Normal Forms for Boolean Expressions

A NORMAL FORM defines a class expressions s.t.
a. Satisfy certain structural properties
b. Are usually universal: able to express every boolean function

1. Disjunctive Normal Form (DNF)

- Sum Of Products of literals, i.e., a variable or its negation Example: $x y^{\prime} z+y z+w$

2. Conjunctive Normal Form (CNF)

- Product of CLAUSES, i.e., sum of literals

Example: $(z+w) \cdot\left(x+y+z^{\prime}+w\right),\left(x+y^{\prime}+z\right) \cdot(y+z) \cdot w^{c}$
3. Negation Normal Form (NNF): Negation appears only at leav Example: ($x+y z$).y' Counter Example: (a'.b)' $+c^{\prime}$

Satisfiability/validity of DNF and CNF

Satisfiability of formulas in DNF can be checked in linear time.
A formula in DNF is satisfiable iff at least one of its conjunctions is satisfiable. A conjunction is satisfiable iff for every atomic formula A the conjunction does not contain both A and $\neg A$ as literals.

$$
\begin{aligned}
\text { Satisfiable: } & (\neg B \wedge A \wedge B) \vee(\neg A \wedge C) \\
\text { Unsatisfiable: } & (A \wedge \neg A \wedge B) \vee(C \wedge \neg C)
\end{aligned}
$$

Satisfiability/validity of DNF and CNF

Validity of formulas in CNF can be checked in linear time.
A formula in CNF is valid iff all its disjunctions are valid. A disjunction is valid iff for some atomic formula A the disjunction contains both A and $\neg A$ as literals (or the disjunction is empty.)

Valid: $\quad(A \vee \neg A \vee B) \wedge(C \vee \neg C)$
Not valid: $\quad(A \vee \neg A) \wedge(\neg A \vee C)$

Propositional Logic Decidability Complexity

Theorem: Satisfiability of CNF formulas is NP-complete
Theorem: Validity of DNF formulas is NP-complete
Theorem: Satisfiability and Validity of arbitrary boolean formulas is NP-complett

Intuition behind NP-completeness:
Transformation b/w normal forms can have

2SAT Satisfiability is Polynomial Time

$(\neg x v y) \wedge(\neg y \vee z) \wedge(x \vee \neg z) \wedge(z v y)$

Implication Graph Notes:

1. Each clause is an implicatior e.g., $x^{\prime}+y=x \rightarrow y$
2. Vertex for each literal in claus
3. One edge for each implicatioı

For each variable
Check if there is a path from X to X^{\prime} as well as from X^{\prime} to X Path checking on graph is Poly!!

Reduction of 3SAT CNF to Clique Problem orfitap

Theorem:
3SAT and above is NP-comple
Note: Clique is NP-comple

Are we doomed then?

- No, there are efficient methods that work VERY well for large classes of formulas
- We study two techniques that are the basis for widely used tools in practice
- ROBDD: A compact cannonical form for arbitrary boolean functions
- SAT solving: An efficient heuristic-based algorithm to check satisfiablity of CNF formulas

SAT Solver Handling Capacity Progress

Techniques underlying state-of-art SAT Solvers

- Motivation for SAT
- BDD is an overkill, especially if just want SAT (e.g., you don't want to do equivalence checking)
- BDDs often explode without good ordering
- Revolutionary heuristic-based improvements on CNF-based resolution/sat methods
- Isn't conversion to CNF itself a problem??
- Tseitin Transformation:
- Can be done with linear increase in size
- provided you also allow for linear increase in variables

Tseitin Transformation: Circuit to CNF

Algorithmic Description of Tseitin Transformation

Tseitin Transformation

1. For each non-input signal s : generate a new variable x_{s}
2. For each gate: produce input / output constraints as clauses
3. Collect all constraints in a big conjunction

Algorithmic Description of Tseitin Transformation

- The transformation is satisfiability-preserving: the result is satisfiable iff and only the original formula is satisfiable
- You an get a satisfying assignment for original formula by projecting the satisfying assignment onto the original variables
- Not equivalent in the classical sense to original formula: it has new variables

Example SAT: Circuit Equivalence

Let's change the circuit!

$$
\begin{aligned}
& (x \leftrightarrow a \wedge c) \wedge \\
& (y \leftrightarrow b \wedge x) \wedge \\
& (u \leftrightarrow a \vee b) \wedge \\
& (v \leftrightarrow b \vee c) \wedge \\
& (w \leftrightarrow u \wedge v) \wedge \\
& (o \leftrightarrow y \oplus w)
\end{aligned}
$$

Is the CNF satisfiable?

Some Easy Situations for CNF SAT

- Every literal occurs with the same polarity
e.g., (a+b’)(c'+d)
- Every clause has at least one literal that occurs with same polarity everywhere
e.g., (a+b’)(b+c')
- Nontrivial cases: Every clause has at least one literal that occurs with both polarity everywhere e.g., $\left(a+b^{\prime}\right)(c+d)\left(b+c^{\prime}+a^{\prime}\right) d^{\prime}$

$$
\text { Resolution Rule } \frac{\left\{\varphi_{1}, \ldots, \psi_{1}, \ldots, \varphi_{m}\right\}}{\left\{\psi_{1}, \ldots, \gamma_{2}, \psi_{n}\right\}}\left\{\begin{array}{|c|c|c|c|c}
\\
\left\{\varphi_{m}, \psi_{1}, \ldots, \psi_{n}\right\}
\end{array}\right.
$$

- Resolution of a pair of clauses with incompatible variables
- Pick EXACTLY one such pivot variable
- Resolvent, is union of rets of literals in the premise clauses

Soundness: Resolvent EQUISAT Premise CNF

Completeness:

It is complete or checking SAT/UNSAT, given a set of clauses
a. Resolvent is true whenever premise CNF is true i.e., Resolvent is SAT iff premise CNF is SAT
b. If premise CNF is UNSAT Resolvent is UNSAT e.g., $\{a\}\{a\}$--> resolvent is empty

The Timeline

1960: Davis Putnam

Resolution Based

≈ 10 variables

Davis Putnam Algorithm

M .Davis, H. Putnam, "A computing procedure for quantification theory", J. of ACM, Vol. 7, pp. 201-214, 1960
Existential abstraction using resolution

- Iteratively select a variable for resolution till no more variables are left.

Potential memory explosion problem!

The Timeline

1962
Davis Logemann Loveland
Depth First Search
≈ 10 var
1960
DP
$\approx 10 \mathrm{var}$

1952
Quine
$\approx 10 \mathrm{var}$

DLL Algorithm

- Davis, Logemann and Loveland
M. Davis, G. Logemann and D. Loveland, "A Machine Program for Theorem-Proving", Communications of ACM, Vol. 5, No. 7, pp. 394-397, 1962
- Also known as DPLL for historical reasons
- Basic framework for many modern SAT solvers

Binary Search

Formula:

$$
(x \vee y \vee z) \wedge(\neg x \vee y) \wedge(\neg y \vee z) \wedge(\neg x \vee \neg y \vee \neg z)
$$

What's the big deal?

Significantly prune the search space learned clause is useful forever!

Useful in generating future conflict clauses.

Notation

Given the partial assignment

$$
\left\{x_{1} \mapsto 1, x_{2} \mapsto 0, x_{4} \mapsto 1\right\}
$$

$\left(x_{1} \vee x_{3} \vee \neg x_{4}\right)$	is satisfied
$\left(\neg x_{1} \vee x_{2}\right)$	is conflicting
$\left(\neg x_{1} \vee \neg x_{4} \vee x_{3}\right)$	is unit
$\left(\neg x_{1} \vee x_{3} \vee x_{5}\right)$	is unresolved.

Given the partial assignment

$$
\left\{x_{1} \mapsto 1, x_{2} \mapsto 0, x_{4} \mapsto 1\right\}
$$

Basic DPLL

$$
\begin{array}{ll}
\left(x_{1} \vee x_{3} \vee \neg x_{4}\right) & \text { is satisfied } \\
\left(\neg x_{1} \vee x_{2}\right) & \text { is conflicting } \\
\left(\neg x_{1} \vee \neg x_{4} \vee x_{3}\right) & \text { is unit } \\
\left(\neg x_{1} \vee x_{3} \vee x_{5}\right) & \text { is unresolved. }
\end{array}
$$

Basic DPLL

1: function DPLL
2: if BCP()$=$ 'conflict' then return 'Unsatisfiable'; while (TRUE) do if $\neg \operatorname{DECIDE}()$ then return 'Satisfiable'; else
while (BCP() = 'conflict') do backtrack-level $:=$ ANALYZE-CONFLICT(); if backtrack-level <0 then return 'Unsatisfiable'; else

> BACKTRACK(backtrack-level);

- Decide: Choose next variable and value
- BCP: Propagate implications of unit clauses
- Analyze-Conflict: Determine backtracking level

Implications and Boolean Constraint Propagation

- Implication
- A variable is forced to be assigned to be True or False based on previous assignments.
- Unit clause rule (rule for elimination of one literal clauses)
- An unsatisfied clause is a unit clause if it has exactly one unassigned literal.

$$
\begin{array}{cl}
\left(a+b^{\prime}+c\right)\left(b+c^{\prime}\right)\left(a^{\prime}+c^{\prime}\right) & \text { Satisfied Literal } \\
a=T, b=T, c \text { is unassigigned } & \text { Unassigned Literal }
\end{array}
$$

- The unassigned literal is implied because of the unit clause.
- Boolean Constraint Propagation (BCP)
- Iteratively apply the unit clause rule until there is no unit clause available.
- a.k.a. Unit Propagation
- Workhorse of DLL based algorithms.

Basic DLL Procedure - DFS

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Basic DLL Procedure - DFS

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Basic DLL Procedure - DFS

$\left(a^{\prime}+b+c\right)$
$(a+c+d)$
$\left(a+c+d^{\prime}\right)$
$\left(a+c^{\prime}+d\right)$
$\left(a+c^{\prime}+d^{\prime}\right)$
$\left(b^{\prime}+c^{\prime}+d\right)$
$\left(a^{\prime}+b+c^{\prime}\right)$
$\left(a^{\prime}+b^{\prime}+c\right)$

Implication Graph

Basic DLL Procedure - DFS

$\left(a^{\prime}+b+c\right)$
$(a+c+d)$
$\left(a+c+d^{\prime}\right)$
$\left(a+c^{\prime}+d\right)$
$\left(a+c^{\prime}+d^{\prime}\right)$
$\left(b^{\prime}+c^{\prime}+d\right)$
$\left(a^{\prime}+b+c^{\prime}\right)$
$\left(a^{\prime}+b^{\prime}+c\right)$

Implication Graph

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Basic DLL Procedure - DFS

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Conflict!

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Basic DLL Procedure - DFS

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Basic DLL Procedure - DFS

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Basic PProcedure - DFS

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Basic DLL Procedure - DFS

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Basic DPLL Procedure - DFS

$$
\begin{aligned}
& \left(a^{\prime}+b+c\right) \\
& (a+c+d) \\
& \left(a+c+d^{\prime}\right) \\
& \left(a+c^{\prime}+d\right) \\
& \left(a+c^{\prime}+d^{\prime}\right) \\
& \left(b^{\prime}+c^{\prime}+d\right) \\
& \left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)
\end{aligned}
$$

Basic DLL Procedure - DFS

$\left(a^{\prime}+b+c\right)$
$(a+c+d)$
$\left(a+c+d^{\prime}\right)$
$\left(a+c^{\prime}+d\right)$
$\left(a+c^{\prime}+d^{\prime}\right)$
$\left(b^{\prime}+c^{\prime}+d\right)$
$\left(a^{\prime}+b+c^{\prime}\right)$
$\left(a^{\prime}+b^{\prime}+c\right)$

Basic DLL Procedure - DFS

$\left(a^{\prime}+b+c\right)$
$(a+c+d)$
$\left(a+c+d^{\prime}\right)$
$\left(a+c^{\prime}+d\right)$
$\left(a+c^{\prime}+d^{\prime}\right)$
$\left(b^{\prime}+c^{\prime}+d\right)$
$\left(a^{\prime}+b+c^{\prime}\right)$
$\left(a^{\prime}+b^{\prime}+c\right)$

Basic DLL Procedure - DFS

Features of DPLL

- Eliminates the exponential memory requirements of DP
- Exponential time is still a problem
- Limited practical applicability - largest use seen in automatic theorem proving
- Very limited size of problems are allowed
- 32K word memory
- Problem size limited by total size of clauses (1300 clauses)

The Timeline

1986
Binary Decision Diagrams (BDDs)
≈ 100 var

Using BDDs to Solve SAT

R. Bryant. "Graph-based algorithms for Boolean function manipulation". IEEE Trans. on Computers, C-35, 8:677-691, 1986.

- Store the function in a Directed Acyclic Graph (DAG) representation. Compacted form of the function decision tree.
- Reduction rules guarantee canonicity under fixed variable order.
- Provides for efficient Boolean function manipulation.
- Overkill for SAT.

The Timeline

The Timeline

GRASP

- Marques-Silva and Sakallah [SS96,SS99]
J. P. Marques-Silva and K. A. Sakallah, "GRASP -- A New Search Algorithm for Satisfiability," Proc. ICCAD 1996.
J. P. Marques-Silva and Karem A. Sakallah, "GRASP: A Search Algorithm for Propositional Satisfiability", IEEE Trans. Computers, C-48, 5:506-521, 1999.
- Incorporates conflict driven learning and non-chronological backtracking
- Practical SAT instances can be solved in reasonable time
- Bayardo and Schrag's ReISAT also proposed conflict driven learning [BS97]
R. J. Bayardo Jr. and R. C. Schrag "Using CSP look-back techniques to solve real world SAT instances." Proc. AAAI, pp. 203-208, 1997(144 citations)

Implication Graphs

The implication graph tracks how assignments are implied.

Definition (Implication graph)

An implication graph is a labeled directed acyclic graph $G=(V, E)$ where

- V : literals of the current partial assignment. Labeled with the literal and the decision level.
- E: labeled with the clause that caused the implication.
- Can also contain a single conflict node labeled with κ and incoming edges labeled with some conflicting clause.

A Small Implication Graph Example

Current truth assignment: $\left\{\neg x_{1} @ 1\right\}$
Decision: $x_{2} @ 2$

Implication Graphs and Learning

Current truth assignment: $\left\{\neg x_{9} @ 1, \neg x_{10} @ 3, \neg x_{11} @ 3, x_{12} @ 2, x_{13} @ 2\right\}$
Decision: $x_{1} @ 6$

$$
\begin{aligned}
& \text { Clauses } \\
& \omega_{1}=\left(\begin{array}{lll}
\neg x_{1} \vee & x_{2} \\
\omega_{2} & =\left(\begin{array}{lll}
\neg x_{1} \vee & x_{3} \vee & x_{9}
\end{array}\right) \\
\omega_{3} & =\left(\begin{array}{lll}
\neg x_{2} \vee & \neg x_{3} \vee & x_{4}
\end{array}\right) \\
\omega_{4} & =\left(\begin{array}{lll}
\neg x_{4} \vee & x_{5} \vee & x_{10}
\end{array}\right) \\
\omega_{5} & =\left(\begin{array}{lll}
\neg x_{4} \vee & x_{6} \vee & x_{11}
\end{array}\right) \\
\omega_{6} & =\left(\begin{array}{lll}
\neg x_{5} \vee & \vee &
\end{array}\right) \\
\omega_{7} & =\left(\begin{array}{lll}
x_{1} \vee & x_{7} \vee \neg x_{12}
\end{array}\right) \\
\omega_{8} & =\left(\begin{array}{lll}
x_{1} \vee & x_{8}
\end{array}\right) \\
\omega_{9} & =\left(\begin{array}{ll}
\neg x_{7} \vee \neg x_{8} \vee \neg x_{13}
\end{array}\right) \\
\omega_{10} & =\left(\begin{array}{ll}
\neg x_{1} \vee x_{9} \vee x_{11} \vee x_{10}
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

We learn the conflict clause

$$
\omega_{10}=\left(\neg x_{1} \vee x_{9} \vee x_{11} \vee x_{10}\right)
$$

What can we learn from the implication graph?

- The decisions causing conflicts are the roots. i.e., the sinks
- None of the other decisions, e.g., at levels 4,5, matter
- Learn you can't have assignment: (X_{1}. $\mathrm{X9} 9^{\prime}$. $\mathrm{X} 10^{\prime}$. $\mathrm{X} 11^{\prime}$)

Current truth assignment: $\left\{\neg x_{9} @ 1, \neg x_{10} @ 3, \neg x_{11} @ 3, x_{12} @ 2, x_{13} @ 2\right\}$
Decision: $x_{1} @ 6$

backtrack to the largest decision level in the conflict Clause !!

More Conflict Clauses

- Def.: A conflict clause is any clause implied by the formula

$\neg x_{1} \vee x_{9} \vee x_{10} \vee x_{11}$
$\neg x_{2} \vee \neg x_{3} \vee x_{10} \vee x_{11}$
$\neg x_{4} \vee x_{10} \vee x_{11}$

What constitutes a sufficient condition for conflict:

1. Make a cut to separate "conflict side" from "reason side"
2. Conjunction (C) of literals labeling the set of nodes on the reason side that have at least one edge to the conflict side

Conflict Clause: Negation of C

What is a good conflict clause?

- Must be new!!
- An "asserting clause" that flips decision made at current level
- Backtracks to the lowest level?
- Shorter clauses

Definition 2.9 (unique implication point (UIP)). Given a partial conflict graph corresponding to the decision level of the conflict, a unique implication point (UIP) is any node other than the conflict node that is on all paths from the decision node to the conflict node.

Definition 2.10 (first UIP). A first UIP is a UIP that is closest to the conflict node.

Given the partial assignment

$$
\left\{x_{1} \mapsto 1, x_{2} \mapsto 0, x_{4} \mapsto 1\right\}
$$

Basic DPLL

$$
\begin{array}{ll}
\left(x_{1} \vee x_{3} \vee \neg x_{4}\right) & \text { is satisfied } \\
\left(\neg x_{1} \vee x_{2}\right) & \text { is conflicting } \\
\left(\neg x_{1} \vee \neg x_{4} \vee x_{3}\right) & \text { is unit } \\
\left(\neg x_{1} \vee x_{3} \vee x_{5}\right) & \text { is unresolved. }
\end{array}
$$


```
Algorithm 2.2.2: AnALYZE-Conflict
Input:
Output: Backtracking decision level + a new conflict clause
1. if current-decision-level \(=0\) then return -1 ;
2. cl \(:=\) current-conflicting-clause;
3. while ( \(\neg\) STOP-CRITERION-MET \((c l)\) ) do
4. lit \(:=\) LAST-ASSIGNED-LITERAL \((c l)\);
5. var \(:=\) VARIABLE-OF-LITERAL(lit);
6. ante \(:=\) Antecedent(lit);
7. \(c l:=\operatorname{RESOLVE}(c l\), ante, var \()\);
8. add-clause-to-database ( \(c l\) );
9. return clause-asserting-level \((c l)\); \(\quad \triangleright\) 2nd highest decision level in \(c l\)
```

Definition 2.9 (unique implication point (UIP)). Given a partial conflict graph corresponding to the decision level of the conflict, a unique implication point (UIP) is any node other than the conflict node that is on all paths from the decision node to the conflict node.

$$
\begin{aligned}
& c_{1}=\left(\neg x_{4} \vee x_{2} \vee x_{5}\right) \\
& c_{2}=\left(\neg x_{4} \vee x_{10} \vee x_{6}\right) \\
& c_{3}=\left(\neg x_{5} \vee \neg x_{6} \vee \neg x_{7}\right) \\
& c_{4}=\left(\neg x_{6} \vee x_{7}\right)
\end{aligned}
$$

Decision Heuristics: DLIS

DLIS (Dynamic Largest Individual Sum)

choose the assignment that increases the number of satisfied clauses the most

- $C_{x p}$: number of unresolved clauses in which x appears positively
- $C_{x n}$: number of unresolved clauses in which x appears negatively
- Let x be the literal for which $C_{x p}$ is maximal
- Let y be the literal for which $C_{y n}$ is maximal
- If $C_{x p}>C_{y n}$, choose x and assign true
- Otherwise, choose y and assign FALSE

Decision Heuristics: JW

Jeroslow-Wang method
For every clause ω and every literal l, compute:

$$
J(l)=\sum_{l \in \omega, \omega \in \varphi} 2^{-|\omega|}
$$

- $|\omega|$ is the length of the clause (count the literals)
- Make decision l that maximizes $J(l)$
- This gives exponentially higher weight to literals in shorter clauses
- Can be done dynamically (only for unresolved clauses) or upfront

Decision Heuristics: VSIDS

VSIDS (Variable State Independent Decaying Sum)

1. Each variable in each polarity has a counter initialized to 0 .
2. When a clause is added, the counters are updated.
3. The unassigned variable with the highest counter is chosen.
4. Periodically, all the counters are divided by a constant.
\Rightarrow variables appearing in recent conflicts get higher priority

Decision Heuristics: VSIDS

- Keep a list of variables/polarities
- Updates only needed when adding a conflict clause
- Decisions are made in constant time (how?)

Decision Heuristics: VSIDS

VSIDS is a 'quasi-static' strategy:

- static as it does not depend on the current assignment
- dynamic as the weights change over time

VSIDS is called a conflict-driven decision strategy.
"...this strategy dramatically (i.e., an order of magnitude) improved performance..."

