Apr1 22,2020:
Adrusanal bansuts: Hijh probabilig boure (foom Bulseck \& Biander)

- Issue - the variance of loss $\tilde{Y}_{i, r}$ is $o\left(1 / p_{i, r}\right)$.
- Oue idear: Ensuse that pi,t is not too small, by playing exp-3 foling with prov $(1-\varepsilon) \&$ unfiom wita prols ε, s. that each arm isplayed with pitr $\rightarrow \varepsilon / k$.

$$
=
$$

Want a repree of \sqrt{n}; Sonce in lach round you to may, collect content ryrct, \& cant be too larje-

On fact $\varepsilon \leq \frac{1}{\sqrt{n}}$, so that ores n raids the vurform dot will centrbate at soot $O(\sqrt{n})$ rept!
Box then the variann 1 cumulative robot ben be \sqrt{n} per soul \& $\sqrt{0}$ $\sqrt[s]{n} \cdot n=n^{-2 / n}$; so the dent work;
$=$ We work coth gain $-g_{i r}=1-l_{i, t}$
$\left.=\begin{array}{l}\text { Introduce a bias in the grown } \\ \text { estimate. }\end{array}\right\}$
Lemma: Let $B \leq 1 \&$ set

$$
\widetilde{g_{i, t}}=\frac{\operatorname{gir} \mathbb{1}_{E_{t}}=i+\beta}{p_{i, t}}
$$

There with probe $1 . \delta$,

$$
\sum_{t=1}^{n} g_{i, t} \leq \sum_{t=1}^{n} \widetilde{s}_{i, t}+\frac{\ln (1 / \delta)}{\beta^{\beta}}
$$

Proof: Frt - be conditional cop, condhtud

$$
\begin{aligned}
& \text { on } I_{1}, Z_{2}, \ldots, I_{t=1}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbb{E}_{t} \exp \left(\beta g_{\text {it }}-\frac{\beta g_{\text {it }} \mathbb{1}_{r_{t}=i}}{p_{i t}}-\frac{\beta^{2}}{p_{i t}}\right) \\
& =\mathbb{E}_{t}\left[\exp \left(\beta S_{i t}-\frac{\beta \operatorname{Sir}_{i t} \mathbb{1}_{\tau_{t}}=i}{p_{i t}}\right) \exp \left(\frac{-\beta^{2}}{p_{i t}}\right)\right] \\
& =\operatorname{uxp}\left(-\beta^{2} / p_{i t}\right) \oplus_{t}[\exp (\underbrace{\beta s_{i t}-\frac{\beta s_{i t} \mathbb{1}_{p_{t}}=i}{p_{i t}}}_{x})]
\end{aligned}
$$

$$
\begin{aligned}
& \exp (x) \leq 1+x+x^{2} \quad \forall x \leq 1 . \\
& \leq \exp \left(\frac{-\beta^{2}}{p_{i} x}\right)\left(1+\mathbb{E}_{t}(x)+\mathbb{E}_{t}\left(x^{2}\right)\right) \\
& \left.\leq \exp \left(-\frac{\beta^{2}}{p_{i t}}\right)\left(1+0+\frac{\beta^{2} \operatorname{Sit}^{2}}{p_{i t}}-{\underset{i}{t}}_{(}\right)\right) \\
& \leq \exp \left(\frac{-\beta^{2}}{p_{i t}}\right)(\underbrace{\left(1+\frac{\beta^{2} S_{i t}^{2}}{p_{i t}}\right)}_{\leqslant c\left(\frac{\beta^{2} S_{i t}^{2}}{p_{i t}}\right)} \\
& \leq 1 . \quad \underbrace{x} \\
& \begin{array}{l}
\therefore \mathbb{E}\left[\operatorname{cxp}\left(\beta \sum_{t=1}^{n} g_{i t}-\beta \sum_{t=1}^{n}\left(\frac{\operatorname{git}_{i t} \frac{11}{t_{t}=i}}{p_{i t}}+1\right]^{n}\right)\right] \\
\leq 1 .
\end{array} \\
& \operatorname{Pr}\left[x>\ln \left(\delta^{-1}\right)\right]=\operatorname{Pr}\left[e^{x}>1 / \delta\right] \\
& \leq \delta \mathbb{E}\left[e^{x}\right] \leq \delta
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \operatorname{Pr}\left[\beta \sum_{t=1}^{n} g_{i t}-\beta \sum_{t=1}^{n} \frac{g_{i t} \mathbb{1}_{I_{i} i t}+\beta}{p_{i, t}}\right. \\
& \leq \ln (1 / \delta)] \\
& \geqslant 1-\delta ;
\end{aligned}
$$

Exp 3•P:
opel-: $\eta, \sigma, \beta \in(0,1)$
p_{1} a uniform hat on $1, \ldots, K$
for $t=1, \cdots n$
(1) Draw arm It from prob not p_{t}
(2) Compare estimated gain,

$$
\tilde{J}_{i, t}=\frac{g_{i t} \mathbb{1}_{I_{t}=i}+\beta}{p_{i, t}}
$$

- Uptate estinatel un gain

$$
\tilde{G}_{i, t}=\sum_{s=1}^{t} \tilde{g}_{i, s}
$$

(3)

$$
\begin{aligned}
& p_{t+1}=\left(p_{t+1,1}, \cdots, p_{t+1, k}\right) \\
& p_{i, t+1}=\frac{(1-\gamma) \exp \left(\eta \tilde{\zeta}_{i, t}\right)}{\sum_{k=1}^{K} \exp \left(\eta \bar{G}_{t, t}\right)}+\frac{\gamma}{k}
\end{aligned}
$$

modfr:
ThM: Sut $\beta=\sqrt{\frac{\ln \left(K \delta^{-1}\right)}{n K}} ; \gamma=1.05 \sqrt{\frac{k \ln 1 L}{\sim}}$

$$
\eta=0.95 \sqrt{\frac{\ln k}{k}} ;
$$

Get:
wite prob $1 . \delta$,

$$
R_{n} \leqslant 5.15 \sqrt{n k \ln (k / 8)}
$$

= Coukestual bandits?

- Learur has access to contra info.
ex: movie recommendation:
- we should look at contextual info, pat history of movies, and also the content / type of movie when making a recominendatoo!
- Need to device algor which use this contented info.
- Basic example:

Bandits with side info;
A free sit of watexts C; rounds are naive by contexts $c,-, \in \boldsymbol{C}$; Learner must learn a mapping

$$
g: \ell \rightarrow\{1, \ldots, k\}
$$

Idea: Rum a different EXP3 on lack contest!

$$
c=|\varepsilon| ;
$$

Run ornexp3 on coch context $n_{c}=$ \# times coatent $c, 6$ ploged $)$

$$
\begin{aligned}
& =\sum_{\varepsilon \in \zeta} \max _{k=1 \cdots k} \sum_{t=C_{E}=c}\left(\boldsymbol{l}_{I_{t}, t}-\boldsymbol{l}_{k, t}\right) \\
& \leq \sum_{c \in \varepsilon} \sqrt{2 n_{c} k \ln k} \\
& =|\xi| \sum_{c \in \varepsilon} \frac{1}{|\zeta|} \sqrt{\epsilon^{2 n} k \ln k}
\end{aligned}
$$

$$
\begin{aligned}
& =|6| \sqrt{\frac{2 n k \mu k}{161}}=\sqrt{2 n k|\varepsilon| \mu k} .
\end{aligned}
$$

- Playing withe cuperte:
when $|6| \leq$ laye - bak idea!
- Users with simlar demographies lile simlar moria!
\therefore Contexts are structarel!
Sct

$$
R_{n}=\mathbb{E}\left[\max _{\phi \in \bar{r}} \sum_{t-1}^{n}\left(x_{t(\phi(t)}-x_{t}\right)\right]
$$

- Af the byirning of lade rould experts amonounce their predections! In fact uperts give a poob dut one actrons; (experts are railomijel) - The expert advice in sound t

R_{n} - mensured w.rt bett appest in hundsight;

Exp-L(L):

$$
\begin{aligned}
& R_{n}=\mathbb{E}\left[\max _{\operatorname{meM}} \sum_{t=1}^{n} \sum_{\substack{t \\
x^{\prime}}}-\Sigma x_{t}\right] \\
& x_{t}=\left(x_{t 1}, \ldots, \overline{x_{t k}}\right)
\end{aligned}
$$

T Expent; Exp wis, Explei, expouts

Input: $n, k, 1 a, \eta, r$
$\left.{ }_{2}\right) Q_{1}=(1 / M, \ldots, 1 / M)$
د) for $t=1, \ldots n$
4) Reccire adrice E^{t}
5) hoore $A_{t} \sim P_{t}, P_{t}=Q_{t} E^{t}$
6) Reure reward $X_{t}=x_{t A_{t}}$
7) Estimate n. 1.

$$
\tilde{x}_{t_{i}}=1-\frac{11\left[A_{t}=i\right\}\left(1-x_{t}\right)}{A_{i}+\sigma}
$$

A) Propagate
a) uplate $\underbrace{X_{t}}_{Q_{t}}=E^{t} \hat{E}^{t} \hat{X}_{t}$

$$
Q_{t_{t-1}, i}=\frac{\left.\exp \left(\eta \tilde{x}_{t_{j}}\right)\right) Q_{t_{i}}}{\sum_{j=1}^{m} \exp \left(\bar{x}_{t_{j}}\right) Q_{t_{j}}}
$$

10 had;

