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Abstract. We introduce the class of lazy rectangular hybrid automata.
The key feature of this class is that both the observation of the continuous
state and the rate changes associated with mode switchings take place
with bounded delays. We show that the discrete time dynamics of this
class of automata can be effectively analyzed without requiring resetting
of the continuous variables during mode changes.

1 Introduction

We introduce here a class of linear rectangular hybrid automata called lazy hybrid
automata and study its discrete time behavior. A central feature of this class is
that the sensors report the current values of the variables and the actuators
effect changes in the rates of evolution of the variables with bounded delays.
More specifically, the state observed at Tk is a state that held at some time in
a bounded interval contained in (Tk−1, Tk). Further, if an instantaneous mode
change has taken place at Tk, then any necessary change in the rate of a variable
will not kick in immediately. Rather, it will do so at some time in a bounded
interval contained in (Tk, Tk+1). A final restriction is that each variable’s allowed
range of values is bounded. For convenience, we study the case where there is
a single rate vector associated with each control state instead of a bounded
rectangular region of vectors as is customary for rectangular hybrid automata [2].

Since both sensors and actuators have delays associated with them, a single
symbolic trajectory of the automaton can correspond to uncountably many con-
crete trajectories; even in a discrete time setting with the initial region being a
singleton. Hence computing the discrete time behavior of a lazy hybrid automa-
ton is non-trivial. Our main result is that this can be carried out effectively. It
then follows that the discrete time behavior of a network of lazy hybrid automata
that communicate by synchronizing on common actions can also be effectively
computed.

As is well known, the continuous variables available to an hybrid automaton
and the fact that their rates of evolution can change instantaneously during a
mode switch endows them with a great deal of expressive power. As a result, in a
variety of settings, the control state reachability problem becomes undecidable,
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as reported for instance, in [3]. A sharp characterization of the boundary between
decidable and undecidable features of hybrid automata is provided in [8] as well
as [2]. These results, as also the positive results reported elsewhere - for example,
[5,13,11,10] - make it clear that except under very restrictive settings, one can
not expect to get decidability if the continuous variables don’t get reset during
mode changes; particularly in case their rates change as a result of the mode
change. Viewed as a model of digital control systems that interact with physical
plants through sensors and actuators, the resetting requirement severely restricts
the modeling power of the automaton. Our results show that by introducing
bounded delays into the functioning of the sensors and actuators, we can allow
the variables to retain their values during mode changes. Admittedly, our positive
results are obtained in the restricted setting of rectangular hybrid automata but
the wealth of research concerning this setting (for instance, [6,8,5,7]) suggests
that this is a natural and well motivated starting point.

We study the discrete time semantics of lazy hybrid automata. From a tech-
nical standpoint, our work is a generalization of [7] where the discrete time
behavior of rectangular hybrid automata is studied with the requirement that
all instantaneous transitions should take place only at integer-valued instances
of time. In our terms, [7] further assumes that the sensors and actuators function
with zero delays which simplifies their analysis problem. In our setting, things
are more complicated due to the non-zero delays associated with the sensing of
values and actuating rate changes. Further, we feel that the approach proposed
here is of some independent interest from a modeling point of view. It may also
lead to the tractable analysis of larger classes of hybrid automata. Finally, our
focus on discrete time semantics is relevant -as also argued in [7]- in that, as a
model of digital controllers for continuous plants, the discrete time semantics of
hybrid automata is more natural and useful than the continuous time semantics.

Our work is, at least conceptually, in line with previous attempts to reduce
the expressive power of timed and rectangular automata by taking away their
ability to define trajectories with infinite precision [4,9,12]. Typically one de-
mands the set of admitted trajectories to be “fuzzy”; if a trajectory is admitted
by the automaton then it should also admit trajectories that are sufficiently close
to the trajectory where “closeness” is captured using a natural topology over the
trajectories. Surprisingly enough, this idea does not lead to more tractability as
detailed in [9] and [12]. The key difference between our work and these previ-
ous works is that in lazy hybrid automata, the fuzziness is introduced into the
dynamics; the observed continuous state based on which a mode change takes
place at an instant is different from the actual continuous state that holds at
that instant. Similarly, the actual rate at which a variable may be evolving at
an instant may be different from the rate demanded by the current mode of the
automaton.

In the next section, we formulate the model of lazy hybrid automata. In
section 3 we prove our main result, namely, the language of state sequences and
action sequences generated by a lazy hybrid automaton are regular. Moreover,
finite state automata representing these languages can be effectively computed.
In section 4 we discuss the restrictions placed on lazy automata and point out
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that many of them can be easily relaxed. We also sketch how our main result can
be easily extended to networks of automata which communicate by performing
common actions together. In the concluding section we summarize and point to
some possible future work.

2 Lazy Hybrid Automata

Fix a positive integer n and one function symbol xi for each i in {1, 2, . . . , n}.
We will view each xi as a function xi : IR≥0 �→ IR with IR being the set of reals
and IR≥0, the set of non-negative reals. We let Q denote the set of rationals and
I denote the set of closed intervals of the form [l, r] with l, r ∈ Q and l < r. We
view [l, r] as the subset of IR given by {z | l ≤ z ≤ r}.

A lazy hybrid automaton is a structure
A = (Q, Act, qin, Vin, D, {ρq}q∈Q, B,−→) where:

– Q is a finite set of control states.
– Act is a finite set of actions.
– qin ∈ Q is the initial control state.
– Vin ∈ Qn is the initial valuation.
– D = {g, δg, h, δh} ⊆ Q is the set of delay parameters such that

0 < g < g + δg < h < h + δh < 1.
– ρq ∈ Qn is a rate vector which specifies the rate ρq(i) at which each xi

evolves when the system is in the control state q.
– B = [Bmin, Bmax] ∈ I is the allowed range.
– −→⊆ Q × Act × In × Q is a transition relation such that q �= q′ for every

(q, a, I, q′) in −→. Furthermore, if (q, a, I, q′), (q, a, I ′, q′) ∈−→ then I = I ′.

We shall study the discrete time behavior of our automata. At each time
instant Tk, the automaton receives a measurement regarding the current values
of the xi’s. However, the value of xi that is observed at Tk is the value that held
at some t ∈ [Tk−1 + h, Tk−1 + h + δh]. If at Tk, the automaton is in control state
q and observed n-tuple of values (v1, v2, . . . , vn) is in I with (q, a, I, q′) being a
transition, then the automaton may perform this transition instantaneously by
executing the action a and move to the control state q′. Thus as usual, the xi’s
will cease to evolve at the rates ρq and instead start evolving at the rates ρq′ .
However, this change in the rate of evolution will not kick in at Tk but at some
time t ∈ [Tk + g, Tk + g + δg]. In this sense, both the sensing of the values of
the xi’s and the rate changes associated with mode switching take place in a
lazy fashion but with bounded delays.. We expect g to be close to 0, h to be
close to 1 and both δg and δh to be small compared to 1 so that in the idealized
setting, the change in rates due to mode switching would kick in immediately
(g = 0 = δg) and the value observed at Tk is the value that holds at exactly Tk

(h = 1 and δh = 0). Indeed, this is the setting considered in [7].
B specifies the range of values within which the automaton’s dynamics are

valid. The automaton gets stuck if any of the xi’s ever assume a value outside the
allowed range [Bmin, Bmax]. A number of the restrictions that we have imposed
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are mainly for ease of presentation. Later, we will discuss how these restrictions
can be relaxed. Our main result is that the control state and action sequence
languages generated by a lazy hybrid automaton are both regular. Furthermore,
these language can be computed effectively.

2.1 The Transition System Semantics

Through the rest of this section we fix a lazy hybrid automaton A as defined
above and assume its associated notations and terminology. The behavior of A
will be defined in terms of an associated transition system.

A valuation is just a member of IRn. We let i range over {1, 2, . . . , n}. The
valuation V will be viewed as prescribing the value V (i) to each variable xi.
A configuration is a triple (q, V, q′) where q, q′ are control states and V is a
valuation. q is the control state holding at the current time instant and q′ is the
control state that held at the previous time instant. V captures the actual values
of the variables at the current instance. The configuration (q, V, q′) is feasible iff
V (i) ∈ [Bmin, Bmax] for every i. The initial configuration is, by convention,
the triple (qin, Vin, qin). We assume without loss of generality that the initial
configuration is feasible. We let CA denote the set of configurations. Since A
will be clear from the context, we will often write C instead of CA.

As in the case of timed automata [1], a convenient way to understand the
dynamics is to break up each move of the automaton into a time-passage move
followed by an instantaneous transition. At T0, the automaton will be in its
initial configuration. Suppose the automaton is in the configuration (qk, Vk, q′

k)
at Tk. Then one unit of time will pass1 and at time instant Tk+1, the automaton
will make an instantaneous move by performing an action a or the silent action
τ and move to a configuration (qk+1, Vk+1, q

′
k+1). The silent action will be used

to record that no mode change has taken place during this move. Again, as
often done in the case of timed automata, we will collapse the two sub-steps
of a move (unit-time-passage followed by an instantaneous transition) into one
“time-abstract” transition labeled by a member of Act or by τ .

With this intuition in mind, we now define the transition relation
=⇒⊆ C × Act ∪ {τ} × C as follows.

– Let (q, V, q′) and (q1, V 1, q1′) be configurations and a ∈ Act. Then
(q, V, q′) a=⇒ (q1, V 1, q1′) iff q1′ = q and there exists in A a transition

of the form q
a,I−→ q1 and there exist t̂1 ∈ [g, g + δg]n and t̂2 ∈ [h, h + δh]n

such that the following conditions are satisfied for each i.
(1) V 1(i) = V (i) + ρq′(i) · t̂1(i) + ρq(i) · (1 − t̂1(i)).
(2) V (i) + ρq′(i) · t̂1(i) + ρq(i) · (t̂2(i) − t̂1(i)) ∈ I(i) for each i.

– Let (q, V, q′) and (q1, V 1, q1′) be configurations. Then (q, V, q′) τ=⇒
(q1, V 1, q1′) iff q1 = q1′ = q and there exists t̂1 ∈ [g, g + δg]n such that
V 1(i) = V (i) + ρq′(i) · t̂1(i) + ρq(i) · (1 − t̂1(i)) for each i.

1 We assume that the unit of time has been fixed at some suitable level of granularity
and that the rate vectors {ρq} have been scaled accordingly.
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Basically there are four possible transition types depending on whether q = q′

and α ∈ Act. Suppose (q, V, q′) a=⇒ (q1, V 1, q1′) with a ∈ Act. Assume that

q
a,I−→ q1 in A and t̂1 ∈ [g, g + δg]n and t̂2 ∈ [h, h + δh]n are as specified above.

We first note that q1 �= q by the definition of the transition relation of A. The
requirement q1′ = q captures follows from our convention that q1′ is the control
state that held in the previous instant and we know this was q.

First consider the case q �= q′ and let us suppose that the configuration
(q, V, q′) holds at Tk. We take q �= q′ to mean that a change of mode from
q′ to q has just taken place (instantaneously) at Tk based on the observations
that were made available at Tk. However, at Tk, the automaton will continue
to evolve at the rate dictated by ρ′

q. Indeed, each xi will, starting from Tk,
evolve at rate ρ′

q(i) until some Tk + t1 with t1 ∈ [g, g + δg]. It will then start
to evolve at rate ρq(i) until Tk+1. Consequently, at Tk+1, the value of xi will be
V 1(i) = V (i) + ρ′

q(i) · t1 + ρq(i) · (1 − t1). On the other hand, q1 �= q implies
that another instantaneous mode change has taken place at Tk+1 based on the
measurements made in the interval [Tk+h, Tk+h+δh]. Suppose xi was measured

at Tk +t2 with t2 ∈ [Tk +h, Tk +h+δh]. Then in order for the transition q
a,I−→ q1

of A to be enabled at Tk+1, it must be the case that the observed value of xi

at Tk + t2 falls in I(i). But then this value is V (i) + ρ′
q(i) · t1 + ρq(i) · (t2 − t1).

This explains the demands placed on the transition (q, V, q′) a=⇒ (q1, V 1, q1′).
It is worth noting that in case q = q′ (i.e. no mode change has taken place at
Tk) then V 1(i) = V (i) + ρq(i) · t1 + ρq(i) · (1 − t1) = V (i) + ρq as it should be.
Furthermore, V (i) + ρq(i) · t1 + ρq(i) · (t2 − t1) = V (i) + ρq(i) · t2 and this must
fall in I(i) as to be expected.

Similar (and simpler) considerations motivate the demands placed on transi-
tions of the form (q, V, q′) τ=⇒ (q1, V 1, q1′). Here again, it is worth noting that,
in case q = q′, V 1(i) is determined uniquely, namely, V 1(i) = V (i) + ρq(i).

We now define the transition system
TSA = (RCA, (qin, Vin, qin), Act ∪ {τ}, =⇒A) via:

– RCA, the set of reachable configurations of A is the least subset of C that
contains the initial configuration (qin, Vin, qin) and satisfies:
Suppose (q, V, q′) is in RCA and is a feasible configuration. Suppose further,
(q, V, q′) α=⇒ (q1, V 1, q) for some α ∈ Act ∪ {τ}. Then (q1, V 1, q) ∈ RCA.

– =⇒A is =⇒ restricted to RCA × Act ∪ {τ} × RCA.

We will often write RC instead of RCA and write =⇒ instead of =⇒A. We
note that a reachable configuration can be the source of a transition in TSA
only if it is feasible. Thus infeasible reachable configurations will be deadlocked
in TSA.

A run of TSA is a finite sequence of the form
σ = (q0, V0, q

′
0) α0 (q1, V1, q

′
1) α1 (q2, V2, q

′
2) . . . (qk, Vk, q′

k) where (q0, V0, q
′
0) is the

initial configuration and (qm, Vm, q′
m) αm=⇒ (qm+1, Vm+1, q

′
m+1) for 0 ≤ m < k.

The st-sequence (state sequence) induced by the run σ above is denoted as st(σ)
and it is the the sequence q0q1 . . . qn. On the other hand, the act-sequence induced
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by σ is denoted as act(σ) and it is the sequence α0α1 . . . αn. We now define the
languages Lst(A) and Lact(A) as :

– Lst(A) = {st(σ) | σ is a run of A}.
– Lact(A) = {act(σ) | σ is a run of A}.

Our main result is that Lst(A) is a regular subset of Q� while Lact(A) is a reg-
ular subset of (Act ∪ {τ})�. Moreover, we can effectively construct finite state
automata representing these languages. As a consequence, a variety of verifica-
tion problems for lazy hybrid automata can be effectively solved.

3 Proof of the Main Result

We shall first establish the main result for the one dimensional case. As is often
the case with rectangular hybrid automata [5], it will then be easy to lift the
proof to the n-dimensional case with the help of a (Cartesian) product operation.

3.1 The One Dimensional Case

Let A = (Q, Act, qin, Vin, D, {ρq}q∈Q, B,−→) be a lazy automaton. We assume
for A, the terminology and notations defined in the previous section. Until fur-
ther notice , we set n = 1 and we will write x instead of xi and ρq instead of ρq(i)
for q ∈ Q. The key idea is quantize the unit time interval and correspondingly
the phase interval [Bmin, Bmax]. We first define ∆ to be the largest positive
rational number that integrally divides every number in the finite set of rational
numbers {g, δg, h, δh, 1}. We next define Γ to be the largest positive rational
number that integrally divides each number in the finite set of rational numbers
{ρq · ∆ | q ∈ Q} ∪ {Bmin, Bmax} ∪ {l, r | (q, a, [l, r], q′) is a transition in A}.

Let ZZ denote the set of integers. We now define the map
‖·‖ : IR → ZZ × ({0, 1} ∪ {⊥}) as follows.

– If v ∈ (−∞, Bmin), then ‖v‖ = (kmin − 1,⊥) where kmin · Γ = Bmin. If
v ∈ (Bmax,∞) then ‖v‖ = (kmax,⊥) where kmax · Γ = Bmax.

– Suppose v ∈ [Bmin, Bmax] and k ∈ ZZ and v̂ ∈ [0, Γ ) such that v = k ·Γ + v̂.
Then ‖v‖ = (k, 0) if v̂ = 0 and ‖v‖ = (k, 1) if v̂ �= 0.

The map ‖·‖ can be extended in a natural way to configurations. Denot-
ing this extension also as ‖·‖, we define ‖(q, v, q′)‖ to be (q, ‖v‖ , q′). Let
DA = {‖c‖ | c ∈ CA}. Clearly DA is a finite set and we will often write D
instead of DA. Our goal is to show that the equivalence relation over the reach-
able configurations RC of A induced by the map ‖·‖ in turn induces a right
congruence of finite index over Q�. The proof will make use of the following
simple observation. In stating the observation and elsewhere, we will use the
following notations. For q, q′ ∈ Q we let Nq and Nqq′ be the positive integers
such that |ρq · ∆| = Nq · Γ and

∣
∣(ρq − ρ′

q) · ∆
∣
∣ = Nqq′ · Γ . Clearly, Nq and Nqq′

exist because of the choice of ∆ and Γ .
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Lemma 1. Let q, q′ ∈ Q. Define the functions fq and fqq′ as:

(1) fq : [0, ∆/Nq] → [0, Γ ] and is given by fq(θ) = |ρq · θ|.
(2) fqq′ : [0, ∆/Nqq′ ] → [0, Γ ] and is given by fqq′(θ) = |(ρq − ρq′) · θ|.
Then both fq and fqq′ are well-defined, continuous and onto.

Proof. Follows easily from the definitions and the basic property of monotonic
real valued functions over bounded domains. �

We are now ready to tackle the main part of the proof.

Theorem 1. Let c1 and c2 be two reachable configurations such that ‖c1‖ =
‖c2‖. Suppose α ∈ Act ∪ {τ} and c1′ is a reachable configuration such that
c1 α=⇒A c1′. Then there exists a reachable configuration c2′ such that c2 α=⇒A c2′

and ‖c1′‖ = ‖c2′‖.
Proof. Clearly c1 is feasible and since ‖c1‖ = ‖c2‖, it follows that c2 is also
feasible.

Assume that c1 = (q1, V 1, q1′) and c2 = (q2, V 2, q2′) and that ‖V 1‖ =
(K1, z1) and ‖V 2‖ = (K2, z2). Since ‖c1‖ = ‖c2‖, we can set q = q1 = q2,
q′ = q1′ = q2′ and (K, z) = (K1, z1) = (K2, z2). If z = 0 then V 1 = V 2 and
hence c1 = c2 and the result follows.

So assume that z = 1 and V 1 �= V 2. Hence V 1, V 2 ∈ (K.Γ, (K + 1).Γ )
and hence ‖(q, V 1, q′)‖ = ‖(q, V 2, q′)‖ = (q, (K, 1), q′). Furthermore, there exist
v1, v2 ∈ (0, Γ ) such that v1 �= v2 and V 1 = K · Γ + v1 and V 2 = K · Γ + v2.
In what follows, for the sake of convenience, we will assume that 0 ≤ ρq′ ≤ ρq

and that v2 < v1. From the structure of the proof it will be obvious that this
involves no loss of generality.

Let c1′ = (s, V 1′, q). Then we have (q, V 1, q′) α=⇒ (s, V 1′, q). We are required
to show that there exists V 2′ such that (q, V 2, q′) α=⇒ (s, V 2′, q) with ‖V 1′‖ =
‖V 2′‖. We shall do this by considering four cases.
Case 1: q = q′ and α = τ .

Since q = q′, no mode change has taken place in the previous time interval.
Hence the automaton will evolve at rate ρq during the current unit interval. On
the other hand, α = τ implies that s = q and hence no mode change takes place
at the end of this unit interval either. Consequently, we must have V 1′ = V 1+ρq.
We now set V 2′ = V 2 + ρq. Then it follows that (q, V 2, q′) α=⇒ (q, V 2′, q). We
need to argue that ‖V 1′‖ = ‖V 2′‖.

In what follows, we define for ζ ∈ {g, δg, h, δh, 1}, Nζ to be the positive integer
satisfying ζ = Nζ · ∆. These positive integers must exist by the choice of ∆.

Now ρq = ρq · 1 = ρq · N1 · ∆ = Nq · N1 · Γ . (Recall that ρq · ∆ = Nq · Γ ). But
then V 1, V 2 ∈ (K ·Γ, (K +1) ·Γ ) and hence V 1′, V 2′ ∈ ((K +Nq ·N1) ·Γ, (K +
1 + Nq · N1) · Γ ). This at once leads to ‖V 1′‖ = ‖V 2′‖.
Case 2: q = q′ and α ∈ Act.

Since q = q′ we again have that no mode change has taken place in the
previous interval and hence the automaton will evolve at rate ρq in the current
interval. Hence, as in the previous case, we must have V 1′ = V 1+ ρq. Again, we
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set V 2′ = V 2+ ρq. Consequently as shown in the previous case, ‖V 1′‖ = ‖V 2′‖.
So if we show that (q, V 2, q′) α=⇒ (s, V 2′, q), then we are done.

We are given that (q, V 1, q′) α=⇒ (s, V 1′, q). Hence there exists a transition of
the form (q, α, I, s) in A and there exists t1 ∈ [h, h+δh] such that V 1+ρq ·t1 ∈ I.
We just need to show that there exists t2 ∈ [h, h+ δh] such that V 2+ρq · t2 ∈ I.

In order to fix t2, recall that h = Nh ·∆ and δh = Nδh
·∆. We first note that

t1 ∈ [Nh ·∆, (Nh+Nδh
)·∆]. Noticing that ρq ·∆ = Nq ·Γ and hence ρq ·(∆/Nq) =

Γ we set ∆q = ∆/Nq, and observe that t1 ∈ [Nh · Nq · ∆q, (Nh + Nδh
) · Nq · ∆q].

Let N be the least integer in the interval [Nh · Nq, (Nh + Nδh
) · Nq] such that

t1 ∈ [N · ∆q, (N + 1) · ∆q]. Let θ1 = t1 − N · ∆q. Clearly θ1 ∈ [0, ∆q].
Suppose θ1 = 0. Then ρq · t1 = ρq · N · ∆q = N · Γ and hence V̂ 1 =

V 1+ρq ·t1 ∈ ((K +N) ·Γ, (K +1+N) ·Γ ). Set t2 = t1. Then V̂ 2 = V 2+ρq ·t1 ∈
((K +N) ·Γ, (K +1+N) ·Γ ) too. Now assume that I = [l, r]. Then there exist
integers Nl and and Nr such that l = Nl ·Γ and r = Nr ·Γ with Nl < Nr. Since
V̂ 1 ∈ [l, r], we must have Nl ≤ (K + N) < (K + N + 1) ≤ Nr. But this implies
that V̂ 2 = V 2 + ρq · t1 ∈ [l, r] too. Hence (q, V 2, q′) α=⇒ (s, V 2′, q).

The case θ1 = ∆q can be dealt with in a similar manner by again setting
t2 = t1.

So now assume that θ1 ∈ (0, ∆/Nq). Then clearly V̂ 1 = V 1 + ρq · t1 ∈
[v1 + (K + N) · Γ, v1 + (K + N + 1) · Γ ]. (Recall that v1 = V 1 − K · Γ and
v2 = V 2 − K · Γ .) There are three possibilities to consider.

Firstly, suppose V̂ 1 ∈ [v1 + (K + N) · Γ, (K + N + 1) · Γ ). Then we set
t2 = N ·∆q. Clearly V̂ 2 = V 2+ρq ·N ·∆q ∈ ((K+N)·Γ, (K+N+1)·Γ ). But then
V̂ 1 ∈ [v1+(K+N)·Γ, (K+N +1)·Γ ) implies V̂ 1 ∈ ((K+N)·Γ, (K+N +1)·Γ ).
Consequently V̂ 1 ∈ [l, r] implies Nl ≤ (K + N) < (K + N + 1) ≤ Nr as before
and this in turn implies V̂ 2 ∈ [l, r]. This leads to (q, V 2, q′) α=⇒ (s, V 2′, q).

Secondly, suppose v1 = (K +N +1) ·Γ . Then, (K +N +1) ·Γ ∈ (v2+ (K +
N) · Γ, v2 + (K + N + 1) · Γ ). From Lemma 1, it follows that there exists θ2 in
[0, ∆q] such that v2+(K +N) ·Γ +ρq ·θ2 = (K +N +1) ·Γ . Set t2 = N ·∆q +θ2.
Clearly, V̂ 2 = V 2 + ρq · t2 = V̂ 1 = (K + N + 1) · Γ . Again, V̂ 1 ∈ [l, r] implies
V̂ 2 ∈ [l, r] as required.

Thirdly, suppose V̂ 1 ∈ ((K + N + 1) · Γ, v1 + (K + N + 1) · Γ ]. Then we
set t2 = (N + 1) · ∆q. Clearly V̂ 2 = V 2 + ρq · (N + 1) · ∆q ∈ ((K + N + 1) ·
Γ, (K + N + 2) · Γ ). But then V̂ 1 ∈ ((K + N + 1) · Γ, v1 + (K + N + 1) · Γ ]
implies v1 ∈ ((K + N + 1) · Γ, (K + N + 2) · Γ ). Thus again, V̂ 1 ∈ [l, r] implies
V̂ 2 ∈ [l, r].
Case 3: q �= q′ and α = τ .

Since q �= q′, an instantaneous transition has taken place at the end of the
time-passage move leading to (q, V 1, q′). Hence the automaton will continue to
evolve at rate ρq′ until some t1 ∈ [g, g+δg] and then will evolve at the rate ρq for
the rest of the period 1−t1. Moreover t1 is such that V 1′ = V 1+ρ′

q ·t1+ρq ·(1−t1).
We need to find t2 ∈ [g, g + δg] such that V 2′ = V 2 + ρq′ · t2 + ρq · (1 − t2) and
‖V 1′‖ = ‖V 2′‖. In order to fix t2, let g = Ng · ∆ and δg = Nδg · ∆.



Lazy Rectangular Hybrid Automata 9

Noticing that (ρq −ρq′) ·∆ = Nqq′ ·Γ and hence (ρq −ρq′) · (∆/Nqq′) = Γ we
set ∆qq′ = ∆/Nqq′ , and observe that t1 ∈ [Ng ·Nqq′ ·∆qq′ , (Ng +Nδg

)·Nqq′ ·∆qq′ ].
Let N be the least integer in the interval [Ng · Nqq′ , (Ng + Nδg ) · Nqq′ ] such that
t1 ∈ [N · ∆qq′ , (N + 1) · ∆qq′ ]. Let θ1 = t1 − N · ∆qq′ . Clearly θ1 ∈ [0, ∆qq′ ].

We now have V 1′ = V 1 + ρq′ · N · ∆qq′ + ρq′ · θ1 + ρq · (∆qq′ − θ1) + ρq · (N1 ·
Nqq′ − N − 1) · ∆qq′ . (Recall that N1 · ∆ = 1.) Expanding this expression and
simplifying using the definitions of Nq, Nq′ , Nqq′ and ∆qq′ , we get:
V 1′ = V 1+(N1·Nq−N)·Γ−(ρq−ρq′)·θ1. We recall that v1 = V 1−K ·Γ and v2 =
V 2−K ·Γ . Since θ1 ranges over [0, ∆qq′ ], we have that (ρq −ρq′) ·θ1 ranges over
[0, Γ ]. Hence V 1′ ∈ [v1+(K+N1 ·Nq −N)Γ, v1+(K+N1 ·Nq −N +1)·Γ ]. Again
there are three situations to consider. For convenience, let K ′ = N1 · Nq − N .

Suppose V 1′ ∈ [v1+(K +K ′) ·Γ, (K +K ′ +1) ·Γ ). Then we set t2 = N ·∆qq′ .
Then it is easy to see that t2 ∈ [g, g+δg]. Now let V 2′ = V 2+ρq′ ·t2+ρq ·(1−t2).
Then by our choice of t2, we have, V 2′ = V 2+ρq′ ·N ·∆qq′+ρq·(N1·Nqq′−N)·∆qq′ .
Simplifying this expression, we get V 2′ = V 2 + K ′ · Γ . Since V 2 = v2 + K · Γ ,
we then get V 2′ ∈ ((K + K ′) · Γ, (K + K ′ + 1) · Γ ). As a result, ‖V 1′‖ = ‖V 2′‖.
By the choice of t2, it is also clear that (q, V 2, q′) τ=⇒ (s, V 2′, q).

The case V 1′ ∈ ((K +K ′ +1) ·Γ, v1+(k +K +1) ·Γ ] is handled in a similar
manner by setting t2 = (N + 1) · ∆qq′ .

So suppose that V 1′ = (K + K ′ + 1) · Γ . Then by Lemma 1 we can find
θ2 ∈ (0, ∆qq′) such that with t2 = N · ∆qq′ + θ2, and V 2′ = V 2 + ρq′ · t2 +
ρq · (1 − t2), we can obtain V 2′ = (K + K ′ + 1) · Γ . This follows from the
fact that as θ2 ranges over [0, ∆qq′ ], we will have V 2′ ranging continuously over
[v2+(K+K ′) ·Γ, v2+(K+K ′+1) ·Γ ] and surely (K+K ′+1) ·Γ lies within this
range. Clearly by the choice of t2 and V 2′, we have (q, V 2, q′) τ=⇒ (s, V 2′, q). It
also follows at once that ‖V 1′‖ = ‖V 2′‖.
Case 4: q �= q′ and α ∈ Act.

This is the most general case where the rate will change during the current
period and the time-pass move will be followed by an instantaneous execution
of a transition of A.

Since (q, V 1, q′) α=⇒ (s, V 1′, q), there exist t1 ∈ [g, g+δg] and t1′ ∈ [h, h+δh]

and a transition q
(α,I)−→ s in A such that V 1′ = V 1 + ρq′ · t1 + (1 − t1) · ρq

and V 1 + ρq′ · t1 + ρq · (t1′ − t1) ∈ I. We need to find t2 ∈ [g, g + δg] and
t2′ ∈ [h, h + δh] such that V 2 + ρq′ · t2 + ρq · (t2′ − t2) ∈ I and ‖V 1′‖ = ‖V 2′‖
where V 2′ = V 2 + ρq′ · t2 + (1 − t2) · ρq.

As before, we set ∆qq′ = ∆/Nqq′ and let N be the least integer in the
interval [Ng ·Nqq′ , (Ng +Nδg ) ·Nqq′ ] such that t1 ∈ [N ·∆qq′ , (N +1) ·∆qq′ ]. Let
θ1 = t1−N ·∆qq′ . Clearly θ1 ∈ [0, ∆qq′ ]. Using the argument developed to settle
the previous case, we can conclude that V 1′ = V 1+(N1·Nq−N)·Γ−(ρq−ρq′)·θ1.
As before, we set K ′ = N1 · Nq − N . We need to examine two cases. (It is worth
recalling here that we are operating under the assumptions 0 ≤ ρ′

q < ρq and
v2 < v1).

Suppose V 1′ ∈ [v1+(K+K ′)·Γ, v2+(K+K ′+1)·Γ ]. Consider t2 = (N +1)·
∆qq′ +θ2 for some θ2 ∈ [0, ∆qq′ ]. Define V 2′ = v2+(K ′+K+1)·Γ −θ2·(ρq−ρq′).
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As θ2 ranges over [0, ∆qq′ ], V 2′ will range over [v2 + (K ′ + K) · Γ, v2 + (K +
K ′ + 1) · Γ ]. Hence, by Lemma 1, we can fix a θ2 such that V 2′ = V 1′.

Suppose on the other hand, V 1′ ∈ (v2+(K+K ′+1) ·Γ, v1+(K+K ′+1) ·Γ ].
Then we set θ2 = 0 so that t2 = (N+1)·∆qq′ and hence V 2′ = v2+(K+K ′+1)·Γ .
Clearly both V 1′ and V 2′ lie in ((K + K ′ + 1) · Γ, (K + K ′ + 2) · Γ ). Hence
‖V 1′‖ = ‖V 2′‖.

We note that in either case, our choice of θ2 guarantees that V 1′ = V 2′ or
V 2′ < V 1′ with V 1′ − V 2′ ≤ v1 − v2.

Turning to the choice of t2′, we define as before, ∆q = ∆/Nq. Let J be
the least integer in the interval [Nh · Nq, (Nh + Nδh

− 1) · Nq] such that t1′ ∈
[J · ∆q, (J + 1) · ∆q]. Let θ1′ = t1′ − (J · ∆q). Clearly θ1′ ∈ [0, ∆q].

Let V 1′′ = V 1+ρq′ .t1+ρq ·(t1′−t1). Then V 1′′ = V 1+ρq′ ·N ·∆qq′ +ρq′ ·θ1+
ρq · (∆qq′ − θ1)+ρq · (J ·Nq ·∆q − (N +1) ·∆qq′)+ρq · θ1′. Again expanding and
simplifying this expression, we get V 1′′ = V 1+(Nq ·J −N) ·Γ − (ρq −ρq′) · θ1+
ρq ·θ1′. Let L = Nq ·J −N . Then V 1′′ = v1+(K +L) ·Γ −(ρq −ρq′) ·θ1+ρq ·θ1′.

Now V 1′′′ = v1+(K+L)·Γ−(ρq−ρq′)·θ1 must lie in [v1+(K+L)·Γ, v1+(K+
L+1)·Γ ]. Suppose V 1′′′ lies in [v1+(k+L)·Γ, v2+(K+L+1)·Γ ]. Then our choice
of θ2 ensures that v2+(K+L)·Γ −(ρq −ρq′)·θ2 = v1+(K+L)·Γ −(ρq −ρq′)·θ1.
We now set θ2′ = θ1′ and t2′ = J · ∆q + θ2′. Clearly t2′ ∈ [h, h + δh] and
V 2′′ = V 2 + ρq′ · t2 + ρq · (t2′ − t2) = V 1′′ ∈ I and hence we have, as required,
(q, V 2, q′) α=⇒ (s, V 2′, q) with ‖V 1′‖ = ‖V 2′‖.

Finally, assume that V 1′′′ = v1 + (K + L) · Γ − (ρq − ρq′) · θ1 lies in (v2 +
(K + L + 1) · Γ, v1 + (K + L + 1) · Γ ] Then our choice of θ2 ensures that
V 2′′′ = v2 + (K + L).Γ − (ρq − ρq′) · θ2 = v2 + (K + L + 1) · Γ and thus
V 1′′′ − V 2′′′ ≤ v1 − v2. Now depending on θ1′, the value of V 1′′ must lie in
(v2 + (K + L + 1) · Γ, v1 + (K + L + 2) · Γ ]. If V 1′′ lies in (v2 + (k + L + 1) ·
Γ, v2 + (k + L + 2) · Γ ] then we can, by lemma 1, pick θ2′ ∈ [0, ∆q] so that
V 2′′ = V 1′′ where V 2′′ = V 2 + ρq′ · t2 + ρq · (t2′ − t2) with t2′ = J · ∆q + θ2′. If
on the other hand, V 1′′ lies in (v2 + (K + L + 2) · Γ, v1 + (k + L + 2) · Γ ] we can
set θ2′ = ∆q and t2′ = J · ∆ + θ2′ so that V 2′′ = v2 + (K + L + 2) · Γ . In either
case, we have t2′ ∈ [h, h + δh] and V 2′′ ∈ I so that (q, V 2, q′) α=⇒ (s, V 2′, q)
with ‖V 1′‖ = ‖V 2′‖. �


We now define the finite state automaton ZA = (D, (qin, (k0, 0), qin), Act ∪
{τ},�,D) where k0·Γ = Vin and the transition relation�⊆ D×(Act∪{τ})×D is
given by: (q, (k, d), q′) α� (q1, (k1, d1), q1′) iff there exist configurations (q, V, q′)
and (q1, V 1, q1′) such that (q, V, q′) α=⇒ (q1, V 1, q1′) and ‖V ‖ = (k, d) and
‖V 1‖ = (k1, d1). In what follows, we will often write ZA as just Z. Note that,we
are setting all the states of Z to be its final states.

We define Lst(Z) to be the subset of Q� as follows. A run of Z is a se-
quence of the form (q0, (l0, d0), q′

0) α0 (q1, (l1, d1), q′
1) α1 . . . (qm, (lm, dm), q′

m)
where (q0, (l0, d0), q′

0) = (qin, (k0, 0), qin) and
(qj , (lj , dj), q′

j)
αj� (qj+1, (lj+1, dj+1), q′

j+1) for 0 ≤ j < m. Next we define
q0q1 . . . qm ∈ Lst(Z) iff there exists a run of Z of the form
(q0, (l0, d0), q′

0) α0 (q1, (l1, d1), q′
1) α1 . . . (qm, (lm, dm), q′

m). Clearly Lst(Z) is a
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regular subset of Q� and it does not involve any loss of generality to view ZA
itself as a representation of this regular language.

Theorem 2. The automaton ZA can be computed effectively. Moreover
Lst(A) = Lst(ZA) and Lact(A) = L(ZA) where L(ZA) is the regular subset
of (Act ∪ {τ})� accepted by ZA in the usual sense. (Note that all the states of
ZA are final states.)

Proof. Clearly the finite set of states D and the initial state (qin, (k0, 0), qin) can
be computed easily. The transition relation � is expressible in the first order
theory of the real ordered field which is a decidable theory [14] .2. For instance, to
determine if (q, (k, 1), q′) a� (q1, (k1, 1), q), with a ∈ Act, we first check if there is
a transition tr in A of the form (q, a, I, q1). If there is no such transition then we
conclude that (q, (k, 1), q′) a� (q1, (k1, d1), q) is not a transition in ZA. If there
is such a transition then for each such transition tr we construct the formula
ϕtr, take the disjunction of all such formulas and check for its satisfiability.

Suppose tr = (q, a, I, q1). Then ϕtr will conjunctively assert the following:

– There exists V such that k · Γ < V < (k + 1) · Γ .
– There exists t1 such that g ≤ t1 ≤ g+δg and k1·Γ < V +ρq′ ·t1+ρq ·(1−t1) <

(k1 + 1) · Γ .
– There exists t2 such that h ≤ t2 ≤ h+δh and l ≤ V +ρq′ ·t1+ρq ·(t2−t1) ≤ r

(where I = [l, r]).

To see that Lst(A) = Lst(Z) we first note that Lst(A) ⊆ Lst(Z) follows from the
definition of ZA. To conclude inclusion in the other direction, we will argue that
for each run (q0, (l0, d0), q′

0)α0 (q1, (l1, d1), q′
1)α1 . . . (qm, (lm, dm), q′

m) of Z there
exist V0, V1 . . . Vm ∈ IR such that (q0, V0, q

′
0) α0 (q1, V1, q

′
1) α1 . . . (qm, Vm, q′

m) is
a run of TSA. And furthermore, ‖Vj‖ = (lj , dj) for 0 ≤ j ≤ m. The required
inclusion will then follow at once. For m = 1, it is clear from the definitions and
so suppose that (q0, (l0, d0), q′

0) α0 (q1, (l1, d1), q′
1) α1 . . . (qm, (lm, dm), q′

m)
αm (qm+1, (lm+1, dm+1), q′

m+1) is a run of Z. By the induction hypothesis,
there exists a run (q0, V0, q

′
0) α0 (q1, V1, q

′
1) α1 . . . (qm, Vm, q′

m) of TSA with the
property, ‖Vj‖ = (lj , dj) for 0 ≤ j ≤ m.

Now (qm, (lm, dm), q′
m) αm� (qm+1, (lm+1, dm+1), q′

m+1) implies that there ex-
ist V ′

m and V ′
m+1 such that (qm, V ′

m, q′
m) αm� (qm+1, V

′
m+1, q

′
m+1) and ‖V ′

m‖ =
(lm, dm) and

∥
∥V ′

m+1

∥
∥ = (lm+1, dm+1). But this implies that ‖V ′

m‖ = ‖Vm‖. Hence
by Theorem 1, there exists Vm+1 such that (qm, Vm, q′

m) αm� (qm+1, Vm+1, q
′
m+1)

and moreover
∥
∥V ′

m+1

∥
∥ = ‖Vm+1‖. Thus Lst(A) = Lst(ZA). It now also follows

easily that Lact(A) = L(ZA). �


In what follows, we will refer to Z as the zone version of A.

2 This is an overkill as detailed later
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3.2 The n-Dimensional Case

We now consider an n-dimensional hybrid automaton A defined as in the pre-
vious section with the associated terminology and notations. Our goal is to
show that Lst(A) is a regular subset of Q� while Lact(A) is a regular subset of
(Act ∪ {τ})�.

To do so, we first define the family of one dimensional automata {Ai} =
(Q, Act, qi

in, V i
in, D, {ρi

q}q∈Q, B,−→i) where:

– V i
in(i) is Vin(i), the i-th component of Vin.

– ρi
q = ρq(i)

– q
(a,Ii)−→i q′ iff there exists q

(a,I)−→ q′ in A with Ii = I(i). Again, I(i) denotes
the i-th component of I.

Let Zi be the zone version of Ai with
Zi = (Di, (qin, (ki

0, 0), qin), Act ∪ {τ},�i). We now define the finite state au-
tomaton ZA = (D, (qin, κ0, qin), Act ∪ {τ},�,D) which will constitute the zone
version of the n-dimensional automaton A as follows.

– D, the states of this automaton, will be of the form (q, κ, q′) with q, q′ ∈
Q and κ ∈ ((ZZ × {0, 1})n. Let κ = ((k1, d1), (k2, d2) . . . , (kn, dn)). Then
(q, κ, q′) ∈ D iff there (q, (ki, di), q′) ∈ Di for each i in {1, 2, . . . , n}.

– κ0 = ((k1
0, 0), (k2

0, 0), . . . , (kn
0 , 0)

– �⊆ D × (Act ∪ {τ}) × D is given by:
Let (q, κ, q′), (q1, κ1, q1′) ∈ D with κ = ((k1, d1), (k2, d2) . . . , (kn, dn)) and
κ1 = ((k11, d11), (k12, d12) . . . , (k1n, d1n)). Then (q, κ, q′) α� ((q1, κ1, q1′)
iff (q, (ki, di), q′) α�i (q1, (k1i, d1i), q) for each i ∈ {1, 2, . . . , n}.

As before, we will often write Z instead of ZA and refer to it as the zone
version of A. We denote by Lst(Z) the state sequence language of Z and define
it in the obvious way. We also define L(Z) to be the subset of (Act ∪ {τ})�

accepted by the finite state automaton Z.

Theorem 3. The automaton ZA can be computed effectively. Moreover
Lst(A) = Lst(ZA) and Lact(A) = L(ZA).

Proof. Since, by Theorem 2, each of the finite state automata Zi can be com-
puted effectively, so can Z be. The proof of the facts Lst(A) = Lst(ZA) and
Lact(A) = L(ZA) is routine and we omit the details. �

As for the complexity of our decision procedure, we first estimate the size of the
automaton and the time complexity of constructing the automaton for the one
dimensional case. Let I be the total number of relevant intervals on IR. In other
words, I = (Bmax − Bmin)/Γ + 2. Then the number of states is O(m2 · I) where
m =| Q | is the number of control states of the lazy automaton. For constructing
the transitions, we need to check if there is a transition from (q, (k, 1), q′) to
(q1, (k1, 1), q) labeled with the action α. It is clear that the most complex case
is when α ∈ Act and q �= q′ and we need to check for the existence of at most
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O(m4 · I2 · |Act|) such possible transitions. To decide if such a transition exists
for a given pair of states (q, (k, 1), q′) to (q1, (k1, 1), q) and a given symbolic
transition in the lazy automaton of the form (q, a, [l, r], q1) we need to check if
there exists V and t1 and t2 such that:

– k · Γ < V < (k + 1) · Γ
– g ≤ t1 ≤ g + δg

– k1 · Γ < V + ρq′ · t1 + ρq · (1 − t1) < (k1 + 1) · Γ
– h ≤ t2 ≤ h + δh

– l ≤ V + ρq′ · t1 + ρq · (t2 − t1) ≤ r.

The above are 10 linear inequalities in three variables V , t1, and t2. Linear
programming allows us to check if they all can be satisfied. This can be done
in time proportional to the length of the constraints as there are a constant
number of variables and constraints. Therefore, the time to check each inequality
is O(log( 1

Γ )) since Γ requires the largest number of bits to represent of all the
quantities in the inequalities. Thus the time complexity of building the automata
in the one dimensional case is O(m4 · I2 · |Act| · log( 1

Γ )).
For the n dimensional case, the number of states is O(m2 · In). So the num-

ber of possible transitions is O(m4 · I2n · |Act|). Now there are n groups of 10
inequalities with each group involving 3 variables. Hence overall time complexity
of constructing the automata is O(m4 · I2n · |Act| · n · log( 1

Γ )).

4 Some Extensions

In order to simplify the initial presentation, we placed a number of restrictions
on our automata. Here we first examine which of these can be relaxed so that,
with minor overhead, our main results go through smoothly. We then formulate
a composition operation for lazy hybrid automata in a standard way using which
large automata can be presented in a succinct fashion. These networks of lazy
hybrid automata can also be analyzed effectively.

Let A = (Q, Act, qin, Vin, D, {ρq}q∈Q, B,−→) be a lazy hybrid automaton.
We could permit a set of initial control states and a set of initial valuations
for each initial control state, provided they can be specified using rectangular
constraints. Our results will go through with minor modifications. It is also clear
that our demand 0 < g < g + δg < h < h + δh < 1 is only for convenience.
We could have different delay parameters for different variables and these delays
could spill over more than one time unit.

The restriction that there is at most one a-labeled transition between a pair
of control states is mainly for convenience. If this condition is violated we could
use renaming to enforce this property, construct the zone automaton and then
restore the old names.

State invariants can be introduced in the expected manner and we could al-
low resets of the variables during a mode switch. Finally, we have avoided the
customary use of differential inclusions to specify the rates mainly to avoid clut-
ter. Our results will still go through, with some additional notational overhead,
if we permit these extensions.
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The boundedness restriction on the allowed range B = [Bmin, Bmax] is crucial
though, from a modeling point of view, it is not crippling. The fact that we have
linear rates is crucial. Our proof idea breaks down for non-linear rates. The fact
that non-empty closed intervals are used for specifying the transitions of A is not
important. However, the fact that we have rectangular constraints is important.

We now wish to argue that we can easily cope with networks of lazy hybrid
automata in which the component automata communicate by synchronizing on
common actions.

Let P be a finite set of agent names with u, v ranging over P. We define
a product lazy hybrid automaton to be a structure AP =

∏

u∈P Au where
Au = (Qu, Actu, qu

in, V u
in, D, {ρu

q }q∈Qu , B,−→u) for each u in P. For convenience,
we will write TSu instead of TSAu

to denote the transition system over the reach-
able configurations of Au as defined in section 2. The operational behavior of
∏

u∈P Au is given by the transition system denoted as TSP and is defined in the
obvious way; it is just the usual synchronized product of the transition systems
{TSu}. The only twist is, in line with our discrete time semantics, all the compo-
nents must move during a transition. If it is an a-move, then all the components
that have a ∈ Actu must make an a-move while the remaining components must
make a τ -move. In a τ -move, all the compoents must make a τ -move.

It is a routine exercise to establish that Lst(AutP) and Lact(AP) can be
computed effectively.

5 Conclusion

We have formulated here the class of lazy hybrid rectangular automata. These
are basically linear rectangular hybrid automata but where each automaton is
accompanied by the delay parameters {g, δg, h, δh}. Our main result is that the
discrete time behavior of these automata can be effectively computed if the
allowed ranges of values for the variables are bounded. We have not outlined the
verification problems for lazy rectangular hybrid automata that can be settled
effectively. It should be clear however that we can model-check the discrete time
behavior of our automata against a variety of linear time and branching time
temporal logic specifications.

We believe that associating non-zero bounded delays with the sensors and
actuators is a natural assumption and it cuts down the the expressive power
of hybrid automata. We also feel that it is useful to focus on the discrete time
behavior of hybrid automata. Finally, there is some hope that larger classes of
lazy hybrid automata may turn out to be tractable in terms of their discrete
time behaviors. A related intersting problem is to determine the border between
the decidable and undecidable in the context of lazy hybrid automata.
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