Pigeon hole:
We are given a sequent of mint 1 distinct real numbers. Either those is an increasing sabsyuenu of length $n+1$ or a decreasing sabsequenu of length mol.

Let α be an irrational number.
Let N be a positive inters. One of $\alpha, 2 \alpha, \ldots, N_{\alpha}$ differs at most $1 / N$ from an integer.

- Solution: By pigeon hole.
for each number x_{j} in the given hist of numbers associate a tuple
$\left(A_{j}, i_{j}\right)$ length of longest invecaing $p \ll \operatorname{subseqwence~ending~in~}$
length of the longest decreasing subumze ending in n_{j}

Claim: If $j \neq k, \quad\left(d_{j}, i_{j}\right) \neq\left(d_{k}, i_{k}\right)$.

- Permutation graph

$$
\pi=[3,2,5,4,1]
$$

decreasing subrequinu $3,2,1$ is a cline invereabing sebsequenue 3,5 is aw indep
set.
= On these graphs Aynawic programining give polytime solutions t finding largest independent set and laozent cliques.
In general graphs . these are hasA problem

- Permutations

Permutations of multisels.

- Strings our a finite alphabet.
- Method of bijection:

Example: a) \#tabrets gain n element sect.
\# subsets with an old number of elements.?
6) A city hes 10 intersections. Some will get traffic lights, some with a traffic light may get a gas station. In how many ways aurthis happen?

$$
\begin{aligned}
& =\underset{n}{k} \underset{n}{k} \text { subsets of }[n] \\
& =\binom{n}{k}:\binom{n}{n-k}
\end{aligned}
$$

- Picking 5 elements from $[1, \ldots, 30]$ So that there are no consecutive integers;
- Picking a multrset y 5 from [90]
- A salesman has to visot 4 cities 5 times. what if he cannot start ann end with same city?
- \# la element multirets from $[n]$.
- E_{x}
- \# 5dgit numbers ...6.. divisible by 3 ?
. \# 5 digit numbers divisible by 3 and containing a q.
- 49 countries taking part in a tournament.

Each has a flog with 3 stripes q diffuent colours among RBGY. [3 counties hare same flog]

$$
8 \times 8
$$

Placing 8 rooks on a chess, board

- Picking 5 from $[1, \ldots, 30]$, so that we have no consecutive intyuss;

Let $a_{1}<a_{2} \leq a_{3}<a_{4}<a_{5}$ one such valid subset;

Then $a_{1}, a_{2}-1, a_{3} \cdot 2, a_{4}-3, a_{5}-4$ ar all distinct integers $\left(\because a_{2} \geqslant a_{1}+2, a_{3} \geqslant a_{2}+2, \ldots\right)$
\therefore WR get a 5 element suloret from $[1, \ldots, 26]$
This a bijection $\left(b_{1} b_{2} b_{3} b_{4} b_{5}\right.$)

$$
\left(b_{1}, b_{2}+1, b_{3}+2, b_{4}+3, b_{5}+4\right)
$$

k size

- Multivets from n. $[r, \ldots, n]$;

