Matchings:

- In bupartite graphes:

Matching. $\mu \subseteq E$,
In
The sulogaph ink-ud by M unng vol ex has depre O or Aepres 1.

- Perfect malching If uny vatex has ar edpe of M incident on it.

Hall's theorem:
LIt $G=(A \cup B, E)$ be a bupastitite graph. Then G has ~ prefect matching iff $\forall u \subseteq A, \quad N(u) \geqslant|u|$.

- Necessary: If M a pom then lung votes in U reaches a different vertex io $B . \quad \therefore N|u| \geqslant|n|$; $\cdot \Leftarrow \forall u, N|u| \geqslant \mid u(\Rightarrow$ Gotchas - pm; Can 1:
(1) $\forall u, \underset{G}{N}|u|>|u|$.
- Let $x \in A, x-y$.

Reunare frem G, x, y,

$$
\sum_{\Gamma_{4}}(u) ? \quad \underline{N_{G}}(u) \geqslant i
$$

\therefore By induction \vec{c} Las a pimatcinig;

$$
\operatorname{Cax} 2: \exists u_{1} \quad N_{l_{x}}(u)=u \text {. }
$$

$$
\begin{aligned}
& G_{1}: u 00 \int N(u) \quad \begin{array}{c}
N_{G}(\vec{a}) \\
=N_{G} \\
\left.G_{u}\right) \\
a_{0}
\end{array} \\
& =N_{G}\left(r_{n}\right) \\
& \geqslant|\vec{u}| \text {; } \\
& G_{2}: A \mid u(0) \quad B(N(u) ;
\end{aligned}
$$

Q: Does G_{2} sativty Hall'v coadition?
A: Yes,

$$
\begin{aligned}
& N_{G_{2}}(\omega) \geqslant|\omega| . \\
& N_{G}(u \cup \omega)=N_{G}(u) U \underbrace{N_{G_{2}}(\omega)} \\
& =N_{G_{4}}(\mu)+N_{G_{2}}(\omega) \geqslant|\mu H+|\omega| \\
& \therefore \quad N_{G_{2}}(\omega) \geqslant|\omega| \forall \omega \leqslant \\
& \text { A|Y; } \\
& \text { A|M; }
\end{aligned}
$$

J. G_{L} has a p.m
\therefore Ghos a p.m

- Hungariar Brethrt:
M

$\{$ thase s a path from a to 3, couristing altirnately of edfes in Mard (edjes not i- M;
a

b

Alternating part wot in: park

- p's said to be alternating if expesiu p alternate from those in 11 and those not in M,

- Angresenting path: is an alternating path starting at an onmatchich vertex \& ending at an unmatched votes.

Thim: lat $G=(A \cup B, E)$ be a bup gaph Let is be a matking in G; Then M is a maximum lardivally matching iff thuse is no angmenting path wort to in k;
Proof: If thase is no augmenting path then $t M$ is a laggest cardunabity matching

Maximal mathing Maxamuen cordinalily.
let \sim

- If not - M be a matching in G_{1} and suppore $|\vec{M}|>|M|$;

$=$

- Evary vartex has Aper 0,1 r2
\therefore the groph incuad by ta ΔM has ivolated vertios, path or even ycher;

- Vukes corr í G:
$S \subseteq V$ is a vartex wore if ang edye of G, has an oust undpoint in 5 ;
b

$\{a, b\} \dot{5}=$ vates Corve

$\{b, c\} \in a$ vertex rover'

Q: Find the shallest veatex come in G;

If M matching V.C(G) \geqslant
$7 \times(1)$
h ang $G ;$ vatex aner, one of the end points $\overbrace{}^{M}$ munt lee

- Koniǵta coren:

Let G be a biparite graph. The rije the smallest vatex corer in G is yual to the cardinally of the laget matcioing in G)
$=$ Proof: Start woth a max cardon
thengaian', Using Hinngaraw rethod: I

A
B.

By dy: $n \quad S \subseteq R$.
S^{\prime}-ther $\left.\begin{array}{l}\text { Aubset of } \\ \text { unmatchid } \\ \text { vertives. }\end{array}\right\}$
Let R be the set of vertives reachable from S wing alternating partus,
 \rightarrow we cole potentially only miss dyes from $A \cap R$ b $B \backslash R$ $a \in A \cap R$
a 6 receciable from S via an alternating path; But then ($b a$) must have if $(a b) \mathrm{cm}$ bun used; But then $b \in R ; x$

- If $(a, b) \notin M=$ again we reach a vie alturatey pate from S, but their
we could continue to b, and then agan $b \in R$, a contratuction:
\therefore we dont have edpes frem $A O R$ to $B \backslash R_{j}$ $\therefore \quad A \mid R \cup B \cap R 5$ e vates covee,

