- 21/4|20:

Apphcations of obar How:-
\rightarrow Ford Fulkerson, woth integral leppection, yields an integral flow;

- $G=\left({ }^{\prime \prime}, E\right)$ be a bypartite geepl.

$$
G^{\prime}=\left(v^{\prime}, \epsilon^{\prime}\right), v^{\prime}=U_{R} \cup\{s,+\}
$$

Giren G, cordruct G^{\prime} as above;
$c: E \rightarrow \mathbb{N}$

$$
\left|E^{\prime}\right|=0(|E|)
$$

A orax floz foom sto t in G^{\prime}.
F. If Mis a matching in G then we geta flas of rye $|M|$: $f \leftarrow$ - If thuse os are integral flown ‥ G^{\prime} then theres is \sim mateling in $G ?$ sje If I;

$$
\begin{aligned}
& \text { him Mget } f \\
& |f| \doteq|1 a| ; \\
& \leftarrow
\end{aligned}
$$

$G:$
 nonges
The cepes in E carsiging a flood must be a matding;

$$
\begin{aligned}
& |y|=|f| \\
& f(L, R)=|M| \\
& \text { Collor } \\
& \left.=f\left(L, V^{\prime}\right)-f^{0}(L, L) \quad V^{R} \quad V^{\prime}=L \cup R, t\right] . \\
& -f(L, s)-f(L, t) \text {. } \\
& 0+f(s, L)=0=f(s, L)=|f| .
\end{aligned}
$$

- Applications f Max flow mir not:
- Let f le a flow; we say fix acyclic if $\forall^{\text {hosted }}$ lychee in $G, J e \in C$ st $f(e)=0$

$$
{ }_{0} \rightarrow \underset{<}{<}<\text { Caries no thaw. }
$$

- Lena: If $f=$ a flow in GJ these $=$ an angelic flow in ϵ with the same vie, $f_{2}=\min \left\{f_{1,2}, f_{6}\right\}$

- let f be an acyle How= hentane is - collecionn of s,t pathes,
$\beta_{1}, \ldots p_{(H)}$ st $\forall c \in E$,

$$
f\left(\frac{f}{c}\right)=\#\left\{i \mid c \in P_{i}\right\} . \leftarrow
$$

Aflow is partoonable int $H 1$, patiz flows; $C=\left\{p_{1}, p_{2}, \ldots p_{1 f f}\right\}$
$f-f_{p_{1}}+f_{p_{2}}+$ efplit.
$f=\left(f^{\prime}\right)+P$

$$
\begin{aligned}
& f(c)=f^{\prime}(c)+p(e) \quad \forall c \text {. } \\
& \left|f e=A^{\prime}\right|+\left.\right|^{7} p \mid
\end{aligned}
$$

directel/undireted

- Let G be a soaph u, r two vertias in k;
- Vertex Veasion (Mengers thm); -(thenes no cle from utov);
the $\frac{\text { max }}{n}$ number of vartex-lijjoint n, v patho in G is equal to the
$\underbrace{\text { min }}$ cardinanty on an n, x. vultex ant;
\sim°

- Edge dijoint visxion (Marguvi) min \# of edjes to be ramored to lecconnect uforv $=$ max bertuall of efe tusjoint fainly of u, v, patio.

$=$ Proof:
Undiected reduces h directed

- Elge version - easy noing Max flasy;

$=$ Put co lepent a-ece..

