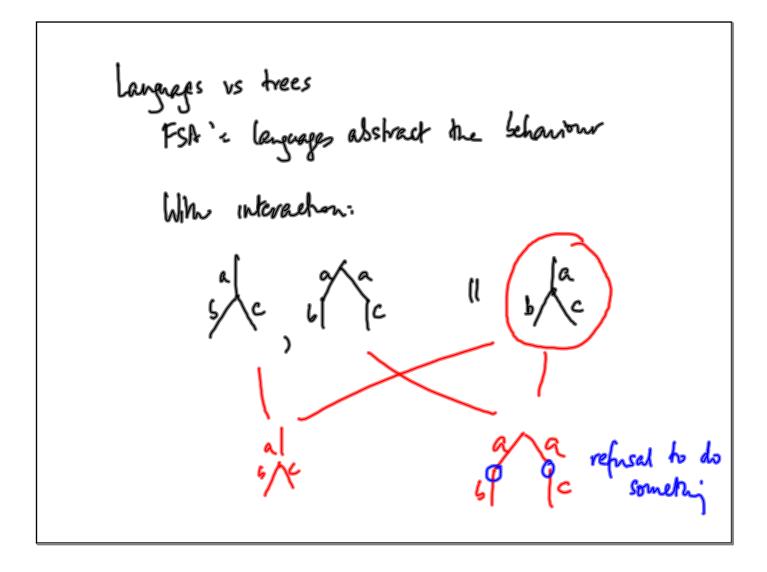
Elementary Net Systems (event Net N= (P,T,F) (B,E,F) Modelling State space is bounded Lfor Petri vets, reachestility is hard Today: Behaviour of ENS



T

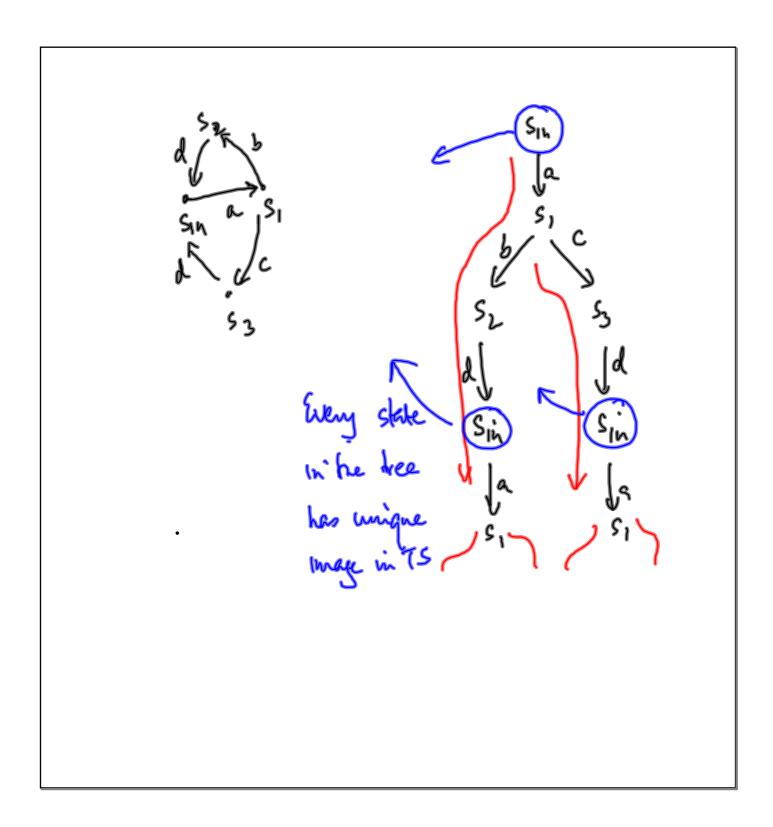
$$TS = (S_1 \rightarrow , S_{1N})$$

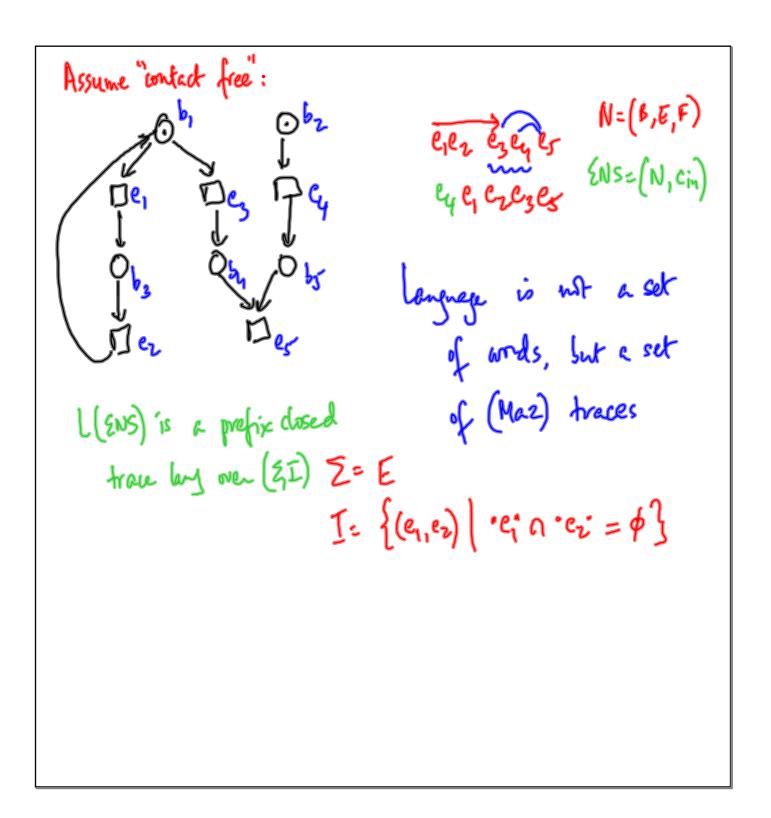
$$L(TS) = \{ w \mid \exists run \quad S_{pn} \xrightarrow{a_1} S_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} S_n, \\ W = a_q a_2 \dots a_n \}$$

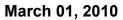
$$Prefer closed$$
(due fogeher runs on common prefixed
$$S_{pn} \xrightarrow{a_1} S_1 \xrightarrow{b_n} S_2$$

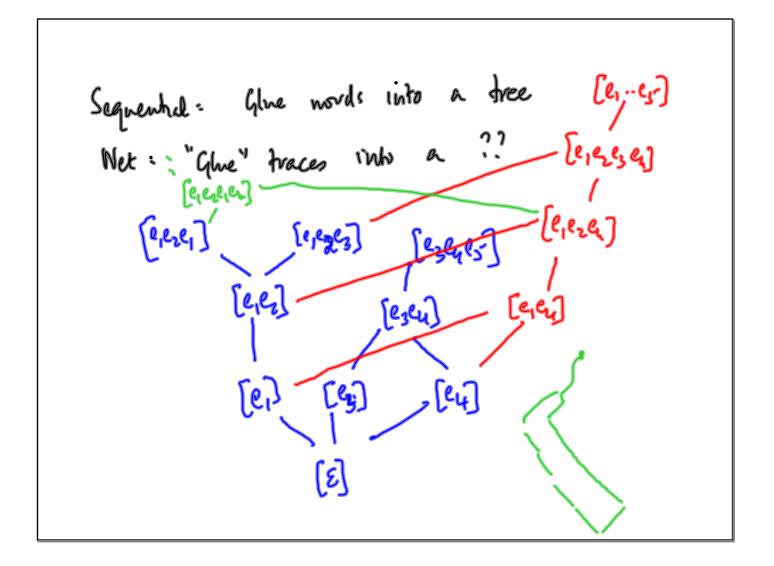
$$S_{1N} \xrightarrow{a_1} S_1 \xrightarrow{c_1} S_3$$

$$S_{1N} \xrightarrow{a_1} S_1 \xrightarrow{c_2} S_3$$

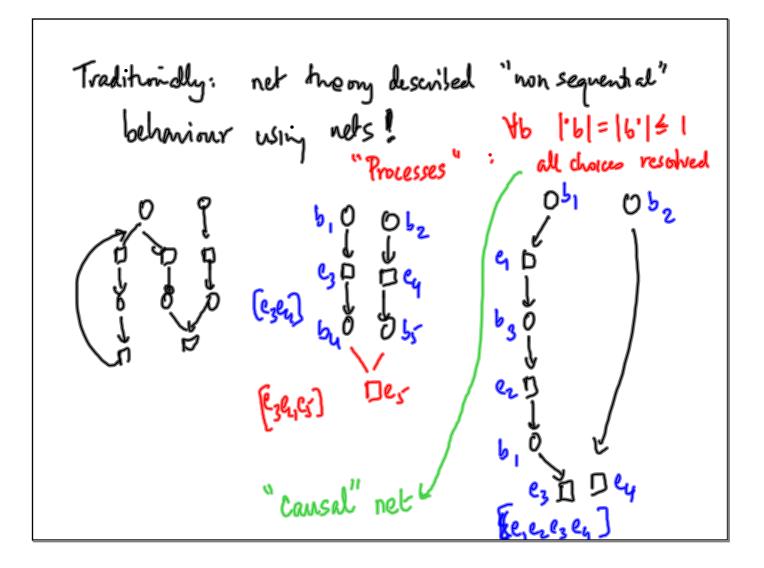


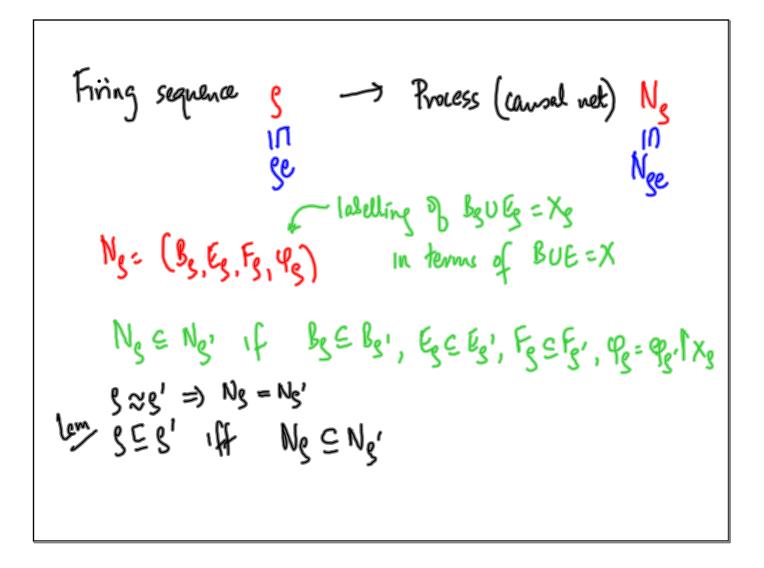


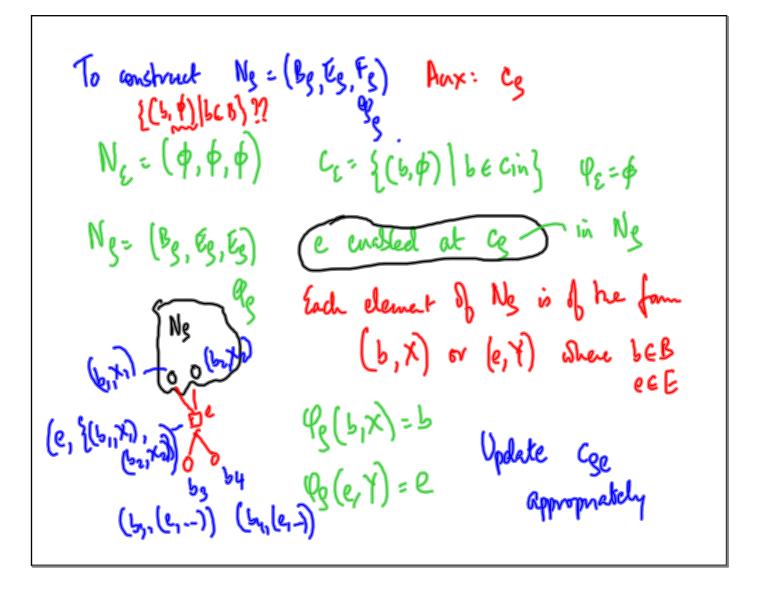


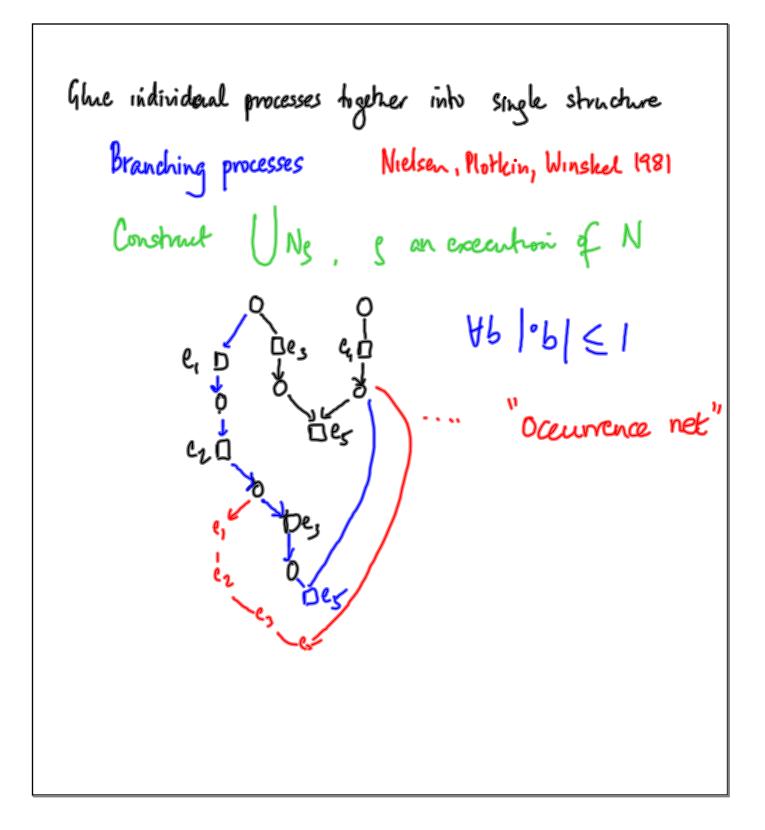


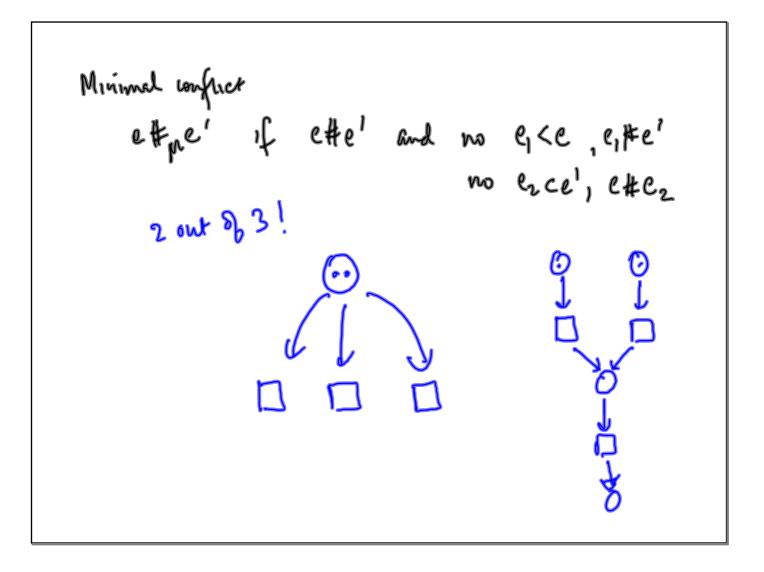
Define parhal order on traces: SER' if s' is en extension of S grg' (compatisity) Jg" st. SES", S'ES" gt g' not compartice \$ g"... Clam Ste' (=)] 31, e, e', S, e E S, S, e' E g' At Cg (1.e. Cin Str Cg) eje'ac m longs: ct











Configuration = set of events seen so far

$$C \subseteq E$$
 s.t. $C = VC$, $C \times C \cap \# = \beta$
 (C_{ES}, \subseteq)
 $(Traces(N), E)$ isomorphic to (C_{ES}, \subseteq)
Representation result $(E, \subseteq, \#)$ can be
recovered from (C_{ES}, \subseteq)

Prince algebraic: Every
$$x \in X = \bigcup \{p \leq x, p \text{ princ}\}$$

 (C_{25}, \subseteq) some configuration are "princ"
Minimel way p c $x[c_{2}c_{4}]$
 M_{nimel} way p c $x[c_{3}]$ [e] v
 $addy an event$ $fersion (C_{5}, \equiv)$
 $E = prime configuration (c_{5}, \equiv)$
 $X = 4t$