Number System

- Finding the successor of a natural number written in base b

$$
\begin{aligned}
\Rightarrow & x_{n-1} x_{n-2} \ldots x_{0} \text { represents } \\
& x_{n-1} b^{n-1}+x_{n-2} b^{n-2}+\cdots+x_{0} .
\end{aligned}
$$

Principle of induction:
Let $P(n)$ be a propacitition about natural numbers, ${ }^{n}$. Suppose $P(1)$ is true. Sapporo if $P(n)$ is true, then $P(n+1)$ is
tone.
THEN $p(n) b$ true $\forall n$;

Example:

$$
x^{x} y \leq 3
$$

1)

Covering the above points on a plane using lines.
2) $n>1$ an ietejes. I a set of closed intervals Natural numbers The endpoints M, V of lack interval set $\quad 1 \leq n<v \leq n$;
$I_{1}, I_{2} \in I_{1}$ then $I_{1} \cap I_{2}=\varnothing \sim I_{1} \subset I_{2}$ or $I_{2} \subset I_{1}$.

- Covering S_{n} :

Let \mathcal{L} be a collection of hines covering S_{n}.

- If the line $l^{4}{ }^{4} x+y=n \in \mathcal{L}$ - the remaining lines cover points in S_{n-1} - m point in S_{n-1} is covered by l : By induction al\{ $\{1\}$ has cardinally at least $n \therefore \mathcal{L}$ has cerdonelity $n+1$
- If $k \notin \mathcal{L}$: Each lire in \mathcal{L} contains at most one point from $x+y=n$; There are $n+1$ points \therefore at least $n+1$ lone.
$Q E D$
- Claim: $|I| \leq n-1$; In fact the largest number of intervals one can select is $n-1$.
Ex: $[1, n],[1, n-1], \ldots,[1,2]$.
W.io.g $[1, n] \in T$.
of there is noothr closed intowal $[1, j]$, in I, then I contains $[1, n]$ and intervals covering $[2, n]$. But by induction f is intervals we can pick with $L \leq 1, v \leq n$, is at moot $n-2 \therefore \quad|\mathcal{I}| \leqslant n-2+1=n-1$;
- On the other hand if I contains $[1, j]$ forsome j; Among all such intervals pile the one whore j is max sot $j=k$;
i. $I=[1, n] \cup$ segments covering $[1, k] \cup$ Segments covering $[h \neq 1, n]$
By ind \# intervals covering $[r, k]$ ot most $k-1$, and \# n in $[k+1, n] \leq n-k-1$
\therefore \# intervals in $I \leq 1+k-1+n-k-1=n-1$;
QED

A $2^{n} \times 2^{n}$ chessboard with a hole;
Claim:

Allowed dominoes

If the hole is in I_{2}, select he domino as shown, By induction each $f I_{1}, I_{2}, I_{3} \& I_{4}$ are

Square cerssboards of fie $2^{n-1} \times 2^{n-1}$ with a hole and so can be covered by dominoes of the tope \square
QED

- On an infinite sheet of white paper, n squares are coloured black. At time $t=1, \ldots$ squares are recoloured using: each square gets the colour occurring at least twice in the triple formed by the square, ib top neighbour and lo right neighbour. Show that all squares are white after $t=n$.

Proof:
Let h be a hooizatal line extending to ∞ on extur side with the \# black squares on or above l being k;
Let c be a vertical line extending to ∞ on both sides with $\#$ blade squares on c or to the right of c being le;
Claim: For time step le and beyond, all squares to the right of h and above c are white (please couch!)

- We prove the claire by induction on k.

To complete the proof
Let s be the square st, all the given blacker, squares are north/eart of s;

Case 6: The two squares to the night of \& above S the black.
Then at $t=1, s$ goes black;
But \# black e squares to the right and on C $\leq n-1$; So too on h^{4} above.
\wedge 'By tome $t=n-1$ all above h \& to
the right of c are white and remain white bayard $n-1 ;$;

But then at n, S goes white \& we are dare;
(Please check ${ }^{q}$)

Variation:
$\forall n\left[\forall m<n, P\left(m_{n}\right) \Rightarrow P(n)\right] \Rightarrow$
$\operatorname{Hn} P(n)$;
Proof?? $Q(n)$ be the statement
"PPm) holds $\forall m<n$ ";

- Mir is equivalent to the first version of PI; (Please make sure $\begin{aligned} & \text { yow nurstand thu } \\ & \text { yon }\end{aligned}$

Intaction in defintion.

$$
\begin{aligned}
& F_{0}=0, F_{1}=1 \\
& F_{n+1}=F_{n}+F_{n-1}, \quad n \geqslant 1,
\end{aligned}
$$

$$
F_{n} \leq\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}
$$

- \# regoons m lines Can divise the plane isto.

Pattern 6 char!

$$
\begin{aligned}
& f(m)=f(m-1)+m ; \quad f(1)=2 \\
\therefore & \frac{m / m+c)}{2}+1
\end{aligned}
$$

$=$ The atone is clear:
Extension to planes in \mathbb{R}^{3};
Let the max \# regions with m planes be $p(m)$;

- w.l.0.g the max z-coordinate of a point of intersection in the configuration io say $z=a$;
-W.l.o.g we can rotate the given configuration so that one of the planes is the plane $z=a$.

Now assume we remove the plane $z=a ;$

The remaining $m-1$ planes give no at most $p(m-1)$ regions.
We claim that every new region introknced by $z=a$ is in bijection with regions formed on $z=a$ by the huns we get considering the inturrections $p_{1} \cap\{z=q\}$,

$$
p_{2} \cap\{z=a\}, \ldots, \phi_{m-1} \cap\{z=a\} \text {. (check) }
$$

\therefore we have

$$
p(m) \leq p(m-1)+\frac{(m-1)(m)}{2}+1
$$

Max we can get $6 \quad p(m-1)+\frac{m(m-1)}{2}+1$

$$
p(1)=1 \Rightarrow p(m)=\frac{m^{3}+5 m+6}{6}
$$

Pitfalls: All horses are brown.

- ll, $l_{2} \ldots$... len be $n \geqslant 2$ distinct lines in the plane, no too of which are parallel. Then all these lines have a point in common.

