- Graper thary:

Vertices, Edjes, Aljacenng of vertices, adjacunn 1 efye.
self loops.
Nbd

- Agree; \rightarrow whth loops.

Könisburg \& britpes Enler

$$
\begin{aligned}
& \Delta(G) \\
& \delta(G)
\end{aligned}
$$

- Isolated vertices;
- Syrer syuna.

TRAIL: Sequence of distinct edges $e_{i}, c_{i_{2}} \ldots e_{i_{1},}$, with

$\left(\begin{array}{ll}a_{1}, & b c_{1} \\ \mathbb{N}\end{array}\right)\left(\begin{array}{ll}a_{i} & b i_{2}\end{array}\right)-$

- Closed trail.: $a_{i}=b_{i k}$.
- Walk: Edges man g repeat;

Bakh: Is a trail in whach no vertiex is repecated.

Dy: if $u, v \in V$, we say utu are cownected in G_{T} if there is a pask from u to v.

- Lemmar A sizple connectel greph has 2 vertices of the sane dypu
- Depur requenv-

Havel-takhim: theorem:
$d_{1} \geq d_{2} \geq \ldots \geq d_{n}$ is the dyree syuence of a graph iff

$$
\left(d_{2}-1, d_{3}-1, \ldots, A_{1}-1, d_{1+2}, \ldots, d_{n}\right)
$$

is the apoer squenu of a graph.

$$
\cdot(3,3,3,3,3,3,3,3,3,3)
$$

Rmin A connetel graph G has an Euler tour iff crory vartes has wen dyper:

