
Internal Report TCS-93-5
October, 1993

Determinizing Asynchronous Automata

Nils Klarlund1, Madhavan Mukund2, Milind Sohoni2

Abstract

A concurrent version of a finite-state automaton is a set of pro-
cesses that cooperate in processing letters of the input. Each letter
read prompts some of the processes to synchronize and decide on a
joint move according to a non-deterministic transition relation. Such
automata are known as asynchronous automata.

The question whether these automata can be determinized while
retaining the synchronization structure has already been answered in
the positive, but indirectly, by means of sophisticated algebraic tech-
niques.

In this paper we present an elementary proof, which generalizes the
classic subset construction for finite-state automata. The proof uses
in an essential way an earlier finite-state construction by Mukund and
Sohoni for maintaining each process’s latest knowledge about other
processes.

Our construction is only double-exponential and thus is the first
to essentially match the lower bound.

In conjunction with earlier results of Ochmanski and Pighizzini,
our construction provides a new (and in a sense “classical”) proof of
Zielonka’s theorem that every recognizable trace language is accepted
by a deterministic asynchronous automaton whose structure precisely
captures the independence relation of the given trace alphabet.

1Computer Science Department, Aarhus University, Ny Munkegade, DK
8000 Aarhus C, Denmark. E-mail: klarlund@daimi.aau.dk

2School of Mathematics, SPIC Science Foundation, 92 G N Chetty Road,
T Nagar, Madras 600 017, India. E-mail: {madhavan,sohoni}@ssf.ernet.in

This report is also published as Report DAIMI PB-460, Computer Science
Department, Aarhus University, Aarhus, Denmark.

Introduction

Asynchronous automata were introduced by Zielonka as a natural generalization
of finite-state automata for concurrent systems [Zie]. An asynchronous automa-
ton consists of a set of components, or processes, which periodically synchronize
to process their input. Each letter a in the alphabet is associated with a subset
θ(a) of processes. The processes in θ(a) synchronize on reading a and jointly
decide on a move. The processes outside θ(a) remain unchanged during this
move—in fact, they are oblivious to the occurrence of a.

A distributed alphabet of this type gives rise to an independence relation I
between letters: (a, b) ∈ I iff θ(a)∩θ(b) = ∅. Thus a and b are independent when
processed by disjoint sets of components.

An alphabet with an independence relation is also called a concurrent alpha-
bet. This notion was introduced by Mazurkiewicz as a technique for studying
concurrent systems from the viewpoint of formal language theory [Maz]. Given
a concurrent alphabet (Σ, I), I induces a natural equivalence relation ∼ on Σ∗:
two words w and w′ are related by ∼ iff w′ can be obtained from w by a se-
quence of permutations of adjacent independent letters. The equivalence class
[w] containing w is called a trace.

A language L ⊆ Σ∗ is said to be a trace language if L is closed under ∼—
i.e., for each w ∈ Σ∗, w is in L iff every word in [w] is L. A trace language is
recognizable if it is accepted by a conventional finite state automaton.

However, since conventional automata are sequential, it is quite awkward
to precisely characterize the class of automata which recognize trace languages.
Asynchronous automata, on the other hand, are natural machines for recognizing
these languages. If we distribute Σ in such a way that the induced independence
relation is precisely I, we are guaranteed that the language accepted by the
automaton is closed under ∼.

Despite this simple connection, it is hard to prove that the class of languages
accepted by asynchronous automata coincides with the class of recognizable trace
languages. This result was first established by Zielonka [Zie]. Given a conven-
tional finite automaton recognizing a trace language over (Σ, I), he showed how
to construct directly a deterministic asynchronous automaton over a distributed
alphabet (Σ, θ) recognizing the same language, such that the independence rela-
tion induced by θ is precisely I. The proof involves combinatorics over partially
commutative monoids and is quite difficult to grasp. A comprehensive survey of
the theory of recognizable trace languages can be found in [Die].

Contributions of this paper

In this paper, we generalize the classic subset construction of Rabin and Scott in
order to obtain a direct procedure for determinizing an asynchronous automaton
A. To our knowledge, this construction is the first that involves only a double-

1

exponential blow-up in the size of the state spaces. We also show that this bound
is essentially optimal.

The only other known way to determinize a non-deterministic asynchronous
automaton A is to view it as a normal non-deterministic automaton at the level of
“global states” and then apply Zielonka’s construction to obtain a deterministic
asynchronous automaton.

Our construction is the last piece needed for a “classical” proof of Zielonka’s
theorem that recognizable trace languages coincide with the languages accepted
by (deterministic) asynchronous automata. Even before Zielonka’s result, Ochman-
ski had defined a class of rational expressions that precisely generate recognizable
trace languages [Och]. Ochmanski’s characterization is effective—in particular,
given a finite automaton recognizing a trace language we can construct a rational
expression for the language. Recently, Pighizzini has shown how to construct,
inductively, a non-deterministic automaton A(E) for any (Ochmanski)-rational
expression E such that A(E) accepts exactly the rational subset of Σ∗ associated
with E [Pig]. Further, the size of A(E) is polynomial in the length of E. Given
our construction, we can now convert A(E) into a deterministic asynchronous
automaton B(E) which also accepts the same set. This proof of Zielonka’s theo-
rem is analogous to the “textbook” proof that sets defined by regular expressions
coincide with sets recognized by deterministic finite state automata [HU].

The paper is organized as follows. We begin by describing asynchronous au-
tomata and fixing some notation that we use in the paper. Then, we describe the
distinction between local and global views of a word over a distributed alphabet.
In Section 3 we define local runs and show how to characterize global runs of
asynchronous automata as special products of local runs. The rest of the paper
is devoted to showing how to maintain finite sets of local runs which retain all the
necessary information about global runs. The crucial notion is that of a frontier,
defined in Section 4. Section 5 introduces primary and secondary events, which
between them subsume the frontiers. The “gossip automaton” of [MS], which
locally updates primary and secondary information is described in the next sec-
tion. All these notions are finally put together in Section 7 which presents the
overall determinization construction. In Section 8 we analyze the complexity of
our construction and provide a simple lower bound.

1 Preliminaries

Distributed alphabet Let P be a finite set of processes. A distributed alphabet
is a pair (Σ, θ) where Σ is a finite set of actions and θ : Σ → 2P assigns a set of
processes to each a ∈ Σ.

State spaces With each process p, we associate a finite set of states denoted
Vp. Each state in Vp is called a local state. For P ⊆ P, we use VP to denote the

2

product
∏

p∈P Vp. An element ~v of VP is called a P -state. A P-state is also called
a global state. Given ~v ∈ VP , and P ′ ⊆ P , we use ~vP ′ to denote the projection of
~v onto VP ′. Also, ~vP ′ abbreviates ~vP\P ′. For a singleton p ∈ P , we write ~vp rather
than ~v{p}. For a ∈ Σ, we write Va to mean Vθ(a) and Va to mean Vθ(a). Similarly,
if ~v ∈ VP , we write ~va to denote ~vθ(a) and ~va to denote ~vθ(a).

Asynchronous automaton An asynchronous automaton A over (Σ, θ) is of
the form

({Vp}p∈P, {→a}a∈Σ,V0,VF),

where →a⊆ Va×Va is the local transition relation for a, and V0,VF ⊆ VP are sets
of initial and final global states. Intuitively, each →a specifies how the process
θ(a) that meet on a may decide on a joint move. Other processes do not change
their state. Thus we define the global transition relation ⇒ ⊆ VP × Σ× VP by
~v

a
=⇒ ~v′ if ~va →a ~v

′
a and ~va = ~v′a.

A is called deterministic if the transition relation of A is a function from
VP × Σ to VP and if the set of initial states V0 is a singleton.

Runs Let u ∈ Σ∗ be of length of m. It is convenient to think of u as a function
u : [1..m] → Σ, where for natural numbers i < j, [i..j] abbreviates the set
{i, i+1, . . . , j}.

A (global) run of A on u is a function ρ : [0..m] → VP such that ρ(0) ∈ V0

and for i ∈ [1..m], ρ(i− 1)
u(i)
=⇒ ρ(i).

The word u is accepted by A if there is a run ρ of A on u such that ρ(m) ∈ VF .
L(A), the language accepted by A, is the set of words u accepted by A.

The problem Given a non-deterministic asynchronous automaton A over (Σ, θ),
we shall construct a deterministic asynchronous automaton B over (Σ, θ), such
that L(A) = L(B).

2 Local and global views

Events Given u : [1..m] → Σ, we associate a set of events Xu. Each event x
is of the form (i, u(i)), where i ∈ [1..m]. In addition, we define an initial event
denoted 0. The initial event marks the beginning when all processes synchronize
and agree on an initial global state. Usually, we will write X for Xu. We write
p ∈ x to denote that p ∈ θ(u(i)) when x = (i, u(i)); for x = 0, we define p ∈ x to
hold for all p ∈ P. If p ∈ x, then we say that x is a p-event .

If x = (i, a) is an event, then we may use x instead of a in abbreviations such
as Vx, which stands for Va, i.e., Vθ(a).

3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

?

? ?

? ?

x4

? ?

?

?

p q r s

b

c

a

d

x3

x2

x1

x0

Figure 1: An example

Example: Consider the word u = abcd over the alphabet (Σ, θ) for P =
{p, q, r, s}, where Σ = {a, b, c, d} and θ(a) = {p, q}, θ(b) = {q, r, s}, θ(c) = {r, s},
and θ(d) = {p, q}. The set Xu of events is then

{x0, x1, x2, x3, x4} = {0, (1, a), (2, b), (3, c), (4, d)}

.

Ordering relations on X A word u imposes a total order on events: define
x < y if x 6= y and either x = 0 or x = (i, u(i)), y = (j, u(j)), and i < j. We
write x ≤ y if x = y or x < y. Moreover, each process p orders the events in
which it participates: define ⊳p to be the strict ordering

x ⊳p y if x < y, p ∈ x ∩ y and for all x < z < y, p /∈ z.

The set of all p-events in X is totally ordered by ⊳∗p, the reflexive, transitive closure
of ⊳p.

Define x < y if for some p, x ⊳p y and x ⊑ y if x = y or x < y. The causality
relation ⊑∗ is the transitive closure of ⊑. If x ⊑∗ y then we say that x is below
y. Note that 0 is below any event. The set of events below x is denoted x↓.
These represent the only synchronizations in X that may have affected the state
of the processes in x when x occurs. The neighbourhood of x, nbd(x), consists of
x together with all its “<-predecessors”—i.e., nbd(x) = {x} ∪ {y | y < x}.

4

Example: Continuing our example, in Figure 1 an arrow has been drawn be-
tween each pair of events related by <; the vertical dashed lines further partition
these arrows into ⊳p, ⊳q, ⊳r and ⊳s. For example, x0 ⊳p x1 holds, but x0 ⊳r x1

does not hold. x4↓, the x4-cone, is the set {x0, x1, x2, x4} and x3↓, the x3-cone,
is {x0, x1, x2, x3}. Thus x3↓ ∪ x4↓= X. nbd(x4), the neighbourhood of x4, is
{x1, x2, x4}.

Ideals A set of events I ⊆ X is called an ideal if I is closed with respect to
⊑∗—i.e., x ∈ I and y ⊑∗ x implies y ∈ I as well. Clearly the entire set X is an
ideal, as is x↓ for any x ∈ X.

P -views Let I be an ideal. The ⊑∗-maximum p-event in I is denoted max p(I).
The p-view of I is the set I|p = max p(I)↓. So, I|p is the set of all events in I
which p can “see”. For P ⊆ P, the P -view of I, denoted I|P , is

⋃
p∈P I|p. Notice

that I|P is always an ideal. In particular, we have I|P = I. Also notice that if
y ∈ I|P for some P ⊆ P, then nbd(y) ⊆ I|P as well.

Example: In the example of Figure 1, max q(X) = x4. So X|q = x4 ↓=
{x4, x2, x1, x0}. On the other hand, max s(X) = x3 and X|s = x3↓= {x3, x2, x1, x0}.

3 Local runs and histories

Local runs Let I be an ideal. A local run on I is a function r that assigns to
each y ∈ I a y-state—i.e., a state in Vy—such that r(0) ∈ V0 and for all y 6= 0,
r is consistent with →y in the neighbourhood nbd(y). In other words, for y 6= 0
we have ~v →y r(y), where ~v the y-state such that for all q ∈ y, ~vq = r(z)q, where
z ⊳q y. Let R(I) denote the set of all local runs on I.

So, a local run on X is an assignment of a y-state to each y ∈ X such that all
neighbourhoods in X are consistently labelled.

Proposition 1 Given u : [1..m] → Σ, there is a 1-1 correspondence between
local runs on Xu and global runs on u.

Proof For i ∈ [1..m] let wi denote the prefix of u up to i. Also, for i ∈ [1..m]
let xi denote the event (i, u(i)) in Xu.

Given a local run r on Xu, we define a global run ρ : [0..m] → VP on u by
ρ(0) = r(0) and for i ∈ [1..m], ρ(i)p = r(max p(Xwi

))p for all p ∈ P.
Given a global run ρ : [0..m] → VP on u , we define a local run r on Xu by

r(0) = ρ(0) and for i ∈ [1..m], r(xi) = ρ(i)θ(u(i)). 2

5

Histories Let I be an ideal. A history on I is a partial function h such that
dom(h) ⊆ I and h(y) ∈ Vy for each y ∈ dom(h). A history h is reachable if there
is some local run r on I such that h(y) = r(y) for all y ∈ dom(h). Let H(I)
denote the set of all histories on I. Clearly, R(I) ⊆ H(I).

Choices Let I be an ideal. Given a collection {Hp}p∈P of sets of histories
on the p-views I|p, a P -choice {hp}p∈P of {Hp}p∈P assigns to each p ∈ P , a
history hp from Hp. The choice is consistent if for each p, q ∈ P , for every
y ∈ dom(hp) ∩ dom(hq), hp(y) = hq(y).

Let {Hp}p∈P be a collection of sets histories for P ⊆ P. We define the product⊗
p∈P Hp as follows.

⊗

p∈P
Hp = {h ∈ H(I|P) | There exists a consistent P -choice {hp}p∈P of

{Hp}p∈P such that dom(h) =
⋃

p dom(hp) and
∀p ∈ P. ∀y ∈ dom(hp). h(y) = hp(y)}

So each element in
⊗

p∈P Hp is a history on I|P pieced together from a choice
of mutually consistent histories on I|p from the sets Hp, for p ∈ P .

In particular, for P ⊆ P we may form the product
⊗

p∈P R(I|p), which gener-
ates the set R(I|P) of local runs on I|P :

Lemma 2 Let I be an ideal and P ⊆ P. R(I|P) =
⊗

p∈P R(I|p)

Proof Let r ∈ R(I|P). Then for each p ∈ P , clearly r restricted to I|p is a local
run rp on I|p. So, using the consistent P -choice {rp}p∈P of {R(I|p)}p∈P we get
r ∈ ⊗

p∈P R(I|p).
On the other hand, let r ∈ ⊗

p∈P R(I|p) where the consistent P -choice is
{rp}p∈P . Clearly dom(r) = I|P . We just have to check that nbd(y) is labelled
consistently by r for each y ∈ I|P . But, any y ∈ I|P must also belong to I|p for
some p ∈ P . We know that y ∈ I|p implies nbd(y) ⊆ I|p. Since rp is a local run
on I|p, rp must have assigned consistent values to nbd(y). But r agrees with rp
on all events in I|p, so r must assign the same values to nbd(y) and we are done. 2

An infinite-state deterministic automaton

The preceding lemma tells us that we can reconstruct R(I|P) = R(I) by taking
the product

⊗
p∈PR(I|p)—i.e., we can recover all the local runs on X by taking the

product of local runs on X|p. We already know that local runs on X correspond
precisely to the global runs on u.

This immediately gives us an infinite-state deterministic asynchronous au-
tomaton A′ = ({V ′

p}p∈P, {→′
a}a∈Σ,V′

0,V
′
F) which accepts L(A). For p ∈ P,

6

V ′
p = {R(Xu|p) | u ∈ Σ∗}. In other words, each local state of p consists of

the set of local runs on Xu|p for each word u.
Initially, each process starts off in the state {〈0 7→ ~v〉 | ~v ∈ V0}. The global

initial state V′
0 is the cross product of these initial states.

The transition relations →′
a are defined in the natural way. Suppose w = ua.

Let xa be the new event associated with a—i.e., {xa} = Xw \ Xu. Clearly, for
p /∈ θ(a), Xw|p = Xu|p and, as desired, the local state of p does not change—
R(Xw|p) = R(Xu|p). For p ∈ θ(a), it is easy to check that Xw|p = Xu|θ(a) ∪ {xa}.
So, any run rp ∈ R(Xw|p) consists of a local run on Xu|θ(a) together with an
assignment of a θ(a)-state to xa which is consistent with→a in the neighbourhood
nbd(xa). But, by Lemma 2, R(Xu|θ(a)) is precisely the product

⊗
p∈θ(a)R(Xu|p).

So, when the processes in θ(a) synchronize, they can pool their information and
compute for each p ∈ θ(a) the new state R(Xw|p). In fact, for all p ∈ θ(a), the
new local state R(Xw|p) will be identical.

To decide whether to accept u, we have to check if A could have been in an
accepting global state after u. By Lemma 2 and Proposition 1, we can associate
with each local run r ∈ ⊗

p∈PR(Xu|p) a global run ρ on u. The global state ~v
of A after r is obtained by setting ~vp = r(max p(Xu))p for each p ∈ P. Since⊗

p∈P R(Xu|p) generates exactly the set of local runs on Xu, we can compute all
reachable global states after u in this manner. So, a global state in our new
automaton is accepting if one of the global states it generates is an accepting
state for A.

In the following, we formulate a finite-state version of the automaton above.
We do not store the entire set R(Xu|p) in each p. Instead, at any ideal I, each p
will keep track of the set of reachable histories on a special bounded subset of I|p.
This bounded subset will be such that the product of reachable histories across
this subset will also be reachable. In this manner, we ensure that the processes
retain enough global information about runs to compute exactly the reachable
global states after I.

4 Finite histories and frontiers

Frontiers Let I be an ideal and p, q, s ∈ P. We say that event y is an s-sentry
for p with respect to q if y ⊳s z for some z ∈ I|q \ (I|p ∩ I|q). Thus it is an event
known to p and q, but whose s-successor is known only to q. Notice that for some
s ∈ P, there may be no s-sentry for p with respect to q.

Define frontier pq(I) to be the set of all s-sentries which exist for p with respect
to q. Notice that this definition is asymmetric—frontier pq(I) 6= frontier qp(I).

Example: In the example of Figure 1, X|p ∩X|s = {x0, x1, x2}. frontier ps(X) =
{x2}, whereas frontier sp(X) = {x1, x2}. Notice that x2 belongs to both frontiers—
it is an r-sentry and an s-sentry in frontier ps(X) and a q-sentry in frontier sp(X).

7

As our example shows, an event y ∈ frontierpq(I) could simultaneously be
an s-sentry for several different s. The following observation guarantees that
frontier pq(I) is always a bounded set.

Lemma 3 Let I be an ideal and p, q ∈ P, For each s ∈ P there is at most one
s-sentry y ∈ frontierpq(I).

Proof Suppose not. Then we have y, y′ ∈ frontierpq(I) and z, z′ such that y ⊳s z
and y′ ⊳s z′. We know that all events involving s are totally ordered by ⊳s. So
either y ⊳∗s y

′ or y′ ⊳∗s y. Without loss of generality assume that y ⊳∗s y
′. Then we

must have y ⊳s z ⊳
∗
s y

′ ⊳s z
′. Since y′ ∈ I|p ∩ I|q and z ⊑∗ y′, z ∈ I|p ∩ I|q as well.

But this contradicts the assumption that z ∈ I|q \ (I|p ∩ I|q). 2

For P ⊆ P and p ∈ P , the P -frontier of p at I is the set

⋃

q∈P\{p}
frontier pq(I) ∪ frontier qp(I).

Lemma 4 Let I be an ideal and {hp}p∈P be a consistent P -choice of {H(I|p)}p∈P
such that for each p ∈ P :

• hp is reachable; and

• the P -frontier of p is included in dom(hp).

Then
⊗

p∈P hp is a reachable history in H(I|P).

Proof Let us order the processes in P as p1, p2, . . . , pk. For i ∈ [1..k], let
Pi =

⋃
j∈[1..i] pj . By assumption, for each pi, hpi is a reachable history. So, we

have a local run rpi on I|pi which agrees with hpi on dom(hpi). To show that
h =

⊗
p∈P hp is reachable, we must construct a local run r on I|P which agrees

with h on dom(h) =
⋃

p∈P dom(hp).
Define r as follows:

• For all y ∈ I|p1, r(y) = rp1(y).

• For i ∈ [2..k], for all y ∈ I|pi \ I|Pi−1
, r(y) = rpi(y).

So, we “sweep across” I|P starting from I|p1 and ending at I|pk , assigning
states according to rp1, rp2, . . . , rpk in k “stages” as we go along. Clearly dom(r) =
I|P and r agrees with h on dom(h). We have to show that r is a local run; i.e.,
we have to show that r is consistent with →y across nbd(y) for each y ∈ I|P .

Let y ∈ I|P . We know that r(y) was assigned at some stage i ∈ [1..k]. Clearly,
y ∈ I|pi and so nbd(y) ⊆ I|pi as well. If nbd(y) ⊆ I|pi \ I|Pi−1

, then all the events

8

in nbd(y) are assigned r values at stage i according to rpi. Since rpi is a local run
on I, these values must be consistent with →y.

The crucial case is when some z ∈ nbd(y) lies in I|Pi−1
and so has already been

assigned a value according to rpj for some j ∈ [1..i−1]. But then z ∈ I|Pi−1
∩ I|pi

which is the same as
⋃

j∈[1..i−1](I|pj∩I|pi). In other words, for some pj, j ∈ [1..i−1],
z belongs to frontierpjpi(I). So z ∈ dom(hpj)∩ dom(hpi), by assumption. There-
fore, the value r(z) must agree with hpj(z) = hpi(z) and hence must agree with
rpi(z) as well. In other words, even though z ∈ nbd(y) has already been assigned
a value before stage i, the value agrees with rpi. So, effectively, nbd(y) is assigned
values as given by rpi and these must be consistent with →y since rpi is a local
run on I. 2

This is a finite version of Lemma 2 above. Suppose that at the end of a word
u, each process p maintains all reachable histories on a finite (bounded) set of
events spanning the P-frontier of p in Xu together with the maximum p-event
max p(Xu). By the previous lemma, the product of these histories will generate
all the reachable global states of A after u. Since the P-frontier of p in any ideal
is a finite set, the set of all reachable histories that p has to keep track of is
also finite. So, using a bounded amount of information in each process, we can
reconstruct all possible global states of A after u.

The problem now is with maintaining frontier information locally—i.e., how
can a process p compute and locally update its frontier? This is done using
slightly larger, but still bounded, sets of events called primary and secondary
information, which between them subsume the frontier. It turns out that these
sets can be updated locally with each synchronization between processes. These
then will be the domains of the histories maintained by each process.

5 Primary and secondary information

Primary information Let I be an ideal and p, q ∈ P. Then latestp→q(I)
denotes the maximum q-event in I|p. So, latestp→q(I) is the latest q-event in I
that p knows about.

The primary information of p after I, primaryp(I), is the set {latestp→q(I)}q∈P.
As usual, for P ⊆ P, primaryP (I) =

⋃
p∈P primaryp(I).

Remark: Since q ∈ 0 ∈ I|p for all q ∈ P, the set {y ∈ I|p | q ∈ y} is always
nonempty. Since all q-events are linearly ordered by ⊳q, the maximum q-event in
I|p is well-defined. Notice that latestp→p(I) = max p(I).

Secondary information The secondary information of p after I, secondaryp(I),
is the set

⋃
q∈P primaryq(latestp→q(I)↓). In other words, this is the latest infor-

mation that p has in I about the primary information of q, for each q ∈ P. Once
again, for P ⊆ P, secondaryP (I) =

⋃
p∈P secondaryp(I).

9

Each event in secondaryp(I) is of the form latest q→s(latestp→q(I)↓) for some
q, s ∈ P. This is the latest s-event which q knows about upto the event latestp→q(I).
We abbreviate latest q→s(latestp→q(I)↓) by latestp→q→s(I). Notice that each pri-
mary event latestp→q(I) is also a secondary event latestp→p→q(I). In other words,
primaryp(I) ⊆ secondaryp(I).

Example: In Figure 1, latests→p(X) = x1 whereas latestp→s(X) = x2. Also,
latests→p→r(X)
= x0 while latestp→s→r(X) = x2.

Lemma 5 Let I be an ideal, p, q ∈ P and y ∈ frontierpq(I) an s-sentry. Then
y = latestp→s(I). Also, for some s′ ∈ P, y = latest q→s′→s(I). So, y ∈ primaryp(I)∩
secondaryq(I).

Proof Since y is an s-sentry, for some z ∈ I|q \ I|p, y ⊳s z. Suppose that
latestp→s(I) = y′ 6= y. Since all s-events are linearly ordered by ⊳s, we must have
y ⊳∗s y

′. However, y ⊳s z as well, so we have y ⊳s z ⊳
∗
s y

′. This means that z ∈ I|p,
which is a contradiction.

Next, we must show that y = latest q→s′→s(I) for some s′ ∈ P. We know that
there is a path y < z1 < . . . < max p(I), since y ∈ I|p. This path starts inside
I|p ∩ I|q.

If this path never leaves I|p ∩ I|q then max p(I) ∈ I|q. Since max p(I) is
the maximum p-event in I, it must be the maximum p-event in I|q. So, y =
latest q→p→s(I) and we are done.

If this path does leave I|p ∩ I|q, we can find an event y′ ∈ frontier qp(I)
along the path such that y′ is an s′-sentry for some s′ ∈ P—in other words,
for some z′, y ⊑∗ y′ ⊳s′ z′ ⊑∗ max p(I). We know by our earlier argument
that y′ = latestq→s′(I). It must be the case that y = latests′→s(y

′ ↓). For, if
latests′→s(y

′ ↓) = y′′ 6= y, then y ⊳∗s y
′′ ⊑∗ y′ ⊑∗ max p(I). This implies that

y ⊳∗s y′′ and y′′ ∈ I|p, which contradicts the fact that y = latestp→s(I). So,
y = latests′→s(y

′↓) = latest q→s′→s(I) and we are done. 2

So, for every p ∈ P and u ∈ Σ∗, each process pmaintains all reachable histories
over the finite set secondaryp(Xu). (Recall that primaryp(Xu) ⊆ secondaryp(Xu).)
By the preceding lemma, this set includes all events in the P-frontier of Xu as
well as the maximal event max p(Xu) = latestp→p→p(Xu).

We now need to show that these sets may be updated locally—i.e., if w = ua,
then secondaryp(w) may be computed from secondaryp(u) for each process p ∈
θ(a) using only the information available with the processes in θ(a). This involves
running the “gossip automaton” [MS] in the background. In order to make this
presentation self-contained, we describe the procedure of [MS] for comparing and
updating primary and secondary information.

10

Comparing primary information

Lemma 6 Let I be an ideal and p, q, s ∈ P. Let yp = latestp→s(I) and yq =
latest q→s(I). Then yp ⊑∗ yq iff yp ∈ secondaryq(I).

Proof

(⇐) Suppose yp ∈ secondaryq(I). Then, yp ∈ I|q and so yp ⊑∗ yq ∈ I|q by the
definition of latestq→s(I).

(⇒) If yp = yq, yp ∈ primaryq(I) ⊆ secondaryq(I) and there is nothing to prove.
If yp 6= yq, then, yp ⊳

∗
s yq and so yp ∈ I|p ∩ I|q. Let y′ be the s-successor of y. We

know that y′ ∈ I|q \ I|p, so yp is an s-sentry in frontier pq(I). But then, by our
previous lemma, yp ∈ primaryp(I) ∩ secondaryq(I) and we are done. 2

Suppose p and q synchronize at an action a after u. At this point they “share”
their primary and secondary information. If q can find the event latestp→s(Xu)
in its set of secondary events secondaryq(Xu), q knows that its latest s-event
latest q→s(Xu) is at least as recent as latestp→s(Xu). So, after the synchronization,
latest q→s(Xua) is the same as latest q→s(Xu), whereas p inherits this information
from q—i.e., latestp→s(Xua) = latestq→s(Xu). In this way, for each s ∈ P, p
and q can locally update their primary information about s in Xua. Clearly
latestp→q(Xua) = latestq→p(Xua) = xa, where xa is the new event—i.e., Xua\Xu =
{xa}.

This procedure generalizes to any arbitrary set P ⊆ P which synchronize
after u. The processes in P share their primary and secondary information and
compare this information pairwise. Using Lemma 6, for each q ∈ P \ P they
decide who has the “latest information” about q. Each process then comes away
with the best primary information from P . Notice, that all processes in P will
always have the same primary information after they synchronize.

Once we have compared primary information, updating secondary informa-
tion is automatic. Clearly, if latest q→s(I) is better than latestp→s(I), then every
secondary event latest q→s→s′(I) must also be better than latestp→s→s′(I). So, sec-
ondary information can be locally updated too. In other words, to consistently
update primary and secondary information, it suffices to to correctly compare
primary information, which is achieved by Lemma 6.

From the preceding argument, it is clear that each new event belongs to the
primary (and hence secondary) information of the processes which synchronize
at that event. Further, if an event disappears from the secondary information of
all the processes, it will never reappear as secondary information at some later
stage. This is captured formally in the following proposition.

Proposition 7 Let u, w ∈ Σ∗ such that w = ua for some a ∈ Σ. Let xa denote
the new event in w—i.e., Xw \ Xu = {xa}. Then:

11

• xa ∈ secondaryP(Xw).

• secondaryP(Xw) ⊆ {xa} ∪ secondaryP(Xu).

6 Locally updating primary/secondary informa-

tion

To make Lemma 6 effective, we must make the assertions “locally checkable”—
e.g., if yp = latestp→s(I), processes p and q must be able to decide if yp ∈
secondaryq(I). This is achieved by labelling each action in u in such a way
that primary and secondary information can be maintained as sets of labelled
actions.

We may näıvely assume that events in Xu are locally assigned distinct labels—
in effect, at each action a, the processes in θ(a) assign a time-stamp to the new
occurrence of a. In this manner, the processes in P can easily assign consis-
tent local time-stamps for each action which will let them compute the relations
between events which we are interested in.

The problem with this approach is that we will need an unbounded set of
time-stamps, since u could get arbitrarily large. Instead we would like a scheme
which uses only a finite set of labels to distinguish events. This would mean that
several different occurrences of the same action will eventually end up with the
same label. We have to ensure that this does not lead to any confusion when we
try to update primary and secondary information.

However, from Lemma 6, we know that to compare primary information, we
only need to look at the events in the primary and secondary sets of each process.
So, it is sufficient if the labels assigned to these sets are consistent across the
system—i.e., if the same label appears in primary or secondary information of
different processes, the corresponding event is actually the same.

Suppose we have such a labelling on u and we want to extend this to a labelling
on w = ua—i.e., we need to assign a label to the new a-event. By Proposition 7, it
suffices to use a label which is distinct from the labels of all the a-events currently
in the secondary information of Xu.

Unfortunately, the processes in θ(a) cannot directly see all the a-events which
belong to the secondary information of the entire system. An a-event y may be
part of the secondary information of processes outside θ(a)—i.e., y ∈ secondarya(Xu)\
secondarya(Xu). To enable the processes in θ(a) to know about all a events in
secondaryP(Xu), we need to maintain tertiary information.

Tertiary information The tertiary information of p after I, tertiaryp(I), is the
set

⋃
q∈P secondaryq(latestp→q(I)↓). In other words, this is the latest information

that p has in I about the secondary information of q, for all q ∈ P. As before,
for P ⊆ P, tertiaryP (I) =

⋃
p∈P tertiaryp(I).

12

Each event in tertiaryp(I) is of the form latest q→s→s′(latestp→q(I)↓) for some
q, s, s′ ∈ P. We abbreviate latestq→s→s′(latestp→q(I)↓) by latestp→q→s→s′(I). Just
as primaryp(I) ⊆ secondaryp(I), clearly secondaryp(I) ⊆ tertiaryp(I) since each
secondary event
latestp→q→s(I) is also a tertiary event latestp→p→q→s(I).

Lemma 8 Let I be an ideal and p ∈ P. If y ∈ secondaryp(I) then for every
q ∈ y, y ∈ tertiary q(I).

Proof Let y ∈ secondaryp(I) and q ∈ y. We know that y ∈ I|p ∩ I|q and there
is a path y < z1 < . . . < max p(I) leading from y to max p(I).

Suppose this path never leaves I|p∩I|q. Thenmax p(I) ∈ I|q and so max p(I) =
latest q→p(I). This means that y ∈ secondaryp(latest q→p(I)↓) ⊆ tertiary q(I) and
we are done.

Otherwise, the path from y to max p(I) does leave I|p ∩ I|q at some stage.
Concretely, let y = latestp→p′→p′′(I) for some p′, p′′ ∈ P. So the path from y to
max p(I) passes through y′ = latestp→p′(I).

If y′ /∈ I|p ∩ I|q then for some z, z′ ∈ X and some s ∈ P we have z ∈ I|p ∩ I|q,
z′ ∈ I|p \ I|q and y ⊑∗ z ⊳s z

′ ⊑∗ y′. This means that z ∈ frontier qp(I) is
an s-sentry and by our earlier argument we know that z = latestq→s(I). So
y = latest q→s→p′′(I) = latest q→q→s→p′′(I) ∈ tertiary q(I).

On the other hand, if y′ ∈ I|p∩I|q we can find an s-sentry z ∈ frontier qp(I) on
the path from y′ to max p(I), for some s ∈ P. We once again get z = latest q→s(I)
and so y = latestq→s→p′→p′′(I) ∈ tertiary q(I).

2

The “gossip” automaton Using our analysis of primary, secondary and ter-
tiary information of processes, we can now design a deterministic asynchronous
automaton to keep track of the “latest gossip”—i.e., consistently to update pri-
mary, secondary and tertiary information whenever a set of processes synchronize.

Each process maintains sets of primary, secondary and tertiary information.
Each event in these sets is represented by a pair 〈P, ℓ〉, where P is the subset of
processes that synchronized at the event and ℓ ∈ L, a finite set of labels.

By Lemma 8, each p-event that appears in some primary or secondary set in
the system also appears in the tertiary information of p. When a new event x
occurs after u, the processes participating in x assign a label to this event which
does not appear in tertiaryx(Xu). Proposition 7 guarantees that the new event is
assigned a label which is distinct from those assigned to secondaryP(Xu). Since
each process keeps track of N3 tertiary events, there need be only O(N3) labels
in L.

The processes participating in x now compare their primary information about
each process s /∈ x by checking labels of events across their primary and secondary

13

sets. Each process then updates its primary, secondary and tertiary sets accord-
ing to the new information it receives. (Notice that tertiary information, like
secondary information, can be locally updated once the processes have decided
who has the best primary information.)

To implement this algorithm as a deterministic asynchronous automaton, we
just observe that each local state of p will consist of its primary, secondary and
tertiary information for p, stored as an collection of indexed labels. The initial
state is the global state where for all processes p, these sets all contain only
the initial event 0. The local transition relations →a modify the local states for
processes in θ(a) as described above. This automaton does not have any final
states—it simply runs in the “background”.

7 The determinization algorithm

We are now ready to present our deterministic asynchronous automaton

B = ({V B
p }p∈P, {→B

a }a∈Σ,VB
0 ,VB

F)

corresponding to our original non-deterministic asynchronous automaton A such
that L(A) = L(B).

Let us assume we have a sufficiently large but finite set of labels L. Formally,
a state in V B

p consists of the following information:

• A labelling λp : (P×P×P) → (P×L), which is partially injective, in that
for each q, q′, r, r′ ∈ P, λp(q, q, r) = λp(q

′, q′, r′) implies q = q′ and r = r′.

• A set of histories RHp where each h ∈ RHp is a function from P × P to
P -states, P ⊆ P.

Intuitively, after reading a word u, the automaton represents the tertiary event
latestp→q→r→s(Xu) as λp(q, r, s).

In this representation, several copies exist of each primary and secondary
event. For instance, the primary event latestp→q(Xu) corresponds to λp(q, q, q),
λp(p, q, q) and λp(p, p, q). We choose canonical representatives for each primary
and secondary event. So, we shall regard λp(q, q, q) as the label of the pri-
mary event latestp→q(Xu) and λp(q, q, r) as the label of the secondary event
latest q→r(Xu) as λp(q, q, r). The partially injectivity of λp ensures that all la-
bels assigned to primary and secondary events are distinct.

The set RHp is supposed to contain all reachable histories over the secondary
events secondaryp(Xu). Since these events are injectively labelled by λp, we can
also view RHp as a function from P× L to P -states.

Initially, each p ∈ P stores the following:

14

• ∀〈q, r, s〉 ∈ P3. λp(q, r, s) = 〈P, 0〉, where 0 ∈ L is some arbitrary but fixed
label.

• For each ~v ∈ V0, the set of initial states of A, we have a history h ∈ RHp

such that h(q, r) = ~v for all 〈q, r〉 ∈ P2.

The initial state VB
0 of B is the product of the initial states of all p ∈ P. The

transition rule →B
a is described in the following. Suppose B reads a when the

global state of B is {〈λp,RHp〉}p∈P. Then we have the following procedure for
updating the local states of processes in θ(a).

• For each p ∈ θ(a), we construct a new labelling function λ′
p : P

3 → P× L.

Fix a new label ℓ ∈ L such that 〈θ(a), ℓ〉 is not in the range of λp for any
p ∈ θ(a). For each p ∈ θ(a), assign λ′

p(q, r, s) = 〈θ(a), ℓ〉 for all q, r, s ∈ P

such that {q, r, s} ⊆ θ(a).

The other values of λ′
p for each p ∈ θ(a) are computed as they would be by

the gossip automaton. In other words, for all p ∈ θ(a), for all q, r, s ∈ P such
that {q, r, s} 6⊆ θ(a), the new value λ′

p(q, r, s) is copied from the old value
λp′(q, r, s) assigned by the process p′ ∈ θ(a) which had the best primary
information λp′(q, q, q).

• Compute new histories RH′
p for each p ∈ θ(a) as follows. Consider ha ∈⊗

p∈θ(a){RHp}. Let ~v be the global a-state corresponding to ha—i.e., ~vp =
hp(p, p) for each p ∈ θ(a). Let Vha = {~v′ | ~v →a ~v

′}. So, Vha is the set of all
possible a-states v′ which can be used to extend ha to cover the new event
xa so that nbd(xa) is consistently labelled with respect to →a.

Now each element ~v′ ∈ Vha together with ha generates a history h′
p in RH′

p

as follows:

∀〈q, r〉 ∈ P2. h′
p(q, r) =

{
~v′ if λ′

p(q, q, r) = 〈θ(a), ℓ〉
ha(λ

′
p(q, q, r)) otherwise

So, the new a-event is assigned the a-tuple ~v′ while the other secondary
events of p (after reading a) inherit their h′

p values from ha.

Repeat this procedure for each ha ∈ ⊗
p∈θ(a){RHp} to generate the entire

set RH′
p for each p ∈ θ(a).

Having described the transition functions →B
a , we now need to define the final

states of B. Let ~σ be a global state of B, where ~σp = 〈λp,RHp〉 for each p ∈ P.
Each h ∈ ⊗

p∈PRHp gives rise to a global state ~v of A as follows: for each p ∈ P,
~vp = h(λp(p, p, p)). Let subset(~σ) denote the set of global states of A generated
from ~σ in this manner. Then we can define

VB
F = {~σ | subset(~σ) ∩ VF 6= ∅}.

15

Theorem 9 L(A) = L(B).

Proof For u ∈ Σ∗, let ~σ be the global state of B after reading u such that
~σp = 〈λ′

p,RH
′
p〉 for each p ∈ P. We claim the following:

Claim For each p ∈ P, λ′
p labels precisely the events in tertiaryp(Xu) and RH′

p

is precisely the set of all reachable histories on the set of events secondaryp(Xu).

Assuming the claim, we know from Proposition 1 and Lemmas 2, 4 and 5 that
the global states in subset(~σ) are precisely the global states that A could be in
after u. So, B accepts u iff subset(~σ)∩VF 6= ∅ iff there is a run of A on u leading
to a final state iff A accepts u and we are done.

Proof of Claim To prove the claim, we proceed by induction on |u|.
The base case is when u = ε, the empty word. The claim is trivially true

at this state since all the tertiary events in Xu are the initial event 0 and each
process maintains a set of histories which assign all possible initial states of A to
the initial event.

Suppose u = wa and, inductively, after reading w, the local state 〈λp,RHp〉
for each p ∈ P satisfies the Claim. We have to argue that the procedure for
updating the local states of p ∈ θ(a) maintains the property asserted in the
Claim.

Look at the definition of →B
a . Proposition 7 and Lemma 8 guarantee that the

label 〈θ(a), ℓ〉 we assign to the new event does not clash with any labels already
assigned to events in secondaryP(Xw). Lemma 6 then ensures that the computa-
tion of λ′

p from λp is correct—i.e., λ′
p labels precisely the events in tertiaryp(Xu).

Now, assume RHp contains all reachable histories over secondaryp(Xw) for
each p ∈ θ(a). We have to show that RH′

p contains all reachable histories over
secondaryp(Xu). For all p ∈ θ(a), Xu|p = Xw|θ(a) ∪ {xa}, where xa is the new
a-event. So, any local run on Xu|p consists of a local run on Xw|θ(a) extended to
cover xa such that nbd(xa) is consistently labelled.

We argue that the product
⊗

p∈θ(a) RHp is precisely the projection ofR(Xw|θ(a))
onto secondaryθ(a)(Xw). By Lemma 4, every history h ∈ ⊗

p∈θ(a)RHp is a reach-
able history on Xw|θ(a) and so is the projection of some local run on Xw|θ(a) onto
secondaryθ(a)(X|w).

Conversely, consider any local run r on Xw|θ(a). Decompose r into local
runs rp over Xw|p for each p ∈ θ(a) by looking at r restricted to Xw|p. Since
RHp has all reachable histories on secondaryp(Xw), the projection hp of rp on
secondaryp(Xw) belongs to RHp. So, the projection of r onto secondaryθ(a)(Xw)
belongs to

⊗
p∈θ(a)RHp.

So, we can reconstruct all possible a-moves ofA after w by looking at
⊗

p∈θ(a) RHp.

The procedure for updating RHp to RH
′
p in the definition of →B

p then guarantees
that RH′

p contains all reachable p-histories over secondaryp(Xu) for each p ∈ θ(a).

16

2

8 The complexity of determinization

Analysis of the construction

Theorem 10 Let A = ({Vp}p∈P, {→a}a∈Σ,V0,VF) be a non-deterministic asyn-
chronous automaton with N processes such that max p∈P|Vp| = M . Then, in the
corresponding deterministic automaton B that we construct, each process has at

most 2M
O(N3)

states.

Proof Each local state of B is of the form 〈λp,RHp〉. We have already argued
that we can maintain labels with a set L of size O(N3). So, each entry 〈P, ℓ〉 in
λp requires O(N) bits to write down P and O(logN) bits to write down ℓ—i.e.,
O(N) bits in all. Since there are N3 entries in λp, all of λp may be written down
using O(N4) bits.

We now need to maintain histories over secondary events. Each history h
consists of N2 P -states. Since a P -state can be written down using N logM bits,
h can be written down using N3 logM bits. The number of different histories

possible over N2 is
(
MO(N)

)N2

= MO(N3)—each event could be assigned an

arbitrary P -state and the number of distinct P -states is bounded by
∑

i∈[1..N]M
i

which is MO(N). So, RHp can be written down using MO(N3) ·N3 logM bits.
So, overall, each local state of B can be written down using MO(N3) bits.

Therefore, the number of local states of each process in B is bounded by 2M
O(N3)

.
2

In certain cases, we can slightly improve the estimate given above. Let T be
the size of the transition relation of A—i.e., T =

∑
a∈Σ | →a | where | →a |, the

size of →a, is just the number of pairs in the relation →a. Then, we know that the
P -states assigned by each history h must elements of →a for some a ∈ Σ. So, the
number of P -states we can assign is bounded by T . In general, T andMN are not
directly related, so a more accurate bound for the number of histories possible
over N2 nodes is max (T,MO(N))N

2
. Therefore, the number of local states of a

process in B is bounded by 2max (TN2
,MO(N3)).

Unlike conventional finite state automata, where determinization results in
an exponential blowup in the number of states, our algorithm exhibits a super-
exponential blowup (at the level of local states). A simple argument shows that
this cannot be avoided, in general.

A superexponential lower bound for determinization

17

Theorem 11 There is a sequence of languages LKN over distributed alphabets
(ΣKN , θKN), K,N ≥ 2, such that LKN is recognized by a non-deterministic asyn-
chronous automaton whose local state spaces and transition relations are poly-
nomial in size as functions of K and N , whereas LKN cannot be recognized by
a deterministic asynchronous automaton unless it has at least one process with
2K

N/N states.

Proof For Σ = {a, b}, let L1
m be the set of words whose mth letter from the right

is a b. Recall that L1
m can be recognized by an NFA with O(m) states whereas a

DFA requires 2m states to recognize this language. We generalize L1
m to Lk

m for
k ≥ 1—Lk

m is the set of words whose kmth last letter is a b. Let Lm =
⋃

k≥1L
k
m.

It is not difficult to see that Lm is also regular and the exponential separation
between NFAs and DFAs recognizing L1

m continues to hold for Lm as well.
Consider LKN—i.e., Lm, where m = KN—for some K,N ≥ 2. We look at a

variant of LKN which we call L′
KN . We show that L′

KN can be recognized by a
small non-deterministic asynchronous automaton—the states of each component
will be quadratic in K and the transition relation will be polynomial in K and N .
On the other hand, it will turn out that the smallest deterministic asynchronous
automaton recognizing this language has at least one process with O(2K

N/N)
states.

The idea is to implement a N -digit counter to the base K using N processes
named [1..N]. When the counter value is m, process i holds the value of the ith

digit in the base K representation of m.
To count efficiently using asynchronous automata, we need to introduce carry

letters {ci}i∈[1..N] into our alphabet. So, c1 corresponds to a carry at the least
significant digit, whereas cN corresponds to an “overflow” carry at the most
significant digit of our counter. Given a word w ∈ Σ∗, we intersperse the carry
bits as follows: every Kth letter from Σ is immediately followed by a c1 and every
Kth ci is immediately followed by a ci+1 for each i ∈ [1..N−1]. We call the new
string C(w), the carry-extension of w.

Let Σ′ = {a, b} ∪ {ci}i∈[1..N]. Let θ′ be a distribution of Σ′ such that θ′(a) =
θ′(b) = {1}, θ′(cN) = {N} and θ′(ci) = {i, i+1} for i ∈ [1..N−1]. This introduces
a natural independence relation over Σ′ as we have already seen. As described
in the Introduction, this independence relation can be lifted to finite words in
the obvious way—w ∼ w′ iff w′ can be obtained from w by a finite sequence
of permutations of adjacent independent letters. It is easy to check that ∼ is
an equivalence relation. The equivalence classes induced by ∼ are usually called
traces [Maz]. Let [w] denote the trace generated by a word w ∈ Σ′∗.

The language we will work with is the set of traces generated by carry-
extended words from LKN . Formally, we shall look at L′

KN = {w ∈ Σ′∗ | ∃w′ ∈
L′′
KN . w ∈ [w′]}, where L′′

KN = {C(w) | w ∈ LKN}.
A deterministic asynchronous automaton recognizing L′

KN must have at least
one process with a state space of size 2K

N/N . To see this, consider a normal

18

DFA recognizing L′
KN . Let u and u′ be two distinct words over Σ of length KN .

Without loss of generality, we can assume that there is a position i such that
u(i) = b and u′(i) = a. Then, there is a word v over Σ of length at most KN

such that uv ∈ LKN and u′v /∈ LKN .
Let w be the string such that C(u)w = C(uv). Clearly C(u)w = C(uv) ∈ L′

KN .
Notice that w 6= C(v) in general. However, it is the case that w↓{a,b}—the string
obtained by erasing all letters other than a and b from w—is just v. Now consider
C(u′)w—there are two cases to look at. If C(u′)w is not trace equivalent to any
valid carry-extended word, then clearly C(u′)w does not belong to L′

KN . On
the other hand, if C(u′)w is trace equivalent to some carry-extended word w′,
w′↓{a,b} must be equal to C(u′)↓{a,b} concatenated with w↓{a,b}, since a and b
are not independent in (Σ′, θ′). But C(u′)↓{a,b} w↓{a,b}= u′v. Since u′v /∈ LKN ,
C(u′v) /∈ L′′

KN and so C(u′)w /∈ L′
KN either.

So the canonical right invariant equivalence relation RL′
KN

generated by L′
KN

has at least 2K
N
equivalence classes. By the Myhill-Nerode Theorem, the mini-

mal DFA recognizing L′
KN has at least 2K

N
states. Thus any deterministic asyn-

chronous automaton recognizing L′
KN must have at least one component with

N
√
2KN = 2K

N/N states.
We now describe a small non-deterministic asynchronous automaton A ac-

cepting L′
KN . A keeps counting letters in its input, using the carry letters to

increment higher order digits of the counter. At some point, on reading a b,
A non-deterministically decides to copy its current counter value into a register.
Meanwhile, A continues to count letters from where it left off—it does not restart
its counter when it sets the register. At the end of its input, it checks to see if
the current counter value is the same as the one saved in the register. If so, the
number of letters read after the b is a multiple of KN and the input is accepted.

For each process i, the set of local states Vi is given by [0..K] × [0..K−1] ×
{N, Y }. The first component of the state is a digit in the running counter—
the value K indicates a pending carry. The second component represents a
“frozen” register value. The third component indicates whether or not the reg-
ister value has been loaded. Initially, each process is in the state 〈0, 0, N〉. The
final states are those where each process is in a state of the form 〈j, j, Y 〉 where
j ∈ [0..K−1]—different processes could have different values of j.

The transition relations are as follows:

• →a: (Affects only process 1)

〈i, 0, N〉 →a 〈i+1, 0, N〉, provided i < K.

〈i, j, Y 〉 →a 〈i+1, j, Y 〉, provided i < K.

• →b: (Affects only process 1)

〈i, 0, N〉 →b 〈i+1, 0, N〉, provided i < K.

〈i, j, Y 〉 →b 〈i+1, j, Y 〉, provided i < K.

19

〈i, 0, N〉 →b 〈i+1, i, Y 〉, provided i < K.

• →ci, i < N : (Affects processes i+1 and i. Each transition is of the form
(v, w) →ci (v

′, w′) where v and v′ are states of process i+1 and w and w′

are states of process i.)

(〈i, 0, N〉, 〈K, 0, N〉) →ci (〈i+1, 0, N〉, 〈0, 0, N〉), provided i < K

(〈i, j, Y 〉, 〈K, j′, Y 〉) →ci (〈i+1, j, Y 〉, 〈0, j′, Y 〉), provided i < K.

(〈i, 0, N〉, 〈K, j′, Y 〉) →ci (〈i+1, i, Y 〉, 〈0, j′, Y 〉), provided i < K.

• →cN : (Affects only process N)

〈K, 0, N〉 →cN 〈0, 0, N〉.
〈K, j, Y 〉 →cN 〈0, j, Y 〉.

So, afterK a’s and b’s have been read process 1 gets stuck—a c1 must occur to
propagate a carry before the next a or b can be read. After K c1’s have occurred,
a c2 must be read before the next c1. However, since c2 is independent of a and b,
this c2 need not be read immediately after theKth c1. In general, A permits higher
digit carries to propagate asynchronously while the first component continues to
read a’s and b’s from the input. However, it is easy to check that A ensures that
after every K ci’s, a ci+1 is read before the next ci.

At some point, on reading a b, process 1 non-deterministically copies its
counter value into the register and sets the third component of its state to Y .
In the next round of carries, all the other processes get a signal to load their
registers. Eventually all digits of the counter value when b occurred are stored
in the register. Meanwhile, the counter continues to run freely on the remaining
input. At the end of a word u, A accepts u if each process has loaded its register
and has the same value stored in the current counter as in the register.

Given this, it is straightforward, though tedious, to verify that A does indeed
accept L′

KN .
Each process has O(K2) states. The total number of entries in the transition

relations of A is O(NK3). So, A can be described in space polynomial in K and
N . By our earlier analysis, if we determinize A using our construction, we obtain

an automaton whose local state space is 2(KN)O(N2)
.

(Notice that we can implement a much simpler N -digit counter by allowing
all N processes to synchronize on a and b. Then, we can eliminate the carry
bits embedded in the input word—carries can be propagated “internally” when
the processes synchronize. However, this näıve counter has O(KN) entries in its
transition table and so is much larger, in real terms, than the counter we have
described.) 2

20

References

[Die] V. Diekert: Combinatorics on Traces, LNCS 454 (1990).

[HU] J. Hopcroft, J.D. Ullman: Introduction to automata, languages and com-
putation, Addison-Wesley (1979).

[Maz] A. Mazurkiewicz: Basic notions of trace theory, in: J.W. de Bakker, W.-
P. de Roever, G. Rozenberg (eds.), Linear time, branching time and partial
order in logics and models for concurrency, LNCS 354, (1989) 285–363.

[MS] M. Mukund, M. Sohoni: Keeping track of the latest gossip: Bounded
time-stamps suffice, to appear in Proc. FST&TCS ’93, LNCS 761. Also
available as Report TCS-93-3, School of Mathematics, SPIC Science Foun-
dation, Madras (1993).

[Och] E. Ochmanski: Regular behaviour of concurrent systems, EATCS Bulletin,
27 (1985) 56–67.

[Pig] G. Pighizzini: Synthesis of nondeterministic asynchronous automata, in
V. Diekert, W. Ebinger eds., Proc. ASMICS Workshop on Infinite Traces,
Report 4/92, Fakultät Informatik, Universität Stuttgart, Germany (1992).

[Zie] W. Zielonka: Notes on finite asynchronous automata, R.A.I.R.O.—Inf.
Théor. et Appl., 21 (1987) 99–135.

21

