Thiagarejon's Conjecture:

Regular event structures
$$\longleftrightarrow$$
 1-safe finite Petri nets

$$\begin{pmatrix}
(E, \leq, #), \lambda \end{pmatrix} &\longleftarrow N = (P, T, F, Mm) \\
\lambda \cdot E \to T \\
\text{implicitly labelled ES} &\longleftarrow inhabelled net \\
\text{explicitly labelled E} & Add: $\varphi: T \to \Sigma$

$$\begin{pmatrix}
(E, \leq, #, \lambda), \varphi \end{pmatrix} & \varphi(e) = \varphi(\lambda(e))$$$$

labelled ES\C

retain Q(e) for $e \in E'$ Somorphism of two lebelled ES $(E_1, \leq_1, \#_1, Q_1) \qquad (E_2, \#_2, \#_2)$ By gettin $f: E_1 \rightarrow E_2$ $e_1 \leq_1 e_2 \text{ iff } f(e_1) \leq_2 f(e_2)$ $e_1 \#_1 e_2 \text{ iff } f(e_1) \#_2 f(e_2)$ $Q(e_1) = Q_2(f_1(e_2))$

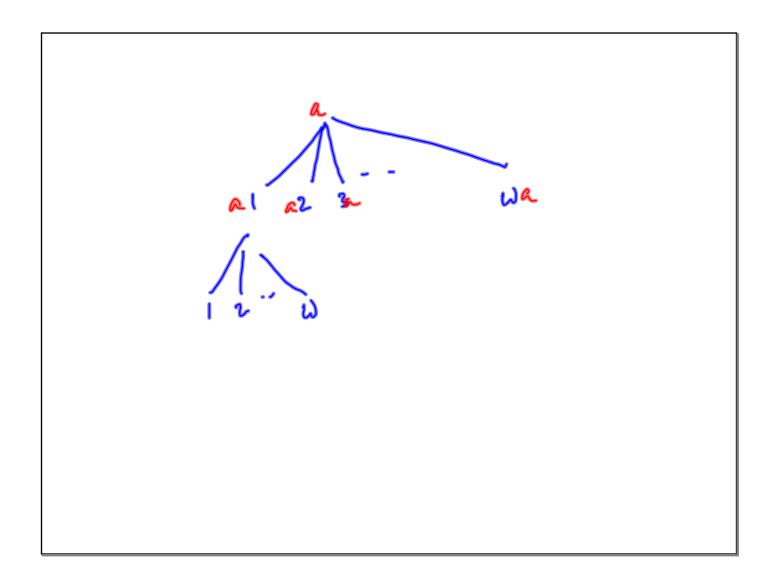
C \(C' \) iff \(ES \) c is isomorphic to \(ES \) c'

LES = \((E_1 \in , #, Ce) \) is regular if \(\frac{1}{2} \) is ourself of fruite nidex and |enabled(c)| is bounded for every c

Thiegorgan's Conjecture:

Every regular labelled event structure is

"generated" by a fait clabelled 1-safe vet



Trace-labelled event structure

Implicit labelling has a constraint

Finite 1-safe net N=(P,T,F,Min) N=(P,T,F,Min) N=(P,T,F,Min) $N:E\to T$ $N:E\to T$ $N:E\to T$ $N:E\to T$ $N:E\to T$ $N:E\to T$ $N:E\to T$

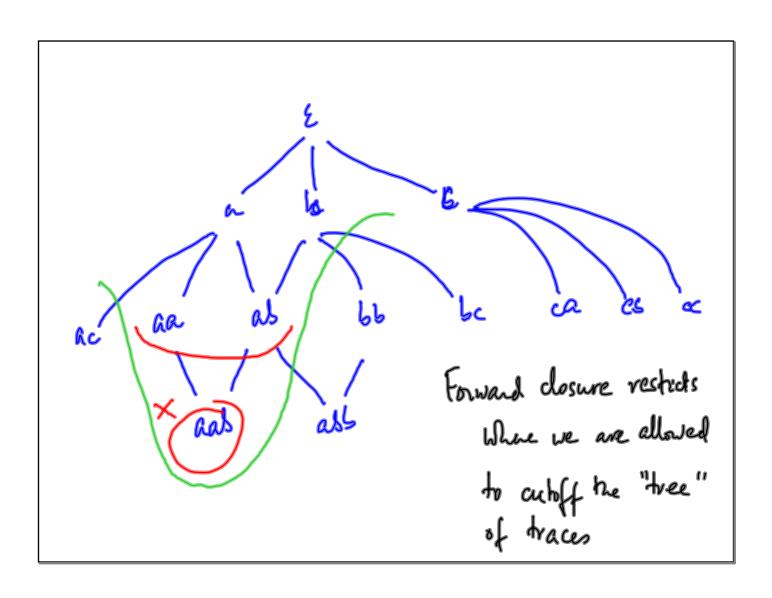
Trace blothed
$$ES = (E, \uparrow, \uparrow, \lambda)$$
, $\lambda: E \rightarrow (\Sigma, I)$

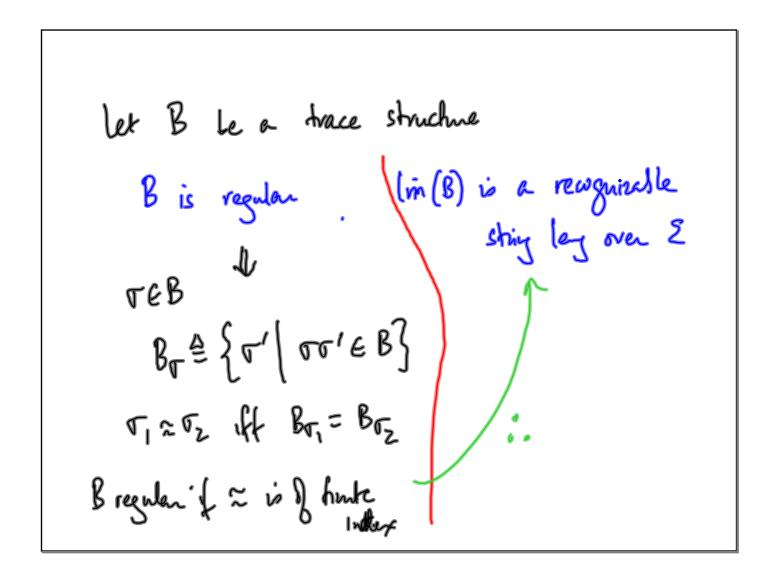
" $t_{\mu} \subseteq \# \Rightarrow \text{ minimal conflict relation}$
 $e \notin_{\mu} e' \text{ if } e \notin_{e'} \text{ (Je x Je')} \cap \# = \{(e,e')\}$
 $e \in_{\mu} e' \Rightarrow \lambda(e) \neq \lambda(e')$
 $e \notin_{\mu} e' \Rightarrow \lambda(e) \neq \lambda(e')$
 $e \in_{\mu} e' \Rightarrow \lambda(e') \neq \lambda(e')$
 $e \in_{\mu} e' \Rightarrow \lambda(e') \neq \lambda(e')$
 $e \in_{\mu} e' \Rightarrow \lambda(e') \neq \lambda(e')$

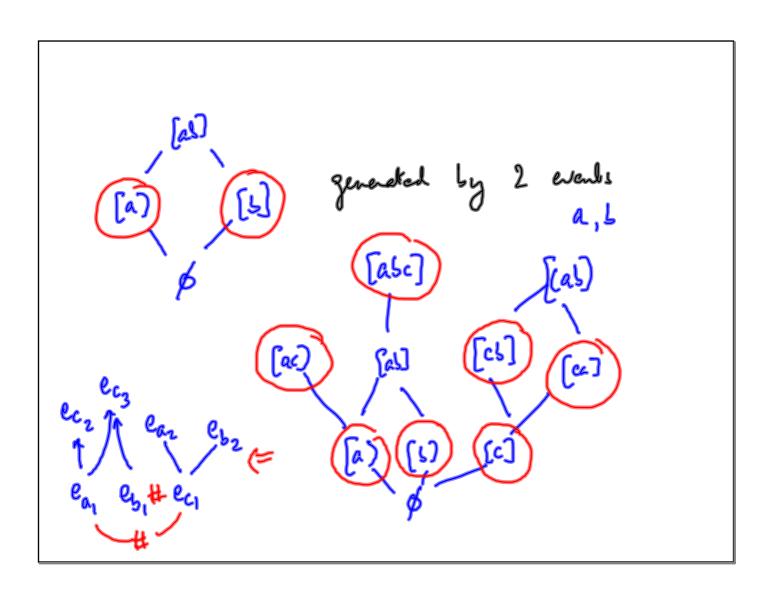
Trace structure

Forward closed & prefix closed trace larguye

$$t \in L, t' \in L$$
 $t \in t' \in L' \in L' \in L \Rightarrow t \in L$
 $t \in L' \in L' \in L' \in L \Rightarrow L$







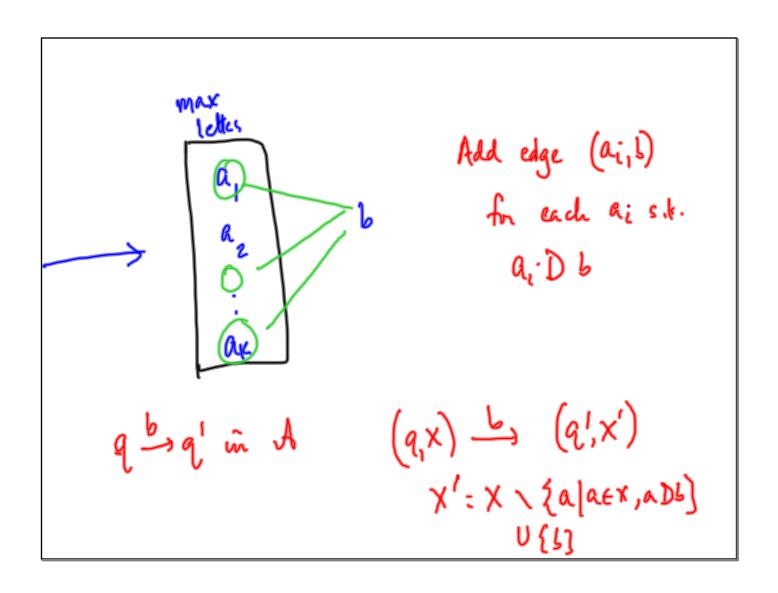
Given $w \in \mathcal{E}^{*}$, |ast(w)| is the last letter in w $T \in \mathcal{E}^{*}/_{\sim}$ | $|ast(\sigma)| = \{|ast(w)| | |w \in \sigma\}\}$ $|T| = |ast(\sigma)| = \{|ast(\sigma)| = 1\}$ $|T| = |ast(\sigma)| = 1$ |T| = |ast(w)| = |ast(w)| = 1 |T| = |ast(w)| = |ast(w)| = |ast(w)| = 1 |T| = |ast(w)| = |ast(w

$$Z : \{a_{1}b_{1}c_{1}, I = \{(a_{1}b_{1}, (b_{1}a_{2})\}\}$$

$$A : q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{b_{2}} q_{2} \xrightarrow{c_{3}} q_{3}$$

$$a \qquad a \qquad b \qquad a^{c_{1}b_{3}}$$

$$(q_{0}, \phi) \qquad (q_{1}, \{a_{2}\}) \qquad (q_{2}, \{a_{1}b_{3}\}) \qquad (q_{3}, \{c_{3}\})$$



$$(B, E) \implies (E, \leq, \#, \lambda)$$

$$B_{pr} \qquad \lambda: E \rightarrow E$$

$$+ \text{race labelled}$$

$$(C_{ES}, E)$$

$$(C_{ES}, E)$$

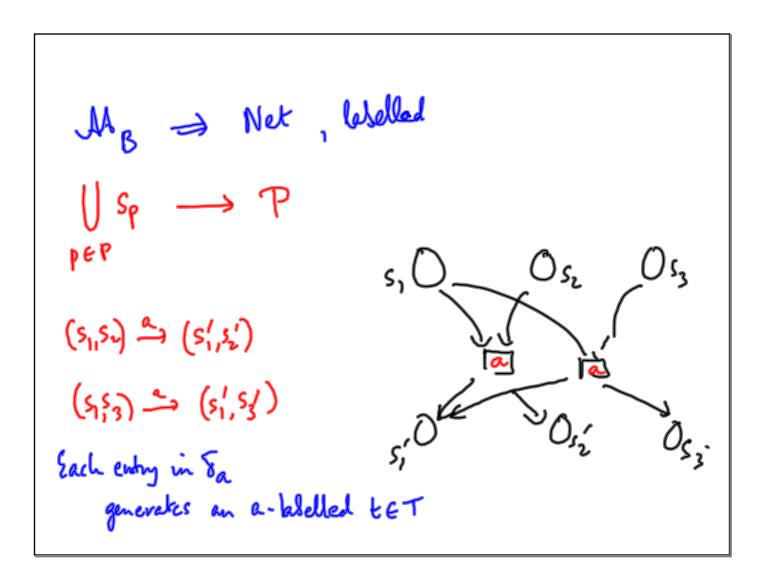
Regular trace labelled ES
$$(E_1 \in H, \lambda) \longrightarrow 1$$
 safe net

Regular trace structure $(B_1 E) \longrightarrow 1$ in (Bpr) is reg.

Apr fsm

At $S = \{P\} p \in P$

At g
 $A \in S_{loc(a)} \times S_{10c(a)}$



For Es,
$$\alpha \in \Sigma$$

$$L_{\alpha} = \left\{ tr(Je) \mid \lambda(e) = \alpha \right\}$$

$$= \left\{ \sigma \in Bpr \mid last(\sigma) = \alpha \right\}$$

