a branching processoutput: The Foata normal form FC of C.beginFC := ;;while C 6= ; doappend Min(C) to FC;C := C nMin(C)endwhileend 6.1Loosely speaking, the Foata normal form is obtained by repeatedlyslicing out the set of minimal events.Given two con�gurations C1 and C2, we can compare their Foatanormal forms FC1 = C11 : : : C1n1 and FC2 = C21 : : : C2n2 with respectto the order �: we say FC1 � FC2 if there exists 1 � i � n1 suchthat� '(C1j) = '(C2j) for every 1 � j < i, and� '(C1i)� '(C2i).Now, we de�neDEFINITION 6.2. Order �FLet C1 and C2 be two con�gurations of the unfolding of a netsystem. C1 �F C2 holds if� jC1j < jC2j, or� jC1j = jC2j and '(C1)� '(C2), or� '(C1) = '(C2) and FC1 � FC2. 6.2In other words, in order to decide if C1 �F C2 we compare �rst thesizes of C1 and C2; if they are equal, we compare '(C1) and '(C2); ifthey are equal, we compare FC1 and FC2.Observe that �F is a re�nement of �E. We now prove that �F isindeed adequate and total. The key property of 1-safe systems thatyields to this result is: 18



PROPOSITION 6.3.Any two concurrent conditions of the branching process of a 1-safenet system carry di�erent labels.Proof: Assume that two concurrent conditions b1 and b2 carry the samelabel s. Since fb1; b2g is a co-set, there is a cut c containing bothb1 and b2. This cut corresponds to a reachable marking that putsat least two tokens on the place s, which violates 1-safeness.6.3THEOREM 6.4.Let � = (O; p) be the unfolding of a 1-safe net system. �F is anadequate total order on the con�gurations of �.Proof: a) �F is a well-founded partial order.This follows immediately from the fact that �E is a well-foundedpartial order as is the lexicographic order on transition sequencesof some �xed length.b) C1 � C2 implies C1 �F C2.This is obvious, since C1 � C2 implies jC1j < jC2j.c) �F is total.Assume that C1 and C2 are two incomparable con�gurationsunder �F , i.e. jC1j = jC2j, '(C1) = '(C2), and '(FC1) ='(FC2). We prove C1 = C2 by induction on the common sizek = jC1j = jC2j.The base case k = 0 gives C1 = C2 = ;, so assume k > 0.We �rst prove Min(C1) = Min(C2). Assume without loss ofgenerality that e1 2 Min(C1) n Min(C2). Since '(Min(C1)) ='(Min(C2)), Min(C2) contains an event e2 such that p(e1) =p(e2). Since �Min(C1) and �Min(C2) are subsets ofMin(O), andall the conditions ofMin(O) carry di�erent labels by Proposition6.3, we have �e1 = �e2. This contradicts condition (iv) of thede�nition of branching process.SinceMin(C1) = Min(C2), both C1nMin(C1) and C2nMin(C2)are con�gurations of the branching process *Min(C1) of (N;Mark(Min(C1))) (Proposition 4.3), and they are incompara-ble under �F by construction. Since the common size of C1 nMin(C1) and C2 n Min(C2) is strictly smaller than k, we canapply the induction hypothesis and conclude C1 = C2.19



d) �F is preserved by �nite extensions.Take C1 �F C2 with Mark(C1) = Mark(C2). We have to showthat C1 �E �F C2 � I21 (E). We can assume that E = feg andapply induction afterwards. (Notice thatMark(C1) = Mark(C2)impliesMark(C1�feg) = Mark(C2�I21 (feg).) The cases jC1j <jC2j and C1 �E C2 are easy. Hence assume jC1j = jC2j and'(C1) = '(C2). We show �rst that e is a minimal event ofC 01 = C1 [ feg if and only if I21 (e) is a minimal event of C 02 =C2 [ fI21 (e)g.So let e be minimal in C 01, i.e. the transition p(e) is enabledunder the initial marking. Let s 2 �p(e); then no conditionin �C1 [ C�1 is labelled s, since these conditions would be inco relation with the s-labelled condition in �e, contradictingProposition 6.3. Thus, C1 contains no event e0 with s 2 �p(e0),and the same holds for C2 since '(C1) = '(C2). Therefore, theconditions in Cut(C2) with label in �p(e) are minimal conditionsof �, and I21 (e) = e is minimal in C 02. The reverse implicationholds analogously, since about C1 and C2 we have only used thehypothesis '(C1) = '(C2).With this knowledge about the positions of e in C 01 and I21 (e) inC 02, we proceed as follows. IfMin(C1) �E Min(C2), then we nowsee that Min(C 01) �E Min(C 02), hence '(FC 01) � '(FC 02) andso we are done. If '(Min(C1)) = '(Min(C2)) and e 2Min(C 01),thenC 01 nMin(C 01) = C1 nMin(C1) �F C2 nMin(C2) = C 02 nMin(C 02)hence C 01 �F C 02. Finally, if '(Min(C1)) = '(Min(C2)) ande 62 Min(C 01), we again argue that Min(C1) = Min(C2) andthat, hence, C1 nMin(C1) and C2 nMin(C2) are con�gurationsof the branching process *Min(C1) of (N;Mark(Min(C1))); withan inductive argument we get C 01 nMin(C 01) �F C 02 nMin(C 02)and are also done in this case. 6.47. The n-safe caseIn this section we study the problem of computing a complete �nitepre�x for an n-safe but not necessarily 1-safe-system.In the case of n-safe systems the partial order�F is neither adequatenor total. Figure 6 shows a 2-safe system (left) and one of its branchingprocesses (right). Take t1 � t2, and consider the con�gurations C1 =20



s12t1 t2s2
(a)

s1 s1t1e1 t2e2 t2e5 t1e6s1 s2 s1 s2t1e3 t2e4 t1e7 t2e8s1 s2 s1 s2(b)Figure 6. A 2{safe system (a) and one of its branching processes (b)s12 t1s2(a)
s1 s1t1e1 t1e2s2 s2(b)Figure 7. A 2{safe net system (a) and its unfolding (b)fe1; e3g and C2 = fe1; e5g; since their Foata normal forms are fe1gfe3gand fe1; e5g we have C1 �F C2.The processes * C1 and * C2 are isomorphic because Mark(C1) =fs1; s1g = Mark(C2). There are two possible isomorphisms I21 ; the �rstone satis�es I21 (e6) = e8, and the second I21 (e6) = e4. However, we haveboth C1 � fe6g �F C2 � fe8g and C1 � fe6g �F C2 � fe4g. So �F isnot preserved by extensions.Figure 7 shows a 2-safe net system (a) and its unfolding (b). Thecon�gurations fe1g and fe2g are not ordered by �F . So �F is not total.7.1. A different unfolding and finite prefixIt is not known whether there exists a total adequate order for the n-safe case. To deal with this case, we propose a di�erent de�nition forthe unfolding of a net system (similar ideas have been independentlydevoloped by Haar in [7]). The old and the new de�nition are essentiallyequivalent for 1-safe systems. For n-safe systems, the new de�nitionleads to branching processes with less concurrency. We accept this lossof concurrency for two reasons. First, the new de�nition allows to makeuse of our total adequate order �F . Second, as we will see at the end ofthe section, the branching processes according to the new de�nition canbe more compact { independently of the adequate order used. So the21



loss of concurrency does not necessarily lead to a poorer performance,as one might think.Fix a net system � = (N;M0) for the rest of this section. Forthe moment we do not impose any condition on �; it could even beunsafe. Using a well-known folklore construction of net theory (to ourknowledge �rst presented in [18]), we show that there exists a 1-safesystem �1 = (N1;M01) such that the reachability graphs of � and�1 are isomorphic. We then de�ne the new unfolding of � as the oldunfolding of �1.The system �1 has in�nitely many places and transitions; later weshow how to deal with this problem. A completely formal de�nition of�1 can be found in page 229 of [19]. Here we give a less formal, buthopefully precise description.� For each place s of N we add places [s; 0]; [s; 1]; [s; 2]; : : : to N1.The intended meaning of a token in the place [s; i] of N1 is thatthe place s of N currently contains i tokens.� For each transition t we add to N1 as many transitions as thereare markings for the input and output places of t. More precisely,given a transition t of N , we call a functionm: (�t [ t�)! INa �ring mode of t if m(s) > 0 for every place s 2 �t. The net N1contains a transition [t;m] for each �ring mode m of t. The inputand output places of [t;m] are determined by m in the naturalway: if s 2 �t [ t� and m(s) = k, then [s; k] 2 �[t;m] and [s; k �W (s; t) +W (t; s)] 2 [t;m]�.� In order to determine the initial marking of �1, we �rst associateto each markingM of N a 1-safe markingM1 of N1 in the followingway: for each place s of N , if M puts k tokens on s, then M1 putsone token on [s; k] and no tokens on any other place [s; i] withi 6= k. We choose M01, the 1-safe marking associated to the initialmarking M0 of �, as the initial marking of �1.It is proved in [19] that �1 is indeed 1-safe, and that the reachabilitygraphs of � and �1 are isomorphic up to the projection of the labels[t;m] of the transitions of �1 onto their �rst components. These resultsare immediate consequences of the following factFor every transition t of �, we have M t�! M 0 if and only if thereexists a �ring mode m of t such that M1 [t;m]�!M 0122



which can be easily proved using the de�nitions. As long as we areonly interested in properties that can be decided by inspection of thereachability graph (such as deadlock freedom, reachability of a markingetc.), we can use the complete pre�x of �1 instead of the complete pre�xof �.If the system � is n-safe then the places of �1 of the form [s; k] withk > n never become marked, and the transitions [t;m] where m(s) > nfor some place s never become enabled. All these places and transitionscan be removed from �1 without changing its behaviour in any way,and so we obtain a �nite 1-safe system. Figure 8 shows the �nite 1-safesystem obtained in this way from the 2-safe system of Figure 7.Since �1 is in�nite, we cannot compute the new complete pre�x of �by �rst constructing �1, and then computing the old complete pre�x of�1. Fortunately, the old complete pre�x of �1 can be directly computedfrom �. It su�ces to slightly modify Algorithm 4.7. Given a branchingprocess � of �1, let PE1(�) denote the possible extensions of � as abranching process of �1.ALGORITHM 7.1. The complete pre�x algorithm (arbitrary systems)input: An n-safe net system � = (N;M0) with fs1; : : : ; sng as setof places.output: A complete �nite pre�x of �1's unfolding.beginFin1 := ([s1;M0(s1)]; ;); : : : ; ([sn;M0(sn)]; ;);pe := PE1(Fin1);cut-o� := ;;while pe 6= ; dochoose an event e = ([t;m];X) in pe such that [e] is minimalwith respect to �;if [e]\ cut-o� = ; thenappend to Fin1 the event e and a condition ([s; k]; e)for every output place [s; k] of [t;m];pe := PE 1(Fin1);if e is a cut-o� event of Fin1 thencut-o� := cut-o� [fegendifelse pe := pe n fegendifendwhileend 7.123



[s1; 0] [s1; 1] [s1; 2][t1; (1; 0)] [t1; (1; 1)] [t1; (2; 0)] [t1; (2; 1)][s2; 0] [s2; 1] [s2; 2]Figure 8. 1{safe system equivalent to the 2{safe system of Figure 7We still have to show how to compute PE 1(�) for a branching pro-cess � of �1. We consider each transition t of � in turn, and look inFin1 for co-sets of conditions X such that� p(X) = �[t;m] for some �ring mode m of t, and� Fin1 contains no event e satisfying p(e) = [t;m] and �e = X.Clearly, the nodes ([t;m];X) are the possible extensions of �.In order to determine the existence of a �ring mode m such thatp(X) = �[t;m], the only information we need are the sets of input andoutput places of t; this information can be directly retrieved from �.We have the following result:THEOREM 7.2.Let Fin1 be the complete pre�x of �1 generated by Algorithm 7.1on input � with �F as adequate order. The number of non-cut-o�events of Fin1 does not exceed the number of reachable markings of�.Proof: By Theorem 5.3, the number of non-cut-o� events of Fin1 doesnot exceed the number of reachable markings of �1. Since thereachability graphs of � and �1 are isomorphic, it does notexceed the number of reachable markings of � either. 7.2It follows from this theorem that the algorithm terminates wheneverthe system � is n-safe for some number n.Note that the maximum number of tokens on each place of thebounded net system can easily be obtained after computation of the�nite pre�x. This can be achieved by linearly searching through thelist of conditions, remembering the maximum token values of the re-spective place nodes. In [14], a graph representing the co-relation of24



s1 s2 s3 � � � snt1 t2 t3 � � � tnsx(a) Example 1
s0 s1n s2nt1s3(c) Example 3s1 a1 s2 a2 � � � an sn+1 b1 sn+2 b2 � � � bn s2n+1

s0(b) Example 2Figure 9. Examples for the n{safe algorithmthe underlying McMillan pre�x has to be constructed to determine themaximum number of tokens.7.2. Partial-order semantics and comparisonThe complete pre�xes obtained from the same system � through theapplication of Algorithm 4.7 and Algorithm 7.1 generate the samereachability information, as we have seen. However, they can be verydi�erent. They correspond to two di�erent semantics of Petri nets,which are usually called the process semantics (Algorithm 4.7) andthe execution semantics (Algorithm 7.1). The latter has been de�nedand compared to the former in [19]. In this paper we are interested inthe sizes of the complete pre�xes obtained with the two semantics. Wehave not found any general relationship between the sizes; the followingexamples show that none of them lead to smaller complete pre�xes inall cases.If we treat Example 1 of Figure 9 with the usual partial-order se-mantics and McMillan's cut-o� criterion, we get a pre�x with n events;executions give n! events with McMillan's cut-o� criterion and 2n non-cut-o� events with our improved criterion. This shows that executionscan su�er severely from the `loss of concurrency' compared to the usualpartial-order semantics. 25



We again refer to the system shown in Figure 4, but this timewith two initial tokens put on place s0. The original net consists of2n transitions, and the usual partial-order semantics leads to a pre�xwith 2(2n+1�2) events with our improved criterion. Experimentally, wehave extrapolated that the pre�x using execution semantics contains8n� 4 events only.In Example 2 of Figure 9, the transitions ai produce tokens on s oneafter the other, the transitions bj can then take these in any possibleorder. With the usual partial-order semantics and McMillan's cut-o�criterion, this gives a pre�x with n! events labelled bn { while executionseven without our improvement give 2n events altogether. Example 3 ofthe same �gure shows another e�ect: the usual partial-order semanticshas to consider all pairs of tokens from s1 and s2 and leads to n2 events,whereas executions (even without our improvement) lead to only oneevent.One could have the feeling that the loss-of-concurrency e�ect is morecommon than the e�ects of Example 2 and 3; if this is so, a goodapplication area will be nets with only a few reachable markings withmore than 1 token on a place, where one can hope that the loss-of-concurrency e�ect will be more than cancelled out by the e�ects of ourimproved cut-o� criterion.8. Implementation, complexity, and experimental resultsImplementation. Algorithm 4.7 requires to store and manipulate Petrinets and branching processes. For the storage we have developed ane�cient, universal data structure that allows fast access to single nodes[17]. This data structure is based on the underlying incidence matrixof the net. Places, transitions and arcs are represented by nodes ofdoubly linked lists. We have developed a library of basic operations onnets supporting in particular fast insertion of single nodes.Algorithm 4.7 is very simple, and can be easily proved correct, but isnot e�cient. In particular, it computes the set PE of possible extensionseach time a new event is added to Fin, which is clearly redundant.Similarly to McMillan's original algorithm [11], in the implementationwe use a priority queue to store the set PE of possible extensions. Thequeue is implemented in a rather naive way, because experiments withmore sophisticated implementations show no improvements in averagetime. The events are sorted according to the size of their local con-�gurations, as in [11], and not according to �F , because this leads tomany unnecessary comparisons. Events are compared with respect to26



�F only when it is needed, i.e., when there are several events at thehead of the queue whose local con�gurations have the same size.With this implementation, the new algorithm only computes morethan McMillan's when two events e and e0 satisfyMark([e]) = Mark([e0])and j[e]j = j[e0]j. But this is precisely the case in which the algorithmbehaves better, because it always identi�es either e or e0 as a cut-o�event. In other words: when the complete pre�x computed by McMil-lan's algorithm is minimal, our algorithm computes the same resultwith no time overhead.The computation of new elements for the set PE involves the com-binatorial problem of �nding sets of conditions B such that p(B) = �tfor some transition t. We have implemented several improvements inthis combinatorial determination, which have signi�cant inuence onthe performance of the algorithm.Complexity. The exact running time of the algorithm depends on thedetails of the implementation. Here we only give some information. Thedominating factor is the computation of the possible extensions. Let Bbe the set of conditions of the �nite complete pre�x after removing allcut-o� events and their output conditions. In the worst case, for eachtransition t the algorithm may have to examine all subsets B0 of B suchthat there is a bijection between p(B0) and the preset of t, since theseare the candidates for a possible extension. (Observe that the ouputconditions of a cut-o� event cannot belong to a possible extension;that is why we have excluded them from the set B.) If � is the size ofthe preset of t, the algorithm may have to examine ( jBj� )� subsets.Let � denote the maximum size of the presets or postsets of thetransitions in the original net system �. If B >> �, then ( jBj� )� �( jBj� )�, and so the algorithm may have to examine a total of O(jT j �( jBj� )�) subsets. In the case of 1-safe Petri nets and a total adequateorder, the number of non-cut-o� events is at most the number R ofreachable markings of �. Since each non-cut-o� event contributes atmost � conditions to the �nite complete pre�x, we have jBj � R��+jSj,and so { under the natural assumption R � jSj { we obtain an upperbound of O(jT j�R�) subsets. However, the question whether there existsa family of net systems for which the algorithm examines �(jT j � R�)subsets is open.The space required by the algorithm is linear in the size of the com-plete pre�x. If the cut-o� events are not stored (which is not required formany veri�cation algorithms working on the pre�x), then for the case of1-safe Petri nets and total adequate orders the complete pre�x containsa total number of O(� �R) conditions and events. For the number of cut-27



Table I. Results of the distributed mutual exclusion (DME) exampleOriginal net Unfolding t [s]3n jSj jT j R4 jBj jEj c4 McMillan New algorithm2 135 98 > 102 487 122 4 0.07 0.083 202 147 > 103 1210 321 9 0.27 0.254 269 196 > 104 2381 652 16 1.23 1.265 336 245 > 105 4096 1145 25 3.92 3.886 403 294 > 106 6451 1830 36 10.37 10.407 470 343 > 107 9542 2737 49 28.45 29.088 537 392 > 108 13465 3896 64 68.16 69.219 604 441 > 109 18316 5337 81 131.88 130.5910 671 490 > 1010 24191 7090 100 240.57 243.1111 738 539 > 1011 31186 9185 121 420.12 418.02
o� events we only know a trivial upper bound of O(jT j �R�), althoughin the experiments conducted so far we have always observed O(R).Experimental results. We consider three scalable 1-safe net examples.We compare McMillan's algorithm and the new algorithm, both imple-mented using the universal data structure and the improvements in thecombinatorial determination mentioned above.The �rst example is a model of an asynchronous circuit for dis-tributed mutual exclusion (DME), proposed in [10] and also used in[11]. McMillan has already shown that the state space grows exponen-tially in the number of DME-cells while the unfolding increases justquadratically. In Table I we list the experimental results. In this exam-ple, the complete pre�x computed by McMillan's algorithm is minimal.The new algorithm computes the same pre�x without time overhead,as expected.Our second example, Figure 10, is a model of a slotted ring protocoltaken from [16]. Here, the output of the new algorithm grows signi�-cantly slower than the output of McMillan's algorithm. For n = 6 theoutput is already one order of magnitude smaller.2 All the times (t) have been measured on a SPARCstation 20 with 48 MB mainmemory.3 In all Tables, R indicates the number of reachable states and c the number ofcut-o� events.4 These times could not be calculated; for n = 7 we interrupted the computationafter more than 12 hours. 28



GiveFreeSlot1 Free1
Ack1 IntAck1GoOn1 PutMsgInSlot1 Used1Other1Owner1 Write1

GiveFreeSlot2 Free2
Ack2 IntAck2GoOn2 PutMsgInSlot2 Used2Other2Owner2 Write2Figure 10. Slotted ring protocol for n = 2Table II. Results of the slotted ring protocol exampleOriginal net McMillan's algorithm New algorithmn jT j R jEj c t [s] jEj c t [s]1 10 1:2 � 101 12 3 0.00 12 3 0.002 20 2:1 � 102 68 12 0.00 62 14 0.003 30 4:0 � 103 288 60 0.13 186 42 0.054 40 8:2 � 104 1248 296 1.72 528 128 0.385 50 1:7 � 106 6240 1630 45.31 1280 300 1.586 60 3:7 � 107 31104 8508 1829.48 3216 792 11.087 70 8:0 � 108 |5 7224 1708 79.088 80 1:7 � 1010 |5 17216 4256 563.699 90 3:8 � 1011 |5 37224 8820 2850.8910 100 8:1 � 1012 |5 86160 21320 15547.67

In Table 3, we give the times for an example taken from [2] thatmodels Milner's cyclic scheduler for n tasks. While the size of theunfolding produced by the McMillan's algorithm grows exponentiallywith the number of tasks, we get linear size using our new one.Table 3. Results of Milner's cyclic schedulerOriginal net McMillan's algorithm New algorithmn jSj jT j R jBj jEj c t [s] jBj jEj c t [s]3 23 17 43 94 44 8 0.02 52 23 4 0.006 47 35 639 734 361 64 0.48 112 50 7 0.029 71 53 7423 5686 2834 512 22.90 172 77 10 0.0512 95 71 74264 45134 22555 4096 1471.16 232 104 13 0.13
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For the implementation of the n{safe algorithm 7.1, the underlying datastructure for the pre�x has been slightly extended to store the addi-tional token information. The representation of the original net remainsunchanged; in particular, there is no additional structure combiningpresets and postsets of transitions.The computation of possible extensions once more dominates thetime complexity; now, there are even more place nodes to investigatefor each single event since we have to consider all elements in the presetand postset of a transition. For the n{safe case, the term � in theabove formula describing the time complexity denotes the maximumnumber of input and output arcs of the transitions of the original net,ie., � = maxt2T fj�t [ t�jg. 9. ConclusionsWe have presented an algorithm for the computation of a complete�nite pre�x of an unfolding using a re�nement of McMillan's basicnotion of cut-o� event. The pre�xes constructed by the algorithm con-tain at most n non-cut-o� events, where n is the number of reachablemarkings of the net. Therefore, we can guarantee that the pre�x isnever signi�cantly larger than the reachability graph, which did nothold for the algorithm of [11].AcknowledgementsWe thank Michael Kishinevsky, Alexander Taubin and Alex Yakovlevfor drawing our attention to this problem, Burkhard Graves for detect-ing some mistakes, and Ken McMillan for sending us his LISP sourcesof the DME generator. References1. E. Best and C. Fern�andez: Nonsequential Processes { A Petri Net View. EATCSMonographs on Theoretical Computer Science 13 (1988).2. J.C. Corbett: Evaluating Deadlock Detection Methods for Concurrent Soft-ware. Proceedings of the 1994 International Symposium on Software Testingand Analysis, ISSTA '94. ACM{Press, pp. 204{215 (1994).3. V. Diekert: Combinatorics on Traces. LNCS 454 (1990).4. J. Engelfriet: Branching Processes of Petri nets. Acta Informatica 28, pp. 575{591 (1991). 30
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