a Enler tours.

- Enier trals - Gr has an Enter trail iff exactly 2
- Example graphs.
k_{n}.
$k_{m, n}$
- Subgeaphs.
- Indnced sulographs.
- Existance of lauge bipartite subgraphs.

Hamiltonian Cycles.

Rhmi Let Cr be a graph on $2 n$ vartices and $|E| e d g e$. Then \exists a bipartte salogaph of G with at least $1 屯 / 2$ edjes;

- Algorithmic proof:

$$
G=(U, E)
$$

$V=A \cup B$, arbitranly;
flag= true
while flag do
for $i=1, \ldots$ alice; n do
if V_{i} is connected to more vertices in its side
move $v i$ ti the other side.
flag = true;
end;
had
\ln

- Evcrytine re move a vertex to the other side $\#$ edges using from A to B increases
\therefore This stope.

Finally:

A

B
$\forall i: 2(\#$ enges soing from A to $B)$

$$
\geq \sum_{j=1}^{n} \frac{\ln \left(v_{i j}\right)}{2}
$$

$\left.\begin{array}{l}\therefore(\text { elossing } \\ \text { elies }\end{array}\right) \geqslant \quad \frac{2|E|}{\not x} \quad \therefore$ A crossing edje

$$
\geq \frac{|E|}{2}
$$

Probabilistic proof:
For each rectex toss a coin.
if heads put it in A. ow put it in is.

Let $l_{1}, \ldots, l_{\text {IE I }}$ be the cher;
Lat $X_{e_{i}}= \begin{cases}1 & \text { if end points } \begin{array}{ll}i \text { are ow } \\ 0 & 0 . W .\end{array} \\ \text { diff sides } .\end{cases}$

$$
\begin{aligned}
\mathbb{E}\left(y_{e i}\right)= & 1 \cdot \operatorname{Pr}(\text { end } p \neq 3 \text { an app site })+ \\
& 0 \cdot(\\
= & 1 \cdot \operatorname{Pol}(\text { end pts on app side }) \\
= & 1 / 2
\end{aligned}
$$

$$
X=\sum_{i=1}^{|E|} x_{i}=
$$

$$
\mathbb{E}(x)=\frac{|E|}{2}
$$

\therefore : \exists a Sample point with $\geqslant \frac{|E|}{2}$ edges crossing (ie) the required bipartite sbreph

