
Normal Forms for Boolean Expressions 
 
A NORMAL FORM defines a class expressions s.t. 
a. Satisfy certain structural properties 
b. Are usually universal: able to express every boolean 

function 
    1. Disjunctive Normal Form (DNF) 
   - Sum Of Products of literals, i.e., a variable or its negation 
Example: xy'z + yz + w 
 
 2. Conjunctive Normal Form (CNF) 
   - Product of CLAUSES, i.e., sum of literals 
Example: (z+w).(x+y+z'+w), (x+y'+z).(y+z).w‘ 
 
 
3. Negation Normal Form (NNF):  Negation appears only at leaves
Example: (x+yz).y’      Counter Example: (a’.b)’+c’ 
 







Propositional  Logic Decidability Complexity 

Theorem: Satisfiability of CNF formulas is NP-complete 
 
Theorem: Validity of DNF formulas is NP-complete 
 
Theorem:  Satisfiability and Validity of 
                                         arbitrary boolean formulas is NP-complete

Intuition behind NP-completeness:  
           Transformation  b/w normal forms can have  
                                                               exponential blow-up



2SAT Satisfiability is Polynomial Time 

For each variable 
Check if there is a path from X to X’ as well as from X’ to X 
                           Path checking on graph is Poly!! 

Implication Graph Notes: 
1. Each clause is an implication
       e.g., x’+y = x   y 
2. Vertex for each literal in clause
3. One edge for each implication



Theorem:  
      3SAT and above is NP-complete
          Note:    Clique is NP-complete

Reduction of 3SAT CNF to Clique Problem on Graphs



Are we doomed then? 
    
•  No, there are efficient methods that work VERY well for 

large classes of formulas 
 
• We study two techniques that are the basis for widely 

used tools in practice 
• ROBDD: A compact cannonical form for arbitrary 

boolean functions 
• SAT solving:   An efficient heuristic-based algorithm 

to check satisfiablity of CNF formulas 



SAT Solver Handling Capacity Progress  



Techniques underlying state-of-art 
SAT Solvers 

 Motivation for SAT 
 BDD is an overkill, especially if just want SAT (e.g., 

you don't want to do equivalence checking) 
 BDDs often explode without good ordering 

 Revolutionary heuristic-based improvements on 
CNF-based resolution/sat methods 
 Isn't conversion to CNF itself a problem?? 

 Tseitin Transformation: 
 Can be done with linear increase in size 

 provided you also allow for linear increase in variables 
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Some Easy Situations for CNF SAT 

 Every literal occurs with the same polarity 
    e.g., (a+b’)(c’+d) 
 
 Every clause has at least one literal that occurs 

with same polarity everywhere 
    e.g., (a+b’)(b+c’) 
 
 Nontrivial cases: Every clause has at least one 

literal that occurs with both polarity everywhere 
    e.g., (a+b’)(c+d)(b+c’+a’)d’ 

 
    



a + b + g + h’ + f a + b + g + h’ 

Resolution Rule 

 Resolution of a pair of clauses with incompatible variables 
 Pick EXACTLY one such pivot variable 
 Resolvent, is union of rets of literals in the premise clauses 

a + b + c’ + f g + h’ + c + f 

Soundness: Resolvent EQUISAT Premise CNF 
a. Resolvent is true whenever premise CNF is true 
   i.e., Resolvent is SAT iff premise CNF is SAT 
 
b. If premise CNF is UNSAT Resolvent is UNSAT  
   e.g., {a} {a'}  --> resolvent is empty 

Completeness: 
It is complete or checking SAT/UNSAT, 
given a set of clauses 



The Timeline 

1960: Davis Putnam 
Resolution Based 
10 variables 



Davis Putnam Algorithm 
 M .Davis, H. Putnam, “A computing procedure for quantification theory", J. of 

ACM, Vol. 7, pp. 201-214, 1960  
 Existential abstraction using resolution 
 Iteratively select a variable for resolution till no more variables are left. 

(a’ + c) (a’ + c’) 

(c) (c’) 

( ) 

SAT UNSAT 

(a) 

Potential memory explosion problem! 

(a + b + c) (b + c’ + f’) (b’ + e) F = 

(a + e + f) bc F = 

(c’ + e + f) (a + c + e) b F = 

bcaef F =  1 

(a + b) (a + b’) (a’ + c) (a’ + c’) F = 

b F = 

ba F = 

bac F = 



The Timeline 
1962 

Davis Logemann Loveland 
Depth First Search 

 10 var 
1960 
DP 

 10 var 

1952 
Quine 

 10 var 



DLL Algorithm  

 Davis, Logemann and Loveland  
 M. Davis, G. Logemann and D. Loveland, “A Machine Program for 

Theorem-Proving", Communications of ACM, Vol. 5, No. 7, pp. 394-397, 
1962 

 Also known as DPLL for historical reasons 
 Basic framework for many modern SAT solvers 
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Conflict clause: x1’+x3+x5’ 

Significantly prune the search space –  
learned clause is useful forever! 
 
Useful in generating future conflict 
clauses. 
 









Satisfied Literal 

Unsatisfied Literal 

Unassigned Literal 

(a +b’+ c)(b + c’)(a’ + c’) 
a = T, b = T, c is unassigned 

 

 Implication 
 A variable is forced to be assigned to be True or False based on 

previous assignments. 
 Unit clause rule (rule for elimination of one literal clauses) 

 An unsatisfied clause is a unit  clause if it has exactly one unassigned 
literal. 
 
 
 

 The unassigned literal is implied because of the unit clause. 
 Boolean Constraint Propagation (BCP) 

 Iteratively apply the unit clause rule until there is no unit clause available. 
 a.k.a. Unit Propagation 

 Workhorse of DLL based algorithms. 
 
 

Implications and Boolean 
Constraint Propagation 



Basic DLL Procedure - DFS 

(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 



Basic DPLL Procedure - DFS 

(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

a 



Basic DPLL Procedure - DFS 
a 

0 
(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

 Decision  



Basic DPLL Procedure - DFS 
a 

0 
(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

b 
0  Decision 



Basic DLL Procedure - DFS 
a 

0 
(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

b 
0 

c 
0  Decision 



Basic DLL Procedure - DFS 
a 

0 
(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

b 
0 

c 
0 

d@3 

c’@3 

(a + c + d) 
a’@1 

(a + c + d’) Conflict! 
Implication Graph (a + c + d’) 

b@2 



Basic DLL Procedure - DFS 
a 

0 
(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

b 
0 

c 
0 

d@3 

c’@3 

(a + c + d) 
a’@0 

(a + c + d’) 
Conflict! 

Implication Graph (a + c + d) 

b@2 



Basic DPLL Procedure - DFS 
a 

0 
(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

b 
0 

c 
0 

 Backtrack 



Basic DLL Procedure - DFS 
a 

0 
(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

b 
0 

c 
0 

d@3 

c@3 

(a + c’ + d) 
a’@1 

(a + c’ + d’) 

Conflict! 

1  Forced Decision 

b@2 



Basic DPLL Procedure - DFS 
a 

0 
(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

b 
0 

c 
0 1 

 Backtrack 



Basic DPLL Procedure - DFS 
a 

0 
(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

b 
0 

c 
0 1 

1  Forced Decision 



Basic DLL Procedure - DFS 
a 

0 
(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

b 
0 

c 
0 

d@3 

c’@3 

(a + c + d) 
a’@1 

(a + c + d’) 

Conflict! 

1 

c 
0 

1 

 Decision 

b@2 



Basic DPLL Procedure - DFS 
a 

0 
(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

b 
0 

c 
0 1 

c 
0 

1 

 Backtrack 



Basic DLL Procedure - DFS 
a 

0 
(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

b 
0 

c 
0 

d@3 

c@3 

(a + c’ + d) 
a’@1 

b@2 

(a + c’ + d’) 

Conflict! 

1 

c 
0 1 

1 

 Forced Decision 



Basic PProcedure - DFS 
a 

0 
(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

b 
0 

c 
0 1 

c 
0 1 

1 

 Backtrack 



Basic DPLL Procedure - DFS 
a 

0 
(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

b 
0 

c 
0 1 

c 
0 1 

1 

1  Forced Decision 



Basic DPLL Procedure - DFS 
a 

0 
(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

b 
0 

c 
0 1 

c 
0 1 

1 

1 

b 
0  Decision 



Basic DLL Procedure - DFS 
a 

0 
(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

b 
0 

c 
0 1 

c 
0 1 

1 

1 

b 
0 

c@2 

b’@2 

(a’ + b + c) 
a@1 

(a’ + b + c’) 

Conflict! 



Basic DPLL Procedure - DFS 
a 

0 
(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

b 
0 

c 
0 1 

c 
0 1 

1 

1 

b 
0 

 Backtrack 



Basic DLL Procedure - DFS 
a 

0 
(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

b 
0 

c 
0 1 

c 
0 1 

1 

1 

b 
0 1 

a@1 

b@2 

c@2 
(a’ + b’ + c) 

 Forced Decision 



Basic DLL Procedure - DFS 
a 

(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

b 
0 

c 
0 1 

c 
0 1 

1 

1 

b 
0 1 

a@1 

b@2 

c@2 
(a’ + b’ + c) (b’ + c’ + d) 

d@2 

0 



Basic DLL Procedure - DFS 
a 

(a + c + d) 
(a + c + d’) 
(a + c’ + d) 
(a + c’ + d’) 

(a’ + b + c) 

(b’ + c’ + d) 
(a’ + b + c’) 
(a’ + b’ + c) 

b 
0 

c 
0 1 

c 
0 1 

1 

1 

b 
0 1 

a@1 

b@2 

c@2 
(a’ + b’ + c) (b’ + c’ + d) 

d@2 

 SAT 

0 



Features of DPLL 
 Eliminates the exponential memory requirements of DP 
 Exponential time is still a problem 
 Limited practical applicability – largest use seen in automatic 

theorem proving 
 Very limited size of problems are allowed 

 32K word memory 
 Problem size limited by total size of clauses (1300 clauses) 
 



The Timeline 
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DP 
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Quine 
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Using BDDs to Solve SAT 
R. Bryant. “Graph-based algorithms for Boolean function manipulation”. 

IEEE Trans. on Computers, C-35, 8:677-691, 1986.  
 Store the function in a Directed Acyclic Graph (DAG) representation. 

  Compacted form of the function decision tree. 
 Reduction rules guarantee canonicity under fixed variable order. 
 Provides for efficient Boolean function manipulation. 
 Overkill for SAT.  



The Timeline 
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DP 
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 1k var 

 

1988 
SOCRATES 
 3k var 

1994 
Hannibal 
 3k var 

1962 
DLL 

 10 var 

1952 
Quine 
 10 var 



The Timeline 
1996 

GRASP 
Conflict Driven Learning, 

Non-chornological Backtracking 
1k var 

1960 
DP 

10 var 

1986 
BDDs 

 100 var 

1992 
GSAT 

 300 var 

1996 
Stålmarck 
 1k var 

 

1988 
SOCRATES 
 3k var 

1994 
Hannibal 
 3k var 

1962 
DLL 

 10 var 

1952 
Quine 
 10 var 



GRASP 
 Marques-Silva and Sakallah [SS96,SS99]  

J. P. Marques-Silva and K. A. Sakallah, "GRASP -- A New Search 
Algorithm for Satisfiability,“ Proc. ICCAD 1996.  
J. P. Marques-Silva and Karem A. Sakallah, “GRASP: A Search Algorithm 
for Propositional Satisfiability”, IEEE Trans. Computers, C-48, 5:506-521, 
1999.  

 Incorporates conflict driven learning and non-chronological 
backtracking 

 Practical SAT instances can be solved in reasonable time 
 Bayardo and Schrag’s RelSAT also proposed conflict driven 

learning [BS97] 
 R. J. Bayardo Jr. and R. C. Schrag “Using CSP look-back techniques to 

solve real world SAT instances.” Proc. AAAI, pp. 203-208, 1997(144 
citations) 

 







What can we learn from the implication graph? 
• The decisions causing conflicts are the roots. i.e., the sinks 
• None of the other decisions, e.g., at levels 4,5, matter 
• Learn you can’t have assignment:  (x1 . x9’ . x10’ . x11’) 



backtrack to  
the largest decision  
level in the conflict 
Clause !! 



What constitutes a sufficient condition for conflict: 
1. Make a cut to separate “conflict side” from “reason side” 
2. Conjunction (C) of literals labeling the set of nodes on the reason side that 
       have at least one edge to the conflict side 
 
Conflict Clause: Negation of C 



What is a good conflict  clause? 
• Must be new!! 
• An “asserting clause” that flips 
      decision made at current level 
• Backtracks to the lowest level? 
• Shorter clauses 




















