
Normal Forms for Boolean Expressions

A NORMAL FORM defines a class expressions s.t.
a. Satisfy certain structural properties
b. Are usually universal: able to express every boolean

function
 1. Disjunctive Normal Form (DNF)
 - Sum Of Products of literals, i.e., a variable or its negation
Example: xy'z + yz + w

 2. Conjunctive Normal Form (CNF)
 - Product of CLAUSES, i.e., sum of literals
Example: (z+w).(x+y+z'+w), (x+y'+z).(y+z).w‘

3. Negation Normal Form (NNF): Negation appears only at leaves
Example: (x+yz).y’ Counter Example: (a’.b)’+c’

Propositional Logic Decidability Complexity

Theorem: Satisfiability of CNF formulas is NP-complete

Theorem: Validity of DNF formulas is NP-complete

Theorem: Satisfiability and Validity of
 arbitrary boolean formulas is NP-complete

Intuition behind NP-completeness:
 Transformation b/w normal forms can have
 exponential blow-up

2SAT Satisfiability is Polynomial Time

For each variable
Check if there is a path from X to X’ as well as from X’ to X
 Path checking on graph is Poly!!

Implication Graph Notes:
1. Each clause is an implication
 e.g., x’+y = x  y
2. Vertex for each literal in clause
3. One edge for each implication

Theorem:
 3SAT and above is NP-complete
 Note: Clique is NP-complete

Reduction of 3SAT CNF to Clique Problem on Graphs

Are we doomed then?

• No, there are efficient methods that work VERY well for

large classes of formulas

• We study two techniques that are the basis for widely

used tools in practice
• ROBDD: A compact cannonical form for arbitrary

boolean functions
• SAT solving: An efficient heuristic-based algorithm

to check satisfiablity of CNF formulas

SAT Solver Handling Capacity Progress

Techniques underlying state-of-art
SAT Solvers

 Motivation for SAT
 BDD is an overkill, especially if just want SAT (e.g.,

you don't want to do equivalence checking)
 BDDs often explode without good ordering

 Revolutionary heuristic-based improvements on
CNF-based resolution/sat methods
 Isn't conversion to CNF itself a problem??

 Tseitin Transformation:
 Can be done with linear increase in size

 provided you also allow for linear increase in variables

Acknowledgements: Sharad Malik, Princeton, Daniel Kroening, Oxford University

Some Easy Situations for CNF SAT

 Every literal occurs with the same polarity
 e.g., (a+b’)(c’+d)

 Every clause has at least one literal that occurs

with same polarity everywhere
 e.g., (a+b’)(b+c’)

 Nontrivial cases: Every clause has at least one

literal that occurs with both polarity everywhere
 e.g., (a+b’)(c+d)(b+c’+a’)d’

a + b + g + h’ + f a + b + g + h’

Resolution Rule

 Resolution of a pair of clauses with incompatible variables
 Pick EXACTLY one such pivot variable
 Resolvent, is union of rets of literals in the premise clauses

a + b + c’ + f g + h’ + c + f

Soundness: Resolvent EQUISAT Premise CNF
a. Resolvent is true whenever premise CNF is true
 i.e., Resolvent is SAT iff premise CNF is SAT

b. If premise CNF is UNSAT Resolvent is UNSAT
 e.g., {a} {a'} --> resolvent is empty

Completeness:
It is complete or checking SAT/UNSAT,
given a set of clauses

The Timeline

1960: Davis Putnam
Resolution Based
10 variables

Davis Putnam Algorithm
 M .Davis, H. Putnam, “A computing procedure for quantification theory", J. of

ACM, Vol. 7, pp. 201-214, 1960
 Existential abstraction using resolution
 Iteratively select a variable for resolution till no more variables are left.

(a’ + c) (a’ + c’)

(c) (c’)

()

SAT UNSAT

(a)

Potential memory explosion problem!

(a + b + c) (b + c’ + f’) (b’ + e) F =

(a + e + f) bc F =

(c’ + e + f) (a + c + e) b F =

bcaef F = 1

(a + b) (a + b’) (a’ + c) (a’ + c’) F =

b F =

ba F =

bac F =

The Timeline
1962

Davis Logemann Loveland
Depth First Search

 10 var
1960
DP

 10 var

1952
Quine

 10 var

DLL Algorithm

 Davis, Logemann and Loveland
 M. Davis, G. Logemann and D. Loveland, “A Machine Program for

Theorem-Proving", Communications of ACM, Vol. 5, No. 7, pp. 394-397,
1962

 Also known as DPLL for historical reasons
 Basic framework for many modern SAT solvers

What’s the big deal?

x
2

x
1

x
4

x
3

x
4

x
3

x
5

x
5

x
5

x
5

Conflict clause: x1’+x3+x5’

Significantly prune the search space –
learned clause is useful forever!

Useful in generating future conflict
clauses.

Satisfied Literal

Unsatisfied Literal

Unassigned Literal

(a +b’+ c)(b + c’)(a’ + c’)
a = T, b = T, c is unassigned

 Implication
 A variable is forced to be assigned to be True or False based on

previous assignments.
 Unit clause rule (rule for elimination of one literal clauses)

 An unsatisfied clause is a unit clause if it has exactly one unassigned
literal.

 The unassigned literal is implied because of the unit clause.
 Boolean Constraint Propagation (BCP)

 Iteratively apply the unit clause rule until there is no unit clause available.
 a.k.a. Unit Propagation

 Workhorse of DLL based algorithms.

Implications and Boolean
Constraint Propagation

Basic DLL Procedure - DFS

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

Basic DPLL Procedure - DFS

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

a

Basic DPLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

 Decision

Basic DPLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0  Decision

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0  Decision

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d@3

c’@3

(a + c + d)
a’@1

(a + c + d’) Conflict!
Implication Graph (a + c + d’)

b@2

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d@3

c’@3

(a + c + d)
a’@0

(a + c + d’)
Conflict!

Implication Graph (a + c + d)

b@2

Basic DPLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

 Backtrack

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d@3

c@3

(a + c’ + d)
a’@1

(a + c’ + d’)

Conflict!

1  Forced Decision

b@2

Basic DPLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

 Backtrack

Basic DPLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

1  Forced Decision

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d@3

c’@3

(a + c + d)
a’@1

(a + c + d’)

Conflict!

1

c
0

1

 Decision

b@2

Basic DPLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0

1

 Backtrack

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d@3

c@3

(a + c’ + d)
a’@1

b@2

(a + c’ + d’)

Conflict!

1

c
0 1

1

 Forced Decision

Basic PProcedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

 Backtrack

Basic DPLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1  Forced Decision

Basic DPLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0  Decision

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0

c@2

b’@2

(a’ + b + c)
a@1

(a’ + b + c’)

Conflict!

Basic DPLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0

 Backtrack

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0 1

a@1

b@2

c@2
(a’ + b’ + c)

 Forced Decision

Basic DLL Procedure - DFS
a

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0 1

a@1

b@2

c@2
(a’ + b’ + c) (b’ + c’ + d)

d@2

0

Basic DLL Procedure - DFS
a

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0 1

a@1

b@2

c@2
(a’ + b’ + c) (b’ + c’ + d)

d@2

 SAT

0

Features of DPLL
 Eliminates the exponential memory requirements of DP
 Exponential time is still a problem
 Limited practical applicability – largest use seen in automatic

theorem proving
 Very limited size of problems are allowed

 32K word memory
 Problem size limited by total size of clauses (1300 clauses)

The Timeline

1962
DLL

 10 var

1986
Binary Decision Diagrams (BDDs)

100 var

1960
DP

 10 var

1952
Quine
 10 var

Using BDDs to Solve SAT
R. Bryant. “Graph-based algorithms for Boolean function manipulation”.

IEEE Trans. on Computers, C-35, 8:677-691, 1986.
 Store the function in a Directed Acyclic Graph (DAG) representation.

 Compacted form of the function decision tree.
 Reduction rules guarantee canonicity under fixed variable order.
 Provides for efficient Boolean function manipulation.
 Overkill for SAT.

The Timeline
1996

GRASP
Conflict Driven Learning,

Non-chornological Backtracking
1k var

1960
DP

10 var

1986
BDDs

 100 var

1992
GSAT

 300 var

1996
Stålmarck
 1k var

1988
SOCRATES
 3k var

1994
Hannibal
 3k var

1962
DLL

 10 var

1952
Quine
 10 var

The Timeline
1996

GRASP
Conflict Driven Learning,

Non-chornological Backtracking
1k var

1960
DP

10 var

1986
BDDs

 100 var

1992
GSAT

 300 var

1996
Stålmarck
 1k var

1988
SOCRATES
 3k var

1994
Hannibal
 3k var

1962
DLL

 10 var

1952
Quine
 10 var

GRASP
 Marques-Silva and Sakallah [SS96,SS99]

J. P. Marques-Silva and K. A. Sakallah, "GRASP -- A New Search
Algorithm for Satisfiability,“ Proc. ICCAD 1996.
J. P. Marques-Silva and Karem A. Sakallah, “GRASP: A Search Algorithm
for Propositional Satisfiability”, IEEE Trans. Computers, C-48, 5:506-521,
1999.

 Incorporates conflict driven learning and non-chronological
backtracking

 Practical SAT instances can be solved in reasonable time
 Bayardo and Schrag’s RelSAT also proposed conflict driven

learning [BS97]
 R. J. Bayardo Jr. and R. C. Schrag “Using CSP look-back techniques to

solve real world SAT instances.” Proc. AAAI, pp. 203-208, 1997(144
citations)

What can we learn from the implication graph?
• The decisions causing conflicts are the roots. i.e., the sinks
• None of the other decisions, e.g., at levels 4,5, matter
• Learn you can’t have assignment: (x1 . x9’ . x10’ . x11’)

backtrack to
the largest decision
level in the conflict
Clause !!

What constitutes a sufficient condition for conflict:
1. Make a cut to separate “conflict side” from “reason side”
2. Conjunction (C) of literals labeling the set of nodes on the reason side that
 have at least one edge to the conflict side

Conflict Clause: Negation of C

What is a good conflict clause?
• Must be new!!
• An “asserting clause” that flips
 decision made at current level
• Backtracks to the lowest level?
• Shorter clauses

