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Abs t rac t .  This contributions provides an introduction to the theory of 
place/transition Petri nets. Topics include the sequential and the concur- 
rent behavior of place/transition Petri nets, marking graphs and cover- 
ability trees, and some analysis techniques that are based on the structure 
of place/transition Petri nets. 

1 I n t r o d u c t i o n  

Place/transit ion Petri nets (p/t-nets,  for short) are the most prominent and 
best studied class of Petri nets. This class is sometimes just called Petri nets. 
In contrast to elementary (Petri) net systems [RoEn98], in p/ t -nets  a place can 
hold any number of tokens. In contrast to high-level Petri nets [$ens98], these 
tokens are indistinguishable. This contribution surveys some of the the most 
important  concepts and analysis techniques for p/t-nets.  The reader is assumed 
to have a rough idea about Petri nets, and in particular about elementary net 
systems. However, this knowledge is not a prerequisite for this paper. 

A state of a p / t -ne t  is determined by a distribution of tokens on its places. It 
is formally defined as a mapping that  assigns each place a nonnegative integer. 
This mapping is usually called a marking. A p/ t -net  equipped with an initial 
marking constitutes a Petri net system 3, i.e. a system model capturing both 
static structural and dynamic behavioral aspects. 

This paper mainly concentrates on a basic class of marked p/t-nets,  which 
only consist of a net and an initial marking. These Petri net systems are called 
marked nets. We only roughly survey some additional features of p/t-nets.  The 
basic concepts of arbitrary p/ t -nets  can be presented more lucidly for marked 
nets. Most of them can easily be generalized to more generM classes of p/t-nets.  

The elementary behavior of a marked net is defined by a local occurrence rule 
that  determines the possible elementary marking changes caused by transition 
occurrences. A transition of a marked net is enabled at a marking if each arc 
to the transition originates at a place which carries at least one token. The 

3 sometimes called place/transition-system 
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occurrence of an enabled transition is described by means of the following picture, 
representing a transition and its vicinity before and after its occurrence: 

Starting with the initial marking, transition occurrences yield new markings, 
that  in turn give rise to further transition occurrences. A run of a marked net 
consists of a set of transition occurrences that altogether might happen in some 
order and hence do not exclude each other. The global behavior of a marked net 
is determined by its runs. 

There are various ways to formalize runs. We will emphasize a sequential 
view, given by sequences of transition occurrences (occurrence sequences), and 
a concurrent view, given by partially ordered process nets. Sequential runs are 
technically simple. However, concurrent occurrences of transitions have to be 
ordered in sequential runs whereas concurrency and dependency is explicitly 
represented in concurrent runs. 

Occurrence sequences will be used to define behavioral properties of marked 
nets, such as deadlock-freedom (no total deadlock is reachable), liveness (no par- 
tial deadlock is reachable), boundedness (on each place, the token load does not 
grow unlimited), and reversibility (the initial marking can always be reached 
again). Analysis of a marked net w.r.t, these properties will be based on finite 
graphs that comprise the sequential behavior of a marked net, namely marking 
graphs and coverability trees. It will also be demonstrated that  some of the prop- 
erties can be characterized in terms of process nets, and that this view allows 
more insight to behavior and to more elegant proofs. 

This contribution compiles fundamentals of theoretical results about p / t -  
nets. Some pointers to literature should provide a starting point for further 
work. For textbooks on Petri nets in general see [PeteS1, Reis85]. Another good 
introductory text is [Mura89]. A collection of surveys is given in [BRR87]. There, 
the papers [Reis87, Laut87] are particularly related to p/t-nets.  

Decidability and complexity results on p/ t -nets  are important topics, though 
missing in this contribution. The most important  result in this field is the decid- 
ability of the problem whether a given marking is reachable in a marked p/ t -net .  
A solution to this teachability problem was given in [Mayr84, Kosa82], see also 
[Reut88]. The paper [Jant87], also contained in [BRR87], gives in overview on 
some more results in this area. More recent papers surveying in particular results 
on model checking and p/t-nets are [EsNi94], [Espa98] and [Vahn98], the latter 
two in this volume. 

A marking of a p/ t -net  can be conceived as a tuple of numbers, each of which 
describing the number of tokens residing at some place. This view suggests a 
marking to be conceived as a vector of nonnegative integers. The change of a 
marking, caused by the occurrence of a transition corresponds to the addition of 
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an integer-valued vector. Therefore, p/ t -nets  are isomorphic to a class of vector 
addition systems. In fact, a lot of Petri net research has originally focussed on 
vector addition systems. The survey paper [Dese98] in this volume presents ap- 
plication of linear algebraic techniques to the analysis and verification of marked 
nets. 

A further research area focusses on structurally defined subclasses of Petri 
nets. The best known examples of such classes are marked graphs, state machines 
and free choice nets. In a marked graph, no place is branching. Therefore, marked 
graphs behave deterministically and do not allow to model choice between ac- 
tions. A state machine has no branching transitions and hence does not allow 
for synchronization of actions. In free-choice nets, the combination of forward 
branched places and backward branched transitions is restricted, thus ruling out 
a too close interplay between choice and synchronization. Free-choice nets gen- 
eralize the classes mentioned above. As pointed out in the present paper and in 
[Dese98], efficient analysis and verification techniques for arbitrary nets stick to 
either sufficient or necessary conditions for behavioral properties, whereas deci- 
sion algorithms for behavioral properties suffer from the huge inherent complex- 
ity of most problems. For free-choice nets, the picture looks significantly bet ter  
because many interesting behavioral properties of marked free-choice nets can 
be characterized in terms of the net structure. For a detailed treatment of the 
theory of free-choice Petri nets, the authors warmly recommend the textbook 
[DeEs95]. This book also contains many references to the original sources. 

The following section provides an introductory example. In the third section, 
marked nets will be defined formally. We present the Strongly-Connectedness 
Theorem as an example for relations between structure and behavior of a marked 
net. The fourth section is devoted to marking graphs and coverability trees and 
to the representation of behavioral properties of marked nets by means of struc- 
tural properties of these graphs. In section five, more efficient analysis techniques 
based on the structure of nets are presented, namely place invariants, transition 
invariants, siphons, and traps. Advantages of process nets representing the con- 
current runs of marked nets as well as their relation to occurrence sequences are 
presented in section six. Finally, the seventh section provides a quick survey on 
additional features of p/t-nets,  including arc weights, capacity restrictions and 
inhibitor arcs. 

2 An Introductory Example 

Marked p/ t -nets  generalize contact-free elementary net systems [RoEn98]. In 
other words: every contact-free elementary net system is at the same time a 
marked p/ t -ne t  4. We start with an example of an elementary net system and 
subsequently add features of p/ t -nets  which are not available at the elementary 
level. 

4 Elementary net systems can nevertheless be considered elementary since all basic 
concepts of p/t-nets can be derived from respective concepts of elementary net sys- 
tems, see [Golt90, DeMe90]. 
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ready for insertion insert coin 

ready to dispense accept coin 

Fig. 1. A marked net representing the control structure of a vending machine 

ready for insertion 
insert coin ~ A  

accept coin / h ~  

dispens~ 
item 

ready to dispense 

Fig. 2. The marking graph of the above marked net 

Figure 1 shows an elementary net system modeling the control par t  of a 
vending machine. At the initial state shown in the figure, the machine is waiting 
for a coin to be inserted. This is modeled by the token on the place r e a d y  f o r  
i n s e r t i o n .  An inserted coin is either rejected or accepted, depending on the 
result of a validity check which is not part  of the system model. If  the coin 
was rejected, the system returns to its initial state. Otherwise the sys tem first 
dispenses an i tem and then returns to its initial state. 

This system model is also a marked p/ t -net .  Terminology for p / t -ne t s  usu- 
ally differs from terminology for elementary net systems. Nonetheless we shall 
introduce and use the place/transit ion based terminology already here: 

- every condition of an elementary net system is a place of the p / t -ne t ,  

- every event of an elementary net system is a transition of the p / t -ne t ,  
- every state or case of an elementary net system is a marking of the p / t -net ;  

formally, a marking is represented as a mapping assigning each place, the 
number of tokens it carries - here 0 or 1. 



126 

item storage ready for insertion insert coin 

% 
in 

refill 

k...) k , . ) "  [ ~  
request for refill ready to dispense accept coin 

Fig. 3. The vending machine with capacity 1 

holding coin 

refill 

J 

coin 

dispense 
item 

~,.~ accept coin 

. , f i l l  

insert coin 

J 
=,.~ accept coin / 

Fig. 4. The marking graph of the above marked net 

The sequential behavior of a p/t-net can be represented by its marking graph. 
In case there is always only one token in the net, as in the above example, the 
marking graph is quite small, and it resembles the net itself (see Figure 2). In 
general, the marking graph is a compact representation of all possible sequences 
of subsequent transition occurrences. Starting with the distinguished initial ver- 
tex (ready fo r  i n s e r t i o n  in the example), each directed path of the marking 
graph represents a possible sequence of transition occurrences, and vice versa. 

Now we add the system component delivering items to the vending machine. 
Assume the capacity of the machine is 1, i.e., after delivering one item, the 
machine has to be refilled (by another component not considered here), as shown 
in Figure 3. This system is still an elementary net system. Its marking graph 
is shown in Figure 4. For sake of readability, markings annotating vertices are 
dropped. The shape of the graph should help to compare it with the graph of 
Figure 2. 
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item storage ready for insertion insert coin 

~ e c t  co~in " ~ i n g  coin 
. d  . ~ 1  , 

request for refill ready to dispense accept coin 
Fig. 5. The vending machine with capacity 4 

refill refill refill refill 

insert ~ insert t ~,~ insert 
t ~,  refill / ~ refini.: / r~insert "mfi~ II 
Ve'~ct ~ /reject-~ /reject--~ /reject ~ /reject 
( dispense'~ ~ dispense~l ( dispense~q ~ dispense'~ll ¢ 

refill refill refill refill 
Fig. 6. The marking graph of the above marked net 

The marking graph suggests that the system exhibits no concurrency. Af- 
ter the occurrences of transitions i n s e r t  coin,  accep t  co in  and d i s p e n s e  
item, both transitions r e f i l l  and accep t  co in  are enabled. The correspond- 
ing marking corresponds to the upper left hand vertex in the graph. Although 
the transitions r e f i l l  and accep t  co in  can occur concurrently, the sequential 
view enforces an order between these two transition occurrences. We will come 
back to this example and discuss its concurrent semantics in section six. 

The storage capacity of real vending machines exceeds 1, of course. Figure 5 
shows the same net as the previous example. However, the initial marking of 
the net is different: the place i tem s t o r a g e  carries four tokens initially. This 
systems is no elementary net system anymore: the place i tem s t o r a g e  cannot 
be interpreted as a condition with two states true and false, Instead, it has five 
possible states: 

unmarked, marked with one token, . . . ,  marked with four tokens. 

The transition d i spense  i tem is only enabled if each of the two places r e ady  
t o  d i s p e n s e  and i tem s t o r a g e  contains at least one token. An occurrence of 
d i s p e n s e  i tem removes a token from ready  to  d i s p e n s e  and a token from 
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ready for insertion insert coin coins in machine 

,J--1 

in 

ready to dispense accept coin 

Fig. 7. The control structure of a vending machine with a counter 

insert coin 

reject coin 

insert coin 

Uspense ~r  { item item accept coi~" ~id.ispense 

0 coins in machine t coin in machine 2 coins in machine 

Fig. 8. The marking graph of the above marked net  

i t em s to r age ,  and adds tokens to both places r e q u e s t  f o r  r e f i l l  and r eady  
for insertion. 

All places of the marked net shown in Figure 5 are bounded: every place 
possesses an upper bound for the number of tokens it will carry at any reach- 
able marking. This is not the case for the marked net shown in Figure 7. For 
simplicity, the left part of the previous net is omitted here, and an additional 
place represents the number of coins that are currently in the machine. Since 
this number can grow without limit, this place is unbounded. It can take an infi- 
nite number of different states, whence the marking graph of the marked net is 
infinite (see Figure 8). We will show in section 4 how finite coverability trees are 
used for analysis of unbounded marked nets. 

As a further property of marked nets, the notion of liveness will intensely 
be studied in the sequel. A marked net is live if every transition can always 
occur again; more precisely, if from any reachable marking it is possible to reach 
some marking that  enables the transition. All marked nets modeling the vending 
machine considered so far are live. 
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The  proper ty  of deadlock-freedom is weaker than  liveness: a marked net is 
deadlock-free if every reachable marking enables some transit ion. 

A marked net is reversible if it can always reach its initial marking  again. 
The  marked nets of Figures 1, 3 and 5 are reversible, whereas the net  of Figure 7 
is not.  

3 Basic Definitions and Elementary Results 

This section formally defines marked nets and their behavior.  As an example 
for the interplay between statical properties of  nets and dynamic  propert ies  of  
marked nets, the St rongly-Connectedness-Theorem is proven. 

3.1 P e t r i  N e t s  

A net N is const i tuted by 

- a set S of  places, 
- a set T of transitions such that  S N T = 0, and 
- a set F of  directed arcs (flow relation), F C_ (S U T) x (S U T), satisfying 

F n ( S  × s) = F n  (T x T) = O. 

All places and transit ions are said to be elements of N.  A net is finite if its set 
of elements is finite. 

In the graphical  representat ion of  a net, places are drawn as circles, t ran-  
sitions as squares and arcs as arrows. An arrow with two arrowheads  between 
elements x and y indicates tha t  (x, y) as well as (y, x) are directed arcs. 

The  sets of places, transit ions and arcs of a net N are denoted by SN, TN 
and FN, respectively. The  set of all elements of the net N is sometimes also 
denoted by N, i.e., N = SN U TN. 

For an element x of  N,  its pre-set "x is defined by 

and its post-set x" is defined by 

For X C_ N, define 

x ' = { y ~ N  I (=,y) e F g } .  

U "  and x '= U 
xEX xEX 

An element x is isolated i f  ° x  = x"  = O. 
A directed path (path for short)  of a net is a nonempty  sequence x0 • • • xk of 

elements satisfying xi E x~_ 1 for each i (1 < i < k). This  path  leads from xo to 
xk. The  net is strongly connected if for each two elements x and y there exists a 
directed pa th  leading from x to y. 
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sl s3 t3 s4 

s2 s6 t5 

Fig. 9. A marked Petri net 

An undirected path is a nonempty sequence x0 . . .  zk of elements satisfying 
zi E "xi-1 U z~_ I .  for each i (1 < i < k). It leads from zo to zk. The net is 
weakly connected if, for each two elements x and y, there exists an undirected 
path leading from z to y. 

In Figure 9, a net is shown with places {sl ,  s2, s3, s4, s5, s6} and transitions 
{ t l , t 2 , t 3 , t 4 , t 5 } .  The pre-set of t2  is {s l ,  s6}. The post-set of {s3, s4, sS} 
is {t3, t 4 , t S } .  The sequence t2  s2 t l  s l  t2  s3 is a path. This net is strongly 
connected. The net obtained by removing t l  and its adjacent arcs is connected 
but  not strongly connected. The net obtained by removing t2  and its adjacent 
arcs is not connected. 

The following proposition follows immediately from the definitions. 

P r o p o s i t i o n  1. A weakly connected net is strongly connected if and only if for 
each directed arc (x, y) there is a directed path leading from y to x. D 

3.2 Markings and Behavior 

The states of a Petri net are defined by its markings, to be defined next. Elemen- 
tary state changes are caused by the occurrences of transitions. The occurrence 
rule distinguishes the enabling condition and the marking transformation. 

A marking of a net N is a mapping m: SN --+ ~W where ~ = {0, 1, 2 , . . .} .  A 
place s is marked by a marking m if re(s) > 0. The null marking is the marking 
which maps every place to 0. 

A transition t is enabled by a marking m if m marks all places in °t. In this 
case t can occur. Its occurrence transforms m into the marking m', defined for 
each place s by 

m ( s ) - i  i f s E ' t - t ' ,  
m ' ( s ) =  m ( s ) + l  if s E t  ° - ° t ,  

m( s ) otherwise. 

Notice that  a place in °t Vt t" is marked whenever t is enabled but does not 
change its token count by occurrence of t. Sometimes we will use the following 
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equivalent equat ion for the marking mq 

m'(s)  = .~(s)  - IFN n { ( s , t ) }  I + IFN a {(t, s)} I. 

A marking is called dead if it enables no transit ion of  N.  

Consider the net shown in Figure 9 with the depicted marking,  mapping  s l ,  s2, 
and s3 to 1 and all other  places to 0. Transi t ion t l  is enabled, and the mark ing  
reached after its occurrence maps s l  to 2 and s2 to 0. Transi t ion t 3  is enabled,  
too. The  null marking is an example for a dead marking.  

3 .3 O c c u r r e n c e  s e q u e n c e s  

Let m be a marking  of  a net. A finite sequence t t  • •. tk of  transi t ions is called a 
f in i te  occurrence sequence,  enabled at m ,  if there are markings m l , . . .  ,m~ such 
tha t  

t l  t2 tk 
m ~ ml  ) - . .  > ink. 

We write m ° >mk in this case, where c~ = tl  . . .  tk. The  empty  sequence v 
is enabled at any marking m and satisfies m ~ > m. A marking m '  is reachable 
f rom a marking m if there is a finite occurrence sequence m ~ ~ mq 

An infinite sequence tl  t2 t3 . . .  is called in f in i te  occurrence sequence,  enabled 
at m ,  if there are markings m l , m 2  . . . .  such tha t  

m ~ m l - ! ~ m 2  ~ . . . .  

The  following proposit ions follow immediately  from the definitions. 

P r o p o s i t i o n  2. I f  m .¢ ~ rn' is a f in i te  occurrence sequence  and m ~ enables  a 
( f in i te  or  in f in i t e )  occurrence sequence o J ,  then  the sequence  ~r o J is enabled at 
?~, tOO. [] 

P r o p o s i t i o n  3. A n  inf in i te  sequence ~ o f  t rans i t ions  is enabled at a m a r k i n g  m 
i f  and only i f  every  f in i te  pref ix  o f  ¢ is enabled at m .  [] 

P r o p o s i t l o n 4 .  I f  m - - ~  m '  and l q )  l', then  m ' ( s )  - r e ( s )  = i f ( s )  - l ( s )  f o r  
each place s. D 

Using the previous two propositions and the occurrence rule, it is easy to prove 
the following result. 

P r o p o s i t i o n  5. I f  m and I are mark ings  sa t i s f y ing  re (s )  >_ l ( s )  f o r  each place s 
then  every  occurrence sequence enabled at l is also enabled at m .  D 

Occurrence sequences do not provide full information about  the causal relation- 
ships between transitions. Assume an occurrence sequence v u, enabled at a 
mark ing  m. Transi t ion u might  be enabled only after the occurrence of  v, or 
v and u might  be concurren t l y  enabled at m. In the latter case, u v is an oc- 
currence sequence, too. The  following l emma identifies a sufficient condit ion for 
exchanging concurrent  transitions. 
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L e m m a  6. Assume that u and v are transitions of a net satisfying v" • 'u  = O. 
I f  ml  ''? u) ms then rnl u v m3. 

Proof. Let ml  v ) rn2. We have ml ( s )  > m2(s) for s E *u because v* f ' l ' u  = q}. 
Moreover, m2(s) _> 1 for s E *u because m2 enables u. Therefore, ml enables u. 

We have ml(s )  >_ 1 for s e °v because ml  enables v. Moreover, ml(s )  > 2 
for s e *u f3 °v because ml  enables v u and v" N*u = 0. Therefore, ml  enables 
n O .  

By Proposition 4, the sequences u v and v u cause the same marking change. 
Therefore, the occurrence of u v at ml  leads to the marking m3, too. [] 

3.4 M a r k e d  N e t s  a n d  t h e i r  P r o p e r t i e s  

A marked net is a net equipped with a marking, called initial marking. Through- 
out this paper  we always denote the initial marking of a net by m0. The initial 
marking of a marked net is graphically depicted by tokens in the places, as shown 
in Figure 9. 

An occurrence sequence of a marked net is an occurrence sequence enabled 
by the initial marking. The reachable markings of a marked net are the markings 
reachable from the initial marking (including the initial marking itself). 

Let b E ~ .  A place s of a marked net is called bounded with bound b (b- 
bounded) if rn(s) <_ b for each reachable marking m. It  is bounded if it is b- 
bounded for some b. A marked net is called b.bounded (bounded) ff all its places 
are b-bounded (bounded, respectively). 5 

P r o p o s i t i o n  7. A finite marked net is bounded if  and only if  ~here is a bound b 
such that all its places are b-bounded. [] 

Notice tha t  this property fails for infinite nets because there might be infinitely 
many different bounds. 

A transition t is called dead at a marking m if it is not enabled at any marking 
reachable from m. A marked net is said to be live if there is no dead transition 
at any reachable marking. I t  is deadlock-free if no reachable marking is dead. 

P r o p o s i t i o n 8 .  Each live marked net with at least one transition is deadlock- 
free. [] 

Notice that  each marked net without transitions is live but not deadlock-free. 
Often it is required that  every place of a marked net eventually can be 

marked. 

P r o p o s i t i o n  9. I f  no transition of a marked net is dead then each non-isolated 
place is marked at some reachable marking. [] 

A marked net is called reversible if its initial marking can be reached from 
any other reachable marking. 

5 1-bounded places are sometimes called 1-safe or just safe places. Accordingly, marked 
nets with only 1-bounded places are sometimes called 1-safe or safe marked nets. 
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sl 

C 

~ t l  14 

[ [ t2 t5 

lql: bounded, not live 

sl ( 

s2 

s4 

N2: live, not bounded 

N3: bounded, live only if t o o ( s )  = 1 

"rot 

i T M  

N4: live, bounded only if t o o ( s )  = 0 

d - -  

s3 ~ ~ s . 5  
NS: live, 1-bounded, not reversible 

Fig. 10. Examples for liveness, bonndedness and reversibility of marked nets 
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P r o p o s i t i o n  10. A reversible marked net is deadlock-free if and only if  the ini- 
tial marking is not dead. D 

The marked net shown in Figure 9 is live, 2-bounded and reversible. Figure 10 
presents further examples for the above notions. These examples also show that  
neither liveness of bounded marked nets nor boundedness of live marked nets is 
monotonous in the sense that  the property is preserved when tokens are added 
to places. 

3.5 T h e  S t r o n g l y - C o n n e c t e d n e s s - T h e o r e m  

Live and bounded marked nets enjoy many interesting properties. One important  
example is the Strongly-Connectedness-Theorem which states that  such a net 
is strongly connected, provided it is weakly connected. This result implies tha t  
each of the first two nets of Figure 10 either is not live or not bounded, for any" 
initial marking: 

T h e o r e m  11. Every weakly connected live and bounded marked net is strongly 
connected. 

P r o o f i  6 Assume a weakly connected live and bounded marked net. By Proposi- 
tion 1 it suffices to prove for each arc (x, y) that  there is a directed pa th  leading 
from y to x. 
Case 1: x is a place and y is a transition. Let V be the set of all transitions 
t for which there is a directed path from y to t. Let U be the set of all other 
transitions of the net. Then u* f3 ev = 0 for every u in U and v in V. 

Let b be the bound of place y. Liveness implies that  the initial marking 
enables a finite occurrence sequence c~ with b + 1 occurrences of transition y. By 
Lemma 6, transitions of U and of V can repeatedly be swapped, resulting in an 
occurrence sequence ch or2, such that  th contains all occurrences of transitions 
of U in ~r and c~2 contains all occurrences of transitions of V in ~r. 

Transition y is in the set V by definition of V. So y occurs b + 1 times in ~r2. 
Since x is b-bounded and y E x*, some transition of *x occurs in o'2. Since o'2 
contains only transitions of V, there is a transition in *x f3 V. By definition of 
V, there is a directed path  from y to that  transition. This pa th  can be extended 
by x. 
Case 2: x is a transition and y is a place. Let U be the set of all transitions 
t for which there is a directed path from t to z. Let V be the set of all other 
transitions of the net. Then u* N *v = 0 for every u in U and v in V. 

Let b be the bound of place y. Liveness implies that  the initial marking 
enables a finite occurrence sequence ~r with b + 1 occurrences of transition x. We 
continue as in Case 1: By Lemma 6, transitions of U and of V can repeatedly 
be swapped, resulting in an occurrence sequence or1 c~, such tha t  el  contains all 

6 This proof employs occurrence sequences and Lemma 6. For a more elegant proof 
based on partially ordered processes see Section 6. 
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occurrences of transitions of U in (r and (re contains all occurrences of transitions 
of V in (r. 

Transition x is in the set U by definition of U. So x occurs b + 1 times in a l .  
Since y is b-bounded and x E 'y ,  some transition of y '  occurs in (rl. Since (rl 
contains only transitions of U, there exists a transition in y '  ~ U. By definition 
of U, there is a directed path from that  transition to x. Concatenation of y and 
this path yields a directed path from y to x. [] 

4 M a r k i n g  G r a p h s  a n d  C o v e r a b i l i t y  G r a p h s  

4.1 M a r k i n g  G r a p h s  

The sequential behavior of a marked net is given by its set of occurrence se- 
quences. Each sequence of transition occurrences 

t l  t 2  t a  
m 0 - - - - ,  ~Tt 1 ...... ~ 7 n  2 ~ . . . 

can be considered a linear directed, acyclic graph 

• - - - - -~  • ) - ' "  

with vertices labeled by reachable markings and edges labeled by transitions. In 
this way, the set of all occurrence sequences yield an acyclic graph consisting of 
many disconnected components: one component for each occurrence sequence. 
Equally labeled verices may be identified, yielding a connected graph, which is 
not acyclic in general. Its vertices correspond bijectively to the reachable mark-  
ings of the marked net. Each transition enabled at a marking m yields one 
outgoing edge of the corresponding vertex. A distinguished vertex represents the 
initial marking. Each directed path starting at this vertex uniquely represents 
an occurrence sequence. Vice versa, each occurrence sequence is uniquely repre- 
sented by a path.  

Figures 11 shows the marking graphs of the marked nets N1, N2 and 1~5 given in 
Figure 10. In these graphs, each marking m is denoted by a vector such that  the 
i-th entry of a vector is m( s i ) .  Initial markings are depicted by arrows without 
source. 
Formal definition of marking graphs requires some notions about  graphs: 

An arc-labeled directed graph is given by 

- a set V of vertices and 
- a set of labeled edges (v, l, v ~) (representing source vertex, label, and target  

vertex, respectively) where v, v ~ E V and l is a label of some given set L. 

If  (v, l, v') is a labeled edge then v ~ is an immediate successor of v. 
A path of an arc-labeled graph is a (finite or infinite) sequence of labeled 

edges 
(v, ll, Vl), (Vl, 12, v2), (v2, 13, v3), • • • • 

All vertices in {v, vl, v2, v3, . . .}  are called successors of v. 
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The marking graph of a marked net is an arc-labeled directed graph with a 
distinguished initial vertex and edges labeled by transitions: 

- the vertices are the reachable markings, 
- the distinguished initial vertex is the initial marking, 
- labeled edges are all triples ( m , t , m  I) such that  m and m I are reachable 

t / }2 t  . markings satisfying m - ~ 

4.2 M a r k i n g  G r a p h s  a n d  P r o p e r t i e s  o f  M a r k e d  N e t s  

P r o p o s i t i o n  12. Given a marked net with initial marking too, 

ta 
,n  o ~ m I ~ m 2 . - - - + . . .  

is a (finite or infinite) sequence of subsequent transition occurrences if and only 
if there is a path 

(mo,t , m 2 ) ,  . . . 

of the marking graph. [] 

Behavioral properties of marked nets are closely related to structural  properties 
of their marking graphs, as stated in the following results. 

L e m m a  13. A finite marked net is bounded if and only if its marking graph has 
finitely many vertices. 

Proof. By definition, the set of vertices of the marking graph is finite if and only 
if the set of reachable markings is finite. 
( ~ )  If  a marked net with initial marking m0 has k reachable markings then 
any reachable marking can be reached by at most k - 1 transition occurrences. 
Since a transition occurrence increases the number of tokens on a place by at 
most one, each place s is bounded by m0(s) + k - 1. 
(==~) Assume that  the net has n places. By Proposition 7 there is a common 
bound b for all places. Hence each place 8 has no more than b +  1 different states, 
given by re(s) = 0 , . . . ,  re(s) = b. So there are no more than (b + 1) n reachable 
markings. [] 

L e m m a  14. A marked net is deadlock-free if and only if its marking graph has 
no vertex without outgoing edge. 

Proof. Follows immediately from Proposition 12. [] 

L e m m a  15. A finite marked net is live if and only if, for each vertex m of its 
marking graph, there exists a path 

such that the sequence tl t~ . . .  tk contains all transitions of the net. 
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(0, o, 2, o) ,41.-. I 

,/,4,,,,i,, 
(o, 1,1, o> ~ (o, o, 1,1> 

\t41/+ ,+,,,,, i,, ,4, 
- - - - Ib ,  (1, O, 1, O) (0, t ,0 ,  1) (0,0,0,2) 

t4 1 
(1,0,0,1) " 
marking graph of N1 

( 1 , 0 , 0 , 0 , 1 ~ . . . . . , ~ . ~ . 1 2 ~  

(0, 1, 1,0, 1) (1,0, O, 1,0) 

- - - - l b ,  (1, o, 1,0, 1) (0, 1, 1, 1,0) 

(0, 1,2,0, 1) (1,0, 1, 1,0) 

(1, o, 2, o, 1) (0, 1,2, 1,0) 

initial part of the marking graph of N2 

(1, O, O, O, 1) ~ 

( 1 , 1 ,o ,o ,o )  (o ,o , l ,O ,  1) t5 p... (o, o, o, l , O) 

(0, 1, 1, 0,0) ~ 
marking graph of t,IS 

Fig. 11. Marking graphs of marked nets given in Figure 10 
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Proof. 
( ~ )  Each reachable marking m is represented by a vertex of the marking 
graph. By Proposition 12, the path (m,tl, ml), (ml,t~, m2),. . . ,  (mk-l , tk,  mk) 

t l . . . t k  
corresponds to an occurrence sequence m , ink. So each transition is enabled 
by some marking reachable from m. 
(===~) Let m be a reachable marking. Let t l , . . .  ,tin be a list of all transitions of 
the net. Liveness implies that  some marking reachable from m enables t l .  
Let m a l  m f t l  ml.  
Again by liveness, we find an occurrence sequence ml a~ m~ t~ m~. 
Repeated application of this construction eventually leads to an occurrence se- 
quence that  contains every transition at least once. The sequence of edge labels 
of the corresponding path of the marking graph contains all transitions. O 

L e m m a l 6 .  A marked net is reversible if and only if its marking graph is 
strongly connected. 7 

Proof. 
( ~ )  Since the marking graph is strongly connected, there are directed paths 
from any vertex to the initial vertex. Hence the initial marking can be reached 
from any reachable marking. 
( ~ )  Let ml and m2 be arbitrary reachable markings. We show that  the marking 
graph has a directed path from ml to m2. By reversibility of the marked net, 
there is an occurrence sequence from ml to the initial marking m0. Since m2 is 
reachable, there is an occurrence sequence from m0 to m2. The concatenation 
of these sequences leads from ml to m2. The corresponding path of the marking 
graph leads from the vertex ml to the vertex m~ 

The marking graphs of Figure 11 provides examples. The first one represents the 
behavior of a bounded deadlock-free marked net which is not live. The second 
one stems from of an unbounded live marked net. The marked net of the third 
marking graph is live and bounded but not reversible. 

4.3 w-Mark ings  a n d  w - O c c u r r e n c e  Sequences  

By Lemma 13, unbounded finite marked nets have infinitely many reachable 
markings and thus infinite marking graphs. Therefore, analysis techniques based 
on the marking graph are not applicable to them. A finite graph can be con- 
structed instead, providing important  information about the behavior of the 
marked net. In particular, this graph can be used to decide boundedness of places 
and deadness of transitions. The graph is actually a tree, called coverability tree. 

The core idea of the following sections is the concept of w-markings which 
generalize conventional markings. 

Formally, an w-marking of a net N is a mapping ~ :  SN ~ ~W U {w} where 
w ~ tW. Clearly, every (conventional) marking can be viewed as a particular 
w-marking without w-entries. 

7 For that reason, reversible marked nets are sometimes called cyclic. 
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ca-markings are interpreted as follows: If a marking m' is reachable from a 
marking m and satisfies m'(s) >_ re(s) for each place s, the occurrence sequence 
leading from m to m' can be iterated arbitrarily often (Proposition 5). If more- 
over m'(so) > re(s0) for some place so then the number of tokens on so increases 
with each iteration of the occurrence sequence. This increasing sequence of mark- 
ings is now replaced by one ca-marking m' with m'(so) = ca, denoting that ,  for 
each b E fly', there is a reachable marking that coincides with m' for all places 
except So and assigns at least b tokens to so. More generally, several places may 
map to w, representing simultaneous growth of the token count on these places. 

w-markings are constructed by help of w-occurrence sequences. The following 
definition of ca-occurrence sequences demonstrates that  the occurrence rule can 
be applied for ca-markings in a similar way as for usual markings. An ca-entry 
of a place is not affected by any transition occurrence. Moreover, no w-marking, 
except occasionally the last one, should occur twice in an w-occurrence sequence. 
We will first define finite and infinite w-occurrence sequences and then prove that  
every w-occurrence sequence of a finite marked net is finite. 

A (finite or infinite) sequence of transitions tl  t2 t a . . .  is an w-occurrence 
sequence of a marked net with initial marking rn0 if there exist w-markings 
m0, ml,  m2 , . . ,  such that m0 and Tff0 coincide for all places and, for each index 
i occurring in the sequence tl  t2 t3 . . .  the following conditions hold: 

(1) For each place s in "t.,, either 7-gi-l(s) > 0 or ~ i - l ( s )  = w 
(the enabling condition). 

(2) For each place s satisfying ~i(s )  7 k w, 

~ i ( s )  = -~i- l(s)  - IFN n {(s,h)}l + IFN n {(ti, s)}l 

(the conventionM marking transformation). 
(3) A place s satisfies ~i ( s )  = w if and only if 

- either ~ i - l ( S )  = w 
(places marked by w remain marked by ca), 

- or -~i- l(s)  J: w and there exists an index j ,  j < i, such that  T~j(s) ¢ ca 
and ~-6j(s) < ~ i - l ( s )  - I P N  N {(s,ti)}l + IFN N {(ti ,s)} I 
and ~ / ( s ' )  <_ ~ i -  1 (s') - [FN n {(s', ti)}l + tF/v A {(ti, s')} I for each place 
s' satisfying ~ i ( s ' )  ¢ w and -~i- l (s ' )  ¢ w 
(places with increasing token count are marked by w). 

(4) I f / >  1 then ~i_1 ~ { m 0 , . . . , m i - 2 }  
(after reaching an w-marking the second time, the sequence stops). 

We call an w-marking ~ reachable in a marked net if some w-occurrence sequence 
leads to ~ .  

Figure 12 shows an unbounded marked net. A part of its marking graph is given 
in Figure 13 (all markings with less than 5 tokens are shown). The w-occurrence 
sequences of this marked net are: 

t l t l ,  t lt2t3t3~ t l t 2 t 3 t 4 t l ,  t l t2 t4 ,  t2t4, 
well as all prefixes of these sequences. 



s2 t3 s4 tl 

E 

sl( 

Fig. 12. An unbounded marked Petri net 
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(1, O, O, O) 

yt_ (1,1,0,) t4 (0,0,1,0) 

7t'~, 
(1,2, O, O) I--~--4 (0, 1, 1, O) 

t4 (0, 3, 1, O) (0, 1, 1, 1 ) - - .~  (1,0,0,1) 

(0,2,1,1).....%1 (1, 1, O, 1) ~%,~ 3 

(1, 2, O, 1) ~ 3  (0, O, 1,2) ql.--- ! 

/ ~ NI" 
(0, 1, 1 , 2 ) ~  (1,0,0,2)  

t2 ' 4 ~  tl 

/ ? 
(o, o, 1,3) 

.... I1, o, o,  3) 

.,4' 
Fig. 13. A part of the marking graph of the marked net of Figure 12 
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Note that  t l  t2  1;3 1;3 is an w-occurrence sequence but  not an occurrence 
sequence. Conversely, t l  t l  t l  is an example for an occurrence sequence which 
is not an w-occurrence sequence, although no marking is reached twice during 
this sequence. 

4.4 F i n i t e n e s s  o f  w - O c c u r r e n c e  S e q u e n c e s  

The following theorem states that  every w-occurrence sequence of a finite marked 
net is finite. For technical convenience, we assume a linear order _< on the set 
fg  U {w}, given by x _< y if and only if y = w or x _< y in ~W. The following 
lemma is known as Dickson's Lemma. 

L e m m a  17. Let S be a finite set and let ~1 ~2 ~ 3 . . .  be an infinite sequence 
of  mappings from S to ~ U {w}. There exists an infinite sequence of  indices 
il i2 i3 . . .  which is strongly monotonic O.e., il < i2 < ia < "" ") such that, for  
each s in S ,  

~.(s) ~ ~ ( ~ )  ~ ~.(s)  ~ .... 

Proof. We prove the following stronger proposition: For each subset S '  of S, 
there exists an infinite strongly monotonic sequence of indices il ,  i2, i3 , . . ,  such 
that ,  for each s in S ' ,  ~i~ (s) < ~i~ (s) < ~i~ (s) < -.-. We proceed by induction 
on the number of elements in S t. 
Base. If S ~ = O then nothing has to be shown. 
Step. Assume S I ¢ O and let s E S ~. By the induction hypothesis, there exists an 
infinite strongly monotonic sequence il, i2, i 3 , . . ,  such that ,  for each s ~ in S ~ \ { s } ,  

~( s / )  < ~ ( s ' )  _< ~ ( s ' )  < .... 

Now we restrict the sequence il ,  i2, i3 . . . .  to indices ik satisfying 

~ ( s )  5 ~+1(s), ~ ( s )  ~ ~÷~(s), ~ ( s )  5 ~k+~(s)... 

Clearly, the obtained sequence ikl, ik2, ik~, . . ,  satisfies the required proper ty  

~k,(s) ~ ~,~(~) 5 ~k3(s) ~ ... 

for each place s in S/. This sequence is infinite because, for each index ik, every 
index il in {ik+l, ik+2, i k+3 . . . }  satisfying 

belongs to the sequence, too. Such an index iz always exists because every 
nonempty subset o f / N  U {w} has a minimal element. [] 
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T h e o r e m  18. Every w-occurrence sequence of a finite marked net is finite. 

Proof. By contraposition, assume a finite marked net that  has an infinite w- 
occurrence sequence t l  t 2  t 3  • • . ,  

_ _  t l  t2 ta 
m l ~ m 2  ~ m 3  ~ ' ' ' .  

By Dickson's Lemma (Lermna 17), there exists an infinite strongly monotonic 
sequence of indices it, i2, i3 . . .  such that ,  for each place s, 

~ l ( s )  _ m~(s) _< ~Ms) _ " " .  

Let i and j be two subsequent indices of the sequence il, i2,i3 ....  By the defi- 
nition of w-occurrence sequences (4) no w-marking appears twice in an infinite 
w-occurrence sequence. Hence Ni (s )  ¢ N j ( s )  for at least one place s. By the 
definition of w-occurrence sequences (3), Ni(s )  ¢ w and m j ( s )  = w. Again by 
(3), no place s satisfies Ni (s )  = w and mS(s ) ¢ w. Hence m s has more places 
with w-entries than ~ i .  Therefore, the set of places with w-entries increases in- 
finitely, contradicting the finiteness of the set of all places of the net. [] 

4.5 C o v e r a b i l i t y  T r e e s  

Next we show that  a finite marked net has only finitely many w-occurrence se- 
quences and hence, together with the previous result, only finitely many reach- 
able w-markings. To this end, we introduce coverability trees. 

As shown before for occurrence sequences, every w-occurrence sequence can 
be conceived as a linear directed, acyclic graph with vertices labeled by w- 
markings and edges labeled by transitions. Starting with a single disconnected 
graph representing all w-occurrence sequences of a marked net, we identify com- 
mon prefixes of w-occurrence sequences. More precisely, we identify two vertices 
of the graph if and only if they are reached by the same w-occurrence sequence. 
This construction yields the coverability tree of the marked net. 

Formally, the coverability tree of a marked net is defined as a directed graph 
with a distinguished initial vertex and edges labeled by transitions: 

- the vertices are the finite w-occurrence sequences, 
- a distinguished initial vertex is given by the empty  sequence ¢ (which by 

definition is an w-occurrence sequence), 
- labeled edges are all triples (o', t, o" t) such that  a as well as ~r t are w- 

occurrence sequences. 

It is obvious that  the coverability tree is a tree with the empty sequence ¢ 
being the root. In the graphical representation, any vertex cr is labeled by the 
w-marking reached by ~r, 
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(1, o, o, o) 

(1, CO, 0, 0) (0, 0, 1, 0) 

/ X  X 
(1, m, O, O) (0, ~,  1, O) (l, O, O, O) 

7X 
(0, 0), 1, co) (1, co, O, O) 

;/X 
(0, co, 1, co) (1, o~, O, co) ' /X 

(I ,  m, 0, O) (0, o1, l, m) 

Fig. 14. The coverability tree of the marked net of Figure 12 

Figure 14 shows the coverability tree of the marked net of Figure 12. Each vertex 
is the w-occurrence sequence given by the arc labels of the pa th  leading from 
the root to that  vertex. The vertices are annotated by the respective reached 
aJ-markings (in vector notation). 

T h e o r e m  19. The coverability tree of a finite marked net is finite, s 

Proof. By contraposition, assume a finite marked net with an infinite coverabii- 
ity tree. Each vertex o" of the coverability tree has only finitely many immediate 
successors, one for each transition enabled by the ,~-marking reached by c~. Hence 
every vertex (r with infinitely many successors has at least one immediate succes- 
sor which also has infinitely many successors. By assumption, the initial vertex 
e has infinitely many successors. Hence, start ing with e, we can construct an 
infinite directed path  of the tree. The concatenation of the labels of the edges of 
this path yields an infinite a.,-occurrence sequence - -  contradicting Theorem 18. 

[] 

C o r o l l a r y  2 0 .  A finite marked net has finitely many reachable w-markings. 
o 

4.6 R e a c h a b l e  M a r k i n g s  a n d  R e a c h a b l e  ,~ -Mark ings  

Tile following two theorems formulate relations between reachable markings and 
reachable w-markings of a marked net. 

s This result is based on the well-knowl~ lemma of t,:6nig 
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T h e o r e m  21. Let -~ be a reachable w-marking of a finite marked net. For each 
b in IN, there is a reachable marking m such that every place s satisfies: 

- i / m ( s )  # w t h e .  ~ ( s )  = m ( s ) ,  
- i / - ~ ( s )  = w th~n re ( s )  >_ b. 

Proof. Let N be a net with initial marking m0. Let 

t l  t~ tk - -  
m O  > ~ 1  ~ " ' "  ~ m k  

be an w-occurrence sequence. By definition, too(s) = ~0(s )  for each place s. 
Let S~ be the set of places satisfying ~k( s )  = w. Let b E IN; we prove that  

there exists a reachable marking m which coincides with ~k  on all places not in 
S~ a~d assigns at least b tokens to each place in So. To this end, we construct 
an occurrence sequence 

~ k  a~ , t3 ak-1 ml ~ mk > m~ rno ~ m I  ~ ~"/1 

such that m~ satisfies the above property. 
Let s be an arbitrary place in S'~. By definition of w-occurrence sequences, 

there is a unique index i(s) such that  

~ 0 ( s ) , ~ l ( s ) , . . .  , ~ i ( , ) - l ( s )  ¢ w, 

~(~)(s) ,r~.~( , )+l(s) , . . .  ,ink(s) = w 

and an index j(s),  j(s) < i(s), such that the transition sequence r(s), 

r(s) = tj(s)+l tj(,)+2..,  ti(,), 

increases the token count of s and does not change the token count of any place 
s' satisfying ~ i ( , ) ( s ' )  ¢ w. However, the sequence r(s) might decrease the token 
count of places s' satisfying m--~(s)-l(#~ = w. It decreases the token count of a 
place s by at most Ir(s)h the length of r(s). Any marking that coincides with 
m"-i(~) on each place s' satisfying Ni(,)(s ')  ¢ w and associates at least Ir(s)t 
tokens to each other place, enables v(s). 

• s ~ s ~ " l } .  For n =  1,. .  ,k, let Sn = { s E S ¢ o l i ( s ) = n }  and assumeS~ = { ~ . . . .  , 
In the sequel, [r] m stands for the sequence r r . . .  r .  

m times 
Define 

= , (4 ' . ) ]  

to ensure that each place s in Sk satisfies rn'k(s ) >__ b. Since the token count of 
places in S~-I can be decreased by tk and by ak, define 

ls~I ~ (lzki+l+b) 
= l 

to ensure that  tk o'k is enabled after the occurrence of c%-1 and moreover leaves 
at least b tokens on each place in Sk-1. 
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In general, for i = k, k - 1 , . . . ,  1 the sequence ~ri is defined by 

= 

Notice tha t  some of  the sequences c~i might  be empty.  Since the marking  ~ 0  has 
no w-entries, the sequence ~rl does not decrease the token count of  any place and 
is hence enabled at m l .  

Since the token count of a place not in S~ is not  changed by any occurrence 
sequence ri, it is not  changed by any ~ri. Hence m~ and ~ k  coincide on all these 
places. [] 

T h e o r e m  22. Let m be a reachable marking of a finite marked net. There exists 
a reachable ~-marking  ~ such that re(s) = ~ ( s )  for  each place s satis]ying 
r (s) ¢ 

Proof. A sequence of transitions is called generalized w-occurrence sequence of  a 
marked net if it satisfies conditions (1) to (3) of the definition of w-occurrence se- 
quences, i.e., generalized w-occurrence sequences are very much like w-occurrence 
sequences except they do not  necessarily stop after reaching an w-marking twice. 

We claim that ,  for each generalized w-occurrence sequence ~r leading to an w- 
marking 7g, there also exists an w-occurrence sequence leading to ~ .  The  claim 
is proven by induction on the length k of a. 
Base: k = 0. The empty  sequence is an w-occurrence sequence. 
Step: k > 0. If  cr is an w-occurrence sequence then there is nothing to  be shown. 
So assume tha t  this is not  the case. Let o" = tl  t ,  . . .  tk and 

- -  t l  - -  t 2  t k  
m 0 , m 1 ', . . .  ,, Ilt k .  

Since (r is not  an w-occurrence sequence, there is a smallest index i (1 < i < k) 
such tha t  ~ i  coincides with some Ygj (0 _< j < i). The  sequence tl . •. ¢ j¢ i+1. . .  tk 
is a generalized w-occurrence sequence, too. The  w-marking reached by this 
sequence is ~-gk, too. Since the length of this sequence is smaller than  k, the 
induct ion hypothesis  can be applied, which finishes proof  of the claim. 

t l  t ~  t k  
Let m0 , ml  , • - - ) mk be an occurrence sequence such tha t  mk -= m. 

Then,  obviously t l  t 2 . . .  tk is a generalized w-occurrence sequence. This  gener- 
alized a~-occurrence sequence leads to an w-marking i-g satisfying the required 
property.  By the above claim, some w-occurrence sequence leads to 5-7, too. [] 

In turn,  the previous result implies a sufficient condition for non-reachabi l i ty  
of  a marking.  

4 .7  A n a l y s i s  T h r o u g h  C o v e r a b i l i t y  T r e e s  

By construct ion of the coverability tree of  a marked net, we obta in  a finite 
representat ion of  MI reachable w-markings.  T he  following theorems show t h a t  by  
inspection of this finite set of w-markings, boundedness  of places and deadness 
of t ransi t ions can be decided. 
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Theo rem 23. A place s of a marked net is not bounded if and only if some 
reachable w-marking ~ satisfies -~(s) = w (i.e., some vertex of the coverability 
tree represents the w-marking -~). 

Proof. 
( ~ )  follows immediately from Theorem 21. 
( ~ )  Since there are only finitely many reachable w-markings by Theorem 19 
there is a number b 6 J~V such that each reachable w-marking T~ satisfies either 
~(s )  = w or ~(s)  < b. Since s is not bounded, some reachable marking m 
satisfies re(s) >_ b. Since m(s) does not coincide with ~(s)  for any reachable 
w-marking ~(s) ,  there exists some reachable w-marking ~ satisfying ~(s)  = w 
by Theorem 22. [] 

Together with Theorem 22, this result implies the following corollary. 

Corol lary  24. A place s of a marked net is b-bounded if and only if each reach- 
able w-marking "~ satisfies -~(s) ¢ w and ~ ( s )  < b. 

T h e o r e m  25. A transition t of a marked net is dead if and only if  t does not 
occur in any w-occurrence sequence (i.e., some arc of the coverability tree is 
labeled by t). 

Proof. 
( ~ )  Assume some reachable marking m enables t. By Theorem 22, a cor- 
responding reachable w-marking ~ satisfies ~(s)  ~- 0 for each place s in "t. 
Hence, this w-marking enables t, too. 
( ~ )  Assume some reachable w-marking ~ enables t. By Theorem 21, there is 
a corresponding reachable marking m that marks all places satisfying ~ = w at 
least once. This marking m enables t, too. D 

4.8 Coverabil i ty Trees and  Marking  Graphs  

Theorem 23 immediately implies the following corollary. 

Corol lary  26. A marked net is bounded if and only if no reachable w-marking 
contains an w-entry. 

In other words: reachable markings and reachable w-markings coincide for bounded 
marked nets. 

The coverability graph of a marked net is defined as an arc-labeled directed 
graph with a distinguished initial vertex and edges labeled by transitions: 

- the vertices are the reachable w-markings, 
- the distinguished initial vertex is given by the w-marking that coincides with 

the initial marking for each place, 
- labeled edges are given by all triples ( ~ , t , ~ ' )  such that ~ and ~ '  are 

reachable w-markings satisfying ~ t ~ ~ , .  
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The coverability graph is easily constructed fi'om the coverability tree by 
identification of any two vertices representing ca-occurrence sequences that  lead 
to identical markings. Note that, in general, a vertex of the eoverability graph 
can have more than one outgoing edge labeled by the same transition, because 
different ca-occurrence sequences can lead to the same ca-marking. However, this 
is not the case for bounded marked nets: 

T h e o r e m  27. The coverability graph and the marking graph of a bounded marked 
nel are identical (up to different co-domains of markings and w-markings). 

Proof. The result follows immediately from Corollary 26 and the definition of 
ca-occurrence sequences. O 

5 A n a l y s i s  T e c h n i q u e s  

5.1 Behavioral  Complex i ty  of  Marked Nets  

As shown in the previous section, for bounded finite marked nets the marking 
graph can be constructed to analyze behavioral aspects. For unbounded finite 
marked nets, the coverability tree provides some information about the behavior. 
However, even if the marking graph of a marked net is finite, it is not always 
feasible to explicitly construct this graph because its size can explode with the 
size of the marked net 9. 

Figure 15 shows that  the set of reachable markings can grow exponentially 
with the size of a net: with n + 2 transitions the marked net has 2 '~ + 1 reachable 
markings. In the marked net shown in Figure 16, the smallest bound of the 
place s depends on the initial token count of the place s0: if sO carries n tokens 
initially then this bound is 2 '~. 

Analysis techniques that do not explicitly construct the set of all reachable 
markings (or ca-markings) have to stick to the structure of the net and its initial 
marking. Petri net theory provides many such techniques. In this section, we 
will introduce place and transition invariants, siphons and traps and discuss 
their relation to deadlock-freedom, liveness, boundedness and reversibility. 

Often it is useful to prove that every reachable marking satisfies some given 
property. The following lemma gives a sufficient condition for this property, l° 

L e m m a 2 8 .  A set M of markings of a marked net with initial marking mo 
contains all reachable markings if 

(1) mo E M and 

(2) for each marking m of N and each transztion t of N,  m E M and m 
imply rn I C M.  

t ~, I n  / 

9 This is sometimes called state explosion problem, see [VMm98]. 
10 This technique is not specific for Petri nets. In general, it is sometimes called asset, 

tional reasoning. 
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Fig.  15. The set of reachable markings explodes with the size of the net 

$ 

Fig.  16. The set of reachable markings explodes with the number of initial tokens 

Proof. Assume tha t  M satisfies conditions (1) and (2). Let m be a reachable 

marking  and let m0 ° ~ m, ~ = tl t2 . . . t k .  Assume 

t~ t2 t a  tk 

Then  m = ink. 
We prove tha t  all markings mi, 0 < i < k are in M ,  by induct ion on i. 

Base: i = O. Then  m = m0. By (1), m0 E M.  



t49 

Step: i > 0. By the induction hypothesis, m i - 1  E M. This implies by (2) that  
mi 6 M. [] 

Notice that conditions (1) and (2) of the above lemma are not necessary 
for a set M to include all reachable markings. This is because condition (2) 
applies to all markings m in M and not only to reachable markings in M. 
Obviously, it would be sufficient to require this condition for reachable markings 
only. However, the set of reachable markings is unknown in general and hence 
this modified condition would not be easy to verify. 

5.2 P l a c e  I n v a r i a n t s  

Occurrences of transitions transform the token distribution of a net, but  often 
respect some globM properties of markings. For example, the total token count of 
a set of places remains unchanged if the pre-set and the post-set of the transition 
contain the same number of places of this set. Place invariants formalize such 
invariant properties. They moreover allow to weight tokens on places by positive 
or negative values such that the sum of weighted tokens remains constant. 

Given a net N, a place invariant is a mapping i: S N --~ ~ satisfying i(s) # 0 for 
finitely many places and 

sE't  set" 

for each transition t of N. A place invariant is nonnegative if it maps no place 
to a negative number. 

T h e o r e m  29. If m is a reachable marking of a marked net with initial marking 
mo and i is a place invariant then 

E i (s) .m(s)= E i(s).mo(S). 
86SN S6SN 

Proof. Let M be the set of markings satisfying the above equation. We employ 
Lemma 28. 

Clearly m0 is in M. Assume a marking m in 114" and a transition occurrence 
t f l i t  , rn ~ Then, for each place s, 

rn'(s) = re(s) - I f n  {(s,t)}l + IFN {(t,s))l 

by the occurrence rule. Hence 

i(s).m'(s) = ~ i ( s ) .m(s) -~  i(s).lfn{(s,t))l+ ~ i(s).lEn{(t,s)}t. 
sESN sESN sESN s6.SN 

Observe that  IFN{(s,t)} t = 1 i fs  E ' t ,  and lFM{(s,t)}t = 0 otherwise. Together 
with the corresponding property for IF M {(t, s)} I and t '  we obtain 

E i(s) .m'(s)= E i ( s ) . m ( s ) -  E i ( s ) + E i ( s ) "  
sESN sE S N sE't set" 
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By definition of place invariants, the last two sums are equal. Hence 

i(s).m,(~) = ~ ~(s).m(s). 
SESN sESN 

So m' 6 M. 
By Lemma 28, each reachable marking is in M, which implies the result. 

[] 

The previous theorem constitutes the salient property of place invariants. For 
marked nets without dead transitions, the converse direction holds as well: 

T h e o r e m  30. Assume a marked net N without dead transitions. Let mo be the 
initial marking. Let i: SN --~ 2~. If  each reachable marking m satisfies 

i(s). m(s) = E i(~). m0(s) 
sES1v sE SN 

then i 'is a place invariant. 

Proof. Let t be a transition. Since t is not dead, there are reachable markings 

m and m' such that  m * ~ m'. The assumption implies 

E ~(s). m(~) = ~ ~(s). ~'(s). 
sESN sESN 

As shown in the proof of Theorem 29, 

E i ( s ) . m ' ( s ) =  E i ( s ) . m ( s ) - E i ( s ) + E i ( s ) .  
sESN sESN s6"t set" 

Hence 
E i ( s ) =  E i ( s )  
s E O t  s E t  • 

which finishes the proof. [] 

Place invariants can be used to prove that a place is bounded: 

T h e o r e m  31. Let s be a place of a marked net N with initial marking too. I f  
there is a nonnegative place invariant i satisfying i(s) >_ 1 then s is bounded by 

1 
i(s) " ~ i (s ' ) ,  mo(s'). 

s'ESN 

Proof. Since i is nonnegative, i(s') > 0 for each place s'. Hence 

~(s). re(s) < ~ ~(~'). m(s'). 
s t E S  N 

Hence, by Theorem 29, each reachable marking m satisfies 

i(s). m(~) < ~ ~(s'). mo(s'). 
s t E S N  

Division by i(s) yields the result. [] 
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Fig. 17. Two marked nets (copied from Figure 10) 

C o r o l l a r y  32. A finite marked net is bounded if it has a place invariant i that 
maps all places to positive numbers. 

T h e o r e m 3 3 .  Let N be a marked net with initial marking mo and let i be a 
nonnegative place invarianl. Let Si be the set of places s satisfying i(s) > O. I f  
too(s) = 0 for each place in Si then every transition in "Si U S~ is dead at the 
initial marking. 

Proof. Since i is a place invariant, no reachable marking marks any place in Si. 
Hence no reachable marking enables a transition in S~. Each transition t in 'S i  
is also dead because otherwise the occurrence of t would lead to a reachable 
marking that  marks a place in Si. [] 

C o r o l l a r y  34. I f  no transition of a marked net is dead at the initial marking 
then every nonnegative place invariant i either maps all non-isolated places to 0 
or satisfies i(s) > 1 for at least one initially marked non-isolated place. 

This corollary applies in particular to live marked nets. 

Figure 17 shows again the two marked nets N1 and N2 from Figure 10. In lql, 
the set of place invariants is given by all mappings i: SN1 ~ 2g satisfying 

i ( s l )  = i ( s 2 )  = i ( s3 )  = i ( s 4 ) .  

An example is the place invariant that maps each places to 1. Corollary 32 
applies and proves all places bounded. Theorem 33 and Corollary 34 do not 
apply because no transition is dead. Only if the initial marking was the null 
marking, these results would prove deadness of all transitions. 

In N2, the set of place invariants is given by all mappings i: SN2 --~ 2~ satis- 
fying 

i ( s l )  = / ( s 2 )  and i(s3) = 0 and i(s4) = i(s5). 

An example is the place invariant that maps places s l  and s2 to 1 and the other 
places to 0. Using this invariant, Theorem 31 proves that s 1 and s2 are bounded. 
If the token on s l  was missing then Theorem 33 would prove deadness of t l  and 
t2 ,  using the same place invariant. 
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5.3 Transi t ion Invariants 

Given a net N, a transition invariant is a mapping j:  TN -~ 2Z satisfying j ( t )  ~ 0 
for finitely many transitions and 

E j ( t )  = E j ( t )  
tE's  tEs" 

for each place s of N. 
Let o- be a finite sequence of transitions of a net N. The Parikh mapping 

po: TN -' ,  2~ maps each transition t to the number of occurrences of t in or. 

T h e o r e m 3 5 .  I f  m a ml • ~ is a finite occurrence sequence of  a net then m = m ~ 
i f  and only i f  the Parikh mapping p~ is a transition invariant.  

Proof. Let s be a place. We prove that  the equation 

tE's  tEs" 

holds if and only if m ( s )  = m ' ( s ) .  The first equation is equivalent to 

tE ' s \ s"  tEs ' \ ' 8  

A token is added to s by a transition occurrence if and only if this transition is 
i n ' s  \ s ' .  A token is removed if and only if the transition is in s" \ "s. Hence 
the last equation holds if and only if the number of transition occurrences in 
c~ that  increase the token count of s coincides with the number of transition 
occurrences in a that  decrease the token count of s. The latter is exactly the 
case if re(s)  = m ' ( s ) .  [] 

T h e o r e m  36. I f  the initial marking of a finite bounded marked net enables an 
infinite occurrence sequence cr then the net has a transition invariant j satisfying 

- j ( t )  = 0 for  each transition t not occurring in ~r, 
- j ( t )  = 0 for  each transition t occurring in ~ f initely often, 
- j ( t )  >_ 1 f o r  each transition occurring in Cr infinitely often. 

Proof. Let T~ the set of transitions occurring infinitely often in the sequence c~. 
Assume a = t l  t2 t 3 . . .  and 

t l  t~ t3  
m 0  : m l  > m 2  ) " " .  

Let kl be the first index (1 _< kl) such that  the sequence tkl+l tkl+2 tk~+3.. .  
contains only transitions of T~. 
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Def ine  an  in f in i te  s e q u e n c e  kl k2 k3 . . .  o f  indices, kl < k2 < k3 < "' ", s u c h  

that, for i = 1, 2, 3 , . . . ,  the transition sequence 

tk,+l tk,+2 tk,+3..  .tk,+~ 

contains each transition of T~ at least once. 
Since the marked net is finite and bounded, only a finite set of markings is 

reachable. Therefore, the markings rnk~, rnk~, rnk3,.., cannot be pairwise differ- 
ent. So there are indices i and j ,  (1 < i < j )  such that  rnk, = rnkj. By Theorem 
35, the Parikh vector of the transition sequence tk,+l tk,+2 • • • tkj is a transition 
invariant. It is immediate that this transition invariant satisfies the conditions 
formulated above. [] 

C o r o l l a r y  37. I f  a finite marked net is live and bounded then it has a transition 
invariant that maps each transitions to a positive number. 

Proof. By liveness, every transition can always occur again. Therefore there ex- 
ists an infinite occurrence sequence containing all transitions of the net infinitely 
often. The result follows by Theorem 36. [] 

In the example of Figure 17, Iql is a finite and bounded marked net. It has an 
infinite occurrence sequence t4  tS t4  t5  .... In fact, the net has a transition 
invariant mapping transitions t4  and t5  to 1 and the other transitions to 0. 

5.4 S iphons  a n d  Traps  

Next we consider sets of places, S, that never gain a token once none of their 
places is marked. As shown in Theorem 33, if a nonnegative place invariant has 
positive entries only for places of S then no place of S will ever gain a token. 
Another sufficient condition is that each transition that adds one or more tokens 
to a place of this set also removes at least one token from some place of the set. 
This condition is formalized by the notion of a siphon, to be defined next. 

A siphon is a set S of places satisfying "S C_ S ' .  A siphon is marked by a 
marking m if at least one place of it is marked at m. 

T h e o r e m  38. Assume a marked net with a siphon S. I f  S is not marked at the 
initial marking then S is not marked at any reachable marking. 

Proof. We apply Lemma 28 to show that every reachable marking marks no 
place of S. 

Let M be the set of markings that do not mark S. By assumption, the 
initial marking is in M. Assume a marking m in M and a transition occurrence 

t mt,  So m , Then t ~ because m enables t and m marks no place in S. Since 
S is a siphon, this implies t ~ "S. Hence no place of S can gain a token by the 
occurrence of t and m ~ belongs to M, too. 

So, by Lelnma 28, M includes all reachable markings, which implies the 
result, t2 
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Consider again the examples shown in Figure 17. The net Ill has the siphons 

{ s l ,  .'2}, {.-1, .'2, .'3, 

After the occurrence of t l  and t3,  the siphon {. '1,. '2} is unmarked and can 
never become marked again. 

The siphons of the net Il2 are 

0, {.'1, .'2}, {.'1, .'3}, {.'1, .,2, .'3, .'4}, {.'1, .'2, .'3, .'4, .'s}, {.'4, .'s}. 

Siphons can be used to prove that  transitions of a marked net are dead: 

T h e o r e m  39. Assume a marked net with a siphon S which contains at least 
one non-isolated place. I f  no transition is dead at the initial marking then some 
non-isolated place of S is initially marked. 

Proof. Assume that  S contains no initially marked non-isolated place. Let s be 
a non-isolated place in S. By Theorem 38, s is not marked at any reachable 
marking. Therefore, by Proposition 9 all transition in the s e t ' s  U s '  are dead. 
Since s is not isolated, this set is not empty and hence there is an initially dead 
transition. [] 

Similarly to siphons, we consider sets of places that  never loose all tokens 
once at least one of their places is marked. A sufficient condition is that  each 
transition that  removes at least one token from this set also adds a token. This 
condition is formalized by the notion of a trap: 

A trap is a set S of places satisfying S '  C_ ' S .  A trap is marked by a marking 
m if at least one place of it is marked at m. 

T h e o r e m  40. Assume a marked net with a trap S. I f  S is marked at the initial 
marking then it is marked at every reachable marking. 

Proof. We apply Lemma 28. 
Let M be the set of markings of the net that  mark at least one place of S. 

By assumption, the initial marking is in M. Now assume a marking m in M and 

a transition occurrence m ~ ~ m'. If t ~ S '  then the place of S marked by m 
remains marked. If  t 6 S '  then t 6 ' S  because S is a trap.  Hence, in this case 
at least one place in t '  n S is marked at m' .  

So, by Lemma 28, M includes all reachable markings, which implies the 
result. [] 

The traps of the net N1 of Figure 17 are 

~,{s3, s 4 } , { s l , s 2 ,  s3, s4} 

and the traps of the net Il2 are 
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By contraposition of the following result, traps can be used to show that  a 
marked net is not reversible: 

T h e o r e m 4 1 .  Assume a reversible marked net with a nonempty trap S which 
contains no isolated place. I f  no transition is dead at the initial marking then S 
is initially marked. 

Pro@ Let s be a place in S and let t be a transition in "s U s ' .  Since t is not 
initially dead, there exists a reachable markings rn that  marks s, by Proposit ion 
9. So the t rap S is marked at some reachable marking. Since the initial marking 
m0 can be reached from m by reversibility, S is also marked at rn0. D 

A first example of this result is given by N2 of Figure 17; this marked net is 
reversible and has no dead transitions. Hence all nonempty t raps are initially 
marked. As a negative example, consider the marked net N8 of Figure 10. It has 
no dead transitions. The set {sa, s4, s8} is a trap which is not marked initially. 
Hence the marked net is not reversible. 
Finally, siphons and traps provide a su~cient  condition for deadlock-freedom: 

T h e o r e m 4 2 .  Assume a marked net with at least one transition. I f  each non- 
empty siphon without isolated places includes a trap marked at the initial marking 
then the marked net is deadlock-free. 

Pro@ Assume that  the marked net is not deadlock-free and let m be a dead 
reachable marking. Let S be the set of non-isolated places that  are not marked 
at m. We show that  S is a non-empty siphon that  includes no initially marked 
trap. 

Each transition t is dead at rn and hence has an unmarked input place. So S '  
contains the set of all transitions. Therefore, ' S  C S ' .  S is not empty  because 
the net has some transition by assumption and S contains a place in the pre- 
set of this transition. So S is a non-empty siphon without isolated places. By 
definition, S is not marked at rn. Hence, S includes no trap marked at m. Since 
initially marked traps remain marked, S includes no trap marked at the initial 
marking. [] 

Again the nets N1 and N2 of Figure 17 serve as examples. In R1, the siphon 
{s l ,  s2} does not contain any nonempty trap.  In N2, the condition formulated 
in Theorem 42 holds, whence the marked net is deadlock-free. 

5.5 M i n i m a l  P l a c e  I n v a r i a n t s  a n d  M i n i m a l  S i p h o n s  

Theorems 31 and 33 employ nonnegative place invariants. In general, a net pos- 
sesses infinitely many nonnegative place invariants. We show next that  there is a 
finite set of minimal place invariants such that  every nonnegative place invariant 
can be expressed by a sum of minimal place invariants. 
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A nonnegative place invariant i is minimal  if 

- i(s)  >_ 1 for some place s 

and there are no two nonnegative place invariants il and i2 such that 

- i l ( s l )  >_ 1 for some place sl,  
- i~(ss) ~ 1 for some place s2, 
- i(s) = i l (s )  + is(s) for each place s. 

T h e o r e m  43. The set of minimal  place invariants of a finite net is finite. 

Proof. Assume a finite net with an infinite set of minimal place invariants. Let 
il is i3 . . .  be an infinite sequence of different minimal place invariants. Dickson's 
Lemma (Lemma 17) implies that this sequence contains place invariants ij and 
ik such that ij ~ ik and, for each place s, i j (s)  <_ ik(s).  Consider the mapping 
i: SN --* 2~, defined by i(s) = i k ( s ) -  i j (s) .  It is straightforward to verify that 
i is a nonnegative place invariant, too. Since ij ~ ik, ik is not minimal. This 
contradicts the assumption that the sequence contains only minimal place in- 
variants. O 

In Theorems 31 and 33 it suffices to consider minimal place invariants because 
every place mapped to a positive number by any nonnegative place invariant is 
mapped to a positive number by a minimal one. 

There exists a place invariant i satisfying i(s) >_ 1 for each place s if and only 
if the sum of minimal place invariants enjoys this property. So for Corollary 32 
it also suffices to consider minimal place invariants. 

The example net ~ll has only one minimal place invariant. This invariant maps 
all places to 1. The example net N2 has two minimal place invariants; one of 
them only maps s l  and s2 to 1, the other one only maps s4 and s5 to 1 (the 
other places are mapped to 0). 

Clearly, the sets of siphons and traps of a finite net are finite. However, often 
not every siphon has to be checked for the application of the previous results. 
In particular for Theorems 39 and 42 it suffices to consider siphons that do not 
properly include other siphons except the empty set. 

A minimal  siphon S is a nonempty siphon such that no proper subset of S 
is a nonempty siphon. 

If a siphon S contains an isolated place s then S \ {s} is a siphon, too. So a 
minimal siphon either contains no isolated places or consists of only one isolated 
place. 

Since the union of traps is again a trap, the maximal  trap in a given set of 
places S is the union of all traps included in S. It is the empty set if S includes 
no nonempty trap. So Theorem 42 can be reformulated as: 

C o r o l l a r y  44. Assume a marked net with at least one transition and no isolated 
place. I f  all maximal  traps included in minimal  siphons are marked at the initial 
marking, the marked net is deadlock-free. 0 
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Fig. 18. The sets of minimal siphons, minimal traps and minimal place invariants 
grows exponentially in the size of the net 

The net N1 has only one minimal siphon, namely {s l ,  s2}. The maximal  t rap 
included in this siphon is empty. The net N2 has minimal siphons {s l ,  s2} and 
{s4, .*5}. Both sets are also traps; hence they are the maximal traps included in 
the siphons. 

Minimal place invariants and siphons do not always help to significantly improve 
the efficiency of analysis techniques. Consider the nets shown in Figure 18. For 
a fixed number n of transitions, there are 2 n minimal place invariants, mapping  
one place of each vertical pair of places to 1 and the other place to 0, and there 
are 2 '~ minimal siphons, containing exactly one place of each vertical pair each. 

6 C o n c u r r e n t  S e m a n t i c s  o f  M a r k e d  N e t s  

Occurrence sequences provide a sequential  semant ics  of marked nets, because 
they represent each run by a sequence. In general, an occurrence sequence pro- 
vides little information about dependencies between transition occurrences: if a 
transition name t t appears after a transition name t in an occurrence sequence 
then either t ~ can only occur after t has occurred, or both  occurrences are con- 
current. The aim of this section is to provide a concurrent  s eman t i c s  which 
explictly represents dependencies between transition occurrences. In particular,  
this semantics respects concurrency. Relations of this semantics to sequential 
semantics are studied in depth. 

6.1 C a u s a l  N e t s  

Consider again the vending machine from the introduction. Figure 19 shows 
its representation as a marked net, as in Figure 9. In this example, t 5  is only 
enabled after the occurrence of t3,  whereas t3  and t l  can occur concurrently. A 
concurrent  run of the transitions t l ,  t3  and t5  should explicitly represent these 
dependency relations . 



Fig. 19. A marked net with three concurrent runs 
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The occurrence of '65 depends on the previous occurrence of t 3  because 
"63 produces a token that  is consumed by "65. Transition occurrences together 
with produced and consumed tokens and their mutual  relationship are most 
conveniently represented by a special kind of labeled nets. Thus each concurrent 
run of a marked net is represented by a net, called causal net. To avoid confusion, 
the marked net will called system net in the sequel. 

Figure 19 shows a marked system net and three causal nets representing 
concurrent runs. Each place of a causal net represents a single token occurrence 
in a system net. We call places of causal nets conditions, emphasizing their role 
as pre- and post-conditions of transition occurrences. Similarly, each transition 
of a causal net represents a single occurrence of a transition of a system net. 
Transitions of causal nets are called events. 

The elements of the causal nets are usually written b l ,  b 2 , . . .  (conditions) 11 
and e l ,  e 2 , . . .  (events). Moreover, each element is inscribed by the corresponding 
element of the system net: an event inscribed by t represents an occurrence of t, 
and a condition in the post-set of the event stands for a token produced by the 
transition occurrence. The condition inscription denotes the place of the system 
net, to which the token is added. The initial token distribution is reflected by 
according conditions of a causal net with empty pre-set. The causal nets of Figure 
19 are finite, but causal nets may be infinite, thus representing infinite runs. 

According to the vending machine interpretation of tile example net, the 
first two causal nets represent concurrent runs where two coins are inserted and 
accepted, and two iterrLs are dispensed. In the first concurrent run, the first 
dispensed item is the one initially in the storage. The second i tem had to be 
refilled before it is dispensed. In the second run, the i tem initially in the storage 
is not touched. Instead both diepensed items depend on preceding occurrences 
of the refill transition t l .  Concurrent semantics distinguishes these two runs 
because the mutual  dependencies of transition occurrences are different. One 
could argue that  the second run is more efficient because the occurrences of t2  
do not unnecessarily wait. Moreover, if items should not stay too long in the 
storage (such as warm beverages), the second run is not desirable. The third run 
is different. Here the second inserted coin is rejected. In contrast to the other 
runs, some condition inscribed by s5 is followed by an event inscribed by t4 .  
Thus, in this run a token an s5 is removed by the occurrence of t4.  

Formally, a causal net is a net with conditions (places) and events (transi- 
tions) satisfying the following properties: 

(1) the flow relation is acyclic, i.e. 
no pa th  with at least two elements leads from an element to itself; 

(2) conditions are not branched, i.e. each condition b satisfies I'bl < 1, Ib'l G 1; 

(3) only finitely many conditions b have an empty pre-set 'b;  

(4) for each event e, both sets °e and e" are finite and nonempty;  

(5) for each element x, only finitely many different paths lead to z. 

11 from the German Bedingungen 
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For a given causal net K 12, the symbols BK, EK and FK denote its sets 
of conditions, events and directed arcs, respectively. Since the flow relation of a 
causal net K is acyclic by definition, it induces a partial order ~K between the 
elements of K: z ___K Y if and only if there is a path leading from x to y. We say 
that  x precedes y in K if x ~ y and x ~ g  Y. According to (4), each element is 
preceded by finitely many elements. 

A line of a causal net K is a maximal set of elements that  are pairwise or- 
dered by ~___g (maximality w.r.t, set inclusion). 

In the first causal net of Figure 19, the set {b2, e4,b8, e6,b9} is a line. 

P r o p o s i t i o n 4 5 .  For each path of a causal net, all elements appearing in the 
path belong to a single line. [] 

A cut is a maximal set of elements such that every two distinct elements of 
the set are not ordered by -Z,g. 

In the first causal net of Figure 19, the set {b9, e7 ,b l l , b12}  is a cut. 

The maximality of a cut implies the following proposition: 

P r o p o s i t i o n 4 6 .  Given a cut X of a causal net K,  each element y o f K  either 
belongs to X or precedes an element of X or is preceded by an element of X .  

[] 

6.2 C a u s a l  N e t s  w i t h  C a n o n i c a l  M a r k i n g  

Representing a single concurrent run of a system net, there is no need for mark- 
ings of causal nets. Markings for causal nets are nevertheless useful for technical 
reasons. A canonical initial marking of a causal net K assigns to each minimal 
(w.r.t. ~ g )  condition one token and no token to all other conditions. As will 
turn out, occurrence sequences of system nets and occurrence sequences of cor- 
responding causal nets are closely related. This relation demonstrates that  the 
concurrent semantics provided by causal net respects the sequential semantics 
provided by occurrence sequences. 

For each causal net K,  we call the marking l0 defined by 

1 ifeb = 0 
lo(b)= 0 i f ' b e 0  

the canonical initial marking of K. 

In all causal nets of Figure 19, the canonical initial markings assign one token 
to the conditions b l , b2  and b3 and no token to any other condition. 

12 from the German I(ausalnetz 
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T h e o r e m  47. Assume a causal net K with canonical initial marking lo. A mark- 
ing l of K is reachable from lo if and only if 

- l(b) < 1 for each condition b, and 
- the set {b E BK ] l(b) = 1} is a finite cut of K.  

Proof. 
(~===) Let B denote the finite cut {b E BK I l(b) = 1). Let E be the set of events 
preceding conditions of B. By the definition of causal nets, E is finite because 
B is finite. We proceed by induction on IE[. 
Base: k = O. Then all conditions in B have an empty pre-set. Since B is a cut, 
B contains all conditions with empty pre-set. Therefore, 1 = 10. 
Step: k > 0. Assume a maximal event e in E (maximality w.r.t. _---<g). 

We claim that e" C B. Let b in e ' .  
By the maximality of e, either b' = 0 or b' = {e ~) for some event e ~ that does 

not belong to E. In both cases, b does not precede any condition of B. Since b is 
not branched, every condition preceding b also precedes e. Since e precedes some 
condition of B and conditions of B are not ordered, no condition preceding b 
belongs to B. Proposition 46 implies b E B. 

Define B ~ = (B \ e ' )  U 'e .  B / is finite because B as well as "e are finite. 
We claim that B'  is a cut. To this end, we first show that no condition in ' e  is 
ordered with any other condition in B'.  Then we prove that every element of K 
either belongs to B'  or is ordered with at least one condition of B'.  

Conditions in ' e  are mutually not ordered because conditions are not branched 
and e does not precede a condition in ' e  because K is acyclic. There is no path 
from a condition in ' e  to a condition in B \ e '  because this path would pass 
through a condition in e '  but e '  C_ B and conditions in B are not ordered. 
There is no path from a condition in B \ e '  to a condition in ' e  because this 
path could be extended by e and a condition in e ' ;  since e '  C B, this extended 
path would establish an order between distinct conditions of B. 

Let x be an element of K. By Proposition 46, either x precedes some b in B, 
or some b in B precedes x, or x is equal to some b in B. If this condition b can 
be taken from B \ e '  then x is ordered with an element of B' ,  too. Otherwise 
b E e ' .  If x E e" or x = e then any element of ' e  precedes x. If x E "e then 
x G B ~. In all other cases, x precedes b if and only if x precedes a condition of 
"e and b precedes x if and only if a condition of ' e  precedes x. Since "e C B',  x 
is ordered with some condition of B'.  This finishes the proof of the claim that  
B '  is a cut. 

Since the set of events preceding B' is E \ {e}, the induction hypothesis ap- 
plies to B' .  Hence some reachable marking 1 ~ marks exactly the conditions of B ~, 
by one token each. The event e is enabled at l'. Its occurrence leads to I. 

(====~) Let B be the set of conditions of some line X of K. We claim that,  for 
any reachable marking, the number of all tokens on conditions of B is one. The 
claim is proven by help of Lemma 28. Let L be the set of markings satisfying 
the above property. 
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The  line X contains at least one element with empty  pre-set, because every 
element has a finite past .  I t  contains at most  one such element because every 
two elements of  X are connected by a path.  This unique minimal element of  X 
is a condition, because events have non-empty  pre-sets. By the definition of  10, 
this condit ion is initially marked with one token, and all other  conditions of  X 
are initially unmarked.  Hence l0 belongs to L. 

Assume a marking l in L and an event occurrence 1 e ) l t. The  token distri- 
but ion on B is only changed if e belongs to the line X,  because conditions are 
not  branched.  In  this case, B contains exactly one condition in *e and exactly 
one condit ion in e" because e has nonempty  pre- and post-sets.  So the occur- 
rence of  e does not  change the number  of  tokens on places in B.  Therefore,  1 t 
also belongs to L, which finishes the proof  of  the claim. 

Let l be a reachable marking. Since each condition is an element of  a line, the 
claim implies tha t  no condition carries more than one token at l, and tha t  each 
condit ion is ordered with some condition marked at I. Proposi t ion 45 implies 
tha t  conditions marked at l are mutual ly  not ordered. So the set of conditions 
marked at l const i tutes  a cut. This cut is finite because initially a finite set of  
condit ions is marked and each event has a finite post-set.  [] 

C o r o l l a r y 4 8 .  Each causal net marked with its canonical initial marking is a 
1-bounded marked net. [] 

The next result implies tha t  occurence sequences of a causal net K respect 
the order __g. 

T h e o r e m 4 9 .  Assume  a causal net K with events e and e ~ satisfying e ' ~ K  el 
(including the case e = e').  The canonical initial marking enables no occurrence 
sequence 0" 1 e t 0"2 e .  

Proof. After the occurrence of  e I, the event e I precedes some marked condition. 
This  s i tuat ion is not changed by the occurrence of  other  events because all 
events have nonempty  post-sets.  Let l be a marking reached after an occurrence 
sequence 0.t elcr2. Since e "~K e ~, the event e precedes a condition marked at I. 
By Theorem 47, no condit ion in ' e  is marked at I. Since ' e  ¢ 0, the event e is 
not  enabled at I. [] 

C o r o l l a r y  50.  No event of  a causal net occurs more than once in an occurrence 
sequence enabled at the canonical initial marking. [] 

Finally, the following theorem implies tha t  each event of an occurrence se- 
quence can eventually occur. 

T h e o r e m  51. Let ete2e3 • .. be a sequence of  events of  a causal net K containing 
each event of  EK exactly once such that ei ~ K  ej implies i < j .  Then this 
sequence is enabled at the canonical initial marking. 
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Proof. By Proposition 3, it suffices to consider finite prefixes el e2 . . .  e/c. The 
proof is by induction on k: 
Base: k = 0. The empty sequence is enabled at any marking. 
Step: k > 0. By the induction hypothesis, the canonical initial marking enables 
the occurrence sequence et e2 •.. ek-1. Assume this sequence leads to lk-1. Each 
event preceding ek has occurred in this sequence. So each condition in 'ek  is 
marked at lk-1. Hence lk-1 enables ek. [] 

6.3 P r o c e s s  N e t s  

Since a causal net K represents a concurrent run of a marked net N,  its condi- 
tions correspond to places of N and its events correspond to transitions of N.  
This relation is formalized by a labeling function 7r: (BK U EK) --* (SN U TN). 

A labeled causal net K is a process net of a net N with initial marking m0 if 
the labeling function ~r enjoys the following properties: 

(6) for each condition b in BK, re(b) E SN; 
(7) for each event e in EK, 7r(e) E TN; 
(8) for each event e in EK, ~r generates bijections 

¢r[:'e ---+ *(or(e)) and 7r+:e . ~ (zr(e)) °, 

defined by 7r[(b) = 7r(b) for each b in ' e  and 7r+(b) = zr(b) for each b in e ' ;  
(9) for each place s in S~,, m0(s) = l{b E BK I °b = 0 A 7r(b) = s}[. 

Graphically, we denote the labels as inscriptions in the elements of a causal 
net. 

The following two theorems tightly relate the occurrence sequences of a 
marked net and the occurrence sequences of its process nets. 

T h e o r e m  52. Assume a marked net N with initial marking mo and a process 
net K with labeling function 7r. Let lo be the canonical initial marking of K 
and assume a finite occurrence sequence el e2 . . . ek  of K,  leading from lo to a 
marking lk. Then  (el) is an occurrence sequence of N,  enabled 
at too. It leads to the marking ink, satisfying for each place s the equation 

i nk ( s )  = I{b I tk(b) = 1 A = s}l .  

Proof. The proof is by induction on k. 
Base: k = 0. The empty sequence is enabled by any marking. The equation for 
mk coincides with the equation for mo in the definition of process nets. 

Step: k > 0. Let lo ...... ~ Ik-1. By the induction hypothesis, mo enables the 
occurrence sequence 7r(el)zr(e2)... zr(ek_l). Assume this sequence leads to m k - t .  
Since ek is enabled at lk- t ,  all conditions in ' ek are marked at lk - t .  By definition 
of a process net, 7r generates a bijection between these conditions and the places 
in 
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Also by the induction hypothesis, 

mk-l( ) = I{b B K  = i ̂  = 

for each place s in SN. Hence each place in *(Tr(ek)) is marked at m k - i .  So zr(e~) 
is enabled at  m k - i .  Since, for each place s in "(Tr(ek)), ek removes one token 
from a condition labeled by s, and, for each place s in (~r(ci)) ' ,  ek adds one 
token to a condition labeled by s, we obtain 

m~(s) = I{b E BK Ilk(b) = 1 A 7r(b) = s}[ 

for each place s in SN. 0 

Proposition 2 implies: 

C o r o l l a r y  53. Assume a marked net N with initial marking mo and a process 
net K with labeling function lr. Let lo be the canonical initial marking of K and 
assume an infinite occurrence sequence el e2 e3 . . .  of K,  enabled by Io. Then 
7r(ei) ~'(e2) 7r(e3) . . .  is an occurrence sequence of N,  enabled at mo. [] 

For the converse direction we stick to marked nets satisfying the following prop- 
erty: 

( N 1 )  Both the pre-set and the post-set of each transition is nonempty and 
finite. The set of initially marked places is finite. 

By definition of a process net, occurrences of transitions with empty or infinite 
pre- or post-set cannot be represented in a causal net. If  infinitely many places 
are initially marked then there is no corresponding finite initial cut of a process 
net. 

T h e o r e m  54. Assume a marked net N with initial marking mo satisfying prop- 
er~y (N1) .  For each occurrence sequence tl  t 2 . . . t k ,  there exists a process net 
K with labeling function ~r such that its canonical initial marking lo enables an 
occurrence sequence el e2 . . .  ek satisfying 7r(ei) = ti for 1 < i < k. 

Proof. The proof is by induction on k. 
Base: k = 0. We only have to prove the existence of a process net K with 
appropriate  labeling function ~r. To this end, a causal net without events and arcs 
is constructed: for each place s of N, the causal net contains too(s) conditions 
labeled by s. It  is easily verified that  this net satisfies the defining properties of 
causal nets and process nets. 
Step: k > 0. By the induction hypothesis there exists a process net K '  with 
labeling function ~r', canonical initial marking l~, and an occurrence sequence 

l~o el.e~-~ l' such that  ~r(ei) = ti for 1 < i < k - 1. k-i 

Without  loss of generality assume that  every event of K occurs in this occurrence 
sequence. By Corollary 50, no event occurs more than once. So 1~_ 1 only marks 
conditions with empty  post-set. 
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We construct the causal net K by adding to K '  a new event e~ and, for 
each place si in t~, a new condition bi. The labeling function ~r extends ~r' by 
~'(ek) = tk and 7r(bi) = si for each si in t~. 

By Theorem 52, 

= I{b e I li_ (b) = 1 A = s}l  

for each place s. The marking mk-1 enables the transition tk. Hence, for each 
place si in *tk, at least one condition bi labeled by si is marked at l~_ 1 (there 
might be several suitable conditions). For each place si in *tk, choose one of 
the conditions bi labeled by si and add a directed arc from this condition to ek. 
Finally, add directed arcs from e~ to all new conditions. 

This construction obviously yields a causal net. The labeling function ~r sat- 
isfies the conditions formulated for process nets, because 7r ~ satisfies these con- 
ditions and the vicinity of ek is respected by ~r. Since the new conditions are not 
marked initially, the occurrence sequence e l . . .  ek-1 leads from the canonical 
initial marking of h" to a marking lk-1 that  coincides with l~_ 1 on all conditions 
and maps the new conditions to 0. By construction, the event ek is enabled at 
Ik-1. Thus, el e2 . . .  e~ is an occurrence sequence enabled at 10. [] 

The construction of the causal net in the previous proof is not unique. However, 
if the marked net is 1-bounded then no reachable marking of the causal net 
marks two equally labeled conditions. Hence, for 1-bounded marked nets there is 
always exactly one way to connect marked conditions to a new event. Therefore, 
for 1-bounded marked nets, each occurrence sequence corresponds uniquely to a 
process net with a corresponding occurrence sequence. Figure 20 shows tha t  the 
same does not hold for 2-bounded marked nets. 

Consider occurrence sequences v" and ~rt of a marked net. Then the construc- 
tion in the previous proof yields causal nets K and K '  such that  BK C BK, ,  
EK C EK,  and FK C_ FK,.  Moreover, the occurrence sequence of K is a prefix 
of the occurrence sequence of K ' .  Hence, for each infinite occurrence sequence 
(7 of a marked net, the union of the respective sets of conditions, events, and 
arcs yields an infinite causal net. This infinite causal net has an infinite occur- 
rence sequence such that  the sequence of labels of its events is c~. So Theorem 
54 implies: 

C o r o l l a r y  55. A s s u m e  a marked net N with initial marking mo satisfying the 
conditions of  (N1) .  For each infinite occurrence sequence t l  t2 t 3 . .  ., there exists 
a process net K with labeling funct ion 7r such that its canonical initial marking lo 
enables an occurrence sequence ez e2 e 3 . . . ,  satisfying 7r(ei) = ti for  1 < i. [] 

Theorem 47 and Theorem 51, together with the previous results imply the 
following corollaries: 
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C o r o l l a r y  56. Assume a marked net N with initial marking mo satisfying the 
conditions of (N1) .  A marking m is reachable from mo if and only if  there is a 
process net K with labeling function 7r such that some finite cut B of K satisfies 
B C_ BK and, for each place s of N,  re(s) = t{b E BITr(b) = s}l. [] 

The set of events EK of a causal net K is partially ordered by ~ g .  A (finite 
or infinite) sequence el e2 e3 . . .  of events is a sequentialization of EK if 

- every event of EK appears exactly once in the sequence, and 
- for each two events e and e t satisfying e ' ~ g  et, e appears  before e t in the 

sequence. 

C o r o l l a r y  57. Assume a marked net N with initial marking mo satisfying the 
conditions of (N1) .  A sequence el e2 ca . . .  is a sequentialization of the set of 
events of a process net with labeling function rc if and only if  Tr(ei)r(e2)r(e3) .. • 
is an occurrence sequence of N,  enabled at mo. O 

6.4 P r o c e s s  N e t s  a n d  B o u n d e d n e s s  

Behavioral properties of a marked net based on reachable markings and tran- 
sition occurrences can be reformulated in terms of process nets. For example, 
reversibility requires that  for each finite process net leading to a cut X,  there 
is another process net leading from X to a cut that  corresponds to the initial 
marking. Boundedness can be characterized in a more elegant way: 

T h e o r e m  58. A finite marked net N with initial marking mo satisfying the 
conditions of (N1)  is unbounded if and only if  some process net has an infinite 
cut. 

Proof 
(¢===) Assume a process net K with an infinite cut B. If B contains an event e 
then (B \ {e})Ue* is also an infinite cut because events have nonempty post-sets 
and conditions are not branched. So we can assume without loss of generality 
tha t  B contains only conditions. 

We proceed indirectly and assume that  N is bounded. Since N is finite, there 
is an upper bound k for the total number of tokens on all places. Consider an 
arbi trary finite subset B ~ of B with more than k conditions. 

Let E be the set of all events preceding a condition of B ~. Since B is a cut, no 
condition of B t precedes an event of E.  By definition of a causal net, E is finite, 
because B ~ is finite. Since for each e in E, all events preceding E are contained 
in E as well, the canonical initial marking of K enables an occurrence sequence 
containing exactly the events of E. The marking reached by this sequence marks 
at least all conditions of B ~. By Corollary 56, there is a corresponding reachable 
marking of the marked net such that  the total token count of all places at this 
marking exceeds k, which contradicts the choice of k. 
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(==>) Since the marked net is not bounded, some place is not bounded. By 
Theorem 23, there is a minimal w-occurrence sequence 0. leading to an w-marking 

such that  ~ ( s )  = w for some place s. By definition of w-occurrence sequences, 
0. = 0.1 0.2 such that,  with 

O' 1 0" 2 
m 0  ) m l  ........ ) m 2 ,  

each place s' satisfies m2(s') > ml(s') and the place s satisfies m2(s) > ml(s). 
Now modify the net N as follows: Add a new transition t, a new place ~, 

and new arcs (s, t) and (7, ~). This modified net will be called ~ .  Let ~ 0  be the 
initial marking of N which coincides with m0 on all places of N and assigns no 
token to ~. 

Since the number of tokens on s increases by the occurrence of a2, there is 
an occurrence sequence 

_ _  O" 1 _ _  
' n l ,  0 > ~ : t  1 , ) 7 r t  2 . 

Then Tg2(J) _> ig l (s ' )  for each place s '  o f T .  So the sequence 0.27 can be i terated 
any number of times: 

a27 ~,27 ~,27 
~ 0  a l  m l  ~ m 2  ~ ~ 3  ...... ~ " ' '  • 

By Theorem 54, there exists a process net K with labeling function ~r such 
that  its canonical initial marking enables an infinite occurrence sequence of 
events where the sequence of event labels is 

0"1 0.2 t 0.2 t c~2 t . . .  

This causal net contains infinitely many events labeled by L Let B be the set of 
conditions in the pre-set of these events. Then B is also infinite. 

Now consider the causal net gained from the previous one by deleting all 
events labeled by t, all conditions labeled by g, and all adjacent arcs. Then all 
conditions in B have an empty post-set. Hence they are mutual ly not ordered. I t  
is easy to see that,  taking the same labels as before, this causal net constitutes 
a process net of the original marked net. Clearly, the set B is again an infinite 
set of mutually not ordered conditions. 

It  remains to prove that  B is included in an infinite cut. Let E be the set of 
all events preceding a condition of B. Let B '  be the set of all minimal conditions 
(w.r.t. ~K)  not preceding any event in E. By minimality, conditions in B' are 
mutually not ordered. B '  includes B because each condition in B either has an 
empty  pre-set or the pre-set consists of an event in E.  Finally, B '  is maximal  
(w.r.t. set inclusion) because each minimal element not preceding a condition of 
B does not precede an event of E and hence belongs to Bq So B'  is an infinite 
cut. [] 

Finally, the following proof of the Strongly-Connectedness-Theorem (Theo- 
rem 11) should help to demonstrate the advantages of causal semantics. Here we 
stick to nets satisfying the conditions of (N1) .  
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sl t l  

~2 t2 s4 

Fig. 20. A marked net and two of itsprocesses 

T h e o r e m  59. Every weakly connected live and bounded marked net N satisfying 
the conditions of (N1)  is strongly connected. 

Proof. By Proposition 1 it suffices to prove that ,  for each arc (x, y), there is a 
directed pa th  leading from y to x. 

Let t be the transition in {x, y} and let s be the place in {x, y}. By liveness, 
there is an occurrence sequence with infinitely many occurrences of t. Hence, 
some process has infinitely many events labeled by t. Each of these events has a 
condition labeled by s in its pre-set or post-set. Let B be the infinite set of these 
conditions. By boundedness, the process net has no infinite cut. Hence there is a 
pa th  connecting two distinct conditions of B. Since conditions are not branched, 
this path  contains an event labeled by t. 

By the definition of process nets, the sequence of labels of the elements of a 
pa th  of a process net is a path  of N. So some path of N leads from s via t back 
to s. In particular, some path leads from y to x. D 

6.5 E x p r e s s i v e  P o w e r  o f  P r o c e s s  N e t s  

The previous results have proven a close relationship between the sequential 
semantics of a marked net given by its occurrence sequences and the concur- 
rent semantics given by process nets. Roughly speaking, an occurrence sequence 
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determines a totally ordered set of transition occurrences. This order respects 
causal dependencies of transitions occurrences, but also concurrent transit ion 
occurrences are ordered. 

In contrast, process nets reflect exactly the causal dependencies. The example 
of Figure 20 shows that  causal dependencies of transition occurrences cannot be 
obtained from corresponding occurrence sequences. The figure shows a marked 
net and two of its process nets (labels are again depicted by inscriptions in 
conditions and events). In each process net, every transition of the marked net 
occurs exactly once. The first process net represents a concurrent run where the 
transition t3  causally depends on the previous occurrence of t l .  In the second 
process net, transition t3  causally depends on the previous occurrence of t2 .  
The first process net corresponds to the occurrence sequences 

tlt2t3, tl t3t2 and t2tl t3. 

The second process net corresponds to the occurrence sequences 

tl t2 t3 , t2 tl t3 and t2 t3 tl. 

The occurrence sequences t l t 3 t 2  and t 2 t 3 t l  belong to only one causal net each. 
The other two occurrence sequences, however, do not carry sufficient information 
to decide which concurrent run they respectively represent. 

The reader is recommended to prove that  the first two process nets of Fig- 
ure 19 also have a common occurrence sequence. 

7 Arc-Weights, Capacities, and Inhibitor Arcs 

7.1 A r c - W e i g h t s  

A weighted arc specifies that  more than one token is removed from a place or 
added to a place by a single occurrence of a transition. As an example, consider 
the vending machine of the introduction, shown in Figure 5. If the arcs 

(item storage, dispense item) and (dispense item, request for refill) 

are both weighted by 2 then each occurrence of dispense item removes two 
tokens from i tem s t o r a g e  and adds two tokens to r e q u e s t  f o r  r e f i l l .  Thus,  
this modified vending machine sells items in pairs. Similarly, if the arcs 

(refill, item storage) and (item storage,dispense item) 

are both weighted by 4, four items are sold by each occurrence of dispense 
i tem. In this case, a token on r e q u e s t  f o r  r e f i l l  indicates tha t  the storage is 
empty, whereas no token means that  the storage carries four items. 

The formal definition of a net N with arc-weights replaces the flow relation 
FN by a weight function shaped 

w~: (sN x TN) u (TN x SN) ~ ~ .  
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Fig. 22. A place with a weak capacity and a corresponding complement place 

Fig. 23. A place with a strong capacity and a corresponding complement place 

7.2 Capac i t i e s  

A capacity restriction (capacity, for short) specifies that the token count of a 
place should never exceed a previously fixed value. Consider again the example of 
Figure 5. If the place i tem s to rage  has a specified capacity 4, then no reachable 
marking should assign more than four tokens to the place. Since the place is 
4-bounded, this capacity is respected. 

Now assume the same marked net, but without the place r e q u e s t  f o r  r e f i l l  
and adjacent arcs. In this net, the transition r e f i l l  always can occur, whence 
the place i tem s to r age  is unbounded. If this place is given a capacity 4 then the 
behavior of the marked net with capacity restriction equals the behavior of the 
original marked net, i.e. both marked nets have the same occurrence sequences. 

Formally, capacities are represented by assigning each place an element of 
{~, 1, 2, 3, . . .} .  The value w means that there is no capacity restriction for this 
place. The initial marking has to respect all capacities. A modified occurrence 
rule prevents each transition occurrence that would violate any capacity re- 
striction. Instead of presenting this modified model we will show how capacity 
restrictions are equivalently replaced by complement places. We distinguish weak 
capacities and strong capacities. 

Figure 22 shows how to implement a weak capacity restriction of a place by 
means of a complement place. Consider a place s with a weak capacity k, k # w. 
The complement of s is a new place ~ (the shaded place in the figure) satisfying 

° - g = s ' k ' s  and : ' = ' s k s ' .  

This complement place ~ is initially marked by k - too(s), where too(s) is the 
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Fig. 24. A net with an inhibitor arc 

initial marking of s. By construction, the total token count of s and ~ is equal to 
k for each reachable marking. Since markings are nonnegative, this construction 
guarantees that  s is bounded by k. 

A strong capacity differs fl'om a weak capacity only in the presence of self- 
loops, i.e. of mutually connected elements. Given a strong capacity k, k ¢ ~ of a 
place s, not only the token count on s never exceeds k but moreover a transition 
t i n ' s  is only enabled at a marking m if re(s) < k. Figure 23 shows how to 
implement a strong capacity restriction of a place by means of a complement 
place. The complement of a place s with strong capacity k, k ¢ ,; is a new place 

satisfying 

' ~ : s  o and ~o : ' s .  

Again, this place is initially marked by the value k -  m0(s), and by construction 
s is k-bounded. Moreover, for each reachable marking m, re(s) = k implies 
m(2) = 0. Since a transition t in *s is in ~ ' ,  t can only occur when s carries less 
than k tokens. 

Strong capacities establish a close relationship between marked nets and 
elementary net systems: Each elementary net system can be considered a marked 
net with strong capacity 1 for all places, and vice versa. 

7.3 I n h i b i t o r  A r c s  

An inhibitor arc connecting a place and a transition specifies that  the transition 
should only occur at a marking if the place is unmarked. Formally, inhibitor 
arcs of a net N constitute a subset of SN x TN. The enabling condition of the 
occurrence rule is extended by the above constraint. 
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Graphically, an inhibitor arc is represented by a special arrow head. Figure 24 
shows on the left hand side a marked net with inhibitor arc ($ , t ) .  

It is well known that  inhibitor arcs can properly increase the expressive 
power of a net. The argument is that  two-counter machines can be modeled 
by deterministic finite nets with (at least two) unbounded places and adjacent 
inhibitor arcs. Since two-counter machines can simulate Turing machines, it is 
not decidable if they ever halt. The two-counter machine halts if and only if 
the corresponding marked net is not deadlock-free, because this model has only 
one maximal occurrence sequence. However, deadlock-freedom for marked nets 
without inhibitor arcs easily reduces to the teachability problem [EsNi94], which 
is decidable [Mayr84]. 

Now consider inhibitor arcs connected to bounded places. Each b-bounded 
place s can be assigned the weak capacity b without changing its behavior. As 
shown above, a capacity restriction can equivalently be replaced by a complement 
place ~. Since, for each reachable marking, s is unmarked if and only if ~ carries 
b tokens, the inhibitor arc is equivalently replaced by conventional arcs from and 
to ~, weighted by b. Figure 24 shows an example. 
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