
Clocks, DBMs and States in Timed Systems

Johan Bengtsson

A Dissertation submitted
for the Degree of Doctor of Philosophy
Department of Information Technology

Uppsala University

June 2002

Dissertation for the Degree of Doctor of Philosophy in Computer science with
specialization in Real Time Systems presented at Uppsala University in 2002.

ABSTRACT

Bengtsson, J. 2002: Clocks, DBMs and States in Timed Systems. Acta Universitatis Upsaliensis
Uppsala Dissertations from the Faculty of Science and Technology 39. 143 pp. Uppsala. ISBN
91-554-5350-3

Today, computers are used to control various technical systems in our society. In many
cases, time plays a crucial role in the operation of computers embedded in such systems. This
thesis is about techniques and tools for the analysis of timing behaviours of computer systems.
Its main contributions are in the development and implementation of UPPAAL, a tool designed
to automate the analysis process of systems modelled as timed automata.

As the first contribution, we present a software package for timing constraints represented as
Difference Bound Matrices. We describe in details, all data-structures and operations for DBMs
needed in state-space exploration of timed automata, as well as techniques for efficient imple-
mentation. In particular, we have developed two normalisation algorithms to guarantee termina-
tion of reachability analysis for timed automata containing constraints on clock differences, that
transform DBMs according to not only maximal constants of clocks as in algorithms published
in the literature, but also difference constraints appearing in the automata. The second contribu-
tion of this thesis is a collection of low level optimisations on the internal data-structures and
algorithms of UPPAAL to minimise memory and time consumption. We present compression
techniques to allow the state-space of a system to be efficiently stored and manipulated in main
memory. We also study super-trace and hash-compaction methods for timed automata to deal
with system-models for which the size of available memory is too small to store the explored
state-space. Our experiments show that these techniques have greatly improved the performance
of UPPAAL. The third contribution is in partial-order reduction techniques for timed-systems.
A major problem in automatic verification is the large number of redundant states and transi-
tions introduced by modelling concurrent events as interleaved transitions. We propose a notion
of committed locations for timed automata. Committed locations are annotations that can be
used for not only modelling of intermediate states within atomic transitions, but also guiding
the model checker to ignore unnecessary interleavings in state-space exploration. The notion of
committed locations has been generalised to give a local-time semantics for networks of timed
automata, which allows for the application of existing partial order reduction techniques to timed
systems.

Johan Bengtsson, Department of Information Technology, Uppsala University, Box 337,
SE-751 05 Uppsala, Sweden.

c Johan Bengtsson 2002

ISSN 1104-2516
ISBN 91-554-5350-3
Printed in Sweden by Elanders Gotab, Stockholm 2002
Distributor: Uppsala University Library, Box 510, SE-751 20 Uppsala, Sweden

Till Erika och Simon

Acknowledgements

First of all I want to thank my supervisor, Wang Yi. Without his guiding and
support this thesis would never have been completed. I have learnt a lot dur-
ing the years we have been working together and I hope that someday I will
be as good a reasearcher as he is. I would like to thank all current and former
members of the UPPAAL group here in Uppsala, i.e. Tobias Amnell, Alexande
David, Elena Fersman, Fredrik Larsson, Leonid Mokrushin, Paul Pettersson,
and Justin Pearson, for the stimulating environment and all nice moments both
in and outside the department. Specially I would like to thank Fredrik and Paul
who were around from the very beginning of the UPPAAL-project. I would also
like to thank Kim G. Larsen, Gerd Behrmann, and the rest of the UPPAAL group
in Aalborg for fruitful collaboration over the years. Without their participation
UPPAAL would not have been what it is today. I am also grateful to my co-
authors, i.e. Pedro D’Argenio, Ansgar Fehnker, David Griffioen, Bengt Johns-
son and Johan Lilius, for fruitful discussions. It has been fun working together
with you.

I would like to thank everyone at DoCS for making the department such an
enjoyable environment. In particular I would like to thank Björn Victor and
Anders Berglund for their support.

To my wife Erika, I give my love and my deepest thanks. Without her by my
side I would never have reached this point. Finally, I want to thank my son
Simon, my pride and joy, and my best source of inspiration.

This work has been partially supported by the Swedish Board for Technical Devel-
opment (NUTEK), the Swedish Technical Research Council (TFR), and EC via the
AIT-WOODDES project.

This thesis includes, summarises and discusses mainly the results presented in
five research papers written between 1996 and 2002. These papers are listed as
follows:

Paper A: Johan Bengtsson. DBM: Structures, Operations and Implementa-
tion. Submitted for publication.

Paper B: Johan Bengtsson and Wang Yi. Reachability Analysis of Timed Au-
tomata Containing Constraints on Clock Differences. Submitted for pub-
lication.

Paper C: Johan Bengtsson and Wang Yi. Reducing Memory Usage in Sym-
bolic State-Space Exploration for Timed Systems. Technical Report, 2001-
009, Department of Information Technology, Uppsala University, 2001.

Paper D: Johan Bengtsson, Bengt Jonsson, Johan Lilius and Wang Yi. Par-
tial Order Reductions for Timed Systems. In Proceedings, Ninth Inter-
national Conference on Concurrency Theory, volume 1466 of Lecture
Notes in Computer Science, Springer Verlag, 1998.

Paper E: Johan Bengtsson, W. O. David Griffioen, Kåre J. Kristoffersen, Kim G.
Larsen, Fredrik Larsson, Paul Pettersson and Wang Yi. Automated Veri-
fication of an Audio-Control Protocol using UPPAAL. Accepted for pub-
lication in Journal on Logic and Algebraic Programming.

Comments on My Participation

Paper A: I implemented the major part of the DBM package in UPPAAL, and
wrote the report.

Paper B: I participated in discussions, designed and implemented the algo-
rithms. I wrote a large part of the paper.

Paper C: I participated in discussions, designed and implemented the optimi-
sation techniques. I wrote the paper.

Paper D: I participated in discussions and wrote part of the paper. I made a
prototype implementation which is not described in this paper.

Paper E: I participated in discussions and implemented committed locations
in UPPAAL. I have also made minor revisions to the semantics for com-
mitted location.

Apart from the papers listed above, I have also participated in the following
work:

Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio, Alexan-
dre David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet, Kim G. Larsen, M.
Oliver Möller, Paul Pettersson, Carsten Weise, and Wang Yi. UPPAAL - Now,
Next, and Future. In Proceedings of Modelling and Verification of Parallel Pro-
cesses, volume 2067 of LNCS, 2001.

Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, Wang Yi
and Carsten Weise. New Generation of UPPAAL. In Proceedings of the Inter-
national Workshop on Software Tools for Technology Transfer, 1998

Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, Wang Yi.
UPPAAL in 1995, In Proceedings of Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, volume 1055 of LNCS, 1996.

Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson and Wang
Yi. UPPAAL - a Tool Suite for Automatic Verification of Real-Time Systems.
In Proceedings of Workshop on Verification and Control of Hybrid Systems III,
volume 1066 of LNCS, 1995.

Contents

Introduction 1

1 Background . 1

2 Timed Automata . 2

3 Model Checking . 7

4 Contributions of This Thesis 9

5 Related Work . 12

6 Conclusions and Future Work 15

Paper A: DBM: Structures, Operations and Implementation 23

1 Introduction . 25

2 DBM basics . 26

2.1 Canonical DBMs . 27

2.2 Minimal Constraint Systems 28

3 Operations on DBMs . 31

3.1 Checking Properties of DBMs 33

3.2 Transformations . 33

3.3 Normalisation Operations 36

4 Zones in Memory . 38

4.1 Storing DBM Elements 38

i

4.2 Placing DBMs in Memory 39

4.3 Storing Sparse Zones 39

5 Conclusions . 40

A Pseudo-Code . 42

Paper B: Reachability Analysis of Timed Automata Containing Con-
straints on Clock Differences 45

1 Introduction . 47

2 Preliminaries . 50

2.1 Timed Automata Model 50

2.2 Reachability Analysis 51

3 Constraints on Clock Differences and Normalisation 53

4 New Normalisation Algorithms 54

4.1 Region Equivalence Refined by Difference Constraints 56

4.2 The Core of Normalisation 56

4.3 Algorithm: Normalisation without Zone Splitting . . . 57

4.4 Algorithm: Normalisation with Zone Splitting 58

5 Conclusion . 63

Paper C: Reducing Memory Usage in Symbolic State-Space Explo-
ration for Timed Systems 67

1 Introduction . 69

2 Preliminaries . 70

3 Representing Symbolic States 73

3.1 Normal Representation 73

3.2 Packed States . 74

3.3 Packed Zones with Cheap Inclusion Check 75

4 Representing the Symbolic State-Space 78

ii

4.1 Representing WAIT 78

4.2 Representing PASSED 80

4.3 Supertrace PASSED for Timed Automata 80

4.4 Hash Compaction for Timed Automata 83

5 Conclusions . 86

A Examples and Experiment Environment 91

Paper D: Partial Order Reductions for Timed Systems 93

1 Motivation . 95

2 Preliminaries . 99

2.1 Networks of Timed Automata 99

2.2 Symbolic Global–Time Semantics 100

3 Partial Order Reduction and Local-Time Semantics 102

3.1 Symbolic Local-Time Semantics 104

3.2 Finiteness of the Symbolic Local Time Semantics . . . 106

4 Partial Order Reduction in Reachability Analysis 108

4.1 Operations on Constraint Systems 110

5 Conclusion and Related Work 111

Paper E: Automated Verification of an Audio-Control Protocol using
UPPAAL 115

1 Introduction . 117

2 Committed Locations . 119

2.1 An Example . 120

2.2 Syntax . 121

2.3 Semantics . 122

3 Committed Locations in UPPAAL 124

3.1 The Model-Checking Algorithm 124

iii

3.2 Space and Time Performance Improvements 127

4 The Audio Control Protocol with Bus Collision 128

5 A Formal Model of the Protocol 130

6 Verification in UPPAAL . 133

7 Conclusions . 135

8 Appendix . 139

iv

Introduction 1

Introduction

1 Background

The computer boom in the last decades has not only given us faster and more
advanced equipment for word-processing, banking and scientific computations.
The development of small, cheap, and powerful microprocessors has also en-
abled a range of new application areas. Today, computers are trusted to control
all kinds of devices and technical systems used in our society, ranging from
stereos and micro-wave ovens to life-support systems and nuclear power-plants.
Currently this kind of computer applications, i.e. the embedded systems, forms
the fastest growing market for microprocessors. In recent years 98%–99% of
all produced processors have been used in embedded systems [Hal00]. Only
around 2% are used in desktop computers.

In many embedded applications, a computer failure may have dire consequences,
such as economical damage, environmental catastrophes and even loss of hu-
man lives. Thus it is of great importance that such systems operate correctly,
according to their specifications. Traditionally this is accomplished by methods
like reviewing of design documents and source code and by extensive simu-
lation and testing of the system and its components. However, this process is
often time-consuming and provides only statistical measures of correctness.

As a complement to the traditional methods for obtaining correct software, a
large number of mathematically based techniques for reasoning about correct-
ness of computer systems have been proposed in the literature, e.g. [Hoa69,
Dij75, Hoa78, Rei85, Mil89, Hol91]. The common procedure in all these so
called formal methods is to define the system under development in a formal
framework and then apply rigorous methods within this framework to prove
that the system meets its requirements. However, due to the complexity of real-
life systems, applying formal methods is often considered too difficult. A way

2 Introduction

to bridge this gap is to automate the analysis, for instance by using model-
checking [CGP99]. In contrast to manual techniques, model-checking is fully
automatic in the sense that the proof showing that a system satisfies a given
requirement is constructed by the model-checker without manual interaction.

In this thesis we study and develop techniques for model-checking tools to ver-
ify systems where timing is important. The work presented in this thesis is in
the context of the model-checker UPPAAL, which is a tool for analysing timing
properties of systems modelled as timed automata.

2 Timed Automata

Timed automata [AD90, AD94, HNSY94] is one of the most successful for-
malisms for describing the timing behaviour of computer systems. Examples of
other formal systems with the same purpose, are timed Petri-net models, timed
process algebras or real time logics [BD91, RR88, Yi91, NS94, ACD93, AH94,
SS95].

A Brief Introduction to Timed Automata

A timed automaton is essentially a finite automaton extended by a set of real
valued clocks. All clocks are synchronised in the sense that they start with the
value zero when the system is initialised and grow synchronously, with the same
rate. The clocks influence the automaton by clock-constraints (guards) on the
edges. An edge is only enabled when the values of the clocks satisfies the guard.
The automaton can influence the clocks by letting the edges reset a subset of
the clocks.

An example of a timed automaton is shown in Figure 1. The timing behaviour
of this automaton is controlled by two clocks and . The clock is used to
control the small self-loop in the loop location. This loop is only possible when
the value of is exactly one. The clock controls the execution of the entire
automaton. The automaton may leave start when is between 10 and 20, it can
go from loop to end when is between 40 and 50, etc.

In this simple timed-automata model, the guards on the edges only guide the
automaton when it decides to act; they can not force it. The example automaton
may stay forever in any location, just idling. In the initial work by Alur and
Dill [AD90] the problem is solved by introducing Büchi-acceptance conditions;

Introduction 3

start

loop

end

x:=0, y:=0

10<=y<=20
enter

40<=y<=50

y:=0
leave

x==1

x:=0
work 10<=y<=20

y:=0

Figure 1: A Timed Automaton

a subset of the locations in the automaton are marked as accepting, and only
executions passing through an accepting location infinitely often are considered
valid. As an example, consider again the automaton in Figure 1 and assume that
end is marked as accepting. This implies that all executions of the system enter
end infinitely many times. This impose implicit conditions on start and loop.
The location start must be left when the value of is at most 20, otherwise
the automaton would get stuck and never be able to enter end. Likewise, the
automaton must leave loop when is at most 50 to be able to enter end.

Büchi-acceptance conditions are theoretically elegant. However, as the exam-
ple shows, an accepting location has global effects on the automaton, which is
inconvenient for modelling and automatic analysis. A more intuitive notion of
progress is used in timed safety-automata [HNSY94]. In timed safety-automata,
the acceptance conditions are replaced by local timing constraints in each loca-
tion, that is the so called location invariants. The automaton may only remain
in a location as long as the clocks satisfies the invariant condition. This gives
a more convenient view of the timing behaviour of particular parts of the au-
tomaton. For example, consider the automaton in Figure 2. This timed safety-
automaton corresponds to the Büchi automaton in the previous example. In this
automaton the conditions that start and end must be left when is at most 20
and loop must be left when is at most 50 are now stated locally in invariants.
This gives a local view of the timing in each location in much more convenient
way than Büchi-acceptance. For this reason we will use timed automata with
location invariants to describe the timing behaviour of embedded systems.

To model concurrent systems, timed automata is often extended with parallel
composition, giving networks of timed automata. In the early work on timed-
automata [AD90, HNSY92], parallel composition is treated as logical con-

4 Introduction

start
y<=20

loop
y<=50

end
y<=20

x:=0, y:=0

10<=y
enter

40<=y

y:=0
leave

x==1

x:=0
work 10<=y

y:=0

Figure 2: A Timed Safety-Automaton

junction, i.e. all processes in a system must synchronise on every action. In
this thesis, as well as in UPPAAL, we adopt the parallel composition used
in CCS [Mil89], which allows for internal actions in processes, as well as
pair-wise synchronisation. An example of a system composed of two timed-
automata is presented in Figure 3. The network models a time-dependent light-
switch (to the left) and its user (to the right). The user and the switch com-
municate by the press labels. The user can press the switch (press!) and the
switch waits to be pressed (press?). The product automaton, i.e. the automaton
describing the combined system is shown in Figure 4. Building the product au-
tomaton is an entirely syntactical operation based on the component automata.
In UPPAAL, the product automaton is computed on-the-fly during verification.

off

dim

bright

press?
x:=0

x<=10
press?

x>10
press?

press?

t
y<5

study

idle

relax

press!
y:=0 press!

y>10

press!
y:=0

press!

press!

Figure 3: Network of Timed Automata

Introduction 5

off,idle dim,relax

dim,t

y<5

bright, study

off,study

bright,t

y<5

dim,idle

bright,relax dim,study

off,t

y<5

bright, idle

off,relax

x:=0, y:=0

x>10, y>10

x:=0, y:=0

x<=10

x>10

x:=0

x<=10 y:=0

x<10
y:=0

x>10

x>10 y:=0

x>10

x<=10,y>10

x<=10

y:=0

x>10
y:=0

y>10
x:=0

y:=0

Figure 4: Product Automaton for the Network in Figure 3

Semantics of Timed Automata

A state or configuration of a timed automaton has two different parts, the current
location and the current values of all clocks. There are two different types of
transitions between states. The automaton may either delay for some time (a de-
lay transition), or follow an enabled edge (an action transition). Since clocks in
a timed automaton are real-valued the state-space will be infinite and not a good
base for automatic verification. However, many verification problems such as
language emptiness, reachability analysis and model-checking of timed logics
can still be decided by constructing a region graph based on the automaton un-
der consideration and perform the analysis on this graph [AD94, ACD93]. The
downside with this solution is the large number of states in the region-graph. As
an example, consider Figure 5. The figure shows the possible regions in each
location of an automaton with two clocks and . The largest number com-
pared to is 3, and the largest number compared to is 2. In the figure each
line segment, each intersection and each area is one region. Thus, the number
of possible regions in each location of this example is 60. It also grows rapidly
with the number of clocks and the largest constants. In fact, the region graph
is exponential in the number of clocks in the system as well as the in largest
constants appearing in guards in the automaton.

6 Introduction

y

x

Figure 5: Regions for a System with Two Clocks

A more appealing representation of the state-space for timed automata is ob-
tained by using zone-graphs [Dil89, HNSY94, ACH 95]. Instead of regions,
the clock values are represented as constraints on clocks and clock differences.
In practice this gives a coarser and thus more compact representation of the
state space. The basic operations and algorithms to construct zone-graphs are
described in Paper A. As an example, a timed automaton and the corresponding
zone graph is shown in Figure 6. We note that for this automaton the zone graph
has only eight states. The region-graph for the same example has over fifty.

off

dim

bright

press?
x:=0

x<=10
press?

x>10
press?

press?

off

off

off

dim

dimbright

bright

bright

Figure 6: A Timed Automaton and the corresponding Zone Graph

The zone-graph of a timed automaton may unfortunately be infinite and ver-
ification based on zone-graphs is thus not guaranteed to terminate. As an ex-
ample, consider the model in Figure 7. In this automaton the value of clock
drifts away unboundedly, giving an infinite graph. The solution is to normalise
the zones in the zone-graph with respect to the maximum constants in the au-
tomaton, that is the so called -normalisation [Rok93, Pet99]. The intuition is
that once the value of a clock is larger than the maximum constant in the au-

Introduction 7

tomaton it is no longer significant for the automaton to know its precise value,
only that it is above the constant. As an example, the -normalised zone-graph
of the automaton in Figure 7 is given in Figure 8. Note that the -normalisation
only works for timed automata with guards on individual clocks. For automata
with guards on clock differences a more elaborate normalisation procedure is
needed (see Paper B).

start

loop
x<=10

end

x:=0,
y:=0

x>=20
x:=0,
y:=0

x==10
x:=0

start

loop

loop

loop

loop

end
...

Figure 7: A Timed Automaton with an Infinite Zone Graph

start

loop

loop

loop

loop

end

Figure 8: Normalised Zone Graph for the Automaton in Figure 7

3 Model Checking

Model-checking consists of two steps, computing the state-space of the system
under consideration, and searching for states, or sets of states that satisfy cer-
tain logical properties. The first step can either be performed prior to the search,

8 Introduction

or done on-the-fly during the search process. Computing the state-space on-the-
fly has an obvious advantage over pre-computing, in that only the part of the
state-space needed to prove (or disprove) the property is generated. As an ex-
ample, consider a system with a million states. Generating the full state-space
of this system will take a lot of time and may even be infeasible due to memory
requirements. However, if the logical properties of interests can be proven by
only examining the first hundred states of the system then an on-the-fly method
will only need to generate those states and the result will be almost instanta-
neous. It should be noted though, that even on-the-fly methods will generate
the entire state-space to prove certain properties, e.g. invariant properties.

The model-checking procedure itself is based on traversing the state-space in
search for states that prove or contradict stated logical properties. As an exam-
ple, we use one of the model-checking algorithms for timed-automata imple-
mented in UPPAAL (see Algorithm 1).

Algorithm 1 Reachability analysis
PASSED WAIT
while WAIT do

take from WAIT
if then return “YES”
if for all PASSED then

add to PASSED
for all such that do

add to WAIT
end for

end if
end while
return “NO”

The algorithm is used for verifying safety properties (that something bad will
never happen) for networks of timed automata. The properties are given to the
algorithm as a set of bad states (denotes a location in the network
and denotes a clock zone). The algorithm will then compute the zone-graph
of the system on-the-fly, in search for states intersecting with . The al-
gorithm highlights some of the issues in developing a model-checker for timed
automata. First, handling of states, or primarily zones, is crucial to the per-
formance of the model-checker. Thus, devising algorithms and data-structures
for zones is a major issue in developing a verification tool for timed automata,
which is addressed in Paper A. Second, PASSED holds all states encountered so

Introduction 9

far and its size puts a limit on how large systems we can verify. This makes it
important to find compact representations for PASSED. However, since passed
is searched each time a new state is processed it is crucial to performance that
searching is cheap. This leads to a tradeoff between size and speed. We study
this problem in Paper C.

A major obstacle in constructing the state-space of a network of timed automata
is the so called state-explosion problem. The problem appears in all kinds of
model-checkers, and the source of the problem is the practice of modelling
concurrent systems using parallel composition of several automata. The effect
is a rapid growth of the explored state-space due to the fact that each possible
interleaving of the automata will be taken into account by the analysis.

A method for reducing the state-space used in model-checkers for untimed sys-
tems is partial-order reductions. With this technique the state-space is reduced
by removing interleavings of independent transitions and choose one represen-
tative. However, in timed-automata the number of independent transitions is
much less than in the untimed case due to the tight synchronisation of time.
One way of breaking this synchronisation, without affecting stated reachability
properties, is presented in Paper D.

Finally we shall point out that a powerful verification engine is not enough to
get a successful tool and there are other issues in building verification tools. For
a tool to be widely used it requires substantial work on the user interface. For
instance, in UPPAAL a lot of effort has been put on improving the user interface.
However, such issues are not the topic of this thesis.

4 Contributions of This Thesis

The main contributions of this thesis are in the development and implemen-
tation of UPPAAL, a tool-suite for timed-automata developed in collaboration
between Uppsala University and Aalborg University. The first version of UP-
PAAL was released in spring 1995, and was then the first verification tool for
timed automata where the system model could be drawn graphically (What
You See Is What You Verify). In 1996, another step was taken in the same
direction, when UPPAAL was equipped with a simulator that enable the user
to test system models interactively and to visualise counterexamples generated
by the model-checker. In 1999, the architecture of UPPAAL was completely
changed, the tool was separated into two parts: A graphical user interface and
a verification engine. Among other things this change enabled the GUI and the

10 Introduction

verification engine to be run on separate machines, e.g. running the GUI on a
local work-station and the verification engine on a large server. Today UPPAAL
is one of the most popular tools for timed automata and it has been downloaded
by over 1300 different users from over 70 countries.

The performance of the verification engine has always been a key issue when
developing UPPAAL. This is also the part where most of the contributions de-
scribed in this thesis are located.

A DBM Package: Data-Structures and Operations [Paper A,B]

Zones are the most important entities in a model-checker for timed systems and
their representation and implementation are crucial to the performance. In im-
plementing UPPAAL we discovered a number of techniques to improve perfor-
mance of zone operations. In this thesis we present our experiences in form of
a cook-book on Difference Bound Matrices [Dil89]. We describe all primitive
operations and data-structures for zones needed to implement state-space ex-
ploration for time-automata in both forwards and backwards analysis, including
operations for checking properties of zones, for computing the effect of delay-
ing and resetting of clocks, and for constraining a zone with respect to a guard.
We also present how to normalise the clock-zones with respect to guards in the
automaton to guarantee that the model-checking procedure terminates. In par-
ticular we discovered that the existing -normalisation algorithms published in
the literature do not work for timed-automata with guards on clock-differences.
We have developed two new normalisation algorithms for automata that may
contain constraints on clock differences.

Low-Level Optimisations [Paper C]

The performance of UPPAAL has been greatly improved by low-level optimi-
sations on its central algorithms and data-structures. In this thesis we develop
and evaluate a number of techniques to minimise memory and time consump-
tion. The techniques are implemented in UPPAAL and we believe that they are
generic and applicable to model-checking of timed-systems in general.

We present two different methods for packing states. First, we code the entire
state as one large number using a multiply-and-add algorithm. This method
yields a representation that is canonical and minimal in terms of memory usage
but the performance for inclusion checking between states is poor. The second
method is mainly intended to use for the timing part of the state and it is based
on concatenation of bit strings. Using a special concatenation of the bit string

Introduction 11

representation of the constraints in a zone, ideas from [PS80] can be used to
implement fast inclusion checking between packed zones.

The problem representing large state-spaces is addressed in two different ways.
First, to get rid of states that do not need to be explored, as early as possible,
we introduce inclusion checking already in the data structure keeping the states
waiting to be explored. We also describe an implementation where time, as
well as memory, is saved by this technique. Second, we investigate how super-
trace [Hol91] and hash-compaction [WL93, SD95b] methods can be applied to
timed systems. We present a variant of the hash compaction method, that allows
termination of branches in the search tree based on probable inclusion checking
between states. These techniques have been implemented in the UPPAAL tool,
evaluated and compared by real-life examples; their strengths and weaknesses
are described.

Partial Order Reduction [Paper D,E]

A major problem in automatic verification is the large number of states intro-
duced by modelling concurrent events as interleaved transitions. In many cases,
the order of the transitions are irrelevant for the investigated properties and one
specific order can be chosen to represent all. In this thesis we address this prob-
lem in a setting of timed systems. We present a notion of committed locations
for timed automata. Committed locations are annotations that can be used for
not only modelling of intermediate states within atomic transitions, but also
guiding the model checker to ignore unnecessary interleavings in state-space
exploration. During modelling, intermediate locations in sequences of internal
actions can be marked as committed. This prohibits delay in the locations and
allows its transitions to be interleaved only with transitions of committed lo-
cations in other automata in the network. We present a modified algorithm for
state space exploration for networks of timed automata which generate a re-
duced number of states when committed locations are used. Our experimental
results demonstrate significant time and space-savings for a number of applica-
tions. For example, the audio control protocol presented in Paper E could not
have been verified in 1995 without using committed locations.

Committed location is a simple case of getting rid of unnecessary interleavings
in sequences of transitions without delays. Naturally, we want to extend the
notion to sequences with non-zero delays. However, due to the tight synchro-
nisation of time, delay in timed-automata has a global effect. To resolve this
issue, we introduce a notion of local-time and let local clocks in each process
advance independently of clocks in other processes. To avoid communication

12 Introduction

between processes with different notion of the current time we require pro-
cesses to resynchronise their local time scales whenever they communicate. A
symbolic local-time semantics is developed in terms of predicate transformers,
which enjoys the desired property that two predicate transformers are inde-
pendent if they correspond to disjoint transitions in different processes. This
allows existing partial order reduction techniques to be applied to the problem
of reachability analysis for timed systems.

5 Related Work

In the past years, a large number of model-checkers have been developed by re-
searchers for different application areas. For examples, we mention SPIN [Hol91,
Hol97] for communication protocols and Mur [DDHY92] for concurrent and
reactive systems, UPPAAL [LPY97, ABB 01] and KRONOS [DOTY95, Yov97,
BDM 98] for timed systems, and HYTECH [HHWT97] for hybrid systems.
These tools have all been successfully applied to industrial-size case studies,
e.g. [HLP98, JMMS98, SD95a, MMS97, LPY98, HSLL97, TY98, HWT96].
In this section we summarise the most successful and known techniques imple-
mented in these tools.

Partial-order reduction: Partial-order methods [God90, Val90, Pel93] are bas-
ed on the observation that in many cases the exact ordering of events affects
neither the examined properties nor how the system evolves in the future. In
these cases all equivalent orderings can be represented by one single ordering.
For timed-automata there are two different approaches to applying partial order
reductions. The first approach was introduced by Pagani in [Pag96] and later
improved by Dams et. al. [DGKK98]. It is based on the global-time semantics
of timed automata. This limits the possible reductions in that only transitions
that can occur in exactly the same time-interval can be independent. The sec-
ond approach is the local-time approach proposed in Paper D of this thesis.
In [Min99], Minea extends our result for reachability analysis to LTL model-
checking. Minea also shows that standard normalisation techniques for timing-
constraints are applicable also in local-time semantics.

Symmetry reductions: Symmetry reduction [HJJJ84, ID96, ES97] is a method
for exploiting the fact that many system-models have a large number of iden-
tical processes. It is often the case that these identical processes may be in-
terchanged without noticeably affecting the system. As an example, in a com-
munication protocol it may not matter if process A is sending and process B

Introduction 13

is receiving or the other way around. In a model-checker this is exploited by
defining equivalence classes for states based on different permutations of the
identical processes. The model-checking algorithm is then applied to the graph
of equivalence classes instead of the full state-space. As examples. we men-
tion that this technique has been implemented in the tools Mur [ID96] and
SGM [HW98, WH02].

Symbolic model-checking: The key idea of symbolic model-checking is in
representing and manipulating sets of states in terms of logical formulae. The
best known symbolic technique, introduced in [BCM 92], describe states and
transitions as propositional formulae and use BDDs [Bry86] to store and manip-
ulate them. The so called bounded model-checking is introduced in [BCCZ99].
In this work, the task of checking if a system-model has a certain logical prop-
erty is transformed into checking satisfiability for a series of propositional for-
mulae. Symbolic techniques for timed-systems are all based on zones [Dil89,
HNSY94, AHH96, ACH 95, YPD94], where sets of clock-values are repre-
sented and manipulated using clock constraints. This is the main topic of this
thesis.

Approximation methods: Approximation methods are aimed at systems that
are too large to be handled by precise methods, at the price that some results are
inconclusive. There are two different types of approximation methods, under-
approximations where part of the reachable state-space may be considered not
reachable by the model-checker, and over-approximations where non-reachable
states may be considered reachable by algorithm. Two examples of under-
approximation are Supertrace [Hol91] and hash-compaction [WL93, SD95b].
These methods may conclude erroneously during verification that some unex-
plored state has been visited before. Thus, with under-approximations, a claim
that invariant properties hold is inconclusive, since states violating the property
may be lost in the approximation. Over-approximation techniques are often
combined with symbolic model-checking. Often, the union of two symbolic-
states can not be precisely represented by a single formula while it is possible
to construct a formula including two symbolic states. In [Bal96] this type of
method is applied to verification of timed automata. In the paper the convex-
hull of time-zones are used as an approximation of union. In [WT94], Wong-Toi
presents techniques for refining the results obtained by over-approximations by
combining the results from forwards and backwards analysis.

Efficient Representation of Clock Constraints: In a verification tool, a large
fraction of memory used during verification is spent on storing clock con-
straints. In the literature there are a number of techniques addressing this prob-

14 Introduction

lem. In [DY96] live-range analysis is used to reduce the number of clocks in
a model. The control-structure of the system-model is analysed to compute the
set of active clocks for each location. To save space, only timing information re-
garding active clocks are stored. Another approach is taken in [LLPY97]. This
work is based on the observation that the DBM representation of a time zone
often contains redundant information, i.e. the same set of clock values can be
represented using much fewer constraints. The paper presents an algorithm for
computing the minimal set of constraints for a given DBM.

Inspired by the success of using BDDs to encode state-spaces in hardware ver-
ification, a number of similar techniques for representing clock zones were
developed. In [Bal96], Balarin present a schema for encoding DBMs using
DBBs. He also develop algorithms for performing essential DBM operations
directly on the BDD. In [ABK 97], Asarin et. al. introduce Numerical Deci-
sion Diagrams (NDDs), a technique for representing sets of regions from the
region-graph of timed automata as BDDs. The problem with both these repre-
sentations is their sensitivity to time-granularity. This problem is not present
for Clock Difference Diagrams (CDDs) [LPWY99, BLP 99] and Difference
Decision Diagrams (DDDs) [MLAH99a, MLAH99b], which are two similar
types of decision diagrams based on difference constraints. They allow for non-
convex unions of zones to be represented by a single diagram, and the main
difference is that in DDDs each node represents a single difference constraint,
while a node in a CDD represents all difference constraints on a clock-pair.
Thus, DDDs will, in general, have more nodes than the corresponding CDD,
while the nodes in a CDD have a larger and variable number of edges.

Low-Level Optimisations: For many applications, it is not feasible to store all
explored states in main memory. In [SD98], Stern and Dill present a method
for storing PASSED on magnetic disk. To compensate for the increased time to
access PASSED, they collect a large number of states in WAIT and check all of
them in one sequential sweep through PASSED. Other alternatives when dealing
with large state-spaces is to store only enough states to guarantee termination.
In [LLPY97] static analysis of the system-model is used to compute the set
of loop-entry location in the processes. A state is then stored in PASSED only
if one of the processes enter such a location. This guarantee that at least one
state in each dynamic loop will be present on PASSED and thus termination is
ensured. A method for throwing identifying and removing states that no longer
can be revisited is presented in [CKM01]. A progress measure is used by the
model-checker to identify such states.

Introduction 15

6 Conclusions and Future Work

This thesis summarises our experiences in developing and implementing UP-
PAAL. We have studied and developed techniques to improve the performance
of UPPAAL in the verification process. Our main contributions are in three di-
rections. First we have presented a DBM package including all data-structures
and operations needed in symbolic state-space exploration of timed automata.
We hope that the included reports may serve as a cook-book for tool develop-
ers of timed-systems. Second, we have presented and implemented a collec-
tion of low-level optimisations on the central algorithms and data-structures of
UPPAAL. They have given significant performance improvements for the tool.
Though these techniques are developed for UPPAAL, we believe that they are
generic and applicable to other model-checkers for timed-systems. As the third
contribution we have presented partial-order reduction techniques for timed
systems. The notion of committed locations has been a useful mechanism for
not only modelling atomic sequences but also guiding the model-checker to
avoid redundant interleavings in state-space exploration. Though the notion of
committed locations has been generalised to give a local-time semantics for
networks of timed automata, which allows for partial order reductions in state-
space exploration of timed systems, the technique has not yet been fully ex-
plored. This is a challenging area for future work. The local-time semantics is
just a step on the way. A challenge is to develop an efficient implementation of
the technique.

The work presented in this thesis can be extended in several directions. Hierar-
chical extensions to timed automata is a direction that is currently being pursued
within the UPPAAL group. A challenging problem is how to take advantage of
the hierarchical structures in state-space exploration. As future work, we will
further study techniques to reduce memory requirements without losing perfor-
mance in time, e.g. to develop packing methods and hash functions for zones,
that preserve inclusion checking.

References

[ABB 01] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio,
Alexandre David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet,
Kim G. Larsen, M. Oliver Möller, Paul Pettersson, Carsten Weise, and
Wang Yi. UPPAAL - Now, Next, and Future. In Modelling and Verifica-
tion of Parallel Processes, volume 2067 of Lecture Notes in Computer
Science, pages 100–125. Springer-Verlag, 2001.

16 Introduction

[ABK 97] Eugene Asarin, Marius Bozga, Alain Kerbrat, Oded Maler, Amir Pnueli,
and Anne Rasse. Data structures for the verification of timed automata.
In Proceedings, Hybrid and Real-Time Systems, volume 1201 of Lecture
Notes in Computer Science, pages 346–360. Springer-Verlag, 1997.

[ACD93] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking in
dense real-time. Journal of Information and Computation, 104(1):2–34,
1993.

[ACH 95] Rajeev Alur, Costas Courcoubetis, Nicholas Halbwachs, Thomas A.
Henzinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph
Sifakis, and Sergio Yovine. The algorithmic analysis of hybrid systems.
Journal of Theoretical Computer Science, 138(1):3–34, 1995.

[AD90] Rajeev Alur and David L. Dill. Automata for modeling real-time sys-
tems. In Proceedings, Seventeenth International Colloquium on Au-
tomata, Languages and Programming, volume 443 of Lecture Notes in
Computer Science, pages 322–335. Springer-Verlag, 1990.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Journal of
Theoretical Computer Science, 126(2):183–235, 1994.

[AH94] Rajeev Alur and Thomas A. Henzinger. A really temporal logic. Journal
of the ACM, 41(1):181–204, 1994.

[AHH96] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic sym-
bolic verification of embedded systems. IEEE Transactions on Software
Engineering, 22:181–201, 1996.

[Bal96] Felice Balarin. Approximate reachability analysis of timed automata. In
Proceedings, 17th IEEE Real-Time Systems Symposium. IEEE Computer
Society Press, 1996.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. In Proceedings, Fifth Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems, volume 1579 of Lecture Notes in Computer Science.
Springer-Verlag, 1999.

[BCM 92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: states and beyond. Journal of Informa-
tion and Computation, 98(2):142–170, 1992.

[BD91] Bernard Berthomieu and Michel Diaz. Modeling and verification of
timed dependent systems using timed petri nets. IEEE Transactions on
Software Engineering, 17(3):259–273, 1991.

[BDM 98] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros
Tripakis, and Sergio Yovine. Kronos: a model-checking tool for real-
time systems. In Proceedings, Tenth International Conference on Com-
puter Aided Verification, volume 1427 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1998.

Introduction 17

[BLP 99] Gerd Behrmann, Kim G. Larsen, Justin Pearson, Carsten Weise, and
Wang Yi. Efficient timed reachability analysis using clock difference dia-
grams. In Proceedings, Eleventh International Conference on Computer
Aided Verification, volume 1633 of Lecture Notes in Computer Science,
pages 341–353. Springer-Verlag, 1999.

[Bry86] Randal E. Bryant. Graph-based algorithm for boolean function manipu-
lation. IEEE Transactions on Computers, C-35(8):677–691, 1986.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Check-
ing. The MIT Press, 1999.

[CKM01] Søren Christensen, Lars Michael Kristensen, and Thomas Mailund. A
sweep-line method for state space exploration. In Proceedings, Seventh
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, volume 2031 of Lecture Notes in Computer
Science, pages 450–464. Springer-Verlag, 2001.

[DDHY92] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Protocol
verification as a hardware design aid. InProceedings, IEEE International
Conference on Computer Design, VLSI in Computers and Processors,
pages 522–525. IEEE Computer Society Press, 1992.

[DGKK98] Dennis Dams, Rob Gerth, Bart Knaack, and Ruurd Kuiper. Partial-order
reduction techniques for real-time model checking. Formal Aspects of
Computing, 10(5–6):469–482, 1998.

[Dij75] E. W. Dijkstra. Guarded commands, nondeterminacy and formal deriva-
tion of programs. Communications of the ACM, 18(8):453–457, 1975.

[Dil89] David L. Dill. Timing assumptions and verification of finite-state concur-
rent systems. In Proceedings, Automatic Verification Methods for Finite
State Systems, volume 407 of Lecture Notes in Computer Science, pages
197–212. Springer-Verlag, 1989.

[DOTY95] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine.
The tool Kronos. In Proceedings, Hybrid Systems III: Verification and
Control, volume 1066 of Lecture Notes in Computer Science. Springer-
Verlag, 1995.

[DY96] Conrado Daws and Sergio Yovine. Reducing the number of clock vari-
ables of timed automata. In Proceedings, 17th IEEE Real-Time Systems
Symposium. IEEE Computer Society Press, 1996.

[ES97] E. Allen Emerson and A. Prasad Sistla. Using symmetry when mod-
elchecking under fairness assumptions: An automata theoretic approach.
ACM Transactions on Programming Languages and Systems, 19(4),
1997.

18 Introduction

[God90] Patrice Godefroid. Using partial orders to improve automatic verification
methods. In Proceedings, Second International Conference on Computer
Aided Verification, volume 531 of Lecture Notes in Computer Science,
pages 176–185. Springer-Verlag, 1990.

[Hal00] Tom R. Halfhill. Embedded market breaks new ground. Microprocessor
Report, January 2000.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH:
A model checker for hybrid systems. Journal on Software Tools for
Technology Transfer, pages 110–122, 1997.

[HJJJ84] Peter Huber, Arne M. Jensen, Leif O. Jespen, and Kurt Jensen. Towards
reachability trees for high-level petri nets. In Proceedings, Advances
on Petri Nets ’84, volume 188 of Lecture Notes in Computer Science.
Springer-Verlag, 1984.

[HLP98] Klaus Havelund, Mike Lowry, and John Penix. Formal analysis
of a space craft controller using Spin. In Proceedings, Fourth In-
ternational SPIN Workshop, 1998. Proccedings available online.
URL: http://netlib.bell-labs.com/netlib/spin/ws98/program.html.

[HNSY92] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio
Yovine. Symbolic model checking for real-time systems. In Proceed-
ings, Seventh Annual IEEE Symposium on Logic in Computer Science,
pages 394–406, 1992.

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio
Yovine. Symbolic model checking for real-time systems. Journal of
Information and Computation, 111(2):193–244, 1994.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580, 1969.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Communications
of the ACM, 21(8):666–677, 1978.

[Hol91] Gerard J. Holzmann. Design and Validation of Computer Protocols.
Prentice-Hall, 1991.

[Hol97] Gerard J. Holzmann. The model checker Spin. IEEE Transactions on
Software Engineering, 23(5):279–295, 1997.

[HSLL97] Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal
modelling and analysis of an audio/video protocol: An industrial case
study using UPPAAL. In Proceedings, 18th IEEE Real-Time Systems
Symposium, pages 2–13. IEEE Computer Society Press, 1997.

[HW98] Pao-Ann Hsiung and Farn Wang. A state-graph manipulator tool for real-
time system specification and verification. In Proceedings, Fifth Inter-
national Conference on Real-Time Computing Systems and Applications,
1998.

Introduction 19

[HWT96] Thomas A. Henzinger and Howard Wong-Toi. Using HYTECH to syn-
thesize control parameters for a steam boiler. In Formal Methods for
Industrial Applications: Specifying and Programming the Steam Boiler
Control, number 1165 in Lecture Notes in Computer Science, pages
265–282. Springer-Verlag, 1996.

[ID96] C. Norris Ip and David L. Dill. Better verification through symmetry.
Journal of Formal Methods in System Design, 9, 1996.

[JMMS98] Wil Janssen, Radu Mateescu, Sjouke Mauw, and Jan Springintveld.
Verifying business processes using SPIN. In Proceedings, Fourth
International SPIN Workshop, 1998. Proccedings available online.
URL: http://netlib.bell-labs.com/netlib/spin/ws98/program.html.

[LLPY97] Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Efficient
verification of real-time systems: Compact data structure and state space
reduction. In Proceedings, 18th IEEE Real-Time Systems Symposium,
pages 14–24. IEEE Computer Society Press, 1997.

[LPWY99] Kim G. Larsen, Justin Pearson, Carsten Weise, and Wang Yi. Clock
difference diagrams. Nordic Journal of Computing, 1999.

[LPY97] Kim G. Larsen, Paul Petterson, and Wang Yi. UPPAAL in a nutshell.
Journal on Software Tools for Technology Transfer, 1997.

[LPY98] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and
Analysis of a Gear-Box Controller. In Proceedings, Fourth Workshop
on Tools and Algorithms for the Construction and Analysis of Systems,
number 1384 in Lecture Notes in Computer Science, pages 281–297.
Springer-Verlag, 1998.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall Interna-
tional Series in Computer Science. Prentice Hall, 1989.

[Min99] Marius Minea. Partial Order for Verification of Timed Systems. PhD
thesis, School of Computer Science, Carnegie Mellon University, 1999.

[MLAH99a] Jesper Møller, Jakob Lichtenberg, Henrik Reif Andersen, and Henrik
Hulgaard. Difference decision diagrams. In Proceedings, 13th Inter-
national Workshop on Computer Science Logic, volume 1683 of Lecture
Notes in Computer Science. Springer-Verlag, 1999.

[MLAH99b] Jesper Møller, Jakob Lichtenberg, Henrik Reif Andersen, and Henrik
Hulgaard. On the symbolic verification of timed systems. Technical
Report IT-TR-1999-024, Department of Information Technology, Tech-
nical University of Denmark, 1999.

[MMS97] John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated analysis
of cryptographic protocols using Mur . In Proceedings, 1997 Confer-
ence on Security and Privacy, pages 141–153. IEEE Computer Society
Press, 1997.

20 Introduction

[NS94] Xavier Nicollin and Joseph Sifakis. The algebra of timed processes,
ATP: Theory and application. Journal of Information and Computation,
114(1):131–178, 1994.

[Pag96] Florence Pagani. Partial orders and verification of real-time systems. In
Proceedings, Fourth International Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems., volume 1135 of Lecture Notes
in Computer Science, pages 327–346. Springer-Verlag, 1996.

[Pel93] Doron Peled. All from one, one for all: on model checking using repre-
sentatives. In Proceedings, Fifth International Conference on Computer
Aided Verification, volume 697 of Lecture Notes in Computer Science,
pages 409–423. Springer-Verlag, 1993.

[Pet99] Paul Pettersson. Modelling and Verification of Real-Time Systems Using
Timed Automata: Theory and Practice. PhD thesis, Uppsala University,
1999.

[PS80] Wolfgang J. Paul and Janos Simon. Decision trees and random access
machines. In Logic and Algorithmic, volume 30 of Monographie de
L’Enseignement Mathématique, pages 331–340. L’Enseignement Math-
ématique, Université de Genève, 1980.

[Rei85] Wolfgang Reisig. Petri nets. An Introduction. In EATCS Monographs on
Theoretical Compute Science, volume 4. Springer Verlag, 1985.

[Rok93] Tomas Gerhard Rokicki. Representing and Modeling Digital Circuits.
PhD thesis, Stanford University, 1993.

[RR88] G. M. Reed and A. W. Roscoe. A timed model for communicating
sequential processes. Theoretical Computer Science, 58(1-3):249–261,
1988.

[SD95a] Ulrich Stern and David L. Dill. Automatic verification of the SCI cache
coherence protocol. In Correct Hardware Design and Verification Meth-
ods: IFIP WG10.5 Advanced Research Working Conference Proceed-
ings, 1995.

[SD95b] Ulrich Stern and David L. Dill. Improved probabilistic verification by
hash compaction. In Correct Hardware Design and Verification Meth-
ods: IFIP WG10.5 Advanced Research Working Conference Proceed-
ings, 1995.

[SD98] Ulrich Stern and David L. Dill. Using magnetic disk instead of main
memory in the Mur verifier. In Proceedings, Tenth International Con-
ference on Computer Aided Verification, volume 1427 of Lecture Notes
in Computer Science. Springer-Verlag, 1998.

[SS95] Oleg V. Sokolsky and Scott A. Smolka. Local model checking for real-
time systems. In Proceedings, Seventh International Conference on
Computer Aided Verification, volume 939 of Lecture Notes in Computer
Science. Springer-Verlag, 1995.

Introduction 21

[TY98] Stavros Tripakis and Sergio Yovine. Verification of the fast reservation
protocol with delayed transmission using the tool Kronos. In Proceed-
ings, Fourth IEEE Real-Time Technology and Applications Symposium.
IEEE Computer Society Press, 1998.

[Val90] Antti Valmari. A stubborn attack on state explosion. In Proceedings, Sec-
ond International Conference on Computer Aided Verification, volume
531 of Lecture Notes in Computer Science, pages 156–165. Springer-
Verlag, 1990.

[WH02] Farn Wang and Pao-Ann Hsiung. Efficient and user-friendly verification.
IEEE Transactions on Computers, 51(1):61–83, 2002.

[WL93] Pierre Wolper and Dennis Leroy. Reliable hashing without collision de-
tection. In Proceedings, Fifth International Conference on Computer
Aided Verification, volume 697 of Lecture Notes in Computer Science,
pages 59–70. Springer-Verlag, 1993.

[WT94] Howard Wong-Toi. Symbolic Approximation for Verifying Real-Time
Systems. PhD thesis, Stanford University, 1994.

[Yi91] Wang Yi. CCS + time = an interleaving model for real time systems. In
Proceedings, Eighteenth International Colloquium on Automata, Lan-
guages and Programming, volume 510 of Lecture Notes in Computer
Science. Springer-Verlag, 1991.

[Yov97] Sergio Yovine. Kronos: a verification tool for real-time systems. Journal
on Software Tools for Technology Transfer, 1, October 1997.

[YPD94] Wang Yi, Paul Petterson, and Mats Daniels. Automatic verification of
real-time communicating systems by constraint-solving. In Proceedings,
Seventh International Conference on Formal Description Techniques,
pages 223–238, 1994.

Paper A:
DBM: Structures, Operations and Implementation

Johan Bengtsson.

DBM: Structures, Operations and Implementation 25

DBM: Structures, Operations and Implementation

Johan Bengtsson

Abstract. A key issue when building a verification tool for timed sys-
tems is how to handle timing constraints arising in state-space explo-
ration. Difference Bound Matrices (DBMs) is a well-studied technique
for representing and manipulating timing constraints. The goal of this
paper is to provide a cook-book and a software package for the devel-
opment of verification tools using DBMs. We present all operations on
DBMs needed in symbolic state-space exploration for timed automata,
as well as data-structures and techniques for efficient implementation.

1 Introduction

During the last ten years, timed automata [AD90, AD94] has evolved as a com-
mon model for timed systems and one of the reasons behind its success is the
availability of verification tools, such as UPPAAL [LPY97, ABB 01] and KRO-
NOS [DOTY95, Yov97], that can verify industrial-size applications modelled as
timed automata. The major problem in automatic verification is the large num-
ber states induced by the state explosion. For timed systems this problem has
an even larger impact since both the number of states and the size of a single
state are significantly larger than in the untimed case due to timing constraints.
This makes devising data-structures for states and timing constraints one of the
key challenges in developing verification tools for timed systems.

In this paper we describe a software package for representing timing constraints,
arising from state space exploration of timed systems, as difference bound ma-
trices [Dil89]. The package is based on the DBM implementation of [BL96] but
it has been significantly improved using implementation experiences gained
from developing the current version of UPPAAL. The paper is intended as a
cook-book for developers of verification tools and the goal is to provide a basis
for the implementation of state-of-the-art verification tools.

The paper is organised as follows: In Section 2 we introduce the DBM struc-
ture and its canonical form; we also describe how to find the minimal number
of constraints needed to represent the same set of clock assignments as a given
DBM. Section 3 lists all DBM operations needed to implement a verification

26 DBM: Structures, Operations and Implementation

tool such as UPPAAL together with efficient algorithms for these operations.
Some suggestions on how to store the structures in memory are given in Sec-
tion 4 and finally Section 5 concludes the paper.

2 DBM basics

The key objects for representing timing information in symbolic state-space
exploration for timed systems are a special class of constraint systems referred
to as difference-bound constraint-systems or, more commonly, zones. A zone
for a set of clocks is a conjunction of atomic constraints of the form and

where , and . What make zones
so important is their simple structure and that the set of zones is closed with
respect to the strongest postcondition of all operations needed in state-space
generation.

Since zones are frequently used objects, their representation is a major issue
when building a verification tool for timed automata. In this section we describe
the basic concepts behind Difference Bound Matrices (DBM) [Dil89], which is
one of the most effective data structures for zones.

To have a unified form for clock constraints we introduce a reference clock
with constant value 0. Let . Then any zone can be
rewritten as a conjunction of constraints of the form for ,

and .

Naturally, if the rewritten zone has two constraints on the same pair of variables
only the tightest of them is significant. Thus, a zone can be represented using at
most atomic constraints of the form such that each pair of clocks

is mentioned only once. We can then store zones using matrices
where each element in the matrix corresponds to an atomic constraint. Since
each element in such a matrix represents a bound on the difference between
two clocks, we call them Difference Bound Matrices (DBMs). In the following
presentation we let denote element in the DBM representing the zone

.

To compute the DBM representation for a zone , we start by numbering all
clocks in to assign one row and one column in the matrix to each clock. The
row is used for storing lower bounds on the difference between the clock and
all other clocks while the column is used for upper bounds. The elements in the
matrix are then computed in three steps.

DBM: Structures, Operations and Implementation 27

For each bound in , in , let .

For each clock difference that is unbounded in , let .
Where is a special value denoting that no bound is present.

Finally add the implicit constraints that all clocks are positive, i.e.
, and that the difference between a clock and itself is always 0, i.e.

.

As an example, consider the zone
. To construct the matrix representation of , we

number the clocks in the order . The resulting matrix representation is
shown below:

To manipulate DBMs efficiently we need two operations on bounds: compari-
son and addition. We define that , if
and . Further we define addition as ,

and .

2.1 Canonical DBMs

Usually there are an infinite number of zones sharing the same solution set.
However, for each family of zones with the same solution set there is a unique
constraint system where no atomic constraint can be strengthened without los-
ing solutions. We say that such a zone is closed under entailment or just closed.
Since there is a unique closed zone for each solution set we use closed zones as
canonical representation of entire families of zones.

To compute the closed representative of a given zone we need to derive the
tightest constraint on each clock difference. To solve this problem, we use a
graph-interpretation of zones. If we see zones as a weighted graphs where the
clocks in are nodes and the atomic constraints are edges, deriving bounds
corresponds to adding weights along paths in the graph. Note that DBMs form
adjacency matrices for this graph-interpretation.

28 DBM: Structures, Operations and Implementation

(a) (b)

Figure 1: Graph interpretation of the example zone and its closed form

As an example, consider the zone
. By combining the atomic constraints and we

derive that , i.e. the bound on can be strengthened. Consider
the graph interpretation of this zone, presented in Figure 1(a). The tighter bound
on can be derived from the graph, using the path , giving the
graph in Figure 1(b). Thus, deriving the tightest constraint on a pair of clocks in
a zone is equivalent to finding the shortest path between their nodes in the graph
interpretation of the zone. The conclusion is that a canonical, i.e. closed, ver-
sion of a zone can be computed using a shortest path algorithm. Many verifiers
for timed automata use the Floyd-Warshall algorithm [Flo62] (Algorithm 1) to
transform zones to canonical form. However, since this algorithm is quite ex-
pensive (cubic in the number of clocks), it is desirable to make all frequently
used operations preserve the canonical form, i.e. the result of performing an
operation on a canonical zone should also be canonical.

Algorithm 1 Floyds algorithm for computing shortest path
for to do

for to do
for to do

end for
end for

end for

2.2 Minimal Constraint Systems

A zone may contain redundant constraints. Obviously, it is desirable to remove
such constraints to store only the minimal number of constraints. Consider,

DBM: Structures, Operations and Implementation 29

for instance, the zone
, which is in minimal form. This zone is completely defined by only five

constraints. However, the closed form contains no less than 12 constraints. It
is known, e.g. from [LLPY97], that for each zone there is a minimal constraint
system with the same solution set. By computing this minimal form for all zones
and storing them in memory using a sparse representation we might reduce
the memory consumption for state-space exploration. This problem has been
thoroughly investigated in [LLPY97, Pet99, Lar00] and this presentation is a
summary of the work presented there.

The goal is to find an algorithm that computes the minimal form of a closed
DBM. However, closing a DBM corresponds to computing the shortest path
between all clocks. Thus, we want to find an algorithm that computes the mini-
mal set of bounds with a given shortest path closure. For clarity, the algorithm
is presented in terms of directed weighted graphs. However, the results are di-
rectly applicable to the graph interpretation of DBMs.

First we introduce some notation: we say that a cycle in a graph is a zero cycle
if the sum of weights along the cycle is 0, and an edge is redundant
if there is another path between and where the sum of weights is no larger
than .

In graphs without zero cycles we can remove all redundant edges without af-
fecting the shortest path closure [Pet99]. Further, if the input graph is in shortest
path form (as for closed DBMs) all redundant edges can be located by consid-
ering alternative paths of length two.

As an example, consider Figure 2. The figure shows the shortest path closure
for a zero-cycle free graph (a) and its minimal form (b). In the graph we find
that is made redundant by the path and can thus
be removed. Further, the edge is redundant due to

. Note that we consider edges marked as redundant when searching for new
redundant edges. The reason is that we let the redundant edges represent the
path making them redundant, thus allowing all redundant edges to be located
using only alternative paths of length two. This procedure is repeated until no
more redundant edges can be found.

This gives the procedure for removing redundant edges presented in
Algorithm 2. The algorithm can be directly applied to zero-cycle free DBMs to
compute the minimal number of constraints needed to represent a given zone.

30 DBM: Structures, Operations and Implementation

9

8

7

5

13

126

15

13

7

2

1

7

5

6 2

1

(a) (b)

Figure 2: A zero cycle free graph and its minimal form

Algorithm 2 Reduction of Zero-Cycle Free Graph with nodes
for to do

for to do
for to do

if then
Mark edge as redundant

end if
end for

end for
end for
Remove all edges marked as redundant.

However, this algorithm will not work if there are zero-cycles in the graph.
The reason is that the set of redundant edges in a graph with zero-cycles is not
unique. As an example, consider the graph in Figure 3(a). Applying the above
reasoning on this graph would remove based on the path

. It would also remove the edge based on the path .
But if both these edges are removed it is no longer possible to construct paths
leading into . In this example there is a dependence between the edges

and such that only one of them can be considered redundant.

The solution to this problem is to partition the nodes according to zero-cycles
and build a super-graph where each node is a partition. The graph from Fig-
ure 3(a) has two partitions, one containing and and the other containing

. To compute the edges in the super-graph we pick one representative for
each partition and let the edges between the partitions inherit the weights from
edges between the representatives. In our example, we choose and as

DBM: Structures, Operations and Implementation 31

-2

3

2

5

3

1

-2

3

2

3

(a) (b)

Figure 3: A graph with a zero-cycle and its minimal form

representatives for their equivalence classes. The edges in the graph are then
and . The super-graph is clearly zero-cycle

free and can be reduced using Algorithm 2. This small graph can not be re-
duced further. The relation between the nodes within a partition is uniquely
defined by the zero-cycle and all other edges may be removed. In our example
all edges within each equivalence class are part of the zero-cycle and thus none
of them can be removed. Finally the reduced super-graph is connected to the
reduced partitions. In our example we end up with the graph in Figure 3(b).
Pseudo-code for the reduction-procedure is shown in Algorithm 3.

Now we have an algorithm for computing the minimum number of edges to
represent a given shortest path closure that can be used to compute the minimum
number of constraints needed to represent a given zone.

3 Operations on DBMs

This section presents all operations on DBMs needed in symbolic state space
exploration of timed automata, both for forwards and backwards analysis. Note
that even if a verification tool only explores the state space in one direction
all operations are still useful for other purposes, e.g. for generating diagnostic
traces. The effects of the operations are shown graphically in Figure 5.

In the following section we do not distinguish between DBMs and zones, and
the terms are used alternately. To simplify the presentation we assume that the
clocks in are numbered and the index for is 0. We assume that the
input zones are consistent and in canonical form.

32 DBM: Structures, Operations and Implementation

Algorithm 3 Reduction of negative-cycle free graph with nodes
for to do

if Node is not in a partition then

for to do
if then

Node
end if

end for
end if

end for
Let be a graph without nodes.
for each do

Pick one representative Node
Add Node to
Connect Node to all nodes in using weights from .

end for
Reduce
for each do

Add one zero cycle containing all nodes in to
end for

The operations on DBMs can be divided into three different classes:

1. Property-Checking: Operations in this class include checking if a DBM
is consistent, checking inclusion between zones, and checking whether a
zone satisfies a given atomic constraint.

2. Transformation: This is the largest class containing operations for trans-
forming zones according to guards, delay and reset.

3. Normalisation: They are used to normalise zones in order to obtain a
finite zone-graph. In this paper we only describe one operation in this
class, the so called -normalisation. For more normalisation operations
we refer to [BY01].

DBM: Structures, Operations and Implementation 33

3.1 Checking Properties of DBMs

consistent()

The most basic operation on a DBM is to check if it is consistent, i.e. if the
solution set is non-empty. In state-space exploration this operation is used to
remove inconsistent states from exploration.

For a zone to be inconsistent there must be at least one pair of clocks where the
upper bound on their difference is smaller than the lower bound. For DBMs this
can be checked by searching for negative cost cycles in the graph interpretation.
However, the most efficient way to implement a consistency check is to detect
when an upper bound is set to lower value than the corresponding lower bound
and mark the zone as inconsistent by setting to a negative value. For a
zone in canonical form this test can be performed locally. To check if a zone is
inconsistent it will then be enough to check whether is negative.

relation()

Another key operation in state space exploration is inclusion checking for the
solution sets of two zones. For DBMs in canonical form, the condition that

for all clocks is necessary and sufficient to conclude that
. Naturally the opposite condition applies to checking if . This

allows for the combined inclusion check described in Algorithm 5.

satisfied()

Sometimes it is desirable to non-destructively check if a zone satisfies a con-
straint, i.e. to check if the zone is consistent without altering

. From the definition of the consistent-operation we know that a zone is
consistent if it has no negative-cost cycles. Thus, checking if
is non-empty can be done by checking if adding the guard to the zone would
introduce a negative-cost cycle. For a DBM on canonical form this test can be
performed locally by checking if is negative.

3.2 Transformations

up()

The up operation computes the strongest post condition of a zone with respect
to delay, i.e. up() contains the time assignments that can be reached from

34 DBM: Structures, Operations and Implementation

by delay. Formally, this operation is defined as up
.

Algorithmically, up is computed by removing the upper bounds on all indi-
vidual clocks (In a DBM all elements are set to). This is the same as
saying that any time assignment in a given zone may delay an arbitrary amount
of time. The property that all clocks proceed at the same speed is ensured by
the fact that constraints on the differences between clocks are not altered by the
operation.

This operation preserves the canonical form, i.e. applying up to a canonical
DBM will result in a new canonical DBM. The reason is that to derive an upper
bound on a single clock we need at least an upper bound on another clock
and the relation between and , and all upper bounds have been removed by
the operation. The up operation is also presented in Algorithm 6.

down()

This operation computes the weakest precondition of with respect to delay.
Formally down , i.e. the set of time assign-
ments that can reach by some delay . Algorithmically, down is computed by
setting the lower bound on all individual clocks to . However due to con-
straints on clock differences this algorithm may produce non-canonical DBMs.
As an example, consider the zone in Figure 4(a). When down is applied to this
zone (Figure 4(b)), the lower bound on is and not , due to constraints on
clock differences. Thus, to obtain an algorithm that produce canonical DBMs
the difference constraints have to be taken into account when computing the
new lower bounds.

(a) (b)

Figure 4: Applying down to a zone.

To compute the lower bound for a clock , start by assuming that all other
clocks have the value 0. Then examine all difference constraints and
compute a new lower bound for under this assumption. The new bound on

DBM: Structures, Operations and Implementation 35

will be the minimum bound on found in the DBM. Pseudo-code
for down is presented in Algorithm 7.

and()

The most useful operation in state-space exploration is conjunction, i.e. adding
a constraint to a zone. The basic step of the and operation is to check if

and in this case set the bound to . If the bound has been
altered, i.e. if adding the guard affected the solution set, the DBM has to be
put back on canonical form. One way to do this would be to use the generic
shortest path algorithm, however for this particular case it is possible to derive
a specialisation of the algorithm allowing re-canonicalisation in instead
of .

The specialised algorithm take advantage of the fact that is the only bound
that has been changed. Since the Floyd-Warshall algorithm is insensitive to how
the nodes in the graph are ordered, we may decide to treat and last. The
outer loop of Algorithm 1 will then only affect the DBM twice, for and

. This allows the canonicalisation algorithm to be reduced to checking,
for all pairs of clocks in the DBM, if the path via either or is shorter than
the direct connection. The pseudo code for this is presented in Algorithm 8.

free()

The free operation removes all constraints on a given clock, i.e. the clock may
take any positive value. Formally this is expressed as free

. In state-space exploration this operation is used in combi-
nation with conjunction, to implement reset operations on clocks. It can be used
in both forwards and backwards exploration, but since forwards exploration al-
lows other more efficient implementations of reset, free is only used when
exploring the state-space backwards.

A simple algorithm for this operation is to remove all bounds on in the DBM
and set . However, the result may not be on canonical form.
To obtain an algorithm preserving the canonical form, we change how new
difference constraints regarding are derived. We note that the constraint

can be combined with constraints of the form to compute
new bounds for . For instance, if we can derive that .
To obtain a DBM on canonical form we derive bounds for based on
instead of setting .In Algorithm 9 this is presented as pseudo code.

36 DBM: Structures, Operations and Implementation

reset()

In forwards exploration this operation is used to set clocks to specific values,
i.e. reset . Without the requirement that
output should be on canonical form, reset can be implemented by setting

, and remove all other bounds on . However,
if we instead of removing the difference constraints compute new values using
constraints on the other clocks, like in the implementation of free, we obtain
an implementation that preserve the canonical form. Such an implementation is
presented in Algorithm 10.

copy()

This is another operation used in forwards state-space exploration. It copies
the value of one clock to another. Formally, we define reset as

. Analogous with reset, copy can be implemented
by assigning , , removing all other bounds on and
re-canonicalise the zone. However, a more efficient implementation is obtained
by assigning , and then copy the rest of the bounds
on from . For pseudo code, see Algorithm 11

shift()

The last reset operation is shifting a clock, i.e. adding or subtracting a clock with
an integer value, i.e. shift .
The definition gives a hint on how to implement the operation. We can view the
shift operation as a substitution of for in the zone. With this reasoning

is added to the upper and lower bounds of . However, since lower bounds
on are represented by constraints on , is subtracted from all those
bounds. This operation is presented in pseudo-code in Algorithm 12

3.3 Normalisation Operations

norm ()

To obtain a finite zone graph most verifiers use some kind of normalisation of
zones. One of the key steps in most normalisation algorithms is the so called -
normalisation, i.e. the zone is normalised with respect to the maximum constant
each clock is compared to in the automaton.

DBM: Structures, Operations and Implementation 37

The procedure to obtain the -normalisation of a given zone is to remove all
bounds such that and to set all bounds
such that to . This corresponds to removing all
upper bounds higher than the maximum constant and lowering all lower bounds
higher than the maximum constant down to the maximum constant.

The -normalisation operation will not preserve the canonical form of the DBM,
and in this case the best way to put the result back on canonical form is to use
Algorithm 1. Pseudo-code for -normalisation is given in Algorithm 13

reset()

up() down()

and() norm() shift

free() copy()

Figure 5: All DBM operations applied to the same zone

38 DBM: Structures, Operations and Implementation

4 Zones in Memory

This section describes a number of techniques for storing zones in computer
memory. The section starts by describing how to map DBM elements on ma-
chine words. It continues by discussing how to place two-dimensional DBMs
in one-dimensional memory and ends by describing how to store zones using a
sparse representation.

4.1 Storing DBM Elements

To store a DBM element in memory we need to keep track of the integer limit
and whether it is strict or not. The range of the integer limit is typically much
lower than the maximum value of a machine word and the strictness can be
stored using just one bit. Thus, it is possible to store both the limit and the
strictness in different parts of the same machine word. Since comparing and
adding DBM elements are frequently used operations it is crucial for the per-
formance of a DBM package that they can be efficiently implemented for the
chosen encoding. Fortunately, it is possible to construct an encoding of bounds
in machine words, where checking if is less than can be performed by
checking if the encoded is smaller than the encoded .

The encoding we propose is to use the least significant bit (LSB) of the ma-
chine word to store whether the bound is strict or not. Since strict bounds are
smaller than non-strict we let a set (1) bit denote that the bound is non-strict
while an unset (0) bit denote that the bound is strict. The rest of the bits in the
machine word are used to store the integer bound. To encode we use the
largest positive number that fit in a machine word (denoted MAX_INT).

For good performance we also need an efficient implementation of addition of
bounds. For the proposed encoding Algorithm 4 adds two encoded bounds
and . The symbols and in the algorithm are used to denote bitwise-and
and bitwise-or, respectively.

Algorithm 4 Algorithm for adding encoded bounds
if MAX_INT or MAX_INT then

return MAX_INT
else

return
end if

DBM: Structures, Operations and Implementation 39

4.2 Placing DBMs in Memory

Another implementation issue is how to store two-dimensional DBMs in linear
memory. In this section we present two different techniques and give a brief
comparison between them. The natural way to put matrices in linear memory
is to store the elements by row (or by column), i.e. each row of the matrix is
stored consequently in memory. This layout has one big advantage, its good
performance. This advantage is mainly due to the simple function for comput-
ing the location of a given element in the matrix: .
This function can (on most computers) be computed in only two instructions.
This is important since all accesses to DBM elements use this function. How
the different DBM elements are place in memory with this layout if presented
in Figure 6(a).

The second way to store a DBM in linear memory is based on a layered model
where each layer consists of the bounds between a clock and the clocks with
lower index in the DBM. In this representation it is cheap to implement local
clocks, since all information about the local clocks are localised at the end of
the DBM. The drawback with this layout is the more complicated function from
DBM indices to memory locations. For this layout we have:

if
otherwise

This adds at least two instructions (one comparison and one conditional jump)
to the transformation. This may not seem such a huge overhead, but it is clearly
noticeable. The cache performance is also worse when using this layout than
when storing the DBMs row-wise. This layout is illustrated in Figure 6(b).

The conclusion is that unless the tool under construction supports adding and
removing clocks dynamically the row-wise mapping should be used. On the
other hand, if the tool supports local clocks the layered mapping may be prefer-
able since no reordering of the DBM is needed when entering or leaving a clock
scope.

4.3 Storing Sparse Zones

In most verification tools, the majority of the zones are kept in the set of states
already visited during verification. They are used as a reference to ensure termi-
nation by preventing states from being explored more than once. For the states

40 DBM: Structures, Operations and Implementation

(a) Row wise (b) Layered

Figure 6: Different layouts of DBMs in memory

in this set we may benefit from storing only the minimal number of constraints
using a sparse representation.

A straight forward implementation is to store a sparse zone as a vector of con-
straints of the form . We may save additional memory by omitting im-
plicit constraints, such as . A downside with using sparse zones is that
each constraint require twice the amount of memory needed for a constraint in
a full DBM, since the sparse representation must store clock indices explicitly.
Thus, unless half of the constraints in a DBM are redundant we do not gain
from using sparse zones.

A good feature of the sparse representation is that checking whether a zone
represented as a full DBM is included in a sparse zone may be implemented
without computing the full DBM for . It suffices to check for all constraints
in that the corresponding bound in is tighter. However, to check if

we have to compute the full DBM for .

5 Conclusions

In this paper we have reviewed Difference Bound Matrices as a data-structure
for timing constraints. We have presented the basics of the data-structure and all
operations needed in symbolic state-space exploration of timed automata. We
have also discussed how to save space by computing the minimum number of
constraints defining a given zone and saving them using a sparse representation.

References

[ABB 01] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio,
Alexandre David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet,
Kim G. Larsen, M. Oliver Möller, Paul Pettersson, Carsten Weise, and
Wang Yi. UPPAAL - Now, Next, and Future. In Modelling and Verification

DBM: Structures, Operations and Implementation 41

of Parallel Processes, volume 2067 of Lecture Notes in Computer Science,
pages 100–125. Springer-Verlag, 2001.

[AD90] Rajeev Alur and David L. Dill. Automata for modeling real-time systems.
In Proceedings, Seventeenth International Colloquium on Automata, Lan-
guages and Programming, volume 443 of Lecture Notes in Computer Sci-
ence, pages 322–335. Springer-Verlag, 1990.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Journal of
Theoretical Computer Science, 126(2):183–235, 1994.

[BL96] Johan Bengtsson and Fredrik Larsson. UPPAAL a tool for automatic verifi-
cation of real-time systems. Technical Report 96/67, Department of Com-
puter Systems, Uppsala University, 1996.

[BY01] Johan Bentsson and Wang Yi. Reachability analysis of timed automata
containing constraints on clock differences. Submitted for publication.,
2001.

[Dil89] David L. Dill. Timing assumptions and verification of finite-state concur-
rent systems. In Proceedings, Automatic Verification Methods for Finite
State Systems, volume 407 of Lecture Notes in Computer Science, pages
197–212. Springer-Verlag, 1989.

[DOTY95] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. The
tool Kronos. In Proceedings, Hybrid Systems III: Verification and Con-
trol, volume 1066 of Lecture Notes in Computer Science. Springer-Verlag,
1995.

[Flo62] Robert W. Floyd. Acm algorithm 97: Shortest path. Communications of
the ACM, 5(6):345, June 1962.

[Lar00] Fredrik Larsson. Efficient implementation of model-checkers for networks
of timed automata. Licentiate Thesis 2000-003, Department of Informa-
tion Technology, Uppsala University, 2000.

[LLPY97] Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Effi-
cient verification of real-time systems: Compact data structure and state
space reduction. In Proceedings, 18th IEEE Real-Time Systems Sympo-
sium, pages 14–24. IEEE Computer Society Press, 1997.

[LPY97] Kim G. Larsen, Paul Petterson, and Wang Yi. UPPAAL in a nutshell. Jour-
nal on Software Tools for Technology Transfer, 1997.

[Pet99] Paul Pettersson. Modelling and Verification of Real-Time Systems Using
Timed Automata: Theory and Practice. PhD thesis, Uppsala University,
1999.

[Yov97] Sergio Yovine. Kronos: a verification tool for real-time systems. Journal
on Software Tools for Technology Transfer, 1, October 1997.

42 DBM: Structures, Operations and Implementation

A Pseudo-Code
Algorithm 5 relation()

tt
tt

for to do
for to do

end for
end for
return

Algorithm 6 up()

for to do

end for

Algorithm 7 down()

for to do

for to do
if then

end if
end for

end for

DBM: Structures, Operations and Implementation 43

Algorithm 8 and()

if then

else if then

for to do
for to do

if then

end if
if then

end if
end for

end for
end if

Algorithm 9 free()

for to do
if then

end if
end for

Algorithm 10 reset(

for to do

end for

44 DBM: Structures, Operations and Implementation

Algorithm 11 copy()

for to do
if then

end if
end for

Algorithm 12 shift()

for to do
if then

end if
end for

Algorithm 13 norm ()

for to do
for to do

if and then

else if and then

end if
end for

end for
close()

Paper B:
Reachability Analysis of Timed Automata Containing Constraints
on Clock Differences

Johan Bengtsson and Wang Yi.

Timed Automata with Constraints on Clock Differences 47

Reachability Analysis of Timed Automata Containing
Constraints on Clock Differences

Johan Bengtsson and Wang Yi

Department of Computer Systems, Uppsala University, Sweden.
E-mail: {johanb,yi}@docs.uu.se

Abstract. The key step to guarantee termination of reachability analysis
for timed automata is the normalisation algorithms for clock constraints
(i.e. symbolic states represented as DBM’s). It transforms DBM’s which
may contain arbitrary constants into their equivalent according to max-
imal constants appearing in clock constraints of an automaton. A re-
striction of the existing algorithms is that clock constraints in timed
automata must be in the form [AD94] of where is a clock,

, and is a natural number. It was discovered re-
cently that the existing tools were either providing incorrect answers or
not terminating when they are used to verify automata containing dif-
ference constraints of the form: (that are indeed needed in
many applications e.g. in solving scheduling problems). In this paper, we
present new normalisation algorithms that transforms DBM’s according
to not only maximal constants of clocks but also difference constraints
appearing in an automata. To our knowledge, they are the first published
normalisation algorithms for timed automata containing difference con-
straints. The algorithms have been implemented in UPPAAL, demonstrat-
ing that little extra overhead is needed to deal with difference constraints.

1 Introduction

Following the work of Alur and Dill on timed automata [AD94], a number of
model checkers have been developed for modelling and verification of timed
systems with timed automata as the core of their input languages [DOTY95,
Yov97, LPY97, ABB 01] based on reachability analysis. The foundation for
decidability of reachability problems for timed automata is Alur and Dill’s re-
gion technique, by which the infinite state space of a timed automaton due to
the density of time, may be partitioned into finitely many equivalence classes
i.e. according to regions in such a way that states within each class will always
evolve to states within the same classes. However, analysis based on the re-
gion technique is practically infeasible due to the large number of equivalence

48 Timed Automata with Constraints on Clock Differences

classes [LPY95], which is highly exponential in the number of clocks and their
maximal constants.

One of the major advances in the area after the pioneering work of Alur and Dill
is the symbolic technique [Dil89, YL93, HNSY94, YPD94, LPY95], which
transforms the reachability problem to that of solving simple constraints. It
adopts the idea from symbolic model checking for untimed systems, which uses
logical formulas to represent set of states and operations on formulas to repre-
sent state transitions. It is proven that the infinite state-space of timed automata
can be finitely partitioned into symbolic states which are represented and ma-
nipulated using a class of linear constraints known as zones and represented
as Difference Bound Matrices (DBM) [Bel57, Dil89]. The reachability relation
over symbolic states can be represented and computed by a few efficient oper-
ations on zones. From now on, we shall not distinguish the terms: constraint,
zone and DBM.

The technique can be simply formulated in an abstract reachability algorithm1

as shown in Algorithm 1. The algorithm is to check whether a timed automaton
may reach a final location . It explores the state space of the automaton in
terms of symbolic states in the form where is a location and is a zone
(represented as a DBM).

Algorithm 1 Symbolic reachability analysis
PASSED WAIT
while WAIT do

take from WAIT
if then return “YES”
if for all PASSED then

add to PASSED
for all such that do

add to WAIT
end for

end if
end while
return “NO”

Having a closer look at the algorithm, one will realize that termination is not
guaranteed unless the number of constraints generated is finite or the constraints

1Several verification tools for timed systems (e.g. UPPAAL [BLL 96]) have been imple-
mented based on this algorithm.

Timed Automata with Constraints on Clock Differences 49

form a well quasi-ordering with respects to set-inclusion (over solution sets for
clock constraints) [Hig52]. There have been several normalisation algorithms
for clock constraints represented as DBMs (e.g. [Rok93, Pet99]) that are the
key step to guarantee termination for the existing tools. They transform DBMs
which may contain arbitrary constants into their equivalent with maximal con-
stants appearing in clock constraints. The transformation respects region equiv-
alence and therefore the number of DBMs explored is finite. However a re-
striction of the existing normalisation algorithms is that clock constraints in the
syntax of timed automata must be in the form [AD94] of where is a
clock variable, is a relational operator and is a natural number. It was dis-
covered recently that the existing tools were either providing incorrect answers
or not terminating when they are used to verify automata containing difference
constraints of the form: (that are indeed needed in many applications
e.g. in solving scheduling problems).

A normalisation algorithm based on region equivalence treats clock values above
a certain constant as equivalent. This is correct only when no guard of the form:

is allowed in an automaton. Otherwise the normalisation opera-
tion may enlarge a zone so that the guard (a difference constraint) labelled on a
transition is made true and thus incorrectly enables the transition. For automata
containing difference constraints as guards, we need a finer partitioning, since
the difference constraints introduce diagonal lines that split the entire clock
space, even above the maximum constants for clocks. The partitioning and re-
lated normalisation operation based on region construction is too crude.

We demonstrate this by an example. Consider the example shown in Figure 1.
The final location of the automaton is not reachable according to the semantics.
This is because in location , the clock zone is (and) where
the guard is (and) which is equivalent to (and

and) can never be true and thus disables the last transition.
However, because the maximal constants for clock is (and for), the zone
in location : (and) will be normalised to (and

) by the maximal constant for , which enables the guard (and
) leading to the final location. Thus the symbolic reachability analysis

based on a standard normalisation algorithm would incorrectly conclude that
the last location is reachable.

In [BDGP98], it has been proved that a timed automaton with constraints on
clock differences can be transformed to an equivalent automaton without con-
straints on differences. However, this approach is impractical to be implemented
in the existing tools that support debugging of models because the transfor-

50 Timed Automata with Constraints on Clock Differences

S0 S1 S2 S3

z:=0

y>2

y:=0
x<z+1, z<y+1

Figure 1: Bug example

mation will change the syntax of the original automaton. In this paper, we
present two normalisation algorithms that allow not only clock comparison
with naturals but also comparison between clocks i.e. constraints on clock dif-
ferences. The algorithms transform DBMs according to not only the maximal
constants of clocks but also difference constraints appearing in an automaton.
To our knowledge, they are the first published normalisation algorithms for
timed automata containing difference constraints. The algorithms have been
implemented in UPPAAL. Our experiments demonstrate that almost no extra
overhead is added to deal with difference constraints.

The paper is organised as follows: Section 2 reviews timed automata and reach-
ability analysis. Section 3 introduces the problem in normalising symbolic states
for timed automata with constraints over clock differences. Section 4 presents
two new normalisation algorithms. Section 5 concludes the paper.

2 Preliminaries

In this section we briefly review the notation for timed automata and its seman-
tics. More extensive descriptions can be found in e.g. [AD94, Yov98, Pet99].

2.1 Timed Automata Model

Let be a finite set of labels, ranged over by etc. A timed automaton is a
finite state automaton over alphabet extended with a set of real valued clocks,
to model time dependent behaviour. Let denote a set of clocks, ranged over by

, and define as the set of conjunctions of atomic constraints of the
form and for and . We use
for the subset of where all atomic constraints are of the form and
let range over this set.

Timed Automata with Constraints on Clock Differences 51

Definition 1 (Timed Automaton) A timed automaton is a tuple
where is a set of control nodes, is the initial node,

is the set of edges and assign invariants to
locations. As a simplification we will use to denote .

The clocks values are formally represented as functions, called clock assign-
ments, mapping to the non-negative reals . We let denote such func-
tions, and use to denote that the clock assignment satisfy the formula .
For we use for the clock assignment that map all clocks in to
the value , and for we let denote the clock assignment
that map all clocks, , in the domain of to and agree with for the other
clocks in

The semantics of a timed automaton is a timed transition-system where the
states are pairs , with two types of transitions, corresponding to delay tran-
sitions and discrete action transitions respectively:

if and

if and

It is easy to see that the state space for such a transition system is infinite and
thus not adequate for algorithmic verification. However, efficient algorithms
may be obtained using a symbolic semantics based on symbolic states of the
form , where [HNSY92, YPD94]. The symbolic counterpart
of the transitions are given by:

if

where and . It can be
shown that the set of constraint systems is closed under these operations, in the
sense that the result of the operations can be expressed by elements of .

Moreover the symbolic semantics correspond closely to the standard semantics
in the sense that if then, for all there is such
that .

2.2 Reachability Analysis

Given a timed automaton with symbolic initial-state and a symbolic
state , is said to be reachable if and

52 Timed Automata with Constraints on Clock Differences

for some . This problem may be solved using a standard reachability algo-
rithm for graphs. However the unbounded clock values may render an infinite
zone graph and thus might the reachability algorithm not terminate. The solu-
tion to this problem is to obtain a finite symbolic semantics by normalising the
states with respect to the maximum constant each clock is compared to in the
automaton. For details we refer the reader to [Pet99, Rok93] but the main fact
and the intuition behind it is described here. In order to do this we first have
to introduce the notion of closed constraint systems. We say that a constraint
system is closed under entailment or just closed, for short, if no
constraint in can be strengthened without reducing the solution set.

Proposition 1 For each constraint system there is a unique con-
straint system such that and have exactly the same solution
set and is closed under entailment.

From this proposition we conclude that a closed constraint system can be used
as a canonical representation of a zone.

Given a zone and a set of maximal constants where
denotes the maximal constant for clock , the normalisation of , denoted
norm , is computed from the closed representation of by

1. Removing all constraints of the form , , and
where ,

2. Replacing all constraints of the form , , and
where with and respectively.

This can then be used to define a notion of normalised symbolic transitions
() by modifying the transitions of the standard symbolic semantics to pre-
serve normalisation. The discrete action transition already preserves this so
there is no need to modify it, but the delay transition should be modified to

norm .

Proposition 2 Assume a timed automaton with initial-state and let
be the set of maximal constants used to compare with respective clocks in
. Then is reachable from if and only if there is a sequence of

normalised transitions such that .

Using this we get a finite symbolic state-space where we can apply a standard
reachability algorithm for graphs, such as the one in Algorithm 1 with the sym-
bolic transition relation being replaced with the normalised version .

Timed Automata with Constraints on Clock Differences 53

3 Constraints on Clock Differences and Normalisation

Timed automata can easily be extended to allow guards where the difference
between two clocks is compared, i.e. allowing the guards to be taken from the
full set , not only from . However, this extension do not give more
expressive power; it has been shown (e.g. in [BDGP98]) that a timed automaton
with difference constraints can be transformed into an equivalent automaton
without difference constraints. From now on, we will call the timed automata
described in Section 2 for diagonal free timed automata and widen the term
timed automata to include also automata with difference constraints.

We note that for diagonal-free timed automata the normalisation algorithm de-
scribed earlier is based on the so called region equivalence.

Definition 2 (Region Equivalence) For a clock , let be a constant
(the ceiling of clock). For a real number , let denote the fractional part
of , and denote its integer part. Two clock assignments are region-
equivalent, denoted , iff

1. for each clock , either or and ,
and

2. for all clocks if and then

(a) iff and

(b) iff

For the extended version we need a finer partitioning, since the difference con-
straints in the guards introduce diagonal lines that split the entire clock space,
even above the maximum constants for the clocks. The partitioning used for
diagonal-free automata, and the connected normalisation operation norm is
too crude. We demonstrate this by an example: Consider the timed automaton
in Figure 2. The automaton has two clocks, (with maximum constant 0) and

(with maximum constant 1). The only difference constraint in the example is
. This will be used as a running example throughout the paper since the

small number of clocks make it possible to show the zones using graphs.

The problem is easily detected by comparing the clock zones of the unnor-
malised symbolic semantics (presented in Figure 3) with the corresponding
clock zones in the normalised symbolic semantics (presented in Figure 4). To
highlight the cause of the problem even further we show borders between equiv-
alence classes in the clock space (from the maximum constant for and

54 Timed Automata with Constraints on Clock Differences

S0 S1 S2 S3x:=2 y<1 x-y<=0

Figure 2: Example automaton with difference guards

from the difference constraint) as dashed lines. The initial state of the
automaton is After performing the first action step it will reach the
state . Idling in location leads to the state .
Since this is above the maximum constant of the corresponding state in the
normalised semantics will be . Thus, the normalised state will, er-
roneously, contain time assignments from the triangle even
though no state in the real semantics has a time assignment in this equiv-
alence class. Performing the next action step will take the automaton to the
state . The next step in the normalised seman-
tics is the state . The automaton may now idle to the state

. The corresponding state in the normalised se-
mantics is . In the real semantics no further step is possible
since the guard is not satisfied while the normalised semantics may
proceed to location since the time assignments satisfying are
present in the normalised states. The conclusion is that the normalisation pro-
cedure have to be adapted to handle timed automata with difference constraints.

4 New Normalisation Algorithms

In this section we will present how to normalise the symbolic states for a timed
automaton with difference constraints together with two slightly different algo-
rithms to do this. The first algorithm is simpler, and may still yield an infinite
zone graph. However, the zones form a well quasi-order with respect to inclu-
sion checking and thus the reachability algorithm is guaranteed to terminate
(see e.g. [AČJT00]). The second algorithm is more complex and does not suf-
fer from this problem, but it may require splitting of symbolic states.

Timed Automata with Constraints on Clock Differences 55

Leaving S0 Entering S1 Leaving S1

Entering S2 Leaving S2 Entering S3

Figure 3: Zones for the example automaton, without normalisation

Leaving S0 Entering S1 Leaving S1

Entering S2 Leaving S2 Entering S3

Figure 4: Zones for the example automaton, with incorrect normalisation

56 Timed Automata with Constraints on Clock Differences

4.1 Region Equivalence Refined by Difference Constraints

The key issue for the extended normalisation algorithms is to honour the equiv-
alence classes that are introduced by difference constraints in the guards. We
note that difference constraints in the guards may introduce equivalence classes
in the clock space that reach beyond any maximum constant. Thus we need to
refine the region equivalence from Definition 2 to take the difference constraints
into account.

Definition 3 (Refined Region Equivalence) Let be a finite set of constraints
of the form for , and . Two clock
assignments are equivalent, iff and

We note that since the number of regions defined by is finite and there are
only finitely many constraints in this refined region equivalence will define
finitely many regions.

4.2 The Core of Normalisation

We can now use the refined region equivalence from Definition 3 to obtain the
core of a normalisation algorithm. From the region equivalence we get the need
to ensure that if a difference constraint is not satisfied by any point in the unnor-
malised zone, , then it should not be satisfied by any point in the normalised
zone, norm , and if all points in satisfy a difference constraint then so
should all points in norm . This leads to a core normalisation algorithm
consisting of three stages:

1. Collect all difference constraints from that are not satisfied by any point
in the zone and the negation of all difference constraints that are satisfied
by all points in the zone.

2. Perform normalisation with respect to the maximum constants of .

3. Apply the negation of all the collected constraints to the normalised zone
to make sure that none of the collected constraints are satisfied after nor-
malisation.

In Algorithm 2 this core normalisation is given as pseudo code. The set
referred to in the algorithm is the set of difference constraints in and the
operation norm refers to normalisation with respect to the maximum constants
of .

Timed Automata with Constraints on Clock Differences 57

Algorithm 2 Core normalisation algorithm

for all such that or do
if then

end if
end for

norm
for all do

end for
return

However, there are cases where this algorithm is incorrect with respect to the
equivalence classes. For some cases when a difference constraint split the zone
to be normalised, the perfect normalisation may not be represented using a sin-
gle zone. One instance of such a zone is the “leaving S1” zone in our running
example. If this zone was extended to contain the set of equivalence classes,
from which it contains points, it would be the whole clock space except for the
small triangle defined by . The main difference between the two
proposed algorithms is how this is resolved.

4.3 Algorithm: Normalisation without Zone Splitting

The first normalisation algorithm is based on the observation that due to the
geometry of the equivalence classes, the problem will only occur when the zone
is stretched downwards, i.e. when the lower bound of the zone is lowered down
to the maximum constant. Thus, if the zones are not stretched downwards when
normalising the problem can be avoided. This gives an algorithm that is similar
to core normalisation presented in Algorithm 2, with the only exception that
the step of replacing constraints of the form and

for is removed from the norm -operation.

The problem with this solution is that the normalised zone graph is no longer
finite, since delay may cause the lower bound of the zone to increase unbound-
edly. However, the normalised zones are well quasi-ordered with respect to zone
inclusion and thus the termination of the reachability algorithm can be guaran-
teed [AČJT00].

58 Timed Automata with Constraints on Clock Differences

Using this normalisation procedure for our example automaton will give the
zones presented in Figure 5. We note from the figure that now the normalised
zones does not contain time assignments from equivalence classes not in the
corresponding unnormalised zone. Further we see that the zones are not ex-
panded to fill all the equivalence classes where it has points.

4.4 Algorithm: Normalisation with Zone Splitting

The second normalisation procedure is based on the observation that the prob-
lem only occurs when a difference constraint divides the unnormalised zone,
i.e. some of the time assignments in the zone satisfy the difference constraint
and some do not. Thus, if all such zones are split along dividing difference
constraints, e.g. using Algorithm 3, before normalisation this problem can be
avoided.

Algorithm 3 Zone splitting algorithm

for all do
for all do

if and then

else

end if
end for

end for
return

The full normalisation procedure is presented in Algorithm 4. The splitting,
denoted by split in the description, is used as a preprocessing step and then the
basic normalisation algorithm, norm , is applied to all the resulting zones. We
use norm to denote this normalisation operation and we use this operation to
define a normalised symbolic transition relation.

Definition 4 Let be a timed automaton with the symbolic semantics .
The -normalised version of () for is defined by: whenever

then for all norm .

Timed Automata with Constraints on Clock Differences 59

Algorithm 4 Splitting normalisation algorithm

for all split do
norm

end for
return

To demonstrate the normalisation procedure we apply it to our running exam-
ple. In Figure 6 we see the zones from the -normalised transition relation. The
two first states are not affected by normalisation so they are the same as in the
unnormalised semantics. The zone for the next state, the “Leaving ” state,
have both time assignments satisfying the constraint and time assign-
ment satisfying . Thus we have to split the state before normalisation. The
two resulting states are and .
When normalising these states we get and ,

respectively. After the next step only one of the states re-
main, the other did not satisfy the guard on the transition. The state is now

. After idling in the state is .
This state does not satisfy the constraint , and thus location is not
reachable.

Before proving the correctness of the -normalised transition relation, we need
to establish some properties of the norm operator.

Lemma 1 Assume a timed automaton , with associated norm operator. For
any zone the following holds.

(1) For all constraints mentioned in , norm
norm

(2) norm norm

(3) norm norm norm

Proof: (sketch) These properties are proved by reasoning about how the ,
and operations modify the zones with respect to the two types of constraints
that effect normalisation, i.e. non-difference constraints with bounds above the
maximum constants and difference constraints.

(1) Adding a guard of the form will cut the zone along one
of the normalisation split lines. If this is done before normalisation the
result will be that normalisation produce a subset of the zones that it

60 Timed Automata with Constraints on Clock Differences

would originally have produced. If the guard is added after normalisation
a number of entire zones from the normalisation will be removed giving
the same final result.

Adding a guard of the form will cut away a part of the zone that
is not affected by the normalisation since, by definition,

(2) Difference constraints are not effected at all by the operation. Further
do not introduce any new non-difference constraints.

(3) operations are projections of a on a hyperplane defined by . This
projection has the property that points that were added by normalisation
are mapped to other that would be added by renormalisation.

Finally we prove that the -normalised transition relation is correct.

Theorem 1 Let be a timed automaton and for each clock let be
the largest number is compared to in .

(Soundness) whenever then
for all such that

(Completeness) whenever then
for some such that

Proof: Both soundness and completeness are proven by induction on the length
of the transition sequences.

(Soundness) As induction hypothesis, assume
such that and norm . Further assume

. We now need to prove that such that
norm , and norm . We have
two cases: delay transitions and action transitions.

(Delay) By the assumption by delay, and the
definition of we get norm . Combining this
with Lemma 1 (1+2) gives norm
norm , and since is already normalised we get

, i.e. . Now assume that for all such
that norm and by delay,
norm . By the definition of we have ,
which gives norm norm . Expansion using
Lemma 1 (1+2) yields norm

Timed Automata with Constraints on Clock Differences 61

norm . By our assumption, norm and
norm , for all , but this lead to a contradiction.

(Action) By assumption we know that by
. From the definitions of norm and we can derive that

for all such that norm , by
Now we need to prove that such that

norm . By the definition of , norm norm
. Expansion by Lemma 1(1) gives norm
norm . According to Lemma 1(1+3) and

norm we have norm norm .
And since we know, by the definition of , that norm

we conclude that norm .

(Completeness) As induction hypothesis, assume
such that and . Further assume

. We need to prove that such that ,
and . There are two cases, or .

() By the assumption we know
, i.e. . From the

definition of we have by delay, if
norm . Expansion by the definition of yields
norm . By the definition of norm
we know that for all zones , norm . Thus there is a
zone norm such that

() By the assumption we know
, , . From the definition of we have

by if norm
. Expanding this by the definition of the -operation yields

norm . By the def-
inition of norm we know that for all zones , norm .
Thus there is a zone norm such that

.

62 Timed Automata with Constraints on Clock Differences

Leaving S0 Entering S1 Leaving S1

Entering S2 Leaving S2 Entering S3

Figure 5: Zones for the example automaton, with non splitting normalisation.

1

2

Leaving S0 Entering S1 Leaving S1

Entering S2 Leaving S2 Entering S3

Figure 6: Zones for the example automaton, with splitting normalisation.

Timed Automata with Constraints on Clock Differences 63

5 Conclusion

In modelling and verifying timed systems, using timed automata, constraints
over clock differences are useful and needed in many applications e.g. solving
scheduling problems. In this paper, we have reported a problem in the existing
(published) symbolic reachability algorithms for timed automata. The problem
is that the existing normalisation algorithms (implemented by several verifica-
tion tools for timed automata e.g. UPPAAL) for clock constraints based on re-
gion equivalence are incorrect in the sense that they may provide wrong answers
in verifying timed automata containing constraints on clock differences. The
reason is that the normalisation operations may enlarge a zone so that the guard
(a difference constraint) labelled on a transition is made true and thus incor-
rectly enables the transition. Thus the normalisation operation should be based
on a finer equivalence relation than region equivalence. We propose to use the
region equivalence which is further refined by difference constraints. Based on
this, we have developed two normalisation algorithms that allow not only clock
comparison with naturals but also comparison between clocks i.e. constraints
on clock differences. The algorithms transform DBM’s according to not only
the maximal constants of clocks but also difference constraints appearing in
an automaton. To our knowledge, they are the first published normalisation al-
gorithms for timed automata containing difference constraints. The algorithms
have been implemented in UPPAAL showing that almost no extra overhead is
added to deal with difference constraints.

References

[ABB 01] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio,
Alexandre David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet,
Kim G. Larsen, M. Oliver Möller, Paul Pettersson, Carsten Weise, and
Wang Yi. UPPAAL - Now, Next, and Future. In Modelling and Verification
of Parallel Processes, number 2067 in Lecture Notes in Computer Science,
pages 100–125. Springer-Verlag, 2001.

[AČJT00] Parosh Aziz Abdulla, Kārlis Čerāns, Bengt Johnsson, and Yih-Kuen Tsay.
Algorithmic analysis of programs with well quasi-ordered domains. Jour-
nal of Information and Computation, 160:109–127, 2000.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Journal of
Theoretical Computer Science, 126(2):183–235, 1994.

64 Timed Automata with Constraints on Clock Differences

[BDGP98] Beatrice Bérard, Volker Diekert, Paul Gastin, and Antoine Petit. Charac-
terization of the expressive power of silent transitions in timed automata.
Fundamenta Informaticae, 36:145–182, 1998.

[Bel57] Richard Bellman. Dynamic Programming. Princeton University Press,
1957.

[BLL 96] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. UPPAAL in 1995. In Proc. of the 2nd Workshop on Tools and
Algorithms for the Construction and Analysis of Systems, number 1055
in Lecture Notes in Computer Science, pages 431–434. Springer–Verlag,
March 1996.

[Dil89] David L. Dill. Timing assumptions and verification of finite-state concur-
rent systems. In Proceedings, Automatic Verification Methods for Finite
State Systems, volume 407 of Lecture Notes in Computer Science, pages
197–212. Springer-Verlag, 1989.

[DOTY95] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. The
tool kronos. In Proceedings, Hybrid Systems III: Verification and Con-
trol, volume 1066 of Lecture Notes in Computer Science. Springer-Verlag,
1995.

[Hig52] Graham Higman. Ordering by divisibility in abstract algebras. Proceed-
ings of the London Mathematical Society, Ser. 3, 2:326–336, 1952.

[HNSY92] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic model checking for real-time systems. In Proceedings, Seventh
Annual IEEE Symposium on Logic in Computer Science, pages 394–406,
1992.

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic model checking for real-time systems. Technical Report TR94-
1404, Cornell Computer Science Technical Report Collection, 1994.

[LPY95] Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositional and Sym-
bolic Model-Checking of Real-Time Systems. In Proc. of the 16th IEEE
Real-Time Systems Symposium, pages 76–87. IEEE Computer Society
Press, December 1995.

[LPY97] Kim G. Larsen, Paul Petterson, and Wang Yi. Uppaal in a nutshell. Journal
on Software Tools for Technology Transfer, 1997.

[Pet99] Paul Pettersson. Modelling and Verification of Real-Time Systems Using
Timed Automata: Theory and Practice. PhD thesis, Uppsala University,
1999.

[Rok93] Tomas Gerhard Rokicki. Representing and Modeling Digital Circuits.
PhD thesis, Stanford University, 1993.

Timed Automata with Constraints on Clock Differences 65

[YL93] Mihalis Yannakakis and David Lee. An efficient algorithm for minimiz-
ing real-time transition systems. In Proceedings, Fifth International Con-
ference on Computer Aided Verification, volume 697 of Lecture Notes in
Computer Science, pages 210–224. Springer-Verlag, 1993.

[Yov97] Sergio Yovine. Kronos: A verification tool for real-time systems. Journal
on Software Tools for Technology Transfer, 1, October 1997.

[Yov98] Sergio Yovine. Model checking timed automata. In European Educational
Forum: School on Embedded Systems, volume 1494 of Lecture Notes in
Computer Science, pages 114–152. Springer-Verlag, 1998.

[YPD94] Wang Yi, Paul Petterson, and Mats Daniels. Automatic verification of real-
time communicating systems by constraint-solving. In Proceedings, Sev-
enth International Conference on Formal Description Techniques, pages
223–238, 1994.

Paper C:
Reducing Memory Usage in Symbolic State-Space Exploration for
Timed Systems

Johan Bengtsson and Wang Yi.

Reducing Memory Usage 69

Reducing Memory Usage in Symbolic State-Space
Exploration for Timed Systems

Johan Bengtsson and Wang Yi

Department of Computer Systems, Uppsala University, Sweden.
Email: {johanb,yi}@docs.uu.se

Abstract. One of the major problems in scaling up model checking
techniques to the size of industrial systems is memory consumption.
This paper studies the problem in the context of verifiers for timed au-
tomata. We present a number of techniques that reduce the amount of
memory used in symbolic reachability analysis. We address the memory
consumption problem on two fronts. First, we reduce the size of internal
representations for each symbolic state (clock constraints) by means of
compression methods. Second, we reduce the explored state space (list
of symbolic states) by early-inclusion checking between states and by
probabilistic methods. These techniques have been implemented in the
UPPAAL tool. Their strengths and weaknesses are evaluated and com-
pared in experiments using real-life examples. Note that though these
techniques are developed for timed systems, they are of general interests
for verification tool development, in particular to handle large symbolic
states based on constraint representation and manipulation.

1 Introduction

During the last ten years timed automata [AD90, AD94] have evolved as a
common model to describe timed systems. This process has gone hand in hand
with the development of verification tools for timed automata, such as KRO-
NOS [DOTY95, Yov97] and UPPAAL [LPY97, ABB 01]. One of the major
problems in applying these tools to industrial-size systems is the large memory
consumption (e.g. [BGK 96]) when exploring the state space of a network of
timed automata. The reason is that the exploration not only suffers from the
large number of states to be explored, but also from the large size of each state.
In this paper we address both these problems.

We will present techniques to reduce memory usage for internal representa-
tions of symbolic states by means of compaction. We use two different meth-
ods for packing states. First, we code the entire state as one large number us-

70 Reducing Memory Usage

ing a multiply-and-add algorithm. This method yields a representation that is
canonical and minimal in terms of memory usage but the performance for in-
clusion checking between states is poor. The second method is mainly intended
to be used for the timing part of the state and it is based on concatenation of
bit strings. Using a special concatenation of the bit string representation of the
constraints in a zone, ideas from [PS80] can be used to implement fast inclusion
checking between packed zones.

Furthermore, we attack the problem with large state spaces in two different
ways. First, to get rid of states that do not need to be explored, as early as pos-
sible, we introduce inclusion checking already in the data structure holding the
states waiting to be explored. We also describe how this can be implemented
without slowing down the verification process. Second, we investigate how su-
pertrace [Hol91] and hash compaction [WL93, SD95] methods can be applied
to timed systems. We also present a variant of the hash compaction method, that
allows termination of branches in the search tree based on probable inclusion
checking between states.

The rest of the paper is organised as follows: In section 2 we introduce timed
automata and describe briefly how to check reachability properties for timed
automata. In section 3 we present methods to represent the key objects used in
checking timed automata, namely the symbolic states. We also give a compar-
ison between them. Section 4 addresses issues on the whole state space of an
automaton. We describe how the wait and past lists are handled efficiently. We
also describe an approximation method of the past list that can be used when
the complete state space of an automaton is too big to be stored in memory. Fi-
nally, section 5 wraps up the paper by summarising the most important results
and suggests some directions for future work.

2 Preliminaries

In this section we briefly review background materials including timed au-
tomata and reachability analysis based on clock constraints. A more extensive
description can be found in e.g. [AD94, Pet99].

Let be a finite set of labels, ranged over by etc.A timed automaton is a
finite state automaton over alphabet extended with a set of real valued clocks,
to model time dependent behaviour. Let denote a set of clocks, ranged over
by . Let denote the set of conjunctions of atomic constraints of the

Reducing Memory Usage 71

form or for and . We
use and later to range over this set.

Definition 5 (Timed Automaton) A timed automaton is a tuple
where is a set of control nodes, is the initial node,

is the set of edges and assign invariants to
locations. As a convention we will use to denote .

The clock values are formally represented as functions, called clock assign-
ments, mapping to the non-negative reals . We let denote such func-
tions, and use to denote that the clock assignment satisfy the formula

. For we let denote the clock assignment that map all clocks
in to the value , and for we let denote the clock

assignment that map all clocks in to 0 and agree with for all clocks in .

The semantics of a timed automaton is a timed transition-system where the
states are pairs , with two types of transitions, corresponding to delay tran-
sitions and discrete action transitions respectively:

if and

if and

It is easy to see that the state space is infinite and thus not a good base for
algorithmic verification. However, efficient algorithms may be obtained using
a symbolic semantics based on symbolic states of the form [HNSY92,
YPD94] where is the location vector of an automaton and is a clock
constraint (zone) specifying the clock values. They are symbolic in the sense
that the clock zone represents a set of concrete states of the automaton with the
same control location vector. The symbolic counterpart of the transitions are
given by:

if

where and . It
can be shown that the set of constraint systems is closed under these operations.
Moreover the symbolic semantics correspond closely to the standard semantics
in the sense that if then, for all there is such
that .

Given a timed automaton with an initial symbolic state and a final sym-
bolic state , is said to be reachable if

72 Reducing Memory Usage

and for some . The reachability problem can be solved using
a standard reachability algorithm as shown in Algorithm 1 for graphs with a
proper normalisation algorithm for clock constraints [Pet99, Rok93] (to guar-
antee termination).

The algorithm uses two important data structures: WAIT and PASSED. WAIT is
a list of states waiting to be explored and PASSED is the set of states already
explored. Due to the size of the state space, these structures may consume a
considerable amount of main memory. The main objective of this paper is to
present techniques to reduce the memory usage of these two structures.

Algorithm 1 Symbolic reachability analysis
PASSED WAIT
while WAIT do

take from WAIT
if then return “YES”
if for all PASSED then

add to PASSED
for all such that do

add to WAIT
end for

end if
end while
return “NO”

The core of the above reachability algorithm is manipulation and representation
of symbolic states. So symbolic states are the core objects of state space search,
and one of the key issues in implementing an efficient model checker is how to
represent them. The desired properties of the representation also differ in parts
of the verifier, and there are potential gains in using different representations in
different places.

The encoding of the location vector and the integer assignment is straight for-
ward. For the location vector we number the locations in each process, to get
a vector of location numbers. Representing the clock zone is a bit trickier but
starting from the constraint system representation of a zone it is possible to
obtain an efficient intermediate representation. We start with the following ob-
servation: Let be a dummy clock with the constant value 0. Then for each
constraint system there is a constraint system with
the same solution set as , and where all constraints are of the form
or , for .

Reducing Memory Usage 73

We also note that to represent any clock zone we need at most
atomic constraints. One of the most compact ways to represent this is to use
a matrix where each element represent a bound on the difference between two
clocks. Each element in the matrix is a pair where is an integer and

tells whether the bound is strict or not. Such a matrix is called a Difference
Bounds Matrix, or DBM for short. More detailed information about DBMs can
be found in [Dil89].

3 Representing Symbolic States

Recall that symbolic states are pairs in the form where is the location
vector of an automaton represented as a vector of integers and is a clock
constraint (zone), represented as a matrix of integers (DBM). Logically such a
state is a vector of integers representing the control locations and clock bounds.
In the following, we study how to represent the vectors physically in the main
memory for efficient storage and manipulation.

3.1 Normal Representation

The simplest way to physically represent a symbolic state is to use a machine
word for each control location, integer value or clock bound. The implementa-
tion is straight forward, but a practical tip is that if the standard library functions
for memory management are used all the memory needed for one state should,
if possible, be allocated in the same chunk, to minimise the allocation overhead.

The strength of this representation is its simplicity and the speed of accessing an
individual control location, integer value, or clock bound. In this representation
the maximum time needed to reach any individual entity is the time needed
to fetch a word from the memory. This makes the representation ideal to use
when we have to do operations on individual entities, e.g. when calculating the
successors of a state. The weakness is the amount of wasted space. Here a whole
machine word, typically 32-bit wide, is used to store entities where all possible
values may fit in many fewer bits.

However this is a good base representation for states. It is ideal for states that
will be modified in the near future, such as intermediate states or states in WAIT.
It also works reasonably well for states in PASSED, specially for small and
medium sized examples.

74 Reducing Memory Usage

This representation is used for both WAIT and PASSED in the current version
of UPPAAL.

3.2 Packed States

The second representation is on the opposite side of the spectrum compared to
the previous one and it can be used for the discrete part of the states, for the
clock zone and for both together. The encoding builds on a simple multiply and
add scheme, similar to the position system for numbers, and it is very compact.
In the description we will focus on encoding an entire symbolic state, but the
parts can also be encoded separately.

First, consider the state as a vector , where each element represents a
control location, the value of a variable, or a clock bound. For each element
we can compute the number of possible values, . For the location vector
is the number of control locations in the corresponding process, for the integer
assignment is the size of the domain of the corresponding variable and for
the clock zone then can be computed using the maximum constant .

Now consider the vector as a number written down in a position system with
a variable base, i.e. each element is a digit and the product is its
position value. Represent the state as the value of this number, i.e. encode the
state as follows:

Note that the representation of states using multiply-and-add encoding is canon-
ical and minimal in terms of space usage. Note also that in this context
is a sequence of numbers. The encoding is a number. The resulted
numbers are often too large to fit in a machine word and they have to be in
fixed precision; thus we need some kind of arbitrary precision numbers for the
encoding. In our prototype implementation we used the GMP package [Gra00].

The strength of this representation is the effective use of space and the weakness
is that to access an individual integer value or clock bound a number of division
and modulo operations must be performed. This results in small states that are
expensive to handle.

Reducing Memory Usage 75

Example Time Space
real (Sec) relative real (MB) relative

Field Bus (Faulty 1)
Field Bus (Faulty 2)
Field Bus (Faulty 3)
Field Bus (Fixed)
B&O
DACAPO (big)
DACAPO (small)
Fischer 5
Fischer 6

Table 1: Performance for packed states with expensive inclusion checking

In order to test the performance of this representation, it is implemented in the
PASSED structure in UPPAAL. The implementation is straight forward, however
expensive division and modulo operations have to be used, in order to compare
the DBMs bound by bound.

The result of the experiment is presented in Table 1 (as absolute figures and
in relation to the current PASSED implementation in UPPAAL). We note that
with this representation the space performance is very good, with reductions
of up to 70% compared to the current PASSED implementation. However the
time performance is poor, for one instance of Fischers protocol we notice a
slowdown of almost 13 times and for one instance of the Field Bus protocol the
slowdown is 8 times. The conclusion is that this representation should only be
used in cases where main memory is a severe restriction.

3.3 Packed Zones with Cheap Inclusion Check

The main drawback of representing states using the number encoding given in
section 3.2 is expensive inclusion checking. In this section we present a com-
pact way of representing zones overcoming this drawback. The heart of this
representation builds on an observation due to [PS80] that one subtraction can
be used to perform multiple comparisons in parallel.

Let denote the minimum number of bits needed to store all possible values
for one clock bound. The DBM is then encoded as a long bit string, where each
bound is assigned a bit wide slot. The value of the clock bound is put in

76 Reducing Memory Usage

the least significant bits in the slot and the extra, most significant bit, is used
as a test bit.

Since a zone is included in another zone if and only if each bound in the
DBM representing is as tight as the same bound in the DBM representation
of , inclusion checking is to check if all elements in one vector is less than or
equal to the same bound in another vector. Using the new bit-string encoding
of zones this can be checked using only simple operations like bitwise-and (),
bitwise-or (), subtraction and test for equality.

Given two packed zones and , to check if first set all the
test bits in to zero and all the test bits in to one. In an implemen-
tation the test bits are usually zero in the stored states and setting them to one is
done using a prefabricated mask . The test is then performed by calculating

. The result is read out of the test bits. If a test bit is one the
corresponding bound in is at least as tight as in and if a test bit is zero the
corresponding bound is tighter in than in . Thus, if all test bits are one we
can conclude that and if all the test bits are zero . It is worth
noting that “all test bits are one” is both necessary and sufficient to conclude

while “all test bits are zero” is only sufficient to conclude .

In an implementation of this scheme the main issue is how to handle the bit
strings. The easiest way is to let a bignum package handle everything. However,
this may give a considerable overhead, specially in connection with memory
allocation, since the bignum packages are often tailored towards other types of
applications. In UPPAAL we share the memory layout of the bignum packages,
but to reduce the overhead we have implemented our own operations on top of
it.

In the physical representation, i.e. how the bit-string is stored in memory, the
bit-string is chopped up into machine-word sized chunks, or limbs. The limbs
are then packed in big-endian order, i.e. the least significant limb first, in an
array. If the bit string doesn’t fill an even number of machine words the last
limb is padded with zero bits.

Noting that the effect of all operations needed for the inclusion check, except
subtraction, is local within the limb and that subtraction only passes one borrow
bit to the next more significant limb, we can implement the inclusion check in
one pass through the array of limbs instead of one pass for each operation. The
one pass inclusion check is shown in Algorithm 2. In the description we use

to denote the limb with index in and to denote a binary
subtraction of machine word size.

Reducing Memory Usage 77

Algorithm 2 Inclusion check for packed zones

for to limbs do
cmp
if cmp then return “false”
if then

else

end if
end for
return “true”

Example Time Space
real (Sec) relative real (MB) relative

Field Bus (Faulty 1)
Field Bus (Faulty 2)
Field Bus (Faulty 3)
Field Bus (Fixed)
B&O
DACAPO (big)
DACAPO (small)
Fischer 5
Fischer 6

Table 2: Performance for packed states with cheap zone coding

To evaluate the performance of this technique, it was implemented in the PASSED
structure in UPPAAL. In the experiment the discrete part of each state is stored
in PASSED using the compact representation from the previous section and the
zone is stored using this technique. The results are presented in Table 2, both as
absolute figures and compared to the standard state representation. We note that
using this method the space usage is typically reduced by about 40%, without
increased verification time. The verification time is actually reduced a little us-
ing this scheme, even though the number of operations is increased. The reason
for this is most certainly that the number of memory operations are reduced by
the smaller memory footprint of the states1.

1Memory operations are expensive compared to arithmetic operations, specially since there
is no temporal locality in verifiers.

78 Reducing Memory Usage

4 Representing the Symbolic State-Space

The two key data structures in a model checker are, as mentioned before, WAIT,
that keeps track of states not yet explored, and PASSED, that keeps track of
states already visited. Both these data structures tend to be large, and how to
represent them is an important issue for performance. In this section we de-
scribe how to implement WAIT and how to improve its performance by adding
inclusion checking. We also describe a standard implementation of PASSED as
well as an implementation where space is saved at the price of possibly incon-
clusive answers.

4.1 Representing WAIT

In its most simple form WAIT is implemented as a linked list. This is easy to
implement and it is easy to control the search order by adding unexplored states
at the end, for breadth first search, or adding states at the beginning, for depth
first search.

An optimisation in terms of both time and space is to check whether a state
already occur in WAIT before adding it. For a verifier based on explicit states
this will only give minor improvements, mainly by keeping down the length
of WAIT, but for a verifier based on symbolic states this may actually prevent
revisiting parts of the state space.

We know, e.g. from [Pet99], that if then all states reachable
from are also reachable from and thus we only have to explore

. So before adding a new state to WAIT we check all states already
in WAIT. If we find any state including we stop searching and throw
away since all states reachable from it are also reachable from a state
already scheduled for exploration. If no such state is found we add to
WAIT. During the search through WAIT we also delete all states included in

in order to prevent revisiting parts of the state space.

There are some implementation issues that need consideration. The main issue
is how to find all states in WAIT with same discrete part. The simplest way to do
this is to do a linear search through WAIT every time a state is added. However,
using this solution it will be expensive to add states, even for examples where
WAIT is short. One solution to this is to implement WAIT using a structure
where searching is cheap, e.g. a hash table. The problem with this solution is
that picking up states from WAIT will be expensive, at least for search strategies

Reducing Memory Usage 79

For search order

For inclusion check

Figure 1: Structure of WAIT

Example Time (Sec) Space (MB)
no opt inclusion gain(%) no opt inclusion gain(%)

Field Bus (Faulty 1)
Field Bus (Faulty 2)
Field Bus (Faulty 3)
Field Bus (Fixed)
B&O
DACAPO (big)
DACAPO (small)
Fischer 5
Fischer 6

Table 3: Performance impact of inclusion check on WAIT

like breadth first and depth first, where the exploration order depends on the
order in which the states were added WAIT.

In the implemented solution, each state in WAIT is indexed using both a list
and a hash table. The list part is used to keep the depth or breadth first ordering
of states and to make it cheap to pick up states to explore. The hash table part
is used to index the states in WAIT based on their location vector, in order to
speed up inclusion checking. A picture of this structure is shown in Figure 1.

To test the performance of this solution we compared the space and time needed
to explore the state space of nine examples, for one version of UPPAAL with-
out inclusion checking on WAIT and one version with the combined scheme.
The result is shown in Table 3. It is worth noting that the version with inclu-
sion checking is both significantly faster and less memory consuming than the
version without inclusion checking, for all examples except Fischers protocol
which is, as mentioned in the appendix, not typical.

80 Reducing Memory Usage

4.2 Representing PASSED

The key feature needed by a representation of PASSED is that searching should
be cheap. For a symbolic verifier it is also crucial, at least performance wise,
that finding states which includes a given state is possible and cheap. In UP-
PAAL the standard PASSED is implemented as a hash table, where the key is
computed from the discrete part of the state and collisions are handled by chain-
ing. The reason for basing the hash key only on the discrete part is to simplify
checking for inclusion between states by making all related states end up in the
same hash bucket. It is easy to see that hashing only on the discrete part is as
good as we can do if we want this property. The reason for using chaining in-
stead of open addressing to resolve conflicts is, apart from keeping related states
together, mainly simplicity and eliminating the need for expensive rehashing.
Judging by performance the choice could go either way, at least if rehashing is
not taken into account. More about this can be read in [Lar00].

For some models the memory needed for exact verification may exceed the
amount of memory installed in the system where the verification takes place.
This often occurs within the modelling phase before most bugs are removed
from the model. During this phase the verification engine is often used as a tool
to find the cause of unwanted behaviour and not primarily to prove the absence
of such behaviour. Under these premises it is desirable to use a method that can
handle larger systems but sometimes miss unwanted behaviour. Here we will
describe two such methods. The first method is an application of the supertrace
algorithm from [Hol91] on networks of timed automata. The second method is
based on the hash compaction method from [WL93, SD95].

4.3 Supertrace PASSED for Timed Automata

The main idea behind supertrace PASSED is from the following observation:
The purpose of PASSED is only to keep track of whether a state have been
visited or not, i.e. for each state we only need one bit of information. Thus,
PASSED for a system of states can be implemented as an -bit wide bit vector.
However, if is sufficiently large, even such a compact representation will be
too large to fit the memory of the system running the verifier. A way to tackle
this problem is to loosen the demand that the verification should be exact and
allow false hits to be indicated, i.e. a previously unvisited state may, with some
probability, be reported as already visited. Such a false hit will be called an
omission, as it causes a part of the state space to be omitted from the state space

Reducing Memory Usage 81

search. This affects the reachability search such that if a state is reported to be
not reachable we can not conclude that it can not be reached since it might have
been excluded by an omission.

The natural way to implement such a PASSED structure is to allocate a bit-
vector of size , where , and hash each state to a value in .
In the UPPAAL implementation of the supertrace algorithm the hash function is
similar to the first packing technique described in Section 3:

Note that a variation of this hash function (applied only to the location vector
and the integer assignment) is used in both the normal PASSED implementation
and the cross-reference table of the WAIT list. It is also possible to enhance
the supertrace algorithm by implementing a way to change the hash function
between runs, in order to lower the probability that a part of the state space
is omitted. A simple way to do this is to implement a generator of universal
hash functions [CW79] and provide the user with a way to choose among the
functions in the class.

The main drawback of the supertrace algorithm, when applied to timed au-
tomata, is that inclusion between time zones can not be detected. The effect of
this is that the number of explored states increases. This leads to longer veri-
fication times and more states to enter in PASSED, with an increased omission
probability as result.

To investigate the performance of this algorithm we have implemented it in
UPPAAL. In the experiment we test the supertrace PASSED structure for three
different sizes: 16MB, 32MB and 64MB and compare it to the standard PASSED
implementation of UPPAAL, to estimate the impact of collisions. The results of
the experiment are presented in Table 4. For each of the examples the table
shows the collision frequency and an estimation on the fraction of the state
space not covered due to collisions.

In the table there are several interesting observations. First, for the Philips ex-
ample the coverage is totally independent of the size of the PASSED structure.
We get exactly the same collision frequency and coverage for all three runs.
This is an indication that the hash function is far from optimal on this example.

82 Reducing Memory Usage

Example 16MB 32MB 64MB
collision omitted collision omitted collision omitted

Philips (Correct)
B&O
DACAPO (big)
DACAPO (small)
Fischer 5
Fischer 6

Table 4: Frequency of collisions and the fraction of state space not covered (in
) for three instances of the supertrace PASSED structure

Example Supertrace Classic
16MB 32MB 64MB

Philips (Correct)
Philips (Erroneous)
B&O
DACAPO (big)
DACAPO (small)
Fischer 5
Fischer 6

Table 5: Time (in seconds) to explore the entire state space for three different
supertrace PASSED lists for the standard PASSED list

We also note, when studying the big DACAPO example, that even though the
collision frequency is decreased the fraction of the state space not covered in
the search may increase. The reason for this may be that the collisions occur for
different states in the different runs and that the number of children for these
states differ. (If a state with many children is omitted the coverage will be less
than if a state with few children is omitted.)

To see how the supertrace algorithm behave time-wise we made an experi-
ment where the verification time was measured and compared to the standard
PASSED implementation in UPPAAL. The setting of this experiment is a little
different from the previous one. For this example we used inclusion checking
on WAIT, to speed up verification. This is the most likely setting when using
the tool in practice. The result of this experiment is presented in Table 5. As we
see in the table the times for the supertrace is in the same order of magnitude as
the standard PASSED implementation.

Reducing Memory Usage 83

4.4 Hash Compaction for Timed Automata

Hash compaction evolved from the supertrace ideas as a way to lower the proba-
bility of omissions in the verification process. It was first investigated in [WL93]
and then further developed in [SD95].

The key observation for hash compaction is that the supertrace PASSED list
can be seen as representation of a set of hash values, where a set bit (1) in the
table represents that this hash value is in the set; while an unset bit (0) in the
table represent that it is not. Under the assumption that the set is sparse, i.e. the
number of elements in the set is small compared to the number of elements not
in it, a table of the elements might be a more compact representation of the set.
With this solution the number of possible hash values is no longer bounded by
the number of bits in the main memory.

In the work presented in [WL93] a normal hash table is used to store the el-
ements and the key into this table is computed from the elements themselves.
In [SD95] the technique is developed further. As a way to decrease the proba-
bility of false collisions the key into the table is computed from the state itself,
instead of from the hash signature, using a different hash function. Since the
hash signature and its entry in the table are computed using different hash func-
tions two states have to collide in both the hash functions for a false collision to
occur.

There is an alternative way to view this second variation of hash compaction.
Start with the supertrace PASSED list. To lower the probability of classifying
an unvisited state as already visited we increase the number of bits in each
entry of the hash table. (Given a fixed amount of memory this is done at the
expense of the number of entries in the table.) To separate different states that
end up at the same position in table we build a signature, e.g. a checksum,
of the states and store this. To compute the checksum we choose a function
with a low probability that two different states have the same signature, i.e.

should be as small as pos-
sible. For this we use a hash function. If we take this one step further the combi-
nation of the signature and the index into the hash table can be seen as different
parts of the same hash value. Some bits of this value are used to index into the
hash table and some bits are stored in the table. A sketch of this is shown in
Figure 2.

Given a fixed amount of memory there is a tradeoff where to put the border
between the index part and the signature part. For each bit we take away from

84 Reducing Memory Usage

index signature

Figure 2: The table index and the signature as one hash value.

the index part we may double the number of bits in the signature, but at the
price of less entries in PASSED.

So far we have not mentioned how to handle collisions within the hash table.
Since there are now several possible values for the entries in the hash table, it is
possible to get collisions in the hash table. Since the main priority of this solu-
tion is space, collisions are resolved using open addressing instead of chaining.
This will save one pointer for each state entered into PASSED, and since the
signatures are, more or less, as big as a pointer we may fit twice as many states
in the same amount of memory with open addressing than with chaining. The
price we pay for this choice is that the hash table might get full. Normally
this would only lead to an expensive rehashing but in our case the information
needed to rehash an entry in the hash table is no longer available. This leaves
us with two choices, we can either stop the verification and say that PASSED
is full and advice the user to try with a larger PASSED, or we can just skip
adding the state to PASSED and hope that the search will terminate anyway. In
the prototype implementation we have chosen the first alternative.

To evaluate hash compaction for timed automata, we used two slightly different
PASSED implementations. The difference between them lies in what we store
in the hash table. In the first implementation we store signatures of entire sym-
bolic states. This solution gives a very compact representation of each state in
PASSED, but it has the drawback that inclusion between states in PASSED can
not be detected. This leads to potentially larger state spaces resulting in a higher
pressure on the PASSED structure.

In the second PASSED implementation we try to get around this problem by
separating the discrete part and the clock zone. In this implementation we ap-
ply the hash function only to the discrete part of the state. The clock zone is
compressed using the method from Section 3.3 and stored in the hash table to-
gether with the signature. With this solution we aim at minimising the number
of states stored in PASSED. However, storing the full zone has a big drawback.
The entries in PASSED are much bigger than for the other type. For a fixed

Reducing Memory Usage 85

memory-size this will give less entries in PASSED. A way around this would be
to compress the zones further using a method that, with some probability, might
report false inclusions. However, this has not been investigated in this paper.

As an introductory experiment all the examples are run with 47-bit signatures2
for three different sizes of the hash table (16MB, 32MB and 64MB), and an
estimate of the covered part of the state space is computed. In order to prevent
interference from the inclusion check on WAIT, this feature is turned off. In this
experiment we experienced no omissions, but for some examples the verifica-
tion procedure did not terminate correctly.

The faulty Philips example can not be handled at all by PASSED implementation
based only on signatures; while it can be handled by the combined scheme when
the size of the passed list is at least 32MB. The reason is that large parts of the
state space of this example is revisited since the first PASSED implementation
only can detect equal states and not inclusion between states. In contrast to this
example, the large instance of the DACAPO example terminates for all sizes
using the first PASSED implementation, while it fails to do so for 16MB and
32MB using the second. This is because, for each state, the zone information
is an order of magnitude larger than the size of the hash signature. This, in
combination with the fact that (for this example) the number of explored states
are almost the same in both variations, lead to that 16MB is large enough when
using signatures only while 64MB is needed for the combined scheme.

To study what the impact of the signature length on the fraction of the state
space that is omitted from exploration we perform an experiment with 7-bit
signatures.3 The result of this experiment can be seen in Table 6. As we see in
the table there are still problem instances where no omissions occur. We also
note that where omissions occur, in all cases except one, less than one per mille
of the state space is omitted from exploration.

As a final experiment we measure the run time and memory use for state space
exploration with a PASSED structure based on hash compaction with 47-bit sig-
natures and compare it to the run time for state space exploration using the
classic PASSED implementation in UPPAAL. To get as close as possible to a
normal use situation, inclusion checking for WAIT is enabled in this experi-
ment. The measured run times are listed in Table 7. We note from the table that
the combined scheme (signatures of the discrete part + packed zone) is some-

2The size of the signature may seem a little odd, but in the implementation one bit is sacrificed
to ensure that no used slot in the hash table can be mistaken for an empty.

3This is the smallest possible signature size in the current implementation.

86 Reducing Memory Usage

what faster, for all examples, than using only signatures. The reason for this
is the smaller number of states that is visited using the combined scheme. We
also note that using hash compaction is somewhat slower than using the clas-
sic PASSED implementation (for all examples except Fischers protocol). This is
partly due to the extra work needed to compute the signatures and partly due to
that the hash compaction implementation within UPPAAL is a prototype.

The measured memory use for the different examples is listed in Table 8. From
this table we note that for the large examples, i.e. Field Bus, the large DACAPO
instance and Fischer 6, there are significant reductions in memory usage. We
also note that for some of the smaller examples the classic PASSED implemen-
tation use less memory than the hash compaction. This suggests that the chosen
size of the hash compaction is too large, and that these examples can be verified
using much smaller PASSED. A further observation is that the measured num-
bers for hash compaction are larger than the requested size for PASSED. The
reason for this is that the listed values are the total memory used in the verifi-
cation, i.e. the numbers also include WAIT, temporary storage and the binary
code. In a real application, this should be taken into account when deciding how
much memory to reserve for PASSED.

5 Conclusions

This paper describes and evaluates three different ways to physically represent
symbolic states in PASSED, in implementing verifiers for timed automata. The
evaluation shows that if space consumption is a main issue rather than time
consumption then the multiply-and-add scheme can be used. For the evaluated
examples this optimisation reduces the memory usage by up to 70% compared
to the current representation used in UPPAAL, at the price of 3–13 times slow-
down due to expensive inclusion checking between states. In all other cases the
state should be represented using a mixed representation where the discrete part
is represented using the multiply-and-add scheme and the zone is represented
by concatenated bit strings separated by test bits. This packing scheme reduces
the memory usage with 35%–65% compared to the current version of UPPAAL.
In most cases this representation also gives a minor speedup (1%–3%) com-
pared to the current UPPAAL implementation.

Further the paper describes how to improve performance by checking for al-
ready visited states not only on PASSED, but also on WAIT. For the evaluated

Reducing Memory Usage 87

Example signature signature+pack
16MB 32MB 64MB 16MB 32MB 64MB

Philips (correct)
Philips (faulty)
B&O
DACAPO (big)
DACAPO (small)
Fischer 5
Fischer 6

Table 6: Fraction of state space (in) omitted from exploration for hash com-
paction with 7-bit signatures.

Example signature signature+pack Classic
16MB 32MB 64MB 16MB 32MB 64MB

Field Bus (Faulty 1)
Field Bus (Faulty 2)
Field Bus (Faulty 3)
Field Bus (Fixed)
Philips (correct)
Philips (faulty)
B&O
DACAPO (big)
DACAPO (small)
Fischer 5
Fischer 6

Table 7: Run time (in seconds) for state space exploration using a PASSED list
based on hash compaction with 47-bit signatures.

Example signature signature+pack Classic
16MB 32MB 64MB 16MB 32MB 64MB

Field Bus (Faulty 1)
Field Bus (Faulty 2)
Field Bus (Faulty 3)
Field Bus (Fixed)
Philips (correct)
Philips (faulty)
B&O
DACAPO (big)
DACAPO (small)
Fischer 5
Fischer 6

Table 8: Space (in MB) for state space exploration using a PASSED list based
on hash compaction with 47-bit signatures.

88 Reducing Memory Usage

examples this optimisation reduces the verification time by up to 85% and the
memory usage with up to 45%.

Finally we study PASSED representations based on supertrace and hash com-
paction effect the performance of UPPAAL. The gain from this technique is sig-
nificantly reduced memory usage for large examples, but at the price of possibly
omitting parts of the state space from exploration. For the evaluated examples
a supertrace PASSED cause between 22 per mille and 0.04 per mille of the state
space to be omitted from the exploration. The evaluation show also that su-
pertrace PASSED representations only work for examples where the number of
revisited states (that can’t be detected without inclusion checking) is small.

For hash compaction we evaluate two, slightly different, methods. One method
where a hash key, signature and probe sequence is computed using both the dis-
crete part of the states and the time zone, and one method where the hash key,
signature and probe sequence is computed only from the discrete part of the
states while the time zone is compressed and stored together with the signature.
The evaluation shows that in terms of coverage both these methods outperform
the supertrace method. For 47-bit signatures there are no omissions at all (in the
evaluated examples) and for 7-bit signatures the number of omissions are less
than :th of the number of omissions in the supertrace PASSED representa-
tion.

A future extension of this part of the work is to investigate how the size of
timing region can be reduced while still maintaining the possibility of inclusion
checking between states.

References

[ABB 01] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio,
Alexandre David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet,
Kim G. Larsen, M. Oliver Möller, Paul Pettersson, Carsten Weise, and
Wang Yi. UPPAAL - Now, Next, and Future. In Modelling and Verifi-
cation of Parallel Processes, number 2067 in Lecture Notes in Computer
Science, pages 100–125. Springer-Verlag, 2001.

[AD90] Rajeev Alur and David L. Dill. Automata for modeling real-time systems.
In Proceedings, Seventeenth International Colloquium on Automata, Lan-
guages and Programming, volume 443 of Lecture Notes in Computer Sci-
ence, pages 322–335. Springer-Verlag, 1990.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Journal of
Theoretical Computer Science, 126(2):183–235, 1994.

Reducing Memory Usage 89

[BGK 96] Johan Bengtsson, W. O. David Griffioen, Kåre J. Kristoffersen, Kim G.
Larsen, Fredrik Larsson, Paul Petterson, and Wang Yi. Verification of an
audio protocol with bus collision using UPPAAL. In Proceedings, Eigth
International Conference on Computer Aided Verification, volume 1102
of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[CW79] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash func-
tions. Journal of Computer and System Sciences, 18(2):143–154, 1979.

[Dil89] David L. Dill. Timing assumptions and verification of finite-state concur-
rent systems. In Proceedings, Automatic Verification Methods for Finite
State Systems, volume 407 of Lecture Notes in Computer Science, pages
197–212. Springer-Verlag, 1989.

[DOTY95] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. The
tool kronos. In Proceedings, Hybrid Systems III: Verification and Con-
trol, volume 1066 of Lecture Notes in Computer Science. Springer-Verlag,
1995.

[DY00] Alexandre David and Wang Yi. Modelling and analysis of a commercial
field bus protocol. In Proceedings, Twelfth Euromicro Conference on Real
Time Systems, pages 165–174. IEEE Computer Society Press, 2000.

[Gra00] Torbjörn Granlund. The GNUMultiple Precision Arithmetic Library, 3.0.1
edition, 2000.

[HNSY92] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic model checking for real-time systems. In Proceedings, Seventh
Annual IEEE Symposium on Logic in Computer Science, pages 394–406,
1992.

[Hol91] Gerard J. Holzmann. Design and Validation of Computer Protocols.
Prentice-Hall, 1991.

[HSLL97] Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. For-
mal modelling and analysis of an audio/video protocol: An industrial case
study using uppaal. In Proceedings, 18th IEEE Real-Time Systems Sym-
posium, pages 2–13. IEEE Computer Society Press, 1997.

[Lam87] Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions on
Computer Systems, 5(1):1–11, 1987.

[Lar00] Fredrik Larsson. Efficient implementation of model-checkers for networks
of timed automata. Licentiate Thesis 2000-003, Department of Informa-
tion Technology, Uppsala University, 2000.

[LP97] Henrik Lönn and Paul Pettersson. Formal verification of a tdma protocol
startup mechanism. In Proceedings of 1997 IEEE Pacific Rim Interna-
tional Symposium on Fault-Tolerant Systems, pages 235–242. IEEE Com-
puter Society Press, 1997.

90 Reducing Memory Usage

[LPY97] Kim G. Larsen, Paul Petterson, and Wang Yi. Uppaal in a nutshell. Journal
on Software Tools for Technology Transfer, 1997.

[Pet99] Paul Pettersson. Modelling and Verification of Real-Time Systems Using
Timed Automata: Theory and Practice. PhD thesis, Uppsala University,
1999.

[PS80] Wolfgang J. Paul and Janos Simon. Decision trees and random access
machines. In Logic and Algorithmic, volume 30 of Monographie de
L’Enseignement Mathématique, pages 331–340. L’Enseignement Mathé-
matique, Université de Genève, 1980.

[Rok93] Tomas Gerhard Rokicki. Representing and Modeling Digital Circuits.
PhD thesis, Stanford University, 1993.

[SD95] Ulrich Stern and David L. Dill. Improved probabilistic verification by hash
compaction. In Correct Hardware Design and Verification Methods: IFIP
WG10.5 Advanced Research Working Conference Proceedings, 1995.

[WL93] Pierre Wolper and Dennis Leroy. Reliable hashing without collision detec-
tion. In Proceedings, Fifth International Conference on Computer Aided
Verification, volume 697 of Lecture Notes in Computer Science, pages 59–
70. Springer-Verlag, 1993.

[Yov97] Sergio Yovine. Kronos: A verification tool for real-time systems. Journal
on Software Tools for Technology Transfer, 1, October 1997.

[YPD94] Wang Yi, Paul Petterson, and Mats Daniels. Automatic verification of real-
time communicating systems by constraint-solving. In Proceedings, Sev-
enth International Conference on Formal Description Techniques, pages
223–238, 1994.

Reducing Memory Usage 91

A Examples and Experiment Environment

The experiments are run on a Sun Ultra Enterprise 450 with four4 400MHz
CPUs and 4GB of main memory. The operating system on the machine was
Solaris 7.

All the ideas have been implemented on top of the current development version
of UPPAAL (3.1.26), and to measure the performance we used five different
applications: Field Bus, B&O, DACAPO, Philips and Fischer. During all the
experiments the memory limit for the run is set to 1GB which is at least twice
the amount of memory needed for UPPAAL 3.1.26 to check any of the examples,
using the standard representation of states. If any run exceeds this limit the run
is marked as unsuccessful ().

The Field Bus application is a model of the data link layer of a commercial
field bus protocol. The protocol and the models we use (three erroneous and
one corrected version) are described in [DY00].

B&O is a highly time-sensitive protocol devolved by Bang & Olufsen to trans-
mit control messages between audio/video components. The model used in the
experiments is described in [HSLL97].

DACAPO is a model of the start-up algorithm of the so-called DACAPO pro-
tocol. The DACAPO protocol is TDMA (time division multiple access) based
and intended for local area networks inside modern vehicles. For a more thor-
ough description of this application, see [LP97]. In these experiments we use
two different models: a small one with three stations and drifting clocks, and
larger one with four stations and perfect clocks.

The Philips example is a model of the physical layer of a protocol used by
Philips to connect different parts of stereo equipment. This model was one of
the first larger case studies made with UPPAAL. The model is thoroughly de-
scribed in [BGK 96]. This example is only used in the experiments with prob-
abilistic passed lists. Two versions of this protocol are used in the experiments,
the correct model and one faulty model.

The last application is Fischers protocol for mutual exclusion [Lam87]. This
simple protocol for mutual exclusion has, unfortunately, become a standard
benchmark for verification tools for timed systems, since the state space grows
rapidly with the number of processes. The reason that this example is not a good

4The version of UPPAAL used in the experiments is not multi threaded, so we only use one
CPU for each run.

92 Reducing Memory Usage

benchmark example is that it is not very realistic and it behaves differently,
verification-wise, from examples based on real case studies. In the experiments
we have used two different sizes of this problem, one with five processes and
one with six processes.

Paper D:
Partial Order Reductions for Timed Systems

Johan Bengtsson, Bengt Jonsson, Johan Lilius and Wang Yi.

Partial Order Reductions for Timed Systems 95

Partial Order Reductions for Timed Systems

Johan Bengtsson Bengt Jonsson Johan Lilius Wang Yi

Department of Computer Systems, Uppsala University, Sweden.
Email: {bengt,johanb,yi}@docs.uu.se

Department of Computer Science, TUCS, Åbo Akademi University, Finland.
Email: Johan.Lilius@abo.fi

Abstract. In this paper, we present a partial-order reduction method for
timed systems based on a local-time semantics for networks of timed au-
tomata. The main idea is to remove the implicit clock synchronisation
between processes in a network by letting local clocks in each process
advance independently of clocks in other processes, and by requiring
that two processes resynchronise their local time scales whenever they
communicate. A symbolic version of this new semantics is developed
in terms of predicate transformers, which enjoys the desired property
that two predicate transformers are independent if they correspond to
disjoint transitions in different processes. Thus we can apply standard
partial order reduction techniques to the problem of checking reachabil-
ity for timed systems, which avoid exploration of unnecessary interleav-
ings of independent transitions. The price is that we must introduce extra
machinery to perform the resynchronisation operations on local clocks.
Finally, we present a variant of DBM representation of symbolic states
in the local time semantics for efficient implementation of our method.

1 Motivation

During the past few years, a number of verification tools have been devel-
oped for timed systems in the framework of timed automata (e.g. KRONOS
and UPPAAL) [HH95, DOTY95, BLL 96]. One of the major problems in ap-
plying these tools to industrial-size systems is the huge memory-usage (e.g.
[BGK 96]) needed to explore the state-space of a network (or product) of timed
automata, since the verification tools must keep information not only on the
control structure of the automata but also on the clock values specified by clock
constraints.

Partial-order reduction (e.g., [God96, GW90, HP94, Pel93, Val90, Val93]) is
a well developed technique, whose purpose is to reduce the usage of time and
memory in state-space exploration by avoiding to explore unnecessary inter-

96 Partial Order Reductions for Timed Systems

leavings of independent transitions. It has been successfully applied to finite-
state systems. However, for timed systems there has been less progress. Per-
haps the major obstacle to the application of partial order reduction to timed
systems is the assumption that all clocks advance at the same speed, meaning
that all clocks are implicitly synchronised. If each process contains (at least)
one local clock, this means that advancement of the local clock of a process is
not independent of time advancements in other processes. Therefore, different
interleavings of a set of independent transitions will produce different combi-
nations of clock values, even if there is no explicit synchronisation between the
processes or their clocks.

A simple illustration of this problem is given in Figure 1. In (1) of Figure 1
is a system with two automata, each of which can perform one internal local
transition (and respectively) from an initial local state to a synchronisa-
tion state where the automata may synchronise on label (we use the
synchronisation model of CCS). It is clear that the two sequences of transitions

and are different
interleavings of two independent transitions, both leading to the state ,
from which a synchronisation on is possible. A partial order reduction tech-
nique will explore only one of these two interleavings, after having analysed
that the initial transitions of the two automata are independent.

(1)

l

m

n

r

s

t

(2)

l

m

n

r

s

t

Figure 1: Illustration of Partial Order Reduction

Let us now introduce timing constraints in terms of clocks into the example,
to obtain the system in (2) of Figure 1 where we add clocks and . The
left automaton can initially move to node , thereby resetting the clock ,
after waiting an arbitrary time. Thereafter it can move to node after more
than time units. The right automaton can initially move to node , thereby
resetting the clock , after waiting an arbitrary time. Thereafter it can move
to node within time units, but within 10 time units of initialisation of the

Partial Order Reductions for Timed Systems 97

system. We note that the initial transitions of the two automata are logically
independent of each other. However, if we naively analyse the possible values
of clocks after a certain sequence of actions, we find that the sequence

may result in clock values that satisfy (as is reset
before) where the synchronisation on is possible, whereas the sequence

may result in clock values that satisfy (as
is reset after) where the synchronisation on is impossible. Now, we see that
it is in general not sufficient to explore only one interleaving of independent
transitions.

In this paper, we present a new method for partial order reductions for timed
systems based on a new local-time semantics for networks of timed automata.
The main idea is to overcome the problem illustrated in the previous example
by removing the implicit clock synchronisation between processes by letting
clocks advance independently of each other. In other words, we desynchronise
local clocks. The benefit is that different interleavings of independent transi-
tions will no longer remember the order in which the transitions were explored.
In this specific example, an interleaving will not “remember” the order in which
the clocks were reset, and the two initial transitions are independent. We can
then import standard partial order techniques, and expect to get the same reduc-
tions as in the untimed case. We again illustrate this on system (2) of Figure 1.
Suppose that in state all clocks are initialised to . In the standard se-
mantics, the possible clock values when the system is in state are those
that satisfy . In the “desynchronised” semantics presented in this
paper, any combination of clock values is possible in state . After both the
sequence and the
possible clock values are those that satisfy .

Note that the desynchronisation will give rise to many new global states in
which automata have “executed” for different amounts of time. We hope that
this larger set of states can be represented symbolically more compactly than the
original state-space. For example, in system (2), our desynchronised semantics
gives rise to the constraint at state , whereas the standard semantics
gives rise to the two constraints and . However, as
we have removed the synchronisation between local time scales completely, we
also lose timing information required for synchronisation between automata.
Consider again system (2) and look at the clock of the right automaton. Since

initially, the constraint requires that the synchronisation on
should be within time units from system initialisation. Implicitly, this then
becomes a requirement on the left automaton. A naive desynchronisation of lo-

98 Partial Order Reductions for Timed Systems

cal clocks including will allow the left process to wait for more than time
units, in its local time scale, before synchronising. Therefore, before exploring
the effect of a transition in which two automata synchronise, we must explic-
itly “resynchronise” the local time scales of the participating automata. For this
purpose, we add to each automaton a local reference clock, which measures
how far its local time has advanced in performing local transitions. To each
synchronisation between two automata, we add the condition that their refer-
ence clocks agree. In the above example, we add as a reference clock to the
left automaton and as a reference clock to the right automaton. We require

at system initialisation. After any interleaving of the first two indepen-
dent transitions, the clock values may satisfy and . To
synchronise on they must also satisfy the constraint in addition to

, and . This implies that when the synchronisation
occurs. Without the reference clocks, we would not have been able to derive
this condition.

The idea of introducing local time is related to the treatment of local time in the
field of parallel simulation (e.g., [Fuj90]). Here, a simulation step involves some
local computation of a process together with a corresponding update of its local
time. A snapshot of the system state during a simulation will be composed of
many local time scales. In our work, we are concerned with verification rather
than simulation, and we must therefore represent sets of such system states
symbolically. We shall develop a symbolic version for the local-time seman-
tics in terms of predicate transformers, in analogy with the ordinary symbolic
semantics for timed automata, which is used in several tools for reachability
analysis. The symbolic semantics allows a finite partitioning of the state space
of a network and enjoys the desired property that two predicate transformers
are independent if they correspond to disjoint transitions in different compo-
nent automata. Thus we can apply standard partial order reduction techniques
to the problem of checking reachability for timed systems, without disturbance
from implicit synchronisation of clocks.

The paper is organised as follows: In section 2, we give a brief introduction
to the notion of timed automata and its standard semantics i.e. the global time
semantics. Section 3 develops a local time semantics for networks of timed au-
tomata and a finite symbolic version of the new semantics, analogous to the
region graph for timed automata. Section 4 presents a partial order search al-
gorithm for reachability analysis based on the symbolic local time semantics;
together with necessary operations to represent and manipulate distributed sym-
bolic states. Section 5 concludes the paper with a short summary on related
work, our contribution and future work.

Partial Order Reductions for Timed Systems 99

2 Preliminaries

2.1 Networks of Timed Automata

Timed automata was first introduced in [AD90] and has since then established
itself as a standard model for timed systems. For the reader not familiar with
the notion of timed automata we give a short informal description. In this paper,
we will work with networks of timed automata [YPD94, LPY95] as the model
for timed systems.

Let be a finite set of labels ranged over by etc. Each label is either
local or synchronising. If is a synchronising label, then it has a complement,
denoted , which is also a synchronising label with .

A timed automaton is a standard finite–state automaton over alphabet , ex-
tended with a finite collection of real–valued clocks to model timing. We use

etc. to range over clocks, and etc. to range over finite sets of clocks,
and R to stand for the set of non-negative real numbers.

A clock assignment for a set of clocks is a function from to R. For R,
we use to denote the clock assignment which maps each clock in to
the value and for , to denote the assignment for
which maps each clock in to the value and agrees with on .

We use ranged over by (and later by), to stand for the set of con-
junctions of atomic constraints of the form: or for ,

and being a natural number. Elements of are called
clock constraints or clock constraint systems over . We use to denote
that the clock assignment R satisfies the clock constraint .

A network of timed automata is the parallel composition of a col-
lection of timed automata. Each is a timed automaton over the
clocks , represented as a tuple , where is a finite set of (con-
trol) nodes, is the initial node, and
is a set of edges. Each edge means that the automaton can
move from the node to the node if the clock constraint (also called the
enabling condition of the edge) is satisfied, thereby performing the label and
resetting the clocks in . We write for . A local
action is an edge of some automaton with a local label . A syn-
chronising action is a pair of matching edges, written
where is a synchronising label, and for some , is an edge of

100 Partial Order Reductions for Timed Systems

and is an edge of . The assigns to each node
an invariant condition which must be satisfied by the system clocks whenever
the system is operating in that node. For simplicity, we require that the invari-
ant conditions of timed automata should be the conjunction of constraints in the
form: where is a clock and is a natural number. We require the sets

to be pairwise disjoint, so that each automaton only references local clocks.
As a technical convenience, we assume that the sets of nodes are pairwise
disjoint.

Global Time Semantics.

A state of a network is a pair where , called a control
vector, is a vector of control nodes of each automaton, and is a clock assign-
ment for . We shall use to stand for the th element of

and for the control vector where the th element of is replaced by
. We define the invariant of as the conjunction .

The initial state of is where is the control vector such that
for each , and maps all clocks in to .

A network may change its state by performing the following three types of
transitions.

Delay Transition: if

Local Transition: if there exists a local action
such that and .

Synchronising Transition: if there exists a syn-

chronising action such that , , and
.

We shall say that a state is reachable, denoted if there
exists a sequence of (delay or discrete) transitions leading from to .

2.2 Symbolic Global–Time Semantics

Clearly, the semantics of a timed automaton yields an infinite transition system,
and is thus not an appropriate basis for verification algorithms. However, effi-
cient algorithms may be obtained using a symbolic semantics based on sym-
bolic states of the form , where , which represent the set of

Partial Order Reductions for Timed Systems 101

states such that . Let us write to denote that
and .

We perform symbolic state space exploration by repeatedly taking the strongest
postcondition with respect to an action, or to time advancement. For a constraint

and set of clocks, define the constraints and by

for all R we have iff , and

iff

It can be shown that and can be expressed as clock constraints when-
ever is a clock constraint. We now define predicate transformers correspond-
ing to strongest postconditions of the three types of transitions:

For global delay,

For a local action ,

For a synchronising action ,

It turns out to be convenient to use predicate transformers that correspond to
first executing a discrete action, and thereafter executing a delay. For predicate
transformers , we use to denote the composition . For a (local
or synchronising) action , we define .

From now on, we shall use to denote the initial symbolic global time
state for networks, where . We write if

for some action . It can be shown (e.g. [YPD94]) that
the symbolic semantics characterises the concrete semantics given earlier in the
following sense:

Theorem 1 A state of a network is reachable if and only if
for some such that .

The above theorem can be used to construct a symbolic algorithm for reacha-
bility analysis. In order to keep the presentation simple, we will in the rest of
the paper only consider a special form of local reachability, defined as follows.
Given a control node of some automaton , check if there is a reachable
state such that . It is straight-forward to extend our results to
more general reachability problems. The symbolic algorithm for checking local

102 Partial Order Reductions for Timed Systems

PASSED:=
WAITING:=
repeat

begin
get from WAITING
if then return “YES”
else if for all PASSED then

begin
add to PASSED
SUCC:=
for all in SUCC do

put to WAITING
end

end
until WAITING={}
return “NO”

Figure 2: An Algorithm for Symbolic Reachability Analysis.

reachability is shown in Figure 2 for a network of timed automata. Here, the set
denotes the set of all actions whose source node(s) are in the control

vector i.e., a local action is enabled at if , and a synchro-
nising action is enabled at if and .

3 Partial Order Reduction and Local-Time Semantics

The purpose of partial-order techniques is to avoid exploring several interleav-
ings of independent transitions, i.e., transitions whose order of execution is ir-
relevant, e.g., because they are performed by different processes and do not
affect each other. Assume for instance that for some control vector , the set

consists of the local action of automaton and the local action
of automaton . Since executions of local actions do not affect each other,

we might want to explore only the action , and defer the exploration of
until later. The justification for deferring to explore would be that any sym-
bolic state which is reached by first exploring and thereafter can also be
reached by exploring these actions in reverse order, i.e., first and thereafter

.

Partial Order Reductions for Timed Systems 103

Let and be two predicate transformers. We say that and are inde-
pendent if for any symbolic state . In
the absence of time, local actions of different processes are independent, in the
sense that and are independent. However, in the presence of time,
we do not have independence. That is, and are in general not
independent, as illustrated e.g., by the example in Figure 1.

If timed predicate transformers commute only to a rather limited extent, then
partial order reduction is less likely to be successful for timed systems than for
untimed systems. In this paper, we present a method for symbolic state-space
exploration of timed systems, in which predicate transformers commute to the
same extent as they do in untimed systems. The main obstacle for commutativ-
ity of timed predicate transformers is that timed advancement is modelled by
globally synchronous transitions, which implicitly synchronise all local clocks,
and hence all processes. In our approach, we propose to replace the global time-
advancement steps by local-time advancement. In other words, we remove the
constraint that all clocks advance at the same speed and let clocks of each
automaton advance totally independently of each other. We thus replace one
global time scale by a local-time scale for each automaton. When exploring
local actions, the corresponding predicate transformer affects only the clocks
of that automaton in its local-time scale; the clocks of other automata are un-
affected. In this way, we have removed any relation between local-time scales.
However, in order to explore pairs of synchronising actions we must also be able
to “resynchronise” the local-time scales of the participating automata, and for
this purpose we add a local reference clock to each automaton. The reference
clock of automaton represents how far the local-time of has advanced,
measured in a global time scale. In a totally unsynchronised state, the reference
clocks of different automata can be quite different. Before a synchronisation
between and , we must add the condition that the reference clocks of
and are equal.

To formalise the above ideas further, we present a local-time semantics for net-
works of timed automata, which allows local clocks to advance independently
and resynchronising them only at synchronisation points.

Consider a network . We add to the set of clocks of each a
reference clock, denoted . Let us denote by the time assignment which
maps each clock in (including) to the value and each clock
in to the value . In the rest of the paper, we shall assume that the
set of clocks of a network include the reference clocks and the initial state is

104 Partial Order Reductions for Timed Systems

where the reference clock values are , in both the global and local time
semantics.

Local Time Semantics.

The following rules define that networks may change their state locally and
globally by performing three types of transitions:

Local Delay Transition: if

Local Discrete Transition: if there exists a local ac-
tion such that and

Synchronising Transition: if there exists a syn-

chronising action such that , , and
, and

Intuitively, the first rule says that a component may advance its local clocks (or
execute) as long as the local invariant holds. The second rule is the standard
interleaving rule for discrete transitions. When two components need to syn-
chronise, it must be checked if they have executed for the same amount of time.
This is specified by the last condition of the third rule which states that the local
reference clocks must agree, i.e. .

We call a local time state. Obviously, according to the above rules, a
network may reach a large number of local time states where the reference
clocks take different values. To an external observer, the interesting states of a
network will be those where all the reference clocks take the same value.

Definition 1 A local time state with reference clocks is synchro-
nised if .

Now we claim that the local-time semantics simulates the standard global time
semantics in which local clocks advance concurrently, in the sense that they can
generate precisely the same set of reachable states of a timed system.

Theorem 2 For all networks, iff for all synchronised local
time states .

3.1 Symbolic Local-Time Semantics

We can now define a local-time analogue of the symbolic semantics given in
Section 2.2 to develop a symbolic reachability algorithm with partial order

Partial Order Reductions for Timed Systems 105

reduction. We need to represent local time states by constraints. Let us first
assume that the constraints we need for denote symbolic local time states are
different from standard clock constraints, and use etc to denote such con-
straints. Later, we will show that such constraints can be expressed as a clock
constraint.

We use to denote the clock constraint such that for all R we have
iff . For local-time advance, we define a local-time

predicate transformer, denoted , which allows only the local clocks
including the reference clock to advance as follows:

For each local and synchronising action , we define a local-time predicate
transformer, denoted , as follows:

If is a local action , then

If is a synchronising action , then

Note that in the last definition, we treat a clock constraint like as a
predicate transformer, defined in the natural way by

.

We use to denote the initial symbolic local time state of networks
where . We shall write
if for some action .

Then we have the following characterisation theorem.

Theorem 3 For all networks, a synchronised state , if
and only if for a symbolic local time state such that

.

The above theorem shows that the symbolic local time semantics fully char-
acterises the global time semantics in terms of reachable states. Thus we can
perform reachability analysis in terms of the symbolic local time semantics.
However, it requires to find a symbolic local time state that is synchronised in
the sense that it contains synchronised states. The searching for such a syn-
chronised symbolic state may be time and space-consuming. Now, we relax the
condition for a class of networks, namely those containing no local time-stop.

106 Partial Order Reductions for Timed Systems

Definition 2 A network is local time-stop free if for all ,
implies for some synchronised state .

The local time-stop freeness can be easily guaranteed by syntactical restriction
on component automata of networks. For example, we may require that at each
control node of an automaton there should be an edge with a local label and a
guard weaker than the local invariant. This is precisely the way of modelling
time-out handling at each node when the invariant is becoming false and there-
fore it is a natural restriction.

The following theorem allows us to perform reachability analysis in terms of
symbolic local time semantics for local time-stop free networks without search-
ing for synchronised symbolic states.

Theorem 4 Assume a local time-stop free network and a local control node
of . Then for some such that if and

only if for some such that .

We now state that the version of the timed predicate transformers based on
local time semantics enjoy the commutativity properties that were missing in
the global time approach.

Theorem 5 Let and be two actions of a network of timed automata.
If the sets of component automata of involved in and are disjoint, then

and are independent.

3.2 Finiteness of the Symbolic Local Time Semantics

We shall use the symbolic local time semantics as the basis to develop a partial
order search algorithm in the following section. To guarantee termination of the
algorithm, we need to establish the finiteness of our local time semantics, i.e.
that the number of equivalent symbolic states is finite. Observe that the number
of symbolic local time states is in general infinite. However, we can show that
there is finite partitioning of the state space. We take the same approach as for
standard timed automata, that is, we construct a finite graph based on a notion
of regions.

We first extend the standard region equivalence to synchronised states. In the
following we shall use to denote the set of reference clocks.

Partial Order Reductions for Timed Systems 107

Definition 3 Two synchronised local time states (with the same control vector)
and are synchronised-equivalent if

where is the standard region equivalence for timed automata.

Note that means that only the non-reference
clock values in and are region-equivalent. We call the equivalence
classes w.r.t. the above equivalence relation synchronised regions. Now we ex-
tend this relation to cope with local time states that are not synchronised. Intu-
itively, we want two non-synchronised states, and to be classified
as equivalent if they can reach sets of equivalent synchronised states just by
letting the automata that have lower reference clock values advance to catch up
with the automaton with the highest reference clock value.

Definition 4 A local delay transition of a network is a catch-up
transition if .

Intuitively a catch-up transition corresponds to running one of the automata that
lags behind, and thus making the system more synchronised in time.

Definition 5 Let be a local time state of a network of timed automata.
We use to denote the set of synchronised regions reachable from
only by discrete transitions or catch-up transitions.

We now define an equivalence relation between local time states.

Definition 6 Two local time states and are catch-up equivalent
denoted if . We shall use to
denote the equivalence class of local time states w.r.t. .

Intuitively two catch-up equivalent local time states can reach the same set of
synchronised states i.e. states where all the automata of the network have been
synchronised in time.

Note that the number of synchronised regions is finite. This implies that the
number of catch-up classes is also finite. On the other hand, there is no way to
put an upper bound on the reference clocks , since that would imply that for
every process there is a point in time where it stops evolving which is generally
not the case. This leads to the conclusion that there must be a periodicity in the
region graph, perhaps after some initial steps. Nevertheless, we have a finiteness
theorem.

Theorem 6 For any network of timed automata, the number of catch-up equiv-
alence classes for each vector of control nodes is bounded by a func-

108 Partial Order Reductions for Timed Systems

tion of the number of regions in the standard region graph construction for
timed automata.

As the number of vectors of control nodes for each network of automata is
finite, the above theorem demonstrates the finiteness of our symbolic local time
semantics.

4 Partial Order Reduction in Reachability Analysis

The preceding sections have developed the necessary machinery for presenting
a method for partial-order reduction in a symbolic reachability algorithm. Such
an algorithm can be obtained from the algorithm in Figure 2 by replacing the
initial symbolic global time state by the initial symbolic local time
state (as defined in Theorem 4), and by replacing the statement

SUCC:=

by SUCC:= where is
a subset of the actions that are enabled at . Hopefully the set can
be made significantly smaller than , leading to a reduction in the
explored symbolic state-space.

In the literature on partial order reduction, there are several criteria for choosing
the set so that the reachability analysis is still complete. We note that
our setup would work with any criterion which is based on the notion of “inde-
pendent actions” or “independent predicate transformers”. A natural criterion
which seems to fit our framework was first formulated by Overman [Ove81];
we use its formulation by Godefroid [God96].

The idea in this reduction is that for each control vector we choose a subset
of the automata , and let be all enabled actions in which
the automata in participate. The choice of may depend on the control node

that we are searching for. The set must satisfy the criteria below. Note
that the conditions are formulated only in terms of the control structure of the
automata. Note also that in an implementation, these conditions will be replaced
by conditions that are easier to check (e.g. [God96]).

C0 if and only if .

C1 If the automaton from its current node can possibly synchro-
nise with another process , then , regardless of whether such a
synchronisation is enabled or not.

Partial Order Reductions for Timed Systems 109

C2 From , the network cannot reach a control vector with with-
out performing an action in which some process in participates.

Criteria C0 and C2 are obviously necessary to preserve correctness. Criterion
C1 can be intuitively motivated as follows: If automaton can possibly syn-
chronise with another automaton , then we must explore actions by to
allow it to “catch up” to a possible synchronisation with . Otherwise we may
miss to explore the part of the state-space that can be reached after the synchro-
nisation between and .

A final necessary criterion for correctness is fairness, i.e., that we must not
indefinitely neglect actions of some automaton. Otherwise we may get stuck
exploring a cyclic behaviour of a subset of the automata. This criterion can be
formulated in terms of the global control graph of the network. Intuitively, this
graph has control vectors as nodes, which are connected by symbolic transitions
where the clock constraints are ignored. The criterion of fairness then requires
that

C3 In each cycle of the global control graph, there must be at least one con-
trol vector at which .

In the following theorem, we state correctness of our criteria.

Theorem 7 A partial order reduction of the symbolic reachability in Figure 2,
obtained by replacing

1. the initial symbolic global time state with the initial symbolic
local time state (as defined in theorem 4)

2. the statement SUCC:= with the state-
ment SUCC:= where the function
satisfies the criteria C0 - C3,

3. and finally the inclusion checking i.e. between constraints with
an inclusion checking that also takes into account1.

is a correct and complete decision procedure for determining whether a local
state in is reachable in a local time-stop free network .

The proof of the above theorem follows similar lines as other standard proofs
of correctness for partial order algorithms. See e.g., [God96].

1This last change is only to guarantee the termination but not the soundness of the algorithm.
Note that in this paper, we have only shown that there exists a finite partition of the local time
state space according to , but not how the partitioning should be done. This is our future work.

110 Partial Order Reductions for Timed Systems

4.1 Operations on Constraint Systems

Finally, to develop an efficient implementation of the search algorithm pre-
sented above, it is important to design efficient data structures and algorithms
for the representation and manipulation of symbolic distributed states i.e. con-
straints over local clocks including the reference clocks.

In the standard approach to verification of timed systems, one such well-known
data structure is the Difference Bound Matrix (DBM), due to Bellman [Bel57],
which offers a canonical representation for clock constraints. Various efficient
algorithms to manipulate (and analyse) DBM’s have been developed (see e.g
[LLPY97]).

However when we introduce operations of the form , the standard clock
constraints are no longer adequate for describing possible sets of clock assign-
ments, because it is not possible to let only a subset of the clocks grow. This
problem can be circumvented by the following. Instead of considering values
of clocks as the basic entity in a clock constraint, we work in terms of the
relative offset of a clock from the local reference clock. For a clock ,
this offset is represented by the difference . By analogy, we must intro-
duce the constant offset . An offset constraint is then a conjunction of
inequalities of form or for ,
where . Note that an inequality of the form is also an offset,
since it is the same as . It is important to notice, that
given an offset constraint we can always recover the
absolute constraint by setting .

The nice feature of these constraints is that they can be represented by DBM’s,
by changing the interpretation of a clock from being its value to being its local
offset. Thus given a set of offset constraints over a , we construct a DBM

as follows. We number the clocks in by . An offset
of the form we denote by and a constant offset by . The
index set of the matrix is then the set of offsets and for for all

, while an entry in M is defined by if
and otherwise. We say that a clock assignment is a solution
of a DBM , , iff , where

with the reference clock of .

The operation now corresponds to the deletion of all constraints of the form
. The intuition behind this is that when we let the clocks in grow, we

are keeping the relative offsets constant, and only the clock will decrease,

Partial Order Reductions for Timed Systems 111

because this offset is taken from 0. can be defined as an operation on the
corresponding DBM : if and
otherwise. It then easy to see that iff .

Resetting of a clock corresponds to the deletion of all constraints regarding
and then setting . This can be done by an operation

if and or and ,
if and or and , and otherwise.

Again it is easy to see, that iff .

5 Conclusion and Related Work

In this paper, we have presented a partial-order reduction method for timed
systems, based on a local-time semantics for networks of timed automata. We
have developed a symbolic version of this new (local time) semantics in terms
of predicate transformers, in analogy with the ordinary symbolic semantics for
timed automata which is used in current tools for reachability analysis. This
symbolic semantics enjoys the desired property that two predicate transformers
are independent if they correspond to disjoint transitions in different processes.
This allows us to apply standard partial order reduction techniques to the prob-
lem of checking reachability for timed systems, without disturbance from im-
plicit synchronisation of clocks. The advantage of our approach is that we can
avoid exploration of unnecessary interleavings of independent transitions. The
price is that we must introduce extra machinery to perform the resynchroni-
sation operations on local clocks. On the way, we have established a theorem
about finite partitioning of the state space, analogous to the region graph for
ordinary timed automata. For efficient implementation of our method, we have
also presented a variant of DBM representation of symbolic states in the local
time semantics. We should point out that the results of this paper can be easily
extended to deal with shared variables by modifying the predicate transformer
in the form) for clock resynchronisation to the form properly
for the reading and writing operations. Future work naturally include an imple-
mentation of the method, and experiments with case studies to investigate the
practical significance of the approach.

Related Work

Currently we have found in the literature only two other proposals for partial
order reduction for real time systems: The approach by Pagani in [Pag96] for

112 Partial Order Reductions for Timed Systems

timed automata (timed graphs), and the approach of Yoneda et al. in [YSSC93,
YS97] for time Petri nets.

In the approach by Pagani a notion of independence between transitions is de-
fined based on the global-time semantics of timed automata. Intuitively two
transitions are independent iff we can fire them in any order and the resulting
states have the same control vectors and clock assignments. When this idea is
lifted to the symbolic semantics, it means that two transitions can be indepen-
dent only if they can happen in the same global time interval. Thus there is a
clear difference to our approach: Pagani’s notion of independence requires the
comparison of clocks, while ours doesn’t.

Yoneda et al. present a partial order technique for model checking a timed LTL
logic on time Petri nets [BD91]. The symbolic semantics consists of constraints
on the differences on the possible firing times of enabled transitions instead of
clock values. Although the authors do not give an explicit definition of inde-
pendence (like our Theorem 5) their notion of independence is structural like
ours, because the persistent sets, ready sets, are calculated using the structure of
the net. The difference to our approach lies in the calculation of the next state
in the state-space generation algorithm. Yoneda et al. store the relative firing
order of enabled transitions in the clock constraints, so that a state implicitly
remembers the history of the system. This leads to branching in the state space,
a thing which we have avoided. A second source of branching in the state space
is synchronisation. Since a state only contains information on the relative dif-
ferences of firing times of transitions it is not possible to synchronise clocks.

Acknowledgement: We would like to thank Paul Gastin, Florence Pagani and
Stavros Tripakis for their valuable comments and discussions.

References

[AD90] R. Alur and D. Dill. Automata for Modelling Real-Time Systems. In Proc.
of of International Colloquium on Algorithms, Languages and Program-
ming, volume 443 of LNCS, pages 322–335. Springer Verlag, 1990.

[BD91] B. Berthomieu and M. Diaz. Modelling and verification of time dependent
systems using time Petri nets. IEEE Transactions on Software Engineer-
ing, 17(3):259–273, 1991.

[Bel57] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

Partial Order Reductions for Timed Systems 113

[BGK 96] J. Bengtsson, D. Griffioen, K. Kristoffersen, K. G. Larsen, F. Larsson,
P. Pettersson, and W. Yi. Verification of an Audio Protocol with Bus Col-
lision Using UPPAAL. In Proc. of 9th Int. Conf. on Computer Aided Veri-
fication, volume 1102 of LNCS, pages 244–256. Springer Verlag, 1996.

[BLL 96] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL
in 1995. In Proc. of the 2nd Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, volume 1055 of Lecture Notes in
Computer Science, pages 431–434. Springer Verlag, 1996.

[DOTY95] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In
Proc. of Workshop on Verification and Control of Hybrid Systems III, vol-
ume 1066 of LNCS, pages 208–219. Springer Verlag, 1995.

[Fuj90] R. M. Fujimoto. Parallel discrete event simulation. Communications of
the ACM, 33(10):30–53, Oct. 1990.

[God96] P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem, volume 1032 of
LNCS. Springer Verlag, 1996.

[GW90] P. Godefroid and P. Wolper. Using partial orders to improve automatic ver-
ification methods. In Proc. of Workshop on Computer Aided Verification,
1990.

[HH95] T. A. Henzinger and P.-H. Ho. HyTech: The Cornell HYbrid TECHnology
Tool. Proc. of Workshop on Tools and Algorithms for the Construction and
Analysis of Systems, 1995. BRICS report series NS–95–2.

[HP94] G. J. Holzmann and D. A. Peled. An improvement in formal verification.
In Proc. of the 7th International Conference on Formal Description Tech-
niques, pages 197–211, 1994.

[LLPY97] F. Larsson, K. G. Larsen, P. Pettersson, and W. Yi. Efficient Verification of
Real-Time Systems: Compact Data Structures and State-Space Reduction.
In Proc. of the 18th IEEE Real-Time Systems Symposium, pages 14–24,
December 1997.

[LPY95] K. G. Larsen, P. Pettersson, and W. Yi. Compositional and Symbolic
Model-Checking of Real-Time Systems. In Proc. of the 16th IEEE Real-
Time Systems Symposium, pages 76–87, December 1995.

[Ove81] W. Overman. Verification of Concurrent Systems: Function and Timing.
PhD thesis, UCLA, Aug. 1981.

[Pag96] F. Pagani. Partial orders and verification of real-time systems. In Proc.
of Formal Techniques in Real-Time and Fault-Tolerant Systems, volume
1135 of LNCS, pages 327–346. Springer Verlag, 1996.

[Pel93] D. Peled. All from one, one for all, on model-checking using representa-
tives. In Proc. of 5th Int. Conf. on Computer Aided Verification, volume
697 of LNCS, pages 409–423. Springer Verlag, 1993.

114 Partial Order Reductions for Timed Systems

[Val90] A. Valmari. Stubborn sets for reduced state space generation. In Ad-
vances in Petri Nets, volume 483 of LNCS, pages 491–515. Springer Ver-
lag, 1990.

[Val93] A. Valmari. On-the-fly verification with stubborn sets. In Proc. of 5th
Int. Conf. on Computer Aided Verification, volume 697 of LNCS, pages
59–70, 1993.

[YPD94] W. Yi, P. Pettersson, and M. Daniels. Automatic Verification of Real-
Time Communicating Systems By Constraint-Solving. In Proc. of the 7th
International Conference on Formal Description Techniques, 1994.

[YS97] T. Yoneda and H. Schlingloff. Efficient verification of parallel real-time
systems. Journal of Formal Methods in System Design, 11(2):187–215,
1997.

[YSSC93] T. Yoneda, A. Shibayama, B.-H. Schlingloff, and E. M. Clarke. Effi-
cient verification of parallel real-time systems. In Proc. of 5th Int. Conf.
on Computer Aided Verification, volume 697 of LNCS, pages 321–332.
Springer Verlag, 1993.

Paper E:
Automated Verification of an Audio-Control Protocol using UPPAAL

Johan Bengtsson, W. O. David Griffioen, Kåre J. Kristoffersen, Kim G. Larsen,
Fredrik Larsson, Paul Pettersson and Wang Yi.

Automated Verification of an Audio-Control Protocol 117

Automated Verification of an Audio-Control Protocol
using UPPAAL

Johan Bengtsson W. O. David Griffioen Kåre J. Kristoffersen Kim G.
Larsen Fredrik Larsson Paul Pettersson Wang Yi

Department of Computer Systems, Uppsala University, Sweden.
Email: {johanb,fredrikl,paupet,yi}@docs.uu.se.
CWI, Amsterdam, The Netherlands. Email: griffoe@cwi.nl.

BRICS, Aalborg University, Denmark. Email: {jelling,kgl}@cs.auc.dk.

Abstract. In this paper we present a case-study in which the tool UPPAAL
is extended and applied to verify an Audio-Control Protocol developed
by Philips. The size of the protocol studied in this paper is significantly
larger than case studies, including various abstract versions of the same
protocol without bus-collision handling, reported previously in the com-
munity of real-time verification. We have checked that the protocol will
function correctly if the timing error of its components is bound to ,
and incorrectly if the error is . In addition, using UPPAAL’s ability
of generating diagnostic traces, we have studied an erroneous version of
the protocol actually implemented by Philips, and constructed a possible
execution sequence explaining the error.

During the case-study, UPPAAL was extended with the notion of commit-
ted locations. It allows for accurate modelling of atomic behaviours, and
more importantly, it is utilised to guide the state-space exploration of the
model checker to avoid exploring unnecessary interleavings of indepen-
dent transitions. Our experimental results demonstrate considerable time
and space-savings of the modified model checking algorithm. In fact, due
to the huge time and memory-requirement, it was impossible to check a
simple reachability property of the protocol before the introduction of
committed locations, and now it takes only seconds.

1 Introduction

In the past decade a number of tools for automatic verification of hybrid and
real-time systems have emerged, e.g. HYTECH [HHWT97], KRONOS [Yov97],
PMC [ST01], RT-Cospan [AK95] and UPPAAL [LPY97a]. These tools have by
now reached a state, where they are mature enough for industrial applications.

118 Automated Verification of an Audio-Control Protocol

In this paper, we substantiate the claim by reporting on an industry-size case
study where the tool UPPAAL is applied.

We analyse an audio control protocol developed by Philips for the physical
layer of an interface bus connecting the various devices e.g. CD-players, am-
plifier etc. in audio equipments. It uses Manchester encoding to transmit bit
sequences of arbitrary length between the components, whose timing errors
are bound. A simplified version of the protocol is studied by Bosscher et.al.
[BPV94]. It is showed that the protocol is incorrect if the timing error of the
components is or greater. The proof is carried out without tool support. The
first automatic analysis of the protocol is reported in [HWT95] where HYTECH
is applied to check an abstract version of the protocol and automatically synthe-
sise the upper bound on the timing error. Similar versions of the protocol have
been analysed by other tools, e.g. UPPAAL [LPY97a] and KRONOS [Yov97].
However, all the proofs are based on a simplification on the protocol, intro-
duced by Bosscher et.al. in 1994, that only one sender is transmitting on the
bus so that no bus collisions can occur. In many applications the bus will have
more than one sender, and the full version of the protocol by Philips therefore
handles bus collisions. The protocol with bus collision handling was manually
verified in [Gri94] without tool support. Since 1994, it has been a challenge for
the verification tool developers to automate the analysis on the full version of
the protocol.

The first automated proof of the protocol with bus collision handling was pre-
sented in 1996 in the conference version of this paper [BGK 96]. It was the
largest case study, reported in the literature on verification of timed systems,
which has been considered as a primary example in the area (see [CW96,
LSW97]). The size of the protocol studied is significantly larger than various
simplified versions of the same protocol studied previously in the community,
e.g. the discrete part of the state space (the node-space) is times larger than
in the case without bus collision handling and the number of clocks, variables
and channels in the model is also increased considerably.

The major problem in applying automatic verification tools to industrial-size
systems is the huge time and memory-usage needed to explore the state-space
of a network (or product) of timed automata, since the verification tools must
keep information not only on the control structure of the automata but also on
the clock values specified by clock constraints. It is known as the state–space
explosion problem. We experienced the problem right on the first attempt in
checking a simple reachability property of the protocol using UPPAAL, which
did not terminate in hours though it was installed on a super computer with giga-

Automated Verification of an Audio-Control Protocol 119

bytes of main memory. We observed that in addition to the size and complexity
of the problem itself, one of the main causes to the explosion was the inaccu-
rate modelling of atomic behaviours and inefficient search of the unnecessary
interleavings of atomic behaviours by the tool. As a simple solution, during
the case-study, UPPAAL was extended with the notion of committed locations.
It allows for accurate modelling of atomic behaviours, and more importantly,
it is utilised in the state-space exploration of the model checker to avoid ex-
ploring unnecessary interleavings of independent transitions. Our experimental
results demonstrate that the modified model-checking algorithm consume less
time and space than the original algorithm. In fact, due to the huge time and
memory-requirement, it was impossible to check certain properties of the pro-
tocol before the introduction of committed locations, and now it takes only
seconds.

The automated analysis was originally carried out using an UPPAAL version
extended with the notion of committed location installed on a super computer,
a SGI ONYX machine [BGK 96]. To make a comparison, in this paper we
present an application of the current version (version 3.2) of UPPAAL, also sup-
porting committed location, installed on an ordinary Pentium II 375 MHz PC
machine, to the protocol. We have checked that the protocol will function cor-
rectly if the timing error of its components is bound to , and incorrectly if
the error is . In addition, using UPPAAL’s ability of generating diagnostic
traces, we have studied an erroneous version of the protocol actually imple-
mented by Philips in their audio products, and constructed a possible execution
sequence explaining a known error.

The paper is organised as follows: In the next two sections we present the
UPPAAL model with committed location and describe its implementation in the
tool. In section 4 and 5 the Philips Audio-Control Protocol with Bus Collision
is informally and formally described. The analysis of the protocol is presented
in section 6 where we also compare the performance of the current UPPAAL
version with the one used in [BGK 96]. Section 7 concludes the paper. Finally,
formal descriptions of the protocol components are enclosed in the appendix.

2 Committed Locations

The basis of the UPPAAL model for real-time systems is networks of timed au-
tomata extended with data variables [AD90, HNSY94, YPD94]. However, to
meet requirements arising from various case-studies, the UPPAAL model has

120 Automated Verification of an Audio-Control Protocol

m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!m1!

m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!m2!

m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1?m1? m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?m2?

S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1 R11R11R11R11R11R11R11R11R11R11R11R11R11R11R11R11R11 R21R21R21R21R21R21R21R21R21R21R21R21R21R21R21R21R21

c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2

S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3 R12R12R12R12R12R12R12R12R12R12R12R12R12R12R12R12R12 R22R22R22R22R22R22R22R22R22R22R22R22R22R22R22R22R22

R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R2R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1R1SSSSSSSSSSSSSSSSS

Figure 1: Broadcasting Communication and Committed Locations.

been extended with various new features such as urgent transitions [BLL 95]
etc. The present case-study indicates that we need to further extend the UPPAAL
model with committed locations to model atomic behaviours such as multi-
way synchronisations and atomic broadcasting in real-time systems. Our expe-
riences with UPPAAL show that the notion of committed locations introduced
in UPPAAL is not only useful in modelling but also yields significant improve-
ments in performance.

We assume that a real-time system consists of a fixed number of sequential
processes communicating with each other via channels. We further assume that
each communication synchronises two processes as in CCS [Mil89]. Broadcast-
ing communication can be implemented in such systems by repeatedly sending
the same message to all the receivers. To ensure atomicity of such “broadcast”
sequences we mark the intermediate locations of the sender, which are to be
executed immediately, as so-called committed locations.

2.1 An Example

To introduce the notion of committed locations in timed automata, consider the
scenario shown in Figure 1. A sender S is to broadcast a message m to two
receivers R and R . As this requires synchronisation between three processes
this can not directly be expressed in the UPPAAL model, where synchronisation
is between two processes with complementary actions. As an initial attempt we
may model the broadcast as a sequence of two two-process synchronisations,

Automated Verification of an Audio-Control Protocol 121

where first S synchronises with R on m and then with R on m . However,
this is not an accurate model as the intended atomicity of the broadcast is not
preserved (i.e. other processes may interfere during the broadcast sequence).
To ensure atomicity, we mark the intermediate location S of the sender S as
a committed location (indicated by the c:-prefix). The atomicity of the action
sequence m !m ! is now achieved by insisting that a committed sequence must
be left immediately! This behaviour is similar to what has been called “urgent
transitions” [HHWT95, DY95, BLL 95], which insists that the next transition
taken must be an action (and not a delay), but the essential difference is that
no other actions should be performed in between such an atomic sequence. The
precise semantics of committed locations will be formalised in the transition
rules for networks of timed automata with data variables in Section 2.3.

2.2 Syntax

We assume a finite set of clock variables ranged over by and a finite
set of data variables ranged over by . We use to stand for the set of
clock constraints that are the conjunctive formulas of simple constraints in the
form of or , where and is a natural
number. Similarly, we use to stand for the set of non-clock constraints
that are conjunctive formulas of or , where
and is an integer number. We use ranged over by to denote the set of
formulas that are conjunctions of clock constraints and a non-clock constraints.
The elements of are called constraints or guards.

To manipulate clock and data variables, we use reset-sets which are finite sets
of reset-operations. A reset-operation on a clock variable should be in the form

where is a natural number and a reset-operation on an data variable
should be in the form: where are integers. A reset-set is a
proper reset-set when the variables are assigned a value at most once, we use

to denote the set of all proper reset-sets.

We assume that processes synchronise with each other via complementary ac-
tions. Let be a set of action names with a subset of urgent actions on which
processes should synchronise whenever possible. We use ct

to denote the set of actions that processes can
perform to synchronise with each other, where is a distinct symbol represent-
ing internal actions. We use name to denote the action name of , defined by
name name .

122 Automated Verification of an Audio-Control Protocol

An automaton over actions ct, clock variables and data variables is a
tuple where is a finite set of locations (control-locations)
with a subset being the set of committed locations, is the initial
location, ct corresponds to the set of edges,
and is the invariant assignment function. To model urgency, we
require that the guard of an edge with an urgent action is a non-clock constraint,
i.e. if name and then .

In the case, we shall write which represents a transi-
tion from the location to the location with guard , action to be performed,
and a sequence of reset-operations to update the variables. Furthermore, we
shall write whenever .

To model networks of processes, we introduce a CCS-like parallel composi-
tion operator for automata. Assume that are automata. We use to
denote their parallel composition. The intuitive meaning of is similar to the
CCS parallel composition of with all actions being restricted, that
is, ct. Thus only synchronisation between the components

is possible. We call a network of automata. We simply view as a vector
and use to denote its th component.

2.3 Semantics

Informally, a process modelled by an automaton starts at location with all its
variables initialised to . The values of the clocks may increase synchronously
with time at location as long as the invariant condition is satisfied. At any
time, the process can change location by following an edge provided
the current values of the variables satisfy the enabling condition . With this
transition, the variables are updated by .

To formalise the semantics we shall use variable assignments. A variable as-
signment is a mapping which maps clock variables to the non-negative reals
and data variables to integers. For a variable assignment and a delay ,

denotes the variable assignment such that for a
clock variable and for any data variable . This definition of

reflects that all clocks proceed at the same speed and that data variables are
time-insensitive.

For a reset-set (a proper set of reset-operations), we use to denote the
variable assignment with Value whenever and

otherwise, where Value denotes the value of in . Given

Automated Verification of an Audio-Control Protocol 123

a constraint and a variable assignment , is a boolean value
describing whether is satisfied by or not.

A control vector of a network is a vector of locations where is a location
of . We write to denote the vector where the th element of is
replaced by . Furthermore, we shall write whenever for some .

A state of a network is a configuration where is a control vector of
and is a variable assignment. The initial state of is where is the
initial control vector whose elements are the initial locations of ’s and
is the initial variable assignment that maps all variables to .

The semantics of a network of automata is given in terms of a transition
system with the set of states being the configurations. The transition relation is
defined by the following three rules, which are standard except that each rule
has been augmented with conditions handling control-vectors with committed
locations:

if and for some , , , and for
all if then .

if , , ,
, and , for some , , , , , , and for all if

then or .

if , , and no ,
such that , , , , , and .

where .

Intuitively, the first rule describes a local internal action transition in a compo-
nent, and possibly the resetting of variables. An internal transition can occur if
the current variable assignment satisfies the transition guard and if the control-
location of any component is committed, only components in committed loca-
tions may take local transitions. Thus, only internal transitions of components
in committed location may interrupt other components operating in committed
locations.

The second rule describes synchronisation transitions that synchronise two com-
ponents. If the control-location of any of the components is committed it is
required that at least one of the synchronising components starts in a commit-
ted location. This requirement prevents transitions starting in non-committed

124 Automated Verification of an Audio-Control Protocol

locations from interfering with atomic (i.e. committed) transition sequences.
However, two independent committed sequences may interfere with each other.

The third rule describes delay transitions, i.e. when all clocks increase syn-
chronously with time. Delay transitions are permitted only while the location in-
variants of all components are satisfied. Delays are not permitted if the control-
location of a component in the network is committed, or if an urgent transition
(i.e. a synchronisation transition with urgent action) is possible. Note that the
guards on urgent transitions are non-clock constraints whose truth-values are
not affected by delays.

Finally, we note that the three rules give a semantics where transition sequences
marked as committed are instantaneous in the sense that they happen without
duration, and without interference from components operating in non-committed
locations.

3 Committed Locations in UPPAAL

In this section we present a modified version of the model-checking algorithm
of UPPAAL for networks of automata with committed locations.

3.1 The Model-Checking Algorithm

The model-checking algorithm performs reachability analysis to check for in-
variance properties , and reachability properties , with respect to a
local property of the control locations and the values of the clock and data
variables1. It combines symbolic techniques with on-the-fly generation of the
state-space in order to avoid explicit construction of the product automaton and
the immediately caused memory problems. The algorithm is based on a parti-
tioning of the (otherwise infinite) state-space into finitely many symbolic states
of the form , where is a constraint system (i.e. a conjunction of clock
constraints and non-clock constraints). It checks if a any part of a symbolic
state (i.e. a state with) is reachable from the initial
symbolic state , where expresses that all clock and data variables
are initialised to [YPD94]. Throughout the rest of this paper we shall simply
call a state instead of symbolic state.

1From version 3.2 released in 2001, the model-checking algorithm in UPPAAL also supports
liveness properties of the kind and .

Automated Verification of an Audio-Control Protocol 125

The algorithm essentially performs a forwards search of the state-space. The
search is guided and pruned by two buffers: WAITING, holding states waiting
to be explored and PASSED holding states already explored. Initially, PASSED is
empty and WAITING holds the single state . The algorithm then repeats
the following steps:

S1. Pick a state from the WAITING buffer.

S2. If and return the answer yes.

S3. a. If and , for some in the PASSED buffer, drop
and go to step S1.

b. Otherwise, save in the PASSED buffer.

S4. Find all successor states reachable from in one step and
store them in the WAITING buffer.

S5. If the WAITING buffer is not empty then go to step S1, otherwise return
the answer no.

We will not treat the algorithm in detail here, but refer the reader to [YPD94,
BL96].

Note that in step S3.b all explored states are stored in the PASSED buffer to
ensure termination of the algorithm. In many cases, it will store the whole state-
space of the analysed system which grows exponentially both in the number
clocks and components [YPD94]. The algorithm is therefore bound to run into
space problems for large systems. The key question is how to reduce the growth
of the PASSED buffer.

When committed locations are used to model atomic behaviours there are two
potential possibilities to reduce the size of the PASSED buffer. First, as atomic
sequences in general restrict the amount of interleaving that is allowed in a sys-
tem [Hol91], the state-space of the system is reduced, and consequently also the
number of states stored in the PASSED buffer. Secondly, as a sequence of com-
mitted locations semantically is instantaneous and non-interleaved with other
components, it suffices to save only the (non-committed) control-location at the
beginning of the sequence in the PASSED buffer to ensure termination. Hence,
our proposed solution is simply not to save states in the PASSED buffer which
involve committed locations. We modify step S3 of the algorithm in the follow-
ing way:

126 Automated Verification of an Audio-Control Protocol

Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2Dj2

k==nk==nk==nk==nk==nk==nk==nk==nk==nk==nk==nk==nk==nk==nk==nk==nk==n
a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!

a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!
k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1k:=k+1

k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1k:=1

S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3

c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2c:S2

S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1

SSSSSSSSSSSSSSSSS

Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1Dj1

DjDjDjDjDjDjDjDjDjDjDjDjDjDjDjDjDj

i==ki==ki==ki==ki==ki==ki==ki==ki==ki==ki==ki==ki==ki==ki==ki==ki==k
a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?

Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1Ri1

Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2Ri2

RiRiRiRiRiRiRiRiRiRiRiRiRiRiRiRiRi

Figure 2: Broadcasting Using Committed Locations.

S3 . a. If go directly to step S4.

b. If and , for some in the PASSED buffer, drop
and go to step S1.

c. If neither of the above steps are applicable, save in the PASSED
buffer.

So, for a given state , if is committed the algorithm proceeds directly
from step S3 .a to step S4, thereby omitting the time-consuming step S3 .b
and the space-consuming step S3 .c. Clearly, this will reduce the growth of the
PASSED buffer and the total amount of time spent on step S3 . In the following
step S4 more reductions are made as interleavings are not allowed when is
committed. In fact, the next transition must be an action transition and it must
involve a which is committed in (according to the transition rules in the
previous section). This reduces the time spent on generating successor states
of in S4 as well as the total number of states in the system. Finally, we
note that reducing the PASSED buffer size also yields potential time-savings in
step S3 .b when is not committed as it involves a search through the PASSED
buffer.

It should be noticed that the algorithm presented in this section is not guaranteed
to terminate if the notion of committed locations is used in an unintended way2.
For the modified algorithm to terminate, it is assumed in the that committed
locations are used to model atomic behaviours. In particular this means that
any sequence of committed control-locations must be of finite length.

2In the current implementation of UPPAAL, the algorithm uses a technique presented in
[LLPY97] to identify and store at least one so-called covering state in each dynamic loop to
guarantee termination for all input models.

Automated Verification of an Audio-Control Protocol 127

Receivers

Ti
m

e
(s

ec
.)

70

60

50

40

30

20

10

1 2 3 4 5

S2 not commited
S2 commited

360

350

340

330

320

310

300

S2 not commited
S2 commited

54321

380

370

Receivers

Sp
ac

e
(p

ag
es

)

Figure 3: Time and Space Consumption.

3.2 Space and Time Performance Improvements

To investigate the practical benefits from the usage of committed locations and
its implementation in UPPAAL we perform an experiment with a parameteris-
able scenario, where a sender S wants to broadcast a message to receivers
R R . The sender S simply performs a!-transitions and then termi-
nates, whereas the receivers are all willing to perform a single a?-transition
hereby synchronising with the sender. The data variable k ensures that the th
receiver participates in the th handshake. Additionally, there are auxiliary
automata D D simply oscillating between two states. Consider Figure 2,
where the control node S is committed (indicated by the c:-prefix).

We may now use UPPAAL to verify that the sender succeeds in broadcasting the
message, i.e. it forces all the receivers to terminate. More precisely we verify
that SYS S R R D D satisfies the formula

at(S,S) at(R ,R) , where we assume that the proposition at(,)
is implicitly assigned to each location of the automaton , meaning that the
component is operating in location . We perform two verifications, one with
S declared as committed, and one with S being non-committed but with a
location invariant , where x is a clock which is reset on the transition
from S1 to S2, preventing the automaton from delaying in location S . The
result is shown in Figure 3. In both test sequences the number of disturbing
automata was fixed to eight. Time is measured in seconds and space is measured
in pages (4KB). The general observation is that use of committed locations in
broadcasting saves time as well as space. The most important observation is

128 Automated Verification of an Audio-Control Protocol

that in the committed scenario the space consumption behaves as a constant
function in the number of receivers.

4 The Audio Control Protocol with Bus Collision

In this section an informal introduction to the audio protocol with bus collision
is given. The audio control protocol is a bus protocol, all messages are received
by all components on the bus. If a component receives a message not addressed
to it, the message is just ignored. Philips allows up to 10 components.

Messages are transmitted using Manchester encoding. Time is divided into bit-
slots of equal length, a bit “1” is transmitted by an up-going edge halfway a
bit-slot, a bit “0” by a down-going edge halfway a bit-slot. If the same bit is
transmitted twice in a row the voltage must of course change at the end of the
first bit-slot. Note that only a single wire is used to connect the components, no
extra clock wire is needed. This is one of the properties that makes it a useful
protocol.

The protocol has to cope with some problems: The sender and the receiver
must agree on the beginning of the first bit-slot, the length of the message is
not known in advance by the receiver, the down-going edges are not detected
by the receiver. To resolve these problems the following is required: Messages
must start with a bit “1” and messages must end with a down-going edge. This
ensures that the voltage on the wire is low between messages. Furthermore the
senders must respect a so-called “radio silence” between the end of a message
and the beginning of the next one. The radio silence marks the end of a mes-
sage and the receiver knows that the next up-going edge is the first edge of a
new message. It is almost possible, and actually mandated in the Philips doc-
umentation, to decode a Manchester encoded message by only looking to the
up-going edges (problem) only the last zero bit of a message can not be de-
tected (consider messages “10” and “1”). To resolve this, it is required that all
messages are of odd length.

It is possible that two or more components start transmitting at the same time.
The behaviour of the electric circuit is such that the voltage on the wire will
be high as long as one of the senders pulls it high. In other words: The wire
implements the or-function. This makes it possible for a sender to notice that
someone else is also transmitting. If the wire is high while it is transmitting
a low, a sender can detect a bus collision. This collision detection happens at
certain points in time: Just before each up-going transition, and at one and three

Automated Verification of an Audio-Control Protocol 129

Figure 4: An Example.

quarters of a bit-slot after a down going edge (if it is still transmitting a low).
When a sender detects a collision it will stop transmitting and will try to re-
transmit its message later.

If two messages are transmitted at the same time and one is a prefix of the other,
the receiver will not notice the prefix message. To ensure collision detection it
is not allowed that a message is a prefix of another message in transit. In the
Philips environment this restriction is met by embedding the source address in
each message (and assigning each component a unique source address).

In Figure 4 an example is depicted. Assume two senders, named A and B,
that start transmitting at exactly the same time. Because two lines on top of
each other are hard to distinguish from one line, in the picture they are shifted
slightly. The sender A (depicted with thick lines) starts transmitting “11...” and
sender B (depicted with thin lines) “101...”. At the end of the first bit-slot
sender A changes from high to low voltage, to prepare for the next up-going
edge. But one quarter after this down it detects a collision and stops transmit-
ting. Sender B did not notice the other sender and continues transmitting. Note
that the receiver will decode the message of the sender B correctly.

The protocol has to cope with one more thing: timing uncertainty. Because
the protocol is implemented on a processor that also has to execute a number
of other time critical tasks, a quite large timing uncertainty is allowed. A bit-
slot is 888 microseconds, so the ideal time between two edges is 888 or 444
microseconds. On the generation of edges a timing uncertainty of 5% is al-
lowed. That is, between 844 and 932 for one bit-slot and between 422 and 466
for half a bit-slot. The collision detection just before an up-going edge and the
actual generation of the same up-going edge should be separated by at most 20
microseconds (according to the protocol specification). The timing uncertainty
on the collision detection appearing at the first and third quarters after a down-
going edge is 22 microseconds. Also the receiver has a timing uncertainty of

5%. To complete the timing information, the distance between the end of one
message and the beginning of the next must be at least 8000 microseconds (8
milliseconds).

130 Automated Verification of an Audio-Control Protocol

Add0

Add1

OUT

(Ax,Ad,Anext)

SenderA

(Bx,Bd,Bnext)

SenderB

Bhead0

Bhead1

Bempty

Ahead0

Ahead1

Aempty

(Volt,w)

(Volt,w)

UP,DOWN

UP,DOWN

VUP,(w)

(odd)

(r,l)

AINc,expect0,expect1,CAcoll,(as)

Wire Receiver

Check

Acoll

Bcoll

(ok)

(Bod,Blb,bs)

MessageB

(od,lb)

MessageA

Figure 5: Philips Audio-Control Protocol with Bus Collision.

5 A Formal Model of the Protocol

To analyse the behaviour of the protocol we model the system as a network
of seven timed automata. The network consists of two parts: a core part and a
testing environment. The core part models the components of the protocol to be
implemented: two senders, a wire and a receiver. The testing environment, con-
sisting of two message generators (one for each sender) and an output checker,
is used to model assumptions about the environment of the protocol and for
testing the behaviour of the core part. Figure 5 shows a flow-graph of the net-
work where nodes represent timed automata and edges represent synchronisa-
tion channels or shared variables, the latter enclosed within parentheses.

The general idea of the model is as follows. The two automata MessageA and
MessageB are designed to non-deterministically generate possible valid mes-
sages for the both senders (as described in section 4), in additionMessageA in-
forms the Check-automaton on the bits it generated for SenderA. The senders
transmit the messages via the wire to the receiver. We have chosen to model
the wire as an automaton to separate its behaviour from the two senders and the
receiver. The receiver communicates the bits it decoded to the checker. Thus
the Check automaton is able to compare the bits generated by MessageA and
the bits received by Receiver. If this matches the protocol is correct.

The senders A and B are, modulo renaming (all A’s in identifiers to B’s), exactly
the same. Because of the symmetry, it is enough to check that the messages
transmitted by sender A are received correctly. If a scenario exits in which a
message of sender B is received incorrectly, the same scenario (modulo re-
naming) exists for sender A. We will proceed with a short description of each

Automated Verification of an Audio-Control Protocol 131

automaton. The definition of these uses a number of constants that are declared
in Table 1 in Appendix 8.

The Senders

SenderA is depicted in Figure 10. It takes input actions Ahead0?, Ahead1?
and Aempty?. The output actions UP! and DOWN! will be the Manchester
encoding of the message. The clock Ax is used to measure the time between
UP! and DOWN! actions. The idea behind the model (taken from [DY95]) is
that the sender changes location each half of a bit-slot. The locations HS (wire
is High in Second half of the bit-slot) and HF (High in First half of the bit-slot)
refer to this idea. Extra locations are needed because of the collision detection.

The clock Ad is used to measure the time elapsed between the detection just
before UP! action and the corresponding UP! action. The system is in the loca-
tions ar_Qfirst and ar_Qlast when the next thing to do is the collision test at
one or three quarters of a bit-slot. When Volt is greater than zero, at that mo-
ment, the sender detects a collision, stops transmitting and returns to the idle
location. The clock w is used to ensure the radio silence between messages.
This variable is checked on the transition from idle to ar_first_up.

The Wire

This small automaton keeps track of the voltage on the wire and generates VUP!
actions when appropriate, that is when a UP? action is received when the volt-
age is low. The automaton is shown in Figure 9.

The Receiver

Receiver, shown in Figure 8, decodes the bit sequence using the up-going
(modelled as VUP?) changes of the wire. Decoded bits are signalled to the
environment using output actions Add0!, Add1! and OUT! (where OUT! is
used for signalling the end of a decoded message). The decoding algorithm of
the receiver is a direct translation of the algorithm in the Philips documenta-
tion of the protocol. In the automaton each VUP? transition is followed by a
transition modelling the decoding. This decoding happens at once, therefore
the intermediate locations are modelled as committed locations. The automaton
has two important locations, L1 and L0. When the last received bit is a bit “1”
the receiver is in location L1, after receiving a bit “0” it will be in location L0.
The error location is entered when a VUP? is received much too early. In the
complete model the error location is not reachable, see Section 6. The receiver

132 Automated Verification of an Audio-Control Protocol

keeps track of the parity of the received message using the integer variable odd.
When the last received bit is a bit “1” and the message is even, a bit “0” is added
to make the complete message of odd length.

The Message Generators

The message generators MessageA andMessageB, shown in Figure 11, gen-
erate valid messages (i.e. any message for which the protocol should behave
correctly according to the specification) for sender A and B. In addition, the
messages generated for sender A are communicated to the checker. The start of
a message is signalled to the checker by AINc!, bits by expect0! and expect1!.
When a collision is detected by sender A this is communicated to MessageA
via Acoll?. The message generator will communicate this on his turn to the
check automaton via CAcoll!.

Generating messages of odd length is quite simple. The only problem is that it
is not allowed that a message for one sender is a prefix of the message for the
other sender. To be more precise: If only one sender is transmitting there is no
prefix restriction. Only when the two senders start transmitting at the same time,
it is not allowed that one sender transmits a prefix of the message transmitted
by the other. As mentioned before the reason for this restriction is that the prefix
message is not received by the receiver and it is possible that the senders do not
notice the collision. In other words: the prefix message can be lost. To ensure
that the two generated bit-streams differ on at least on position, the generator
always compare the last generated bit-values stored in the variables lb and Blb
on the edge from locations sending0 or sending1 to location sending. If the
bits differ, the variable ok is set to 1, which is a requirement for the message
generation to end normally (on the transition from sending to idle in the two
automata).

The Checker

This automaton is shown in Figure 7. It keeps track of the bits “in transit”,
i.e. the bits that are generated by the message generators but not yet decoded
by the receiver. These bits are encoded using the two variables l, which stores
the length of the bit-stream, and r that stores the actual bit-stream in transit.
Whenever a bit is decoded or the end of the message is detected not conform
the generated message the checker enters location error. Furthermore, when
sender A detects a collision the checker returns to its initial location.

Automated Verification of an Audio-Control Protocol 133

6 Verification in UPPAAL

In this section we present the results of analysing the Philips audio-control pro-
tocol formally described in the previous section. We will use to denote the
(implicit) proposition at() introduced in Section 3.2. Also, note that invari-
ance properties in UPPAAL are on the form , where is a local property.

Correctness Criteria

The main correctness criterion of the protocol is to ensure that the bit sequence
received by the Receiver matches the bit sequence sent by SenderA. More-
over, the entire bit sequence should be received by Receiver (and communi-
cated to Check). From the description of the Check-automaton (see the previ-
ous section) it follows that this behaviour is ensured if Check is always operat-
ing in location start or normal:

Check start Check normal (1)

When theReceiver-automaton observes changes of the wire too early it changes
control to location error. If the rest of the components behave normally this
should not happen. Therefore, the Receiver-automaton is required to never
reach the location error:

Receiver error (2)

Incorrectness

Unfortunately the protocol described in this paper is not the protocol that Philips
has implemented. The original sender checked less often for a bus collision. The
“just before the up going edge” collision detection was only performed before
the first up. In the UPPAAL model this corresponds to deleting outgoing transi-
tions of ar_Qlast_ok and using the outgoing transitions of ar_up_ok instead.
This incorrect version is shown in Figure 12. In general the problem is that if
both senders are transmitting and one is slow and the other fast, the distance
can cumulate to a high value that can confuse the receiver. UPPAAL generated a
counter-example trace to Property 1. The trace is depicted in Figure 6. The sce-
nario is as follows: Sender A (depicted with thick lines) tries to transmit “111...”
and sender B (depicted with thin lines) “1100...”. The sender A is fast and the
other slow. This causes the distance between the second UP’s to be very big (77
microseconds). In the third bit-slot the sender A detects the collision. The result
of all this is that the time elapsed between the VUP actions is 6.65Q instead of

134 Automated Verification of an Audio-Control Protocol

first bitslot ideal distance = 6Q
actual distance = 6.65Q

Figure 6: Error execution of the incorrect protocol.

the ideal 6Q. Because of the timing uncertainty in the receiver this can be inter-
preted as 7Q (), and 7Q is just enough to decode “01” instead
of the transmitted “0”. Thus, it is possible that the sent and received message
differ with this version of the protocol.

In the correct version this scenario is impossible, because if collision detection
happens before every UP action, the distance between the UP’s in the second
bit-slot can not be that high (at most 20 microseconds).

It is not likely that these kind of errors happen in the actual implementation.
First, it is not likely that two senders do start at sufficiently close time-points.
Secondly, the timing uncertainty is at most 2% instead of 5%, and the “average”
timing uncertainty is even less. For more details, see [Gri94].

Although this problem was known by Philips it is interesting to see how pow-
erful the diagnostic traces can be. It enables us not only to find mistakes in the
model of a protocol, but also to find design mistakes in real-life protocols.

Verification Results

UPPAAL successfully verifies the correctness properties 1 and 2 for an error
tolerance of 5% on the timing. Recall that SenderA and SenderB are, modulo
renaming, exactly the same, implying that the verified properties for SenderA
also applies to the symmetric case for SenderB. The verification of Property 1
and 2 was performed in 0.5 sec using 2.5 MB of memory.

The analysis of the incorrect version of the protocol with less collision detection
(discussed above) uses UPPAAL’s ability to generate diagnostic traces whenever
an invariant property is not satisfied by the system. The trace, consisting of 46
transitions, was generated in 0.4 sec using 2.5 MB of memory. Also, verification
of Property 1 for the protocol with full collision detection and an error tolerance

Automated Verification of an Audio-Control Protocol 135

of 6% on all the timing produces an error trace as well. The scenario is similar
to the one found by Bosscher et.al. in [BPV94] for the one sender protocol.

The properties were verified using UPPAAL version 3.2 [LPY97a, BLL 98,
ABB 01] that implements the verification algorithm handling committed lo-
cations described in Section 3. It was installed on a Pentium II 375 MHz PC
running Debian Linux 2.2. In the conference version of this paper [BGK 96]
we reported that the same protocol was verified using UPPAAL version 0.963

installed on a SGI ONYX machine. The verification of the two correctness
properties then consumed 7.5 hrs using 527.4 MB and 1.32 hrs using 227.9
MB, whereas a diagnostic trace for the incorrect version was generated in 13.0
min using 290.4 MB of memory. Hence, both the time- and space-consumption
of the verifier for this particular model have been reduced with over 99%. These
improvements of the UPPAAL verifier are due to a number of developments in
the last years that will not be discussed further here. It should also be noticed
that the older version uses backwards analysis whereas the newer performs for-
wards analysis. For more information he developments of UPPAAL we refer the
reader to [LPY97b, BLL 98, ABB 01].

7 Conclusions

In this paper we have presented a case-study where the verification tool UPPAAL
is used to verify an industrial audio-control protocol with bus-collision handling
by Philips. The protocol has received a lot of attention in the formal methods
research community (see e.g. [BPV94, HWT95, CW96]) and simplified ver-
sions of the protocol without the handling of bus collisions have previously been
analysed by several research teams, with and without support from automatic
tools.

As verification results we have shown that the protocol behaves correctly if the
error on all timing is bound to 5%, and incorrectly if the error is 6%. Fur-
thermore, using UPPAAL’s ability to generate diagnostic traces we have been
able to study error scenarios in an incorrect version of the protocol actually
implemented by Philips.

In this paper we have also introduced the notion of so-called committed loca-
tions which allows for more accurate modelling of atomic behaviours. More
importantly, it is also utilised to guide the state-space exploration of the model

3The two UPPAAL versions 0.96 and 2.17 are dated Nov 1995 and March 1998 respectively.

136 Automated Verification of an Audio-Control Protocol

checker to avoid exploring unnecessary interleavings of independent transi-
tions. Our experimental results demonstrate considerable time and space-savings
of the modified model checking algorithm. In fact, due to the huge time and
memory-requirement, it was impossible to check certain properties of the pro-
tocol before the introduction of committed locations, and now it takes only
seconds.

References

[ABB 01] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio,
Alexandre David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet,
Kim G. Larsen, M. Oliver Möller, Paul Pettersson, Carsten Weise, and
Wang Yi. UPPAAL - Now, Next, and Future. In F. Cassez, C. Jard,
B. Rozoy, and M. Ryan, editors, Modelling and Verification of Parallel
Processes, number 2067 in Lecture Notes in Computer Science, pages
100–125. Springer–Verlag, 2001.

[AD90] Rajeev Alur and David Dill. Automata for Modelling Real-Time Systems.
In Proc. of Int. Colloquium on Algorithms, Languages and Programming,
number 443 in Lecture Notes in Computer Science, pages 322–335, July
1990.

[AK95] Rajeev Alur and Robert P. Kurshan. Timing Analysis in COSPAN. In
Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors,Proc.
of Workshop on Verification and Control of Hybrid Systems III, number
1066 in Lecture Notes in Computer Science, pages 220–231. Springer–
Verlag, October 1995.

[BGK 96] Johan Bengtsson, W.O. David Griffioen, Kåre J. Kristoffersen, Kim G.
Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Verification of an
Audio Protocol with Bus Collision Using UPPAAL. In Rajeev Alur and
Thomas A. Henzinger, editors, Proc. of the 8th Int. Conf. on Computer
Aided Verification, number 1102 in Lecture Notes in Computer Science,
pages 244–256. Springer–Verlag, July 1996.

[BL96] Johan Bengtsson and Fredrik Larsson. UPPAAL a Tool for Automatic
Verification of Real-time Systems. Master’s thesis, Uppsala Univer-
sity, 1996. Available as http://www.docs.uu.se/docs/rtmv/-
bl-report.pdf.

[BLL 95] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. UPPAAL — a Tool Suite for Automatic Verification of Real–
Time Systems. In Proc. of Workshop on Verification and Control of Hy-
brid Systems III, number 1066 in Lecture Notes in Computer Science,
pages 232–243. Springer–Verlag, October 1995.

Automated Verification of an Audio-Control Protocol 137

[BLL 98] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, Wang
Yi, and Carsten Weise. New Generation of UPPAAL. In Int. Workshop on
Software Tools for Technology Transfer, June 1998.

[BPV94] D. Bosscher, I. Polak, and F. Vaandrager. Verification of an Audio-Control
Protocol. In Proc. of Formal Techniques in Real-Time and Fault-Tolerant
Systems, number 863 in Lecture Notes in Computer Science, 1994.

[CW96] Edmund M. Clarke and Jeanette M. Wing. Formal Methods: State of
the Art and Future Directions. ACM Computing Surveys, 28(4):626–643,
December 1996.

[DY95] C. Daws and S. Yovine. Two examples of verification of multirate timed
automata with KRONOS. In Proc. of the 16th IEEE Real-Time Systems
Symposium, pages 66–75. IEEE Computer Society Press, December 1995.

[Gri94] W.O. David Griffioen. Analysis of an Audio Control Protocol with Bus
Collision. Master’s thesis, University of Amsterdam, Programming Re-
search Group, 1994.

[HHWT95] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH:
The Next Generation. In Proc. of the 16th IEEE Real-Time Systems Sym-
posium, pages 56–65. IEEE Computer Society Press, December 1995.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH:
A Model Checker for Hybrid Systems. Int. Journal on Software Tools for
Technology Transfer, 1(1–2):134–152, October 1997.

[HNSY94] Thomas. A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio
Yovine. Symbolic Model Checking for Real-Time Systems. Information
and Computation, 111(2):193–244, 1994.

[Hol91] Gerard Holzmann. The Design and Validation of Computer Protocols.
Prentice Hall, 1991.

[HWT95] Pei-Hsin Ho and Howard Wong-Toi. Automated Analysis of an Audio
Control Protocol. In Proc. of the 7th Int. Conf. on Computer Aided Ver-
ification, number 939 in Lecture Notes in Computer Science. Springer–
Verlag, 1995.

[LLPY97] Fredrik Larsson, Kim G. Larsen, Paul Pettersson, and Wang Yi. Efficient
Verification of Real-Time Systems: Compact Data Structures and State-
Space Reduction. In Proc. of the 18th IEEE Real-Time Systems Sympo-
sium, pages 14–24. IEEE Computer Society Press, December 1997.

[LPY97a] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell.
Int. Journal on Software Tools for Technology Transfer, 1(1–2):134–152,
October 1997.

138 Automated Verification of an Audio-Control Protocol

[LPY97b] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL: Status and De-
velopments. In Orna Grumberg, editor, Proc. of the 9th Int. Conf. on
Computer Aided Verification, number 1254 in Lecture Notes in Computer
Science, pages 456–459. Springer–Verlag, June 1997.

[LSW97] Kim G. Larsen, Bernard Steffen, and Carsten Weise. Continuous mod-
eling of real-time and hybrid systems: from concepts to tools. Int. Jour-
nal on Software Tools for Technology Transfer, 1(1–2):64–85, December
1997.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, Englewood
Cliffs, 1989.

[ST01] R. F. Lutje Spelberg and W. J. Toetenel. Parametric real-time model
checking using splitting trees. Nordic Journal, 8(1):88–120, 2001.

[Yov97] Sergio Yovine. A Verification Tool for Real Time Systems. Int. Journal on
Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

[YPD94] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Verification of
Real-Time Communicating Systems By Constraint-Solving. In Dieter
Hogrefe and Stefan Leue, editors, Proc. of the 7th Int. Conf. on Formal
Description Techniques, pages 223–238. North–Holland, 1994.

Automated Verification of an Audio-Control Protocol 139

8 Appendix

The constants used in the formulas
q 2220 One quarter of a bit-slot: 222 micro sec
d 200 Detection ’just before’ the UP:

20 micro sec
g 220 ’Around’ 25% and 75% of the bit-slot:

22 micro sec
w 80000 The radio silence: 8 milli sec
t 0.05 The timing uncertainty: 5%
The constants in the automata
W w 80000
D d 200
A1min q-g 2000
A1max q+g 2440
A2min 3*q-g 6440
A2max 3*q+g 6880
Q2 2*q 4440
Q2minD 2*q*(1-t)-d 4018
Q2min 2*q*(1-t) 4218
Q2max 2*q*(1+t) 4662
Q3min 3*q*(1-t) 6327
Q3max 3*q*(1+t) 6993
Q5min 5*q*(1-t) 10545
Q5max 5*q*(1+t) 11655
Q7min 7*q*(1-t) 14763
Q7max 7*q*(1+t) 16317
Q9min 9*q*(1-t) 18981
Q9max 9*q*(1+t) 20979

Table 1: Declaration of Constants.

140 Automated Verification of an Audio-Control Protocol

checkcheckcheckcheckcheckcheckcheckcheckcheckcheckcheckcheckcheckcheckcheckcheckcheck

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

normalnormalnormalnormalnormalnormalnormalnormalnormalnormalnormalnormalnormalnormalnormalnormalnormal

errorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerror

OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?
as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0

Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?
as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0

Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?
as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0as==0

AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?AINc?
r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1r:=1
l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1

Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1Add1?, as==1
Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1Add0?, as==1

OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1OUT?, as==1

CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?

Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?
l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2l==2, r>=2
l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2l:=1, r:=r-2

Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?Add1?
l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1l==1, r==1
l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0l:=0, r:=0

Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?
l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1l==2, r<=1
l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1l:=1

OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?OUT?
l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0l==0

Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?Add0?
l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0l==1 ,r==0
l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0l:=0

CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?CAcoll?

l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3l==3

AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2AINc?, l>=0, l<=2

OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2OUT?, l>=1,l<=2

Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0Add1?, l==0

Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0Add1?, l==1, r==0

Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1Add1?, l==2, r<=1

Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0Add0?, l==0

Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2Add0?, l==2, r>=2

Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1Add0?, l==1, r==1

expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?expect1?
r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1r:=2*r+1
l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1

expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?expect0?
r:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*rr:=2*r
l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1l:=l+1

Figure 7: The Check Automaton.

receiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiverreceiver

c:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:b

c:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:a

L0L0L0L0L0L0L0L0L0L0L0L0L0L0L0L0L0
(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)(w<=Q7max)

c:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:ec:e

c:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:cc:c

L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1L1
(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)(w<=Q9max)

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle

errorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerror

c:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:dc:d

Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!
odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1

OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!OUT!

w>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3min
w<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5max
VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?

w>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7maxw>=Q7min, w<=Q7max
Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!

w>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5min
w<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7max
VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?

w<=Q3max w<=Q3max w<=Q3max w<=Q3max w<=Q3max w<=Q3max w<=Q3max w<=Q3max w<=Q3max w<=Q3max w<=Q3max w<=Q3max w<=Q3max w<=Q3max w<=Q3max w<=Q3max w<=Q3max
VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?

Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!Add0!

Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!
odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1odd:=-odd+1

w>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9max
odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!odd==0, Add0!

w>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7minw>=Q7min
w<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9maxw<=Q9max
VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?

w>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9maxw>=Q9min, w<=Q9max
odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1odd==1

w>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5minw>=Q5min
w<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7maxw<=Q7max
VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?

w>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3minw>=Q3min
w<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5maxw<=Q5max
VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?

VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?
w<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3maxw<=Q3max

VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?VUP?
odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0odd:=0

Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!Add1!

Figure 8: The Receiver Automaton.

Automated Verification of an Audio-Control Protocol 141

wirewirewirewirewirewirewirewirewirewirewirewirewirewirewirewirewire

aaaaaaaaaaaaaaaaa

c:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:bc:b

UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?
Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1Volt>= 1
Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1Volt:=Volt+1

DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?DOWN?
Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1Volt:=Volt-1

UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?UP?
Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0

VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!VUP!
Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1Volt:=1
w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0

Figure 9: The Wire Automaton.

senderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderA

ar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_ok
(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)

ar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_ok
(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)

ar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlast
(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)

c:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LS
do_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_down
(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)

ar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_okar_up_ok
(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)(Ax<=Q2max, Ad<=D)

c:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:ready
HFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHF
(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)HSHSHSHSHSHSHSHSHSHSHSHSHSHSHSHSHS

(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)

ar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_okar_first_up_ok
(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)

ar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_up
(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle ar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirst
(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0

Ax>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minD
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1
Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!

Ax>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minDAx>=Q2minD
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0
Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0

Ad>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2maxAd>=A2min, Ad<=A2max
Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!

Ad>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2min
Ad<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2max
Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0

Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?

Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?
Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0
Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2

Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0
DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!
Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
Ad<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=D
Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0
UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!
Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
 Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D Ad<=D
 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1
 UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP!
 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0

DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
 DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN!
 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
 Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1?
 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1
 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0

Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?
Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max

Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?
Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0

UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!
Ad<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=D
Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0

Ad<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=D
Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1
Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!

Ad<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=D
Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0

Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?
w>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=W
Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0

 Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1?
Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1
 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0

Ad>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1min
Ad<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1max
Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0

Ad>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1maxAd>=A1min, Ad<=A1max
Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!Volt>=1, Acoll!

Figure 10: The SenderA Automaton.

142 Automated Verification of an Audio-Control Protocol

messageAmessageAmessageAmessageAmessageAmessageAmessageAmessageAmessageAmessageAmessageAmessageAmessageAmessageAmessageAmessageAmessageA

messageBmessageBmessageBmessageBmessageBmessageBmessageBmessageBmessageBmessageBmessageBmessageBmessageBmessageBmessageBmessageBmessageB

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle sendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsending

c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0

c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1

c:collc:collc:collc:collc:collc:collc:collc:collc:collc:collc:collc:collc:collc:collc:collc:collc:coll

c:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:ac:a

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle sendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsendingsending

c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0c:sending0

c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1c:sending1

Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!Ahead1!
as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1as:=1
od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1od:=1

od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1
lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!lb:=0,Ahead0!

od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1od:=-od+1
lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!lb:=1,Ahead1!

Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?Acoll?

Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1Aempty!,ok==1
od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1od==1,as:=0,lb:=-1

od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,
expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1expect0!,ok:=1

od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!od==Bod,expect0!
lb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blb

od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!od!=Bod,expect0!

od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,od==Bod,lb!=Blb,
expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1expect1!,ok:=1

Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!Bod==od,expect1!
lb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blblb==Blb

od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!od!=Bod,expect1!

CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!CAcoll!
as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0as:=0
lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1

AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!AINc!
ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0ok:=0

Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!Bhead1!
bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0bs:=1,Bod:=1,ok:=0

Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1
Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0Bhead0!,Blb:=0

Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1Bod:=-Bod+1
Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1Bhead1!,Blb:=1

Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1Bempty!,ok==1
Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1Bod==1,bs:=0,Blb:=-1

Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?Bcoll?
bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1bs:=0,Blb:=-1

Bod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=Blb
ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1

Bod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==Blb

Bod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=od

Bod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=BlbBod==od,lb!=Blb
ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1ok:=1

Bod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==BlbBod==od,lb==Blb

Bod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=odBod!=od

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart
Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1Blb:=-1

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart
lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1lb:=-1

Figure 11: The Message Automata.

Automated Verification of an Audio-Control Protocol 143

senderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderAsenderA

ar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_okar_Qfirst_ok
(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)

ar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_okar_Qlast_ok
(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)

ar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlastar_Qlast
(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)(Ad<=A2max)

c:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LSc:LS
do_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_downdo_down
(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)(Ax<=0)

c:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:readyc:ready
HFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHFHF
(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)

HSHSHSHSHSHSHSHSHSHSHSHSHSHSHSHSHS
(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)(Ax<=Q2max)

ar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_okar_fisrt_up_ok
(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)

ar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_upar_first_up
(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)(Ad<=D)

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle ar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirstar_Qfirst
(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)(Ad<=A1max)

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0Anext==0
UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!
Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1 Anext==1
 UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP! UP!
 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ad>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2min

Ad<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2max
Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1
Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!

Ad>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2minAd>=A2min
Ad<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2maxAd<=A2max
Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0

Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?

Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?
Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0Anext:=0
Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2

Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0Ax==0
DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!
Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2Ad:=Q2

DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!DOWN!

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
 DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN! DOWN!
 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0

Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
 Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1?
 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1 Anext:=1
 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0 Ax:=0

Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?Aempty?
Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max

Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?Ahead0?
Ax>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2minAx>=Q2min
Ax<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2maxAx<=Q2max
Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0

UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!UP!
Ad<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=DAd<=D
Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0Ax:=0

Ad <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= D
Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1
Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!

Ad <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= DAd <= D
Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0

Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?Ahead1?
w>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=Ww>=W
Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0Ad:=0

 Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1? Ahead1?
Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1Anext:=1
 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0 Ad:=0

Ad>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1min
Ad<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1max
Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0Volt==0

Ad>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1minAd>=A1min
Ad<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1maxAd<=A1max
Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1Volt>=1
Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!Acoll!

Figure 12: The Incorrect SenderA Automaton.

