Recall
LCB:
Let $\left(X_{t}\right)_{t=1}^{n}$ be a requence f indperdut
1-Sebganwian $\gamma \cdot v$ wort mar $\mu^{\prime \prime}$;
Let $\hat{\mu}=\frac{1}{n} \sum_{t=} X_{t}$

$$
\mathbb{T}\left[\mu \geqslant \hat{\mu}+\sqrt{\frac{2(\cos (\not / k)}{n}}\right] \leqslant \delta \forall \delta
$$

Dy-z: $u C B_{i}(t-1, \delta)=\left\{\begin{array}{l}\infty \quad \dot{8} \tau_{i}(t-1)=0 \\ \hat{\mu}_{c}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{i}(t-1)}} \text { ow }\end{array}\right.$
Inpat k, δ

$$
\ldots
$$

for $t \in 1, \ldots n$ do
$\left.\begin{array}{l}\text { Chooke } \bar{A}_{t}=\operatorname{argmaxi} \operatorname{UCB}(t-1, S) \\ \text { obsorve } X_{t} \& \text { uplete UCB } \forall i\end{array}\right\}$
end

Terminology? Argument in side angmax 6 celled indxx 1 arm i

The aforithm chooses arm with layest indx:
-Wi.0.j asm $\mathbb{1}$ hes layest ju;
(Suppore untrl roul $t-1$, asm 1 was plaged moor ofter then the otheed,
We man espert We mag aopect $\hat{\Gamma}_{1}^{\prime}(t-1) \approx J^{4}$,

$$
\text { (if } \underbrace{\hat{\mu}_{i}^{(t-1)}+\sqrt{\frac{2 \log (/ \delta)}{T_{i}(t-1)}}} \leq \Gamma_{\mathbb{1}} \approx \hat{\mu}_{1}^{(t-1)}+\sqrt{\frac{2 \log (1 /)}{T_{1}(t-1)}}
$$

Thim: for ang haspon n, if $\delta=1 / n^{2}$, then

$$
\frac{\mathbb{R}_{n} \leq 3 \sum_{i=1}^{n} \Delta_{i}+\sum_{i: \sigma_{i}>0} \frac{16 \log (1)}{\delta_{c}}}{\Rightarrow R_{n} \leq 0(\sqrt{n \lg n k})}
$$

$\left.\begin{array}{l}\text { Notati... } \quad \begin{array}{l}\left(X_{t i}\right)_{t \in[n], i \in R} \text { be a coll } f \\ \text { ind with dast } y\end{array} \quad X_{t, i}=\text { that } f P_{i}\end{array}\right\}$
Set $\hat{\mu}_{\text {is }}=\frac{1}{s} \sum_{u=1}^{s} X_{u i} \cdot$ epiorical mua bared on turts saples wherei wa plaged
Sct Reward at tine t,

$$
\rightarrow x_{t}={ }^{\frac{X}{A_{A}}}(t) A_{A_{t}}
$$

Note: for an action a,

$$
\begin{aligned}
& T_{a}(t)=\sum_{s^{i}=1}^{t} \mathbb{1}\left\{A_{s}=a\right\}_{-}^{\top} \\
& \text { \# tomen a is plaged in rounds } 1,2, \ldots t \text {; }
\end{aligned}
$$

Recall: $\rightarrow R_{n}=\sum_{i=1}^{k} \Delta_{i} \mathbb{E}\left[T_{i}(n)\right]$.
We bound $\mathbb{E}\left[T_{i}(n)\right]$ fer all sulopt i "decouple the raudonnews for the behavion quLb.
Let G_{i} - "good erat";

$$
\begin{aligned}
& G_{i}=\left\{\mu_{1}<\min _{t \in[-n]} \operatorname{vic},(t)\right\} \bigcap \\
& \left\{\hat{\mu}_{i u_{i}}+\sqrt{\frac{2 I_{a}(1 / s)}{n_{i}}}<\mu_{1}\right\}
\end{aligned}
$$

whue $u_{i} i /$ a coustant to be cleose latee; $u_{i} \in[n]$ aim
$\therefore \quad \mu$ nevor undertmerper by the indx of 1 Indux $f^{i}<\mu_{1}$

We show:

1) If G_{i} occurs $T_{i}(n) \leq u_{i}$
2) $G_{i}{ }^{C}$ cowes with low prob.

Then $\mathbb{E}\left[T_{i}(n)\right]=\mathbb{E}\left[\mathbb{E}\left\{G_{i}\right\}_{i}(n)\right]$

$$
\begin{gathered}
+\mathbb{E}\left[\mathbb{I}\left\{G_{i}^{c}\right\} T_{i}(n)\right] \\
\leq u_{i}+\mathbb{P}\left(G_{i}{ }^{c}\right) \cdot n \quad \begin{array}{c}
T_{i}(n) \leq n \\
\\
\forall i
\end{array}
\end{gathered}
$$

- Assume that G_{i} holds but $T_{i}(n)>n_{i}$
(ie) aron i was played more than u_{i} tine over n rounds $\therefore \exists \in \in[a]$ whee $T_{i}(t-1)=u_{i}$ \& $A_{t}=i$

Bunt

$$
\begin{aligned}
U C B_{i} & (t-1)=\hat{\mu}_{i}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{i}(t-1)}} \\
& =\hat{\mu}_{i u_{i}}+\sqrt{\frac{2 \log (1 / \delta)}{u_{i}}}
\end{aligned}
$$

$$
\begin{aligned}
& <\mu_{1} \quad\left(b y d \eta_{f} G i\right) \\
& <U C B_{1}(t-1)
\end{aligned}
$$

But then arm ! would NOT be played in rouse t
\therefore If G_{i} occurs then $T_{i}^{-}(n) \leq U_{i}$.
$\left.\mathbb{P}\left(G_{i}^{c}\right).\right]:$

$$
\begin{array}{r}
G_{i}^{c}=\left\{\begin{array}{l}
\left\{\mu_{1} \geqslant \min U\left(B_{1}(t)\right\} v\right. \\
\left\{\hat{\mu}_{i n_{i}}+\sqrt{\frac{2 \log (/ \delta)}{u_{i}}} \geqslant \mu_{1}\right.
\end{array}\right\} \\
\mu_{1}=\mu_{i}+\Delta_{i}
\end{array}
$$

$$
\begin{aligned}
& \left\{\mu_{1} \geq \min _{t \in[\ln } \cup\left(B_{1}(t)\right\}\right. \\
& \square\left\{\mu_{1} \geqslant \min _{s \in[n]} \hat{\mu}_{1 s}+\sqrt{\frac{2 \log (1 / \sigma)}{s}}\right. \\
& =\bigcup_{s \in[n]}\left\{\mu_{1} \geqslant \mu_{1 s}+\sqrt{\frac{2 \log (1 / s)}{s}} \leftarrow 3\right] \\
& \therefore \mathbb{P}_{\sigma}\left(\mu_{1} \geqslant \min U C B,(t)\right) \\
& \leq \mathbb{P}(3) \leq \sum_{s=1}^{n} \mathbb{P}(\underbrace{\mu_{1} \geqslant \hat{\mu}_{1 s}+\sqrt{\frac{2 \lg (1 / s)}{s}}}_{\delta}) \\
& \leq n \delta \text {. }
\end{aligned}
$$

Re Secound teem

$$
\left\{\hat{\mu}_{i u_{i}}+\sqrt{\frac{2 \log (/ / \delta)}{u_{i}}} \geqslant \mu_{1}\right\}
$$

Whose u_{i} so that

$$
\Delta_{i}-\sqrt{\frac{2 \log (1 / \delta)}{u_{i}}} \geqslant c \Delta_{i}
$$

for $c \in(0,1)$;
Note $\mu_{1}=\mu_{i}+\left[\begin{array}{c}\Delta_{i} \\ \mu_{1}-\mu_{i}\end{array}\right]=\mu_{i}+\Delta_{i}$

$$
\begin{aligned}
& \therefore \mathbb{P}_{r}\left(\hat{\mu}_{i u_{i}}+\sqrt{\frac{2 \log (/ / \delta)}{u_{i}}} \geqslant \mu_{i}\right) \\
& =\operatorname{Pr}\left(\hat{\mu}_{i u_{i}}+\sqrt{\frac{2 \log (1 / \delta)}{u_{i}}}>\mu_{i}+\Delta_{i}\right) \\
& =\mathbb{P}_{r}(\hat{\mu}_{i u_{i}}-\mu_{i} \geqslant \underbrace{n}_{i}-\sqrt{\frac{2 \log (1 / \delta)}{u_{i}}}) \\
& =\operatorname{Pr}\left(\hat{\mu}_{i, u_{i}}-\mu_{i} \geqslant c \Delta_{i}\right) \\
& \leq \exp \left(-\frac{u_{i} c^{2} \Delta_{i}^{2}}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \mathbb{P}\left(G_{i}{ }^{c}\right) \leqslant n \delta+\exp \left(-\frac{u_{i} c^{2} \Delta_{i}{ }^{2}}{2}\right) \\
& \therefore \mathbb{E}\left[T_{i}(n)\right] \leqslant u_{i}+n\left(n \delta^{n}+\exp \left(\frac{-u_{i} c^{2} \Delta_{i}}{2}\right)\right)
\end{aligned}
$$

Wart:

$$
\begin{aligned}
& \therefore \quad \Delta_{i}-\sqrt{\frac{2 \log (1 / \sigma)}{u_{i}} \geqslant c \Delta_{i}} \\
& \therefore \quad \Delta_{i}(r-c) \geqslant \sqrt{\frac{2 \log (1 / \sigma)}{u_{i}}} ; \\
& \therefore u_{i}=\left[\frac{2 \log (1 / \delta)}{\Delta_{i}^{2}(1-c)^{2}}\right]
\end{aligned}
$$

Naxt Choise $\delta=1 / n^{2}$

$$
\mathbb{E}\left[T_{i}(n)\right] \leq u_{i}+1+n \exp \left(\frac{-\mathcal{f}^{-\log \left(n^{2}\right)}}{\not \Delta_{i}^{2}(1-c)^{2} \cdot c^{2}} c^{2} a^{2}\right)
$$

$$
\left.\begin{array}{rl}
\leq & u_{i}+1+n \exp \left(\log n n^{-2} \frac{c^{2}}{(1-1)^{2}}\right.
\end{array}\right)
$$

wat: $\frac{2 c^{2}}{(1-y)^{2}} \geqslant 1$ \& $c \geqslant \sqrt{2}-1$.

$$
\begin{aligned}
& \text { Choose } \frac{c=1 / 2}{} \text { : get: } \\
& \therefore\left(T_{i}(\Delta)\right) \leq \frac{16 \log n}{\Delta_{i}^{2}}+3 \\
& \therefore R_{n} \leq 3 \Sigma \Delta_{i}+\sum_{i: \Delta_{i}>0} \frac{16 \lg n}{\Delta_{i}}
\end{aligned}
$$

- Thin $\delta=1 / n^{2}$; the the repel is bounded by

$$
\theta \sqrt{n k \log n}+3 \sum_{i=1}^{L} \Delta_{i}
$$

Prop:

$$
\mathbb{E}\left(T_{i}(n)\right) \leq \frac{16 \log n}{0_{i}^{2}}+3
$$

Let σ be avalu;

$$
\begin{aligned}
& R_{n}=\sum_{i} \Delta_{i<\Delta} \Delta_{i} \underbrace{\mathbb{E}\left(T_{i}(n)\right)}_{i: \Delta_{i} \geqslant \Delta}+\underbrace{}_{i} \mathbb{E}\left(T_{i}(n)\right) \\
& \leq n \Delta \\
& \Delta_{i} \sum_{\Delta} \sum_{i}\left(3 \Delta_{i}+\frac{16 \lg n}{\Delta_{i}}\right) \\
& \leq n \Delta+3 \sum_{i} \Delta_{i}+\frac{16 k \log n}{\Delta}
\end{aligned}
$$

we gut

$$
\begin{aligned}
\text { set } \Delta & =\sqrt{\frac{16 k \lg n}{n}} \\
& \leq 8 \sqrt{n k \log n}+3 \sum_{i=1}^{2} 0 i
\end{aligned}
$$

$$
\begin{aligned}
& \frac{L}{x_{11}} x_{21} x_{31} \ldots x_{n 1} \\
& x_{42}^{\ell} x_{22} x_{32} \quad x_{n 2} \\
& \dot{\ell} \\
& x_{k k} x_{2 k} \quad x_{n k} \\
& x_{1}=x_{T} \\
& \begin{array}{c}
T_{A_{t}}(t) \cdot\left(A_{t}\right) \\
T_{a}(t)=\# \text { ahas } \\
\text { bee. }
\end{array}
\end{aligned}
$$

Luppore we play 1132114.

