- Analysis of the $k_{\text {max, }}$ afgoottm:

Note that we only really need a π which lilts no what to to for Husteps so it need not be a poling at all.
(ic) a stationary poling.
thowever that we show is that the optional π_{x}^{*} obtained from M_{k} is good! So in flack wee get a poling, a stationary poling.

- Mas T_{k}^{*} io what we noe till K io updated.
- We could even work with an opting H step poling in M_{k}. That too would work.
- But we work worth the optimal poling in M_{k}.
- In fact with the "impricial" $\hat{\mu}_{k}$, and the optimal poling thus since we are only estimating MM_{k}.
LAST TIE:
Let M be as MDP, K. knouien States. My, the induced MDP. For any stationary poling π and state $S \in S$,

$$
\begin{aligned}
& V_{M k}^{\pi}(s) \geqslant V_{M}^{\pi}(s) \& \\
& V_{M}^{\pi}(s) \geqslant V_{M K}^{M}(s)-\mathbb{P r}\left[\begin{array}{c}
\text { escape foin } \\
K
\end{array} s_{D}=s\right]
\end{aligned}
$$

Cor:

$$
V_{M}^{\pi_{M}^{*}\left(M_{k}\right)}(s) \geqslant V_{M}^{*}(s)-\mathbb{\mathbb { P }}_{* 1}^{\pi^{*}\left(m_{k}\right)}\left[\text { esape fron } k \mid s_{0}=s\right]
$$

Pf:

$$
\begin{aligned}
& \left.\geqslant V_{M_{k}}^{\pi^{*}(m)}(s)-\mathbb{P}_{\sigma_{M}}^{\vec{\pi}(M / K)} \text { [1scope fomk } k f_{8}=s\right) \\
& \left.\geqslant V_{M}^{\pi^{*}(M)}(S)-P_{\gamma_{M}}^{\hbar^{T}(M K)} \text { [eseape fuen } k / S_{0}=s\right]
\end{aligned}
$$

- We wrill proie the main thevem.

Main tho rem:
Let s_{t} be the state visited at rand, \& let $m=O\left(\frac{s \mu^{2}}{\varepsilon^{2}} \operatorname{los}\left(\frac{s^{2} A}{\delta}\right)\right)$. For any $\varepsilon \geqslant 0, \delta<1$, w.p
1-,$\quad V_{M}^{T_{t}}\left(s_{t}\right) \geqslant V_{M}^{*}\left(s_{t}\right)-\varepsilon$ for all but
$O\left(\frac{t^{3} s^{2} A}{\varepsilon^{3}} \log \left(\frac{S^{2} A}{5}\right)\right)$ rounds in the MDP.
Proof:
we shower that the value function will be E array foin the optional for at most

$$
O\left(\frac{m H|s||A|}{\varepsilon} \log \left(\frac{|s| A \mid}{s}\right)\right)
$$

rounds.

- He do not have the Markov Chain.
- We only sample from it!

So we bunt really compare M_{k}, only an approximation \hat{M}_{k}.
And we wall imamate that!
we showed if:

$$
\begin{aligned}
& \sum_{s^{\prime} \in s}\left|P_{M}\left(s^{\prime} \mid s, a\right)-P_{M \prime}\left(s^{\prime} \mid s, a\right)\right| \leq \varepsilon, \quad \forall s, a \& \\
& \left|r_{M}(s, a)-r_{M^{\prime}}(s, a)\right| \leq \varepsilon_{2} \quad \forall s, a \text { then }
\end{aligned}
$$

for cong poling π (stationer)

$$
\forall s,\left|V_{M}^{\pi}(s)-V_{M^{\prime}}^{\pi}(s)\right| \leq \frac{\gamma}{1-\gamma} \varepsilon_{1}+\varepsilon_{2}
$$

- We'll use this, assuming that $\varepsilon_{1}=\varepsilon / 2$.

Then: $\forall t$,

$$
\left|V_{M_{k}}^{\pi_{t}}(s)-V_{M_{12}}^{\pi t}(s)\right|_{\infty} \leq \varepsilon / 2
$$

$\therefore \forall s$,
π_{t} optimal wort Mk

$$
V_{M_{k}}^{V_{1}}(s) \geqslant V_{\hat{M}_{k}}^{\pi}(s)-\frac{\varepsilon}{2} \geqslant V_{\hat{M}_{k}}^{\pi^{*}}(s)-\frac{\varepsilon}{2} \geqslant V_{M_{k}}^{\frac{V^{\prime}}{N}}(s)-\varepsilon
$$

- So, $\forall s$,

$$
\left.\begin{array}{rl}
V_{M}^{\pi_{t}}(s) & \geqslant V_{M_{k}}^{\pi_{t}}(s)-\mathbb{P}_{\sigma_{M}}^{T_{t}}\left[\text { escape form } k \mid s_{0}=s\right] \\
& \geqslant V_{M_{k}}^{\pi^{*}}(s)-\mathbb{T r}_{M}^{\pi_{t}}[\text { escape foe } k \mid-\delta=s] \\
& \geqslant V_{M}^{\pi^{*}}(s)-\varepsilon-\mathbb{P r}_{M}^{T_{t}}[\text { escape from } k \mid \\
s_{0}=s
\end{array}\right]
$$

I If $P_{\mu}^{\pi t}$ [egad fran $\left.K \mid s_{o} s\right] \leq \varepsilon$, we are wither 2ε of the optimal value.
O.w we hack a gail chance of so coping! and then we know for all lat t $O\left(\frac{m k|s|(A)}{\varepsilon} \log \frac{|s||A|}{\delta}\right)$ rounds we are wethin ε,
Λ we are within $2 \varepsilon \forall$ but ronde. Now to find m , so $M_{k} \& M_{c}$ are dose!

Lemma:

Assume us samples are obtained from a destritantion p, whose support o of $\operatorname{siz} \mu N$. \hat{p}, empirical Astabation.
If $m=O\left(\frac{N^{2}}{c^{2}} \log \left(\frac{N}{\delta}\right)\right)$, with forb $1-\delta$,

$$
\sum_{i}|\hat{p}(i)-p(c)| \leq \varepsilon
$$

* Cen imporve this. will be in Hin:

WC select m, samples; And for tach we caluclate, $\frac{\# \text { i's seen }}{m} ;$
If we unsure $\mathbb{P}_{r}\left[\left|p^{n}(i)-p(i)\right| \leq \sum_{\lambda}\right]_{1}^{\geqslant}$ $1-\frac{\delta}{N}$ then with prob $(1-\delta), \forall i, \operatorname{Pr}\left[|\hat{p}|(i)-p(i) \left\lvert\, \leq \frac{\varepsilon}{j}\right.\right]$
and so with prob 1.8,

$$
\sum_{i}|\hat{p}(i)-p(i)| \leq \frac{\varepsilon}{r}, r \leq \varepsilon .
$$

For one i, woe Hocffoking;

$$
\operatorname{Pr}_{\gamma}\left[\left(\sum_{k} x_{k}-\sum_{k} \mathbb{E}\left(x_{k}\right) \mid \geq t\right] \leq \exp \left(\sum_{k=1}^{\left.\sum_{k}+t_{k}-a_{k}\right)^{2}}\right)\right.
$$

the $b_{i}-a_{i}=1$.
So: $\operatorname{Rr}\left[\left|\frac{\sum X_{k}^{2}}{m}-p_{i}\right| \succeq \frac{t}{m}\right] \leq \exp \left(\frac{-2 t^{L}}{m}\right)$

$$
\begin{aligned}
\frac{t}{m} & =\frac{\varepsilon}{N} \therefore t=\frac{2 m}{N} ; \\
& \leq \exp \left(-\frac{2 \cdot 4 \cdot \varepsilon^{2} m^{2}}{N^{2} \cdot m}\right) \\
& \leq \frac{1}{\exp \left(\frac{8 \varepsilon^{2} m}{N^{2}}\right)} \leq \frac{\delta}{N} \text { if } \\
m & \geqslant \frac{N^{2}}{8 \varepsilon^{2}} \operatorname{los}\left(\frac{N}{\delta}\right)
\end{aligned}
$$

$$
\text { Want: } \sum_{c^{\prime}} \mathbb{R}_{m_{k}}\left(s^{\prime} \mid s, a\right)-\mathbb{P}_{\hat{m}_{K}}\left(s^{\prime} \mid s, a\right) \mid \leq \varepsilon \text {, }
$$

then: $\left\|V_{M_{R}}^{\pi_{t}}(s)-V_{M_{R}}^{\pi t}(s)\right\| \leqslant \frac{\gamma}{1-\gamma} \varepsilon_{1}$
Wont:
What about ε_{1} ?
We went for H consecutive transitions that the two Markov claw so agree to ε, of their trawition pobabulliee-
But error acummates to $\varepsilon_{1} H$ in Hounds. So we can only guarantee $\frac{\gamma}{1-\gamma} \varepsilon, H$ Closeness! \therefore Set $\frac{\gamma}{1-\gamma} \varepsilon, H=\frac{\varepsilon}{2}$

$$
\therefore \varepsilon_{1}=\frac{1-\gamma}{\gamma} \frac{\varepsilon}{24}
$$

- Want thir confidime for all (s, a)
\therefore We cun affood on $\frac{\delta}{|s| A \mid}$ essor for one (s, a), and thus is what we pling into

$$
m \geqslant \frac{N^{2}}{8 \varepsilon_{0}^{2}} \operatorname{los}\left(\frac{N}{\delta_{j}}\right)
$$

Finally:

$$
\begin{aligned}
& \text { inally: } \varepsilon_{0}=\frac{1-\gamma}{\gamma} \frac{\varepsilon}{2 \pi} ; \delta_{0}=\frac{\delta}{|s|(A)} \\
& \therefore m \geqslant \frac{N^{2}}{8 \varepsilon^{2}} 4 H^{2}\left(\frac{\gamma^{2}}{\left(1-\sigma^{2}\right.}\right) \log \left[\frac{N|s|(\alpha \mid}{\delta}\right]
\end{aligned}
$$

Hace $N=|s \| A|$.

$$
\therefore\left(\frac{s^{2} A^{2} H^{2}}{\varepsilon^{2}} \log \left[\frac{|s|^{2}|A|^{2}}{\delta}\right]\right)
$$

Insane to:
$O\left(\frac{|s| A \mid H^{L}}{\varepsilon^{2}} \log \frac{|s|(A \mid}{\delta}\right)$.

- Next chapter is poling gradient.
- We look at mare Monte Carlo method. Sur Barto \& Sutton.
- Estimating state-value function for a poling π (* $\pi \omega^{\prime} f \times 2 d$)

Start from $S \rightarrow$
Generate a history ($\left.S_{0}=S, A_{0}, R_{0}, S_{1} a_{1}, \gamma_{1}, \ldots.\right)$ Compute $\sum_{k=0}^{\infty} r^{k} R_{k}$

We are constructing an unbiased" estimator of $v^{\pi}(s)$

Alg:
Impart π :

$$
V \leftarrow 0 ; \quad R(s) \leftarrow \text { null } \forall s \text {; }
$$

- for $i=1, \ldots k$

Generate an episioh $s_{0, i}, a_{0 i} r_{0 i}, s_{1 i} a_{1 i} \gamma_{1 i}$.
[for each state s appearing in episode, $t \leftarrow$ time of first occurrence of s.

$$
G_{i, s} \in \sum \gamma^{k} R_{t+k}
$$

Append G_{i} to $R(s)$

$$
v(s)=\frac{1}{k} \sum G_{i}
$$

Q: Can we compete the using last occessence of s^{2}

$$
\mathbb{E}(G i, s)=v^{\pi}(s) ;
$$

- i-i-d staples $\therefore E\left(\frac{\sum G_{i}}{a}\right)=v^{\pi}(s)$;

fate states: finite vectors;
Worke is eng state - visited infinitely often A Variant:
Every visit Monte Carlo:
- for each state s appearing in the epirke and lash time t it occurs,
crivantel
"find the record form that time
- append all such rewards to the lit (s);
- Average of the rewards is $\hat{\pi}^{\pi}(s)$;

Gradient based Monte Ger o:
[- Start with $v \in \mathbb{R}^{|s|}$; AA time t

$$
v\left(S_{t}\right) \leftharpoonup v\left(S_{t}\right)+\alpha\left[\epsilon_{t}-V\left(s_{t}\right)\right]
$$

- Hear square error $(\gamma)=\frac{1}{2} \underset{S}{\mathbb{E}}\left[\left(v^{\pi}(s)-r(s)\right]^{2}\right]$

Grabent descent.

$$
\begin{aligned}
\nu & \leftarrow \nu-\alpha \frac{\partial M S E(\nu)}{\partial v} \\
& =\nu-\alpha \mathbb{E}\left(\left(\nu^{\pi}(s)-\gamma(s)\right)(-1) \frac{\partial \nu(s)}{\partial r}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =v+\alpha \mathbb{E}\left[\left(v^{\pi}(s)-v(s)\right) \frac{\partial v(s)}{\partial v}\right] \\
V_{\text {new }}\left(S_{t}\right) & =V_{\text {old }}\left(s_{t}\right)+\alpha\left(G_{t}-u_{o l d}^{\left.u\left(s_{t}\right)\right)}\left[\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
0 \\
\vdots
\end{array}\right] \leftarrow s\right. \\
\mathbb{E}\left(G_{t}\right) & =v^{\pi}\left(s_{t}\right) ;
\end{aligned}
$$

