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Note that we only really need at which
tells us what to do for H steps -
so it need not be a policy at all .

←
④, a stationary policy .

However what we show is that the

optimal II obtained for Me is good !
So in fact we get a policy , a stationary
policy .

-
this TI is what we use till K is

updated .
- we could even work with an optimal # step
poling in Mk .

That too would work .



- But we work with the optimal policyin the .

- In fact with the
"

empirical
"

Ik
,
and

the optimal poling there since we

are only estimating Mk .

LAST TIME :
-

Let M be an MDP
,
K - known states . Me

,

the induced MDP . For any stationary policyIT and state ses,
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- We will prove the main theorem .



:

Let st be the state visited at round t
,
4 let

m - 0C III.s(%A) ) . For any E70, 59 , hip
1-5

, YETft ) 7 ¥14 ) - E for all but

Of test 10s (stf 1) rounds in the MDP .

Proof :
-

we showed that the value funston

will be E away from the optimal foe
at most

Of lost ))
rounds .
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-
We do not have the thaskoi Chain .

- we only sample from It !
So we cannot really compute the

, only
an approximation % .

And we will simulate that !

we showed if :

¥, I Put
'Kal - the ftp.al/sE.fs,a &

\ km Is,a) - um ,
Is
,a) ( IE , ht 99 then

for every policy itlstatonwg )
ffs
, Hitt - Ielts 4th



. We'll use this
, assuming that ¥4

Them : ft ,
-

I - ↳ %
i. fs , ←

HIS optimal writ ME
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,
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^ Of Pr"I feoope for K 1 sons) E E
,
we are

within 2C of the optimal value .

O -w we have a good chance of escaping !

and then we know for all but

0 (mK' log k¥1) rounds we
are within E

, Trade
.

.
^ we are within 28 t but

Now to find in , so Me 4M£ me close !
- -



lemma :
-

Assume in samples are obtained from a
distributor p,

whose support - of size N .

F , empirical distribution .

2

If m . 0 (Eulos (F)) ,
with fools to,

[ If little , t.ee .

* Can improve this
. will be in tew :

.

we silent m, sapless, And for each i
we caluclate ,

* i 's seen

T i .

If we ensure Pr [ IF lit - plots of]z
1- 5

then with prob f-5) , Fi, prffflitpl.is leg]
J



-

and so with prob I -5
,

[ II littlest a- nee .

For one i , use Hoeffdig ;

thefts Feel latte expfzttj.hn;)
the bE9i =L .

kai k k

⇐PrflsmiI-tile.tn/seepfmI)Im=fgi.t=eJ
;

±e.pfi.tn?I-)s'expfgI)
' I if

2
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my jokes (F)



Want :

s.LT/Rgfs'ka)-fqfs'kaI/se ,
then : Ilviiilsi - viii.GHEE ,
wait. I§

what about Er ?
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So we can only guarantee GH

1
.

closeness !
.

'
. Set

qH= § a

i. ei¥e



⑧
.
Want this confidence forall 4,9)

^

" we can afford on ,s¥T even for
one ⇐a) , and

this is what we plug into

→ 1¥ ↳ (E)
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• Next chapter is policy gradient .

.

We look at more Monte Carlo methods .
See Bartok Sutton.

• ESTIMATING STATE - VALUE FUNCTION free

policy I (* its fired )

start fans →
Generate a history God ,

Ao
,
Ro
, 991,9, - . . . )

Gupte Erkki
k=O



we are constructing an
'

in biased
"

estimator

gifts
A
Input it :

✓← 0
; R 6)← null ts ;

for i - I
,
- - - -
k

{ Generate an episode so,i, ao.iroi.si Giri - - - - - - .

for each state s appearing
in episode ,

t ← time of first occurrence of s.

G- ← 2- fertile\ nipped tito RK
,huh

vlsl = ¥ [ Gi .

I Can we coyote the way last occurrence of
→



-

. Elms ) . Ffs) ;

• i. i. d safes i. a ( thi f r
't64

fate states i. finite vectors;
Work . if eny state

is visited infinitely often

Avawa
Every visit Monte Carlo :

- for each state s

appearing
in the episode

and each time t it occurs
,



donated

• find the reward from that the
~

•

append all such awards to the list G);

• Average of
the rewards is YF63;

Gradient based Monte Carlo :

-

• start with ire IR
's ! At the t( r Ist ) c- rlstlthfft - UGH]

• Mean square ever 41 : I G GI - r 6)5)
S

Gradient descent.
✓← w - a

EH
2 V

-
-
r - a EH61-4IH II)
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