- Bipartite graphi:
$G=(U, E)$ is baparotite if $V=X \cup Y$ and $E \subseteq(X+Y)$
(1e) thuse s a bupartition of vestives
 and codes only go for x to Y.
- Characterijotion of bipartite grephs:

Rim
$G=$ bopartite ifff G has mo odd uyze.
f:

- Can do this using BFS.

Hamiltonign cycles:

- In genmal lard to furd algroitumially in polgnowial time.
Thm: Ebe connacted. If $\operatorname{dg}\left(v_{i}\right) \geqslant|v| / 2$ $\forall i$ then G has a H. Cyyle;

Pf:
Take a maximal graph (maxanal in tuand of eAges) atiofying the hyporthesis and not the couclasion
show that sis a contradiction;
\therefore No graph wists satiofying twe hypothesit \& not the conclusion(WHY?)
\therefore Reoren is true;

On the maximal graph
HePathe i present.

Not present
on the the Path $\exists i$, st
$x-v_{i} s^{\prime}$ an edge and $v_{i-1}-y i^{\prime}$ an edge; WHY?

Contrablection?

- Directel graphr-
- Touznaments.

