Normal Forms for Boolean Expressions

A NORMAL FORM defines a class expressions s.t.
a. Satisfy certain structural properties

b. Are usually universal: able to express every boolean
function
1. Disjunctive Normal Form (DNF)

- Sum Of Products of literals, I.e., a variable or its negation
Example: xy'z + yz + w

2. Conjunctive Normal Form (CNF)
- Product of CLAUSES, I.e., sum of literals
Example: (z+w).(x+y+z'+w), (X+y'+2z).(y+z).w'

3. Negation Normal Form (NNF): Negation appears only at leay
Example: (x+yz).y’  Counter Example: (a’.b)'+C’



Satisfiability /validity of DNF and CNF

o
%0
X J

D

Satisfiability of formulas in DNF can be checked in linear time.

A formula in DNF is satisfiable iff at least one of its
conjunctions is satisfiable. A conjunction is satisfiable iff for
every atomic formula A the conjunction does not contain
both A and —A as literals.

Satisfiable: (-BAAAB)V(-AAC)
Unsatisfiable: (AA-AAB)V (CA-C)



Satisfiability /validity of DNF and CNF

Validity of formulas in CNF can be checked in linear time.

A formula in CNF is valid iff all its disjunctions are valid.
A disjunction is valid iff for some atomic formula A the
disjunction contains both A and —A as literals (or the
disjunction is empty.)

Valid: (AV-AV B)A(CV-C)
Not valid: (AV —=A)A(=AVC)

VIUeP00




Propositional Logic Decidability Complexity?

Theorem: Satisfiability of CNF formulas is NP-complete
Theorem: Validity of DNF formulas is NP-complete

Theorem: Satisfiability and Validity of
arbitrary boolean formulas is NP-complete

Intuition behind NP-completeness:
Transformation b/w normal forms can have
exponential blow-t



2SAT Satisfiability is Polynomial Time

Implication Graph Notes:

1. Each clause is an implicatior
e.g., X+ty=x-=2>y

2. Vertex for each literal in claus

3. One edge for each implicatiol

For each variable
Check if there is a path from X to X’ as well as from X’ to X

Path checking on graph is Poly!!



Reduction of 3SAT CNF to Cligue Problem ar§$3fap

Theorem:

3SAT and above is NP-comple
Note: Cliqueis NP-comple

A=A
X TN

N

/2

The 3-SAT instance (xvxvy) A &J
(=xv=yv=y) A (~xvyvy) reduced to a
Cligue problem. The green vertices form a 3-
clique and correspond to the satisfying
assignment x=FALSE, y=TRUE.



Are we doomed then?

« No, there are efficient methods that work VERY well for
large classes of formulas

 We study two techniques that are the basis for widely

used tools in practice
« ROBDD: A compact cannonical form for arbitrary

boolean functions
« SAT solving: An efficient heuristic-based algorithm
to check satisfiablity of CNF formulas



SAT Solver Handling Capacity Progress | s¢<¢

1,000,000

100,000 -

10,000 -

1,000 -

Variables

100 -

1960 1970 1980 1990 2000 2010
Year



Techniques underlying state-of-art
SAT Solvers

e Motivation for SAT

BDD is an overkill, especially if just want SAT (e.g.,
you don't want to do equivalence checking)

BDDs often explode without good ordering

e Revolutionary heuristic-based improvements on
CNF-based resolution/sat methods

Isn't conversion to CNF itself a problem??

e Tseiltin Transformation:

Can be done with linear increase In size
provided you also allow for linear increase in variables

Acknowledgements: Sharad Malik, Princeton, Daniel Kroening, Oxford University



Tseitin Transformation: Circuit to CNF

Z: y 0

_j_xr ECEH;\//\C§;\

Yy > x

s 7 foa
b— Dw— (w4 uAv)A
c—-—DT (0 >y dw)

oN(x —=a)N(x=>c)AN(xr+—aAc)N ...

oN(ZVa)AN(ZTVec)AN(zVaVe)A ...



Algorithmic Description of Tseitin Transformation

Tseitin Transformation

1. For each non-input signal s: generate a new variable
2. For each gate: produce input / output constraints as clauses
3. Collect all constraints in a big conjunction



Algorithmic Description of Tseitin Transformation

» The transformation is satisfiability-preserving:
the result is satisfiable iff and only the original formula is satisfiable

» You an get a satisfying assignment for original formula by projecting
the satisfying assignment onto the original variables

» Not equivalent in the classical sense to original formula:
it has new variables



Example SAT: Circuit Equivalence

Let's change the circuit!

Bre

r < alc)A
0

(

( z) A
(u aVb)/\
(v < bVe)A
( ) A
( )

By
AEops
RSP

w uNv
0O &>Ydw

Is the CNF satisfiable?



Some Easy Situations for CNF SA

e Every literal occurs with the same polarity
e.g., (a+b’)(c’+d)

e Every clause has at least one literal that occurs
with same polarity everywhere

e.g., (a+b’)(b+c")

e Nontrivial cases: Every clause has at least one
literal that occurs with both polarity everywhere

e.qg., (a+b’)(c+d)(b+c’+a’)d’



(I A -
Resolution Rule e .w 44+
{Ql: -ee 3 (.Dn;: V]: U;:} :.
e Resolution of a pair of clauses with incompatible variables

e Pick EXACTLY one such pivot variable
e Resolvent, is union of rets of literals in the premise clauses

a+b+@+f g+ h+@+f

a+b+g+h +f

Soundness: Resolvent EQUISAT Premise CNF
a. Resolvent is true whenever premise CNF is true

Completeness: i.e., Resolvent is SAT iff premise CNF is SAT

It is complete or checking SAT/UNSAT,

given a set of clauses b. If premise CNF is UNSAT Resolvent is UNSAT
e.g., {a} {a’} -->resolvent is empty



The Timeline

1960: Davis Putham
Resolution Based
~10 variables




Davis Putnam Algorithm

M .Davis, H. Putnam, “A computing procedure for quantification theory", J. of
ACM, Vol. 7, pp. 201-214, 1960

Existential abstraction using resolution
e Iteratively select a variable for resolution till no more variables are left.

F= @@+ @+ c + M@+ e F=(@+®@+8) @ +c)@ +c)
N

~J / /

3bF=(a+@+e)@+e+f) IbF=@ @+ c)@+c)
dbcF= (a+e+f) EIbaF—(c%f/@
dbcaefF= 1 Jbac F = ()
AT UNSAT

Potential memory explosion problem!



The Timeline

1962
Davis Logemann Loveland
Depth First Search
~ 10 var

1960
DP

~ 10 var

—————

1952
Quine

~ 10 var



DLL Algorithm

e Davis, Logemann and Loveland

M. Davis, G. Logemann and D. Loveland, “A Machine Program for
Theorem-Proving", Communications of ACM, Vol. 5, No. 7, pp. 394-397,
1962

e Also known as DPLL for historical reasons

e Basic framework for many modern SAT solvers



(Y X )
0000
'Y XXX
o000
(Y XX
i (Y X
Binary Search o
Formula:
(@VyVz)A(mzVy)A(~yVz)A(—zV-yV-z)
Decision J‘J i
(W) A(pyVz)A(nyVz) (yVz)A(yVz2)
Impli- Y ‘ —Yy Backtrack Decision z
cation ‘
(2) A (—2) F
g2 |—mg {z— 0,z 1}



What’s the big deal?
o Conflict clause: x1’+x3+x5’

Significantly prune the search space —
learned clause is useful forever!

Useful in generating future conflict
clauses.




Notation

Given the partial assignment
{1 =1, 29— 0, 24 — 1}

(1 V3V 2y) Is satisfied
(—z1 V x2) is conflicting
(mzq V—oxg V) IS UNIt

(—=:c1 V z3V xs) IS unresolved.



Given the partial assignment

{x1— 1, 29— 0, 4 — 1}

(1 V 23V 2y) Is satisfied

(mz1 V x3) is conflicting
Basic DPLL (mx1 V -xy V) s unit

(—x1 Va3V xs) Is unresolved.

'

DECIDE = SAT

full
assignment

partial

assignment

BACKTRACK
dl >0
10 Y

conflict conflict ANALYZE-
BCP —' CONFLICT '—»UNSAT



Basic DPLL

function DPLL
If BCP() = ‘conflict’ then return ‘Unsatisfiable’;

v
2
3 while (TRUE) do

4 if -DECIDE() then return ‘Satisfiable’;
5: else

6: while (BCP() = ‘conflict’) do
7 backtrack-level := ANALYZE-CONFLICT();
8 if backtrack-level < 0 then

9 return ‘Unsatisfiable’;

0 else

b BACKTRACK(backtrack-level);

» DECIDE: Choose next variable and value
» BCP: Propagate implications of unit clauses
» ANALYZE-CONFLICT: Determine backtracking level



Implications and Boolean
Constraint Propagation

e Implication

e Avariable is forced to be assigned to be True or False based on
previous assignments.

e Unit clause rule (rule for elimination of one literal clauses)
e An unsatisfied clause is a unit clause if it has exactly one unassigned
literal.

Satisfied Literal

(a+b’+c)(b +c’)@ +ic’) Unsatisfied Literal

a=T,b=T,cis unassigned Unassigned Literal
e The unassigned literal is implied because of the unit clause.
e Boolean Constraint Propagation (BCP)
o lteratively apply the unit clause rule until there is no unit clause available.
e a.k.a. Unit Propagation
e Workhorse of DLL based algorithms.



Basic DLL Procedure - DFS

(@ +Db+c)
(a+c+d)
(a+c+d)
(a+c +d)
(a+c +d)
(b’+c’ +d)
(@ +b+c’)
(@ +b’+c)




Basic DPLL Procedure - DFS

(@ +Db+c)
(a+c+d)
(a+c+d)
(a+c +d)
(a+c +d)
(b’+c’ +d)
(@ +b+c’)
(@ +b’+c)

()




Basic DPLL Procedure - DFS

(@+b+c) 0
(a+c+d) gecision

(a+c+d’)
(a+c’ +d)
(a+c' +d)

‘b’+c’+d|




Basic DPLL Procedure - DFS

(a+c +d)
(a+c+d’)
(a+c’ +d)

< Decision




Basic DLL Procedure - DFS

(a+c +d)
(a+c+d’)

< Decision




Basic DLL Procedure - DFS

;@1

Implication Graph (a +c+d)
@ (a+c+d) Conflict!



Basic DLL Procedure - DFS

2’ @0

Implication Graph @ a +c+d)
@™ Conflict



Basic DPLL Procedure - DFS




Basic DLL Procedure - DFS

Conflict!




Basic DPLL Procedure - DFS




Basic DPLL Procedure - DFS




Basic DLL Procedure - DFS

Conflict!




Basic DPLL Procedure - DFS




Basic DLL Procedure - DFS




Basic PProcedure - DFS

(@ +Db+c)
(a+c+d)
(a+c+d)
(a+c +d)
(a+c +d)
(b’+c’ +d)
(@ +b+c’)
(@ +b’+c)




Basic DPLL Procedure - DFS

< Forced Decision




Basic DPLL Procedure - DFS

0/« Decision




Basic DLL Procedure - DFS

Conflict!




Basic DPLL Procedure - DFS




Basic DLL Procedure - DFS

1 < Forced Decision




Basic DLL Procedure - DFS




Basic DLL Procedure - DFS




Features of DPLL

e Eliminates the exponential memory requirements of DP

e EXxponential time is still a problem

e Limited practical applicability — largest use seen in automatic
theorem proving

e Very limited size of problems are allowed

32K word memory
Problem size limited by total size of clauses (1300 clauses)




0000
o000
o000
. . o0
The Timeline :
1986
Binary Decision Diagrams (BDDs)
~100 var
1960
DP
~ 10 var
17— ] >
1952 1962
Quine DLL

~ 10 var ~ 10 var



Using BDDs to Solve SAT

R. Bryant. “Graph-based algorithms for Boolean function manipulation”.
IEEE Trans. on Computers, C-35, 8:677-691, 1986.

e Store the function in a Directed Acyclic Graph (DAG) representation.
Compacted form of the function decision tree.

e Reduction rules guarantee canonicity under fixed variable order.
e Provides for efficient Boolean function manipulation.
e Overkill for SAT.



The Timeline

Non-chornological Backtracking

1996
GRASP
Conflict Driven Learning,

~1k var
ﬁgﬁP 1988 1994
~10 SOCRATES Hannibal
i ~3kvar ~3kvar
{0 [ e = =T
1986 1992 1996
1952 1962 !
BDDs
Quine DLL GSAT Stalmarck

~ 10 var ~ 10 var

~ 100 var = 300 var =~ 1k var



The Timeline

Non-chornological Backtracking

1996
GRASP
Conflict Driven Learning,

~1k var
ﬁgﬁP 1988 1994
~10 SOCRATES Hannibal
i ~3kvar ~3kvar
{0 [ e = =T
1986 1992 1996
1952 1962 !
BDDs
Quine DLL GSAT Stalmarck

~ 10 var ~ 10 var

~ 100 var = 300 var =~ 1k var



GRASP

e Marques-Silva and Sakallah [SS96,5S99]

J. P. Marques-Silva and K. A. Sakallah, "GRASP -- A New Search
Algorithm for Satisfiability,” Proc. ICCAD 1996.

J. P. Marques-Silva and Karem A. Sakallah, “GRASP: A Search Algorithm
for Propositional Satisfiability”, IEEE Trans. Computers, C-48, 5:506-521,
1999.
e Incorporates conflict driven learning and non-chronological
backtracking

e Practical SAT instances can be solved in reasonable time
e Bayardo and Schrag’'s RelSAT also proposed conflict driven
learning [BS97]

R. J. Bayardo Jr. and R. C. Schrag “Using CSP look-back techniques to
solve real world SAT instances.” Proc. AAAI, pp. 203-208, 1997(144

citations)




Implication Graphs

The implication graph tracks how assignments are implied.

Definition (Implication graph)

An implication graph is a labeled directed acyclic graph
G = (V. E) where

» V' literals of the current partial assignment.
Labeled with the literal and the decision level.

» E': labeled with the clause that caused the implication.

» Can also contain a single conflict node labeled with ~ and
iIncoming edges labeled with some conflicting clause.



A Small Implication Graph Example

Current truth assignment: {—z;@1}

Decision: x,@2




Implication Graphs and Learning

Current truth assignment: {—z9@1, —x10@3, —x11@Q3, x12@Q2, r13@Q2}

Decision: x1@Q6

Clauses
wp = (hx1V x4
Wy =— (_ILL'l V I3 V Lo
W3 =— (_1;1,'2 V L3 V Lg
Wy = (ﬁ;L'4 \Y Iy V ‘10
Wy = (—l;L'4 V zgV 11
we = (—zgV g
Wy = ( 1V x7VIxi9
wg = ( x1V xg
wg = (—I.L7\/—l.L3V—uL13
wio = (wy Vg Va1 VX

)
)
)
10)
11)
)
)
)
)
)

—r10@3

ol
; Conflict

I (1.6

w2 ‘L&. ws
e o

! ) /(:11 L1 *'ﬂ(ﬁl:B

We learn the conflict clause
wio = (—mx1 V9 V 211 V T10)

What can we learn from the implication graph?
* The decisions causing conflicts are the roots. i.e., the sinks
* None of the other decisions, e.g., at levels 4,5, matter
e Learn you can’'t have assignment: (X1 . X9’ . X10" . X11’)



Implication Graphs and Learning

Current truth assignment: {—xg@1, —x19@3, —211@3, 119@2, r13Q2}

Decision: a6

—r10@3
Clauses .
wy = (hT1V I3 )
wg = (—111\/ .1'3\/ lg)
w3y = (—1;132 V —xg V .174)
wyg = (mrgV T5V T10)
ter = (Sma NV @s VT
we = (—!JL‘5 NS T )
wy = ( @1V 37V -z19)
wg = (1 V g ) J d
g — (_'.L'T Vg V _'_1:13) ﬁ'-!‘g'ﬂ;l —r@ 3
wig = (_';l'l V Lg vV 11 V ;1‘10)

We learn the conflict clause
o= [=zy VvV 2oV 2591 Vo@in)

backtrack to

the largest decision
level in the conflict
Clause !!

j

—
L 3
A
L4
‘\
'I -
-
|
J
. /
X ;! 6
- _~ decision

/
L /
A f

level



_ 000
More Conflict Clauses ' YXX
‘ 00
» Def.: A conflict clause is any clause implied by the formula ol

10 Q3 |

—1 V&g ¥ 10 VY Z11
x99 V x3 V1oV 211

x4 V210V 211

—xg9@] -x11@3

What constitutes a sufficient condition for conflict:

1. Make a cut to separate “conflict side” from “reason side”

2. Conjunction (C) of literals labeling the set of nodes on the reason side that
have at least one edge to the conflict side

Conflict Clause: Negation of C



What is a good conflict clausg?
Must be new!!
* An “asserting clause” that flips
decision made at current level
» Backtracks to the lowest level?
* Shorter clauses

Definition 2.9 (unique implication point (UIP)). Given a partial con-
flict graph corresponding to the decision level of the conflict, a unique impli-
cation point (UIP) is any node other than the conflict node that is on all paths
from the decision node to the conflict node.

Definition 2.10 (first UIP). A first UIP s a UIP that is closest to the

conflict node.



Decision
Decision @3




Given the partial assignment

{x1— 1, 29— 0, 4 — 1}

(1 V 23V 2y) Is satisfied

(mz1 V x3) is conflicting
Basic DPLL (mx1 V -xy V) s unit

(—x1 Va3V xs) Is unresolved.

'

DECIDE = SAT

full
assignment

partial

assignment

BACKTRACK
dl >0
10 Y

conflict conflict ANALYZE-
BCP —' CONFLICT '—»UNSAT



Algorithm 2.2.2: ANALYZE-CONFLICT

Input:
Output: Backtracking decision level + a new conflict clause

1. if current-decision-level = 0 then return -1;
2. cl := current-con flicting-clause;

3. while (-STOP-CRITERION-MET(cl)) do

4. lit == LAST-ASSIGNED-LITERAL(cl);

5. var := VARIABLE-OF-LITERAL(lit);

6. ante := ANTECEDENT(lit);

P cl := RESOLVE(cl, ante, var);

8. add-clause-to-database(cl);

9. return clause-asserting-level(cl); > 2nd highest decision level in ¢l

Definition 2.9 (unique implication point (UIP)). Given a partial con-
flict graph corresponding to the decision level of the confiict, a unique impli-
cation point (UIP) is any node other than the conflict node that is on all paths
from the decision node to the conflict node.



()
C3
Cq

(—xs4 V22 Vx35)
(—xa V z10 V T6)
(—zs V —x6 V —27)
(—z6 V x7)

000

0000

o006

6o
o0
@



| 000
Decision Heuristics: DLIS

DLIS (Dynamic Largest Individual Sum)
choose the assignment that increases the number of satisfied
clauses the most

» C',,: number of unresolved clauses in which x appears
positively

» C'.,. humber of unresolved clauses in which = appears
negatively

» Let 2 be the literal for which C,,, is maximal
» Let y be the literal for which C,, is maximal

» If C,, > Cy,, choose x and assign TRUE
» Otherwise, choose y and assign FALSE



Decision Heuristics: JW

Jeroslow-Wang method
For every clause w and every literal [, compute:

Jh= ) 2

lewwep

» |wl is the length of the clause (count the literals)
» Make decision [ that maximizes .J(l)

» This gives exponentially higher weight to literals in shorter
clauses

» Can be done dynamically (only for unresolved clauses) or
upfront



XXX J
900®

w000
o0

Decision Heuristics: VSIDS
VSIDS (Variable State Independent Decaying Sum)
1. Each variable in each polarity has a counter initialized to O.
2. When a clause is added, the counters are updated.

3. The unassigned variable with the highest counter is
chosen.

4. Periodically, all the counters are divided by a constant.

= variables appearing in recent conflicts
get higher priority



Decision Heuristics: VSIDS

» Keep a list of variables/polarities

» Updates only needed when adding a conflict clause

» Decisions are made in constant time (how?)



¥ WY YW

Decision Heuristics: VSIDS

VSIDS is a ‘quasi-static’ strategy:

» static as it does not depend on the current assignment
» dynamic as the weights change over time

VSIDS is called a conflict-driven decision strategy.

"...this strateqy dramatically (i.e., an order of
magnitude) improved performance...”



