Geometric Complexity Theory: a high level overview.

K V Subrahmanyam

C. M. I.

K V Subrahmanyam (C. M. I.) Geometric Complexity Theory: a high

Roadmap

- 1) Basics in Complexity theory, Algebraic Geometry
 - Complexity Theory
 - Representation theory
 - Algebraic geometry
- 2 Algebraizing the formula complexity question
 - Reduction
 - Geometry and class varieties
 - From lower bounds to obstructions
 - Geometry of class varieties is tractable
 - The first flip
- Saturated Integer programming
 - Overcoming the Razbarov-Rudich barrier
 - Non-zeroness of LR-coeffs in poly time
 - Saturated functions
- Implementing the flip for #P vs NC^2
 - Saturation of Kronecker coefficients

Roadmap

- 1) Basics in Complexity theory, Algebraic Geometry
 - Complexity Theory
 - Representation theory
 - Algebraic geometry
- 2 Algebraizing the formula complexity question
 - Reduction
 - Geometry and class varieties
 - From lower bounds to obstructions
 - Geometry of class varieties is tractable
 - The first flip
 - Saturated Integer programming
 - Overcoming the Razbarov-Rudich barrier
 - Non-zeroness of LR-coeffs in poly time
 - Saturated functions
 - Implementing the flip for #P vs NC^2
 - Saturation of Kronecker coefficients

Functions and Algorithms

Functions considered in Complexity theory:

- Number Functions $f : \mathbb{Z}^n \mapsto \mathbb{Z}$
 - The determinant of a matrix.
 - Optimal value of an LP.
- Decision functions $f : \mathbb{Z}^n \mapsto \{0, 1\}$.
 - Is the determinant of a matrix zero?
 - Is the optimum of an LP greater than a certain value?
 - Is there an assignment of values to the variables of a Boolean formula so that the formula is true?

In general consider a family of functions - example det_m .

An Algorithm is a program which computes a family of functions.

Measures

Every problem for which we need to design an algorithm comes with:

- The input instance
 - The matrix whose determinant is to be computed.
 - The specific Boolean formula.
- Input size
 - for det_m , the size, m^2 , of the matrix.
 - Also the number of digits needed to write an entry of the matrix
- What is important?
 - The resources consumed by the algorithm to solve the problem.
 - Time taken by the algorithm.
 - How many digits are needed to store each intermediate value; how many intermediate values need to be stored.

Computing with formulas

Let $p(X_1, ..., X_n)$ be a polynomial. A formula is a particular way of writing it using + and *.

formula = formula * formula || formula + formula

Formula size: The number of * and + operations.

Computing with formulas

Let $p(X_1, ..., X_n)$ be a polynomial. A formula is a particular way of writing it using + and *.

formula = formula * formula || formula + formula

Formula size: The number of * and + operations. Example $a^3 - b^3 = (a - b) * (a^2 + a * b + b^2)$

Van-der-Monde $(\lambda_1, \ldots, \lambda_n) = \prod_{i \neq j} (\lambda_i - \lambda_j)$

The permanent function

• $M = (m_{ij})$, a square $n \times n$ matrix Then

$$Perm_n(M) = \sum_{\sigma \in S_n} \prod_{1 \le i \le n} m_{i,\sigma(i)}$$

$$Det_n(M) = \sum_{\sigma \in S_n} \prod_{1 \le i \le n} (-1)^{l(\sigma)} m_{i,\sigma(i)}$$

Question

Does $Perm_n$ have a formula of size polynomially bounded in n?

If NOT, what is the proof?

The complexity theory of det_m and $Perm_n$

- The class of functions which can be computed in polynomial time in input size P. Intuitively, what can be considered feasibly computable.
- det_m is easy to compute The standard Gaussian elimination for example shows feasibility. A combinatorial algorithm (Meena, Vinay) - allows us to compute it by a polynomial number of computers running in poly(log n)time.
- The permanent is believed to be hard. Intuitively, among the hardest among functions *f* for which:
 - There is an expression for f which involves only positive coeffecients.
 - Each term of *f* is computable in polynomial time.
 - Number of terms is at most exponential in input size.

Roadmap

- Basics in Complexity theory, Algebraic Geometry
 - Complexity Theory
 - Representation theory
 - Algebraic geometry
- 2 Algebraizing the formula complexity question
 - Reduction
 - Geometry and class varieties
- From lower bounds to obstructions
 - Geometry of class varieties is tractable
 - The first flip
- Saturated Integer programming
 - Overcoming the Razbarov-Rudich barrier
 - Non-zeroness of LR-coeffs in poly time
 - Saturated functions
- Implementing the flip for #P vs NC^2
 - Saturation of Kronecker coefficients

- $\rho: G \mapsto GL(V)$
 - V is a representation of G.
- $W \subseteq V$ a subspace of V is a subrepresentation.
 - $\rho(g) \cdot w \in W$, $\forall g \in G, \forall w \in W$.
- Irreducible representation.
 - No proper non-trivial subrepresentation.

- $\rho: G \mapsto GL(V)$
 - ► V is a representation of G.
- $W \subseteq V$ a subspace of V is a subrepresentation.
 - $\rho(g) \cdot w \in W$, $\forall g \in G, \forall w \in W$.
- Irreducible representation.
 - No proper non-trivial subrepresentation.
- G reductive.

5/09/07 @CMI

10 / 71

- $\rho: G \mapsto GL(V)$
 - ► V is a representation of G.
- $W \subseteq V$ a subspace of V is a subrepresentation.
 - $\rho(g) \cdot w \in W$, $\forall g \in G, \forall w \in W$.
- Irreducible representation.
 - No proper non-trivial subrepresentation.
- G reductive.
 - Every finite dimensional representation is a direct sum of irreducible representations.

- $\rho: G \mapsto GL(V)$
 - ► V is a representation of G.
- $W \subseteq V$ a subspace of V is a subrepresentation.
 - $\rho(g) \cdot w \in W$, $\forall g \in G, \forall w \in W$.
- Irreducible representation.
 - No proper non-trivial subrepresentation.
- G reductive.
 - Every finite dimensional representation is a direct sum of irreducible representations.

5/09/07 @CMI

10 / 71

• $V = \oplus_{\lambda} m_{\lambda} V_{\lambda}(G)$

- $\rho: G \mapsto GL(V)$
 - ► V is a representation of G.
- $W \subseteq V$ a subspace of V is a subrepresentation.
 - $\rho(g) \cdot w \in W$, $\forall g \in G, \forall w \in W$.
- Irreducible representation.
 - No proper non-trivial subrepresentation.
- G reductive.
 - Every finite dimensional representation is a direct sum of irreducible representations.
 - $\lor V = \oplus_{\lambda} m_{\lambda} V_{\lambda}(G)$
 - ▶ λ labels of irreducible representations of *G* building blocks in the representation theory of reductive groups.

Examples of representations of $GL_n(\mathbb{C})$

- G acting on an \mathbb{C}^n by $A \cdot v = A * v$.
 - The zero vector is left fixed. A subrepresentation.
 - Ireducible representation.
- *G* acting on the vector space V of $n \times n$ matrices, $A \cdot X = AXA^{-1}$.
 - The vector space of scalar matrices is left invariant.
 - Not irreducible.
- X = (x_{i,j}) an n × n matrix of indeterminates. G acts on the vector space of functions C[x_{i,j}] by A ⋅ x_{i,j} = ∑^{k=n}_{k=1} a_{k,i}x_{k,j}.

GL(n) – the general linear group over \mathbb{C} S_d – the symmetric group on d letters Partition – a decreasing sequence of positive integers

Pictorially, partition (5, 2, 2) is represented as \Box

GL(n) – the general linear group over \mathbb{C} S_d – the symmetric group on d letters Partition – a decreasing sequence of positive integers

Pictorially, partition (5, 2, 2) is represented as

• $GL(n), S_d$ are reductive

GL(n) – the general linear group over \mathbb{C} S_d – the symmetric group on d letters Partition – a decreasing sequence of positive integers

Pictorially, partition (5, 2, 2) is represented as

- GL(n), S_d are reductive
- Irreducible polynomial representations of *GL(n)* are parameterized by partitions with at most *n* rows - denoted *V_λ(GL_n)*

GL(n) – the general linear group over \mathbb{C} S_d – the symmetric group on d letters Partition – a decreasing sequence of positive integers

Pictorially, partition (5, 2, 2) is represented as

- GL(n), S_d are reductive
- Irreducible polynomial representations of *GL(n)* are parameterized by partitions with at most *n* rows - denoted *V_λ(GL_n)*
- Irreducible representations of S_d are parameterized by partitions of d denoted $W_{\lambda}(S_d)$

The irreducible representations of GL_n

- Z an $n \times n$ variable matrix.
- ℂ[Z] ring of polynomial functions in the entries of Z a representation of *GL_n*.

•
$$(\sigma \cdot f)(Z) = f(Z\sigma)$$

• Semi-standard tableau T -

• C_T is the product of determinants of minors such as $\begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} \\ x_{2,1} & x_{2,2} & x_{2,3} \\ x_{3,1} & x_{3,2} & x_{3,3} \end{pmatrix}$, $\begin{pmatrix} x_{1,1} & x_{1,3} & x_{1,5} \\ x_{2,1} & x_{2,3} & x_{2,5} \\ x_{3,1} & x_{3,3} & x_{3,5} \end{pmatrix}$, $x_{1,3}$, $x_{1,3}$, $x_{1,4}$ The irreducible representations of GL_n

- Z an $n \times n$ variable matrix.
- $\mathbb{C}[Z]$ ring of polynomial functions in the entries of Z a representation of GL_n .

•
$$(\sigma \cdot f)(Z) = f(Z\sigma)$$

• Semi-standard tableau T -

• C_T is the product of determinants of minors such as $\begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} \\ x_{2,1} & x_{2,2} & x_{2,3} \\ x_{3,1} & x_{3,2} & x_{3,3} \end{pmatrix}$, $\begin{pmatrix} x_{1,1} & x_{1,3} & x_{1,5} \\ x_{2,1} & x_{2,3} & x_{2,5} \\ x_{3,1} & x_{3,3} & x_{3,5} \end{pmatrix}$, $x_{1,3}$, $x_{1,3}$, $x_{1,4}$

Theorem

 V_{λ} is the subrepresentation spanned by C_{T} , T-semi standard.

K V Subrahmanyam (C. M. I.) Geometric Complexity Theory: a high

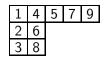
Irreducible representations of S_d

• $\mathbb{C}[x_1, \cdots, x_d]$ - polynomials in *n* variables - a representation of S_d .

•
$$(\sigma \cdot f) = f(x_{\sigma(1)}, \cdots, x_{\sigma(d)}).$$

Standard tableau T -

►



f_T is the product of discriminant of columns

Irreducible representations of S_d

• $\mathbb{C}[x_1, \cdots, x_d]$ - polynomials in *n* variables - a representation of S_d .

•
$$(\sigma \cdot f) = f(x_{\sigma(1)}, \cdots, x_{\sigma(d)}).$$

Standard tableau T -

- f_T is the product of discriminant of columns
- $\prod_{i < j, i, j \in \{1,2,3\}} (x_i x_j) \prod_{i < j, i, j \in \{4,6,8\}} (x_i x_j) x_{(5)} x_{(7)} x_{(9)}$

Irreducible representations of S_d

• $\mathbb{C}[x_1, \cdots, x_d]$ - polynomials in *n* variables - a representation of S_d .

•
$$(\sigma \cdot f) = f(x_{\sigma(1)}, \cdots, x_{\sigma(d)}).$$

Standard tableau T -

5/09/07 @CMI

14 / 71

- *f_T* is the product of discriminant of columns
- $\prod_{i < j, i, j \in \{1,2,3\}} (x_i x_j) \prod_{i < j, i, j \in \{4,6,8\}} (x_i x_j) x_{(5)} x_{(7)} x_{(9)}$

Theorem

 W_{λ} - the subrepresentation spanned by f_{T} , T-standard.

Tensor Products

- V a representation of G.
- W a representation of G.
- $V \otimes W$ a representation of G:

•
$$\sigma(\mathbf{v}\otimes\mathbf{w})=(\sigma\cdot\mathbf{v})\otimes(\sigma\cdot\mathbf{w})$$

Tensor Products

- V a representation of G.
- W a representation of G.
- $V \otimes W$ a representation of G:

•
$$\sigma(\mathbf{v}\otimes\mathbf{w})=(\sigma\cdot\mathbf{v})\otimes(\sigma\cdot\mathbf{w})$$

Question

Find an explicit decomposition of the tensor product in terms of irreducible representations of G.

- $G = GL_n((C)).$
- Find the multiplicity, $c_{\alpha,\beta}^{\gamma}$, of the irreducible representation of shape γ in $V_{\alpha} \otimes V_{\beta}$.
 - $\bullet \ V_{\alpha} \otimes V_{\beta} = \oplus_{\gamma} c_{\alpha,\beta}^{\gamma} V_{\gamma}$

- $G = GL_n((C)).$
- Find the multiplicity, $c_{\alpha,\beta}^{\gamma}$, of the irreducible representation of shape γ in $V_{\alpha} \otimes V_{\beta}$.
 - $\bullet V_{\alpha} \otimes V_{\beta} = \oplus_{\gamma} c_{\alpha,\beta}^{\gamma} V_{\gamma}$
- LR-rule:
 - $\gamma = (4, 3, 3, 2), \ \alpha = (2, 2, 1), \ \beta = (3, 2, 2)$

- $G = GL_n((C)).$
- Find the multiplicity, $c_{\alpha,\beta}^{\gamma}$, of the irreducible representation of shape γ in $V_{\alpha} \otimes V_{\beta}$.
 - $\bullet \ V_{\alpha} \otimes V_{\beta} = \oplus_{\gamma} c_{\alpha,\beta}^{\gamma} V_{\gamma}$
- LR-rule:
 - $\gamma = (4, 3, 3, 2), \ \alpha = (2, 2, 1), \ \beta = (3, 2, 2)$
 - If $\alpha \leq \gamma$, form LR skew-tableau with content β :

- $G = GL_n((C)).$
- Find the multiplicity, $c_{\alpha,\beta}^{\gamma}$, of the irreducible representation of shape γ in $V_{\alpha} \otimes V_{\beta}$.
 - $\bullet \ V_{\alpha} \otimes V_{\beta} = \oplus_{\gamma} c_{\alpha,\beta}^{\gamma} V_{\gamma}$
- LR-rule:
 - $\gamma = (4, 3, 3, 2), \ \alpha = (2, 2, 1), \ \beta = (3, 2, 2)$
 - If $\alpha \leq \gamma$, form LR skew-tableau with content β :

		1	1
		2	
	2	3	
1	3		•

- $G = GL_n((C)).$
- Find the multiplicity, $c_{\alpha,\beta}^{\gamma}$, of the irreducible representation of shape γ in $V_{\alpha} \otimes V_{\beta}$.
 - $\bullet \ V_{\alpha} \otimes V_{\beta} = \oplus_{\gamma} c_{\alpha,\beta}^{\gamma} V_{\gamma}$
- LR-rule:
 - $\gamma = (4, 3, 3, 2), \ \alpha = (2, 2, 1), \ \beta = (3, 2, 2)$
 - If $\alpha \leq \gamma$, form LR skew-tableau with content β :

Theorem

 $c_{lpha,eta}^\gamma=\#$ LR skew-tableau of shape \gammaackslashlpha with content eta

K V Subrahmanyam (C. M. I.) Geometric Complexity Theory: a high

• $c_{\alpha,\beta}^{\gamma}$ in #P, like permanent - it has a positive formula

- $c_{\alpha,\beta}^{\gamma}$ in #P, like permanent it has a positive formula
- It is among the hardest such functions computing this is #P complete - as hard as permanent.

- $c_{\alpha,\beta}^{\gamma}$ in #P, like permanent it has a positive formula
- It is among the hardest such functions computing this is #P complete - as hard as permanent.
- If we could compute this fast, then we would also be able to compute the Permanent fast!

- $c_{\alpha,\beta}^{\gamma}$ in #P, like permanent it has a positive formula
- It is among the hardest such functions computing this is #P complete - as hard as permanent.
- If we could compute this fast, then we would also be able to compute the Permanent fast!

Theorem, GCT III

Checking non-zeroness of LR coeff is in P

Complexity theory implications of LR

- $c_{\alpha,\beta}^{\gamma}$ in #P, like permanent it has a positive formula
- It is among the hardest such functions computing this is #P complete - as hard as permanent.
- If we could compute this fast, then we would also be able to compute the Permanent fast!

5/09/07 @CMI

17 / 71

Theorem, GCT III

Checking non-zeroness of LR coeff is in P

• The precursor to Saturated linear programming.

- $G = S_d$:
 - Find the multiplicity, k^γ_{α,β}, of the irreducible representation of shape γ in W_α ⊗ W_β.

- $G = S_d$:
 - Find the multiplicity, k^γ_{α,β}, of the irreducible representation of shape γ in W_α ⊗ W_β.
 - $\bullet \ W_{\alpha} \otimes W_{\beta} = \oplus_{\gamma} k_{\alpha,\beta}^{\gamma} W_{\gamma}$

- $G = S_d$:
 - Find the multiplicity, k^γ_{α,β}, of the irreducible representation of shape γ in W_α ⊗ W_β.
 - $W_{\alpha} \otimes W_{\beta} = \oplus_{\gamma} k_{\alpha,\beta}^{\gamma} W_{\gamma}$
 - No rule akin to LR rule known.

- $G = S_d$:
 - Find the multiplicity, k^γ_{α,β}, of the irreducible representation of shape γ in W_α ⊗ W_β.

5/09/07 @CMI

18 / 71

- $W_{\alpha} \otimes W_{\beta} = \oplus_{\gamma} k_{\alpha,\beta}^{\gamma} W_{\gamma}$
- No rule akin to LR rule known.

Question

Does the Kronecker coefficient belong to #P?

- $G = S_d$:
 - Find the multiplicity, k^γ_{α,β}, of the irreducible representation of shape γ in W_α ⊗ W_β.
 - $W_{\alpha} \otimes W_{\beta} = \oplus_{\gamma} k_{\alpha,\beta}^{\gamma} W_{\gamma}$
 - No rule akin to LR rule known.

Question

Does the Kronecker coefficient belong to #P?

Conjecture

- $k_{\alpha,\beta}^{\gamma}$ is in #P.
- non-zeroness of $k_{\alpha,\beta}^{\gamma}$ is in *P*.

4 B K 4 B K

Roadmap

1) Basics in Complexity theory, Algebraic Geometry

- Complexity Theory
- Representation theory

Algebraic geometry

- 2 Algebraizing the formula complexity question
 - Reduction
 - Geometry and class varieties
- From lower bounds to obstructions
 - Geometry of class varieties is tractable
 - The first flip
- Saturated Integer programming
 - Overcoming the Razbarov-Rudich barrier
 - Non-zeroness of LR-coeffs in poly time
 - Saturated functions
- Implementing the flip for #P vs NC^2
 - Saturation of Kronecker coefficients

Affine varieties

- $V = \mathbb{C}^n$, $X = (x_1, x_2, \dots, x_n)$ be the coordinates of V.
- An affine algebraic set, Z ⊆ V, is the zero set of a collection of polynomials in C[X] = C[x₁,...,x_n].
- Irreducible if it is not the union of two proper affine algebraic sets - Affine variety
- Coordinate ring C[Z] C[X]/I(Z) where I(Z) is the set of all polynomial functions vanishing on Z.
- Elements of $\mathbb{C}[Z]$ polynomial functions on Z.
- Examples
 - X axis union Y axis is the zero set of xy = 0 in $\mathbb{C}[x, y]$.
 - The parabola is the zero set of $y^2 = x$ in $\mathbb{C}[x, y]$.

Projective Varieties

- $P^{n-1} \stackrel{\text{def}}{=} P(V)$, the projective space of lines in V through the origin.
- The homogeneous coordinate ring of P(V) is defined to be $\mathbb{C}[X]$.
- A projective algebraic set Y ⊆ V is the set of zeros of homogeneous functions on V.
- The affine cone Ŷ ⊆ V is the union of lines in V corresponding to points in Y.
- The homogeneous coordinate ring $R(Y) = \mathbb{C}[X]/I(Y)$.
- Elements of R[Y] homogeneous functions on the cone over Y.
- Degree *d* component of *R*[*Y*], is the space of homogeneous polynomials of degree *d* on *Y*.

• Let V be a representation of a reductive group G.

- Let V be a representation of a reductive group G.
 - ► Then G takes a line through the origin in V to another line through the origin in V.

- Let V be a representation of a reductive group G.
 - ► Then G takes a line through the origin in V to another line through the origin in V.
 - Get an action of G on P(V).

- Let V be a representation of a reductive group G.
 - ► Then G takes a line through the origin in V to another line through the origin in V.
 - Get an action of G on P(V).
 - Get a representation of G on $\mathbb{C}[X]$

- Let V be a representation of a reductive group G.
 - ► Then G takes a line through the origin in V to another line through the origin in V.
 - Get an action of G on P(V).
 - Get a representation of G on $\mathbb{C}[X]$
 - $(\sigma \cdot f)(X) = f(\sigma^{-1}X).$

- Let V be a representation of a reductive group G.
 - ► Then G takes a line through the origin in V to another line through the origin in V.
 - Get an action of G on P(V).
 - Get a representation of G on $\mathbb{C}[X]$

•
$$(\sigma \cdot f)(X) = f(\sigma^{-1}X)$$
.

Y ⊆ P(V) is a G-variety if its ideal I(Y) ⊆ C[X] is a subrepresentation of G.

- Let V be a representation of a reductive group G.
 - ► Then G takes a line through the origin in V to another line through the origin in V.
 - Get an action of G on P(V).
 - Get a representation of G on $\mathbb{C}[X]$

•
$$(\sigma \cdot f)(X) = f(\sigma^{-1}X)$$
.

- Y ⊆ P(V) is a G-variety if its ideal I(Y) ⊆ C[X] is a subrepresentation of G.
- $\mathbb{C}[X]/I(Y)$ a representation of G.

- Let V be a representation of a reductive group G.
 - ► Then G takes a line through the origin in V to another line through the origin in V.
 - Get an action of G on P(V).
 - Get a representation of G on $\mathbb{C}[X]$

•
$$(\sigma \cdot f)(X) = f(\sigma^{-1}X)$$
.

- Y ⊆ P(V) is a G-variety if its ideal I(Y) ⊆ C[X] is a subrepresentation of G.
- $\mathbb{C}[X]/I(Y)$ a representation of G.
- For $p \in Y$, $\sigma(p)$ is in Y G moves points of Y around.

Orbit closures as special G-varieties

• $v \in P(V)$, a point and Gv the orbit of v.

$$Gv = \{gv | g \in G\}$$

• $H = G_v \stackrel{def}{=} \{g \in G | gv = v\}$

• $\Delta_V[v] = \overline{Gv} \subseteq P(V)$, the orbit closure of v.

Orbit closures as special G-varieties

• $v \in P(V)$, a point and Gv the orbit of v.

$$Gv = \{gv | g \in G\}$$

•
$$H = G_v \stackrel{def}{=} \{g \in G | gv = v\}$$

• $\Delta_V[v] = \overline{Gv} \subseteq P(V)$, the orbit closure of v .

Example: The Grassmanian

Let V_{λ} the irreducible GL_n module given by shape λ . Take the point v_{λ} . Then the orbit of v_{λ} is closed, and is isomorphic to G/P. (Very well studied in algebraic geometry)

5/09/07 @CMI

23 / 71

Roadmap

- Basics in Complexity theory, Algebraic Geometry
 - Complexity Theory
 - Representation theory
 - Algebraic geometry
- Algebraizing the formula complexity question
 - Reduction
 - Geometry and class varieties
- From lower bounds to obstructions
 - Geometry of class varieties is tractable
 - The first flip
- Saturated Integer programming
 - Overcoming the Razbarov-Rudich barrier
 - Non-zeroness of LR-coeffs in poly time
 - Saturated functions
- Implementing the flip for #P vs NC^2
 - Saturation of Kronecker coefficients

Roadmap

- Basics in Complexity theory, Algebraic Geometry
 - Complexity Theory
 - Representation theory
 - Algebraic geometry

Algebraizing the formula complexity question

- Reduction
- Geometry and class varieties
- From lower bounds to obstructions
 - Geometry of class varieties is tractable
 - The first flip
- Saturated Integer programming
 - Overcoming the Razbarov-Rudich barrier
 - Non-zeroness of LR-coeffs in poly time
 - Saturated functions
- Implementing the flip for #P vs NC^2
 - Saturation of Kronecker coefficients

Valiant's reduction

Theorem

If $p(X_1, ..., X_n)$ has a formula of size m/2 then there is a matrix A of size $2m \times 2m$, with entries being constants (from the underlying field), or variables with $p(X_1, ..., X_n) = det_m(A)$.

Lets homogenize this construction:

- Add an extra variable X₀.
- Let $p^m(X_0, X_1, \ldots, X_n)$ be the degree *m* homogenization of *p*.

5/09/07 @CMI

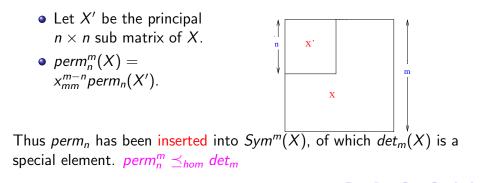
26 / 71

• Homogenize A_{ij} using X_0 .

Then $p^m(X_0,\ldots,X_n) = det_m(A)$.

The \leq_{hom} reduction

Let $X = (X_1, ..., X_r)$. For two forms $f, g \in Sym^d(X)$ we say we say $f \leq_{hom} g$ if f(X) = g(AX), where $A \in gl(X)$. If *perm_n* has a formula of size m/2 -Consider the space of all $m \times m$ matrices. For m > n we construct a new function, $perm_n^m \in Sym^m(X)$.



Roadmap

- Basics in Complexity theory, Algebraic Geometry
 - Complexity Theory
 - Representation theory
 - Algebraic geometry

Algebraizing the formula complexity question

Reduction

• Geometry and class varieties

- From lower bounds to obstructions
 - Geometry of class varieties is tractable
 - The first flip
- Saturated Integer programming
 - Overcoming the Razbarov-Rudich barrier
 - Non-zeroness of LR-coeffs in poly time
 - Saturated functions
- Implementing the flip for #P vs NC^2
 - Saturation of Kronecker coefficients

Group actions

Let
$$V = Sym^m(X)$$
.
Recall $GL(X)$ action on V :
 $(\sigma \cdot f)(X) = f(\sigma^{-1}X)$.
Two notions:

- Orbit: $O(g) = \{\sigma \cdot g | \sigma \in GL(X)\}$
- The projective orbit closure: $\Delta_V(g) = \overline{O(g)}$

If $f \leq_{hom} g$ then $f = g(\mu \cdot X)$, so:

- If μ is full rank, then f is in the GL(X) orbit of g.
- If not, then μ is approximated by elements of GL(X).

In either case,

 $f \preceq_{hom} g \implies f \in \Delta(g)$

A faithful algebraization

- If $perm_n$ has a formula of size m/2 then $perm_n^m \in \Delta(det_m)$.
- On the other hand if perm^m_n(X) ∈ Δ(det_m) then for all ε > 0, there is a a σ ∈ GL(X) such that σ · det_m approximates perm^m_n to ε.

Gives a poly time approximation algorithm for permanent

• Recall $perm_n$ is #P-complete.

Approach

To show $perm_n$ has no formula of size $n^c/2$ it suffices to show that $perm_n^{n^c} \notin \Delta(det_{n^c})$

Roadmap

5/09/07 @CMI

31 / 71

- Basics in Complexity theory, Algebraic Geometry
 - Complexity Theory
 - Representation theory
 - Algebraic geometry
- 2 Algebraizing the formula complexity question
 - Reduction
 - Geometry and class varieties
 - From lower bounds to obstructions
 - Geometry of class varieties is tractableThe first flip
 - Saturated Integer programming
 - Overcoming the Razbarov-Rudich barrier
 - Non-zeroness of LR-coeffs in poly time
 - Saturated functions
 - Implementing the flip for #P vs NC^2
 - Saturation of Kronecker coefficients

Roadmap

5/09/07 @CMI

32 / 71

- Basics in Complexity theory, Algebraic Geometry
 - Complexity Theory
 - Representation theory
 - Algebraic geometry
- 2 Algebraizing the formula complexity question
 - Reduction
 - Geometry and class varieties
 - From lower bounds to obstructions
 - Geometry of class varieties is tractable
 - The first flip
 - Saturated Integer programming
 - Overcoming the Razbarov-Rudich barrier
 - Non-zeroness of LR-coeffs in poly time
 - Saturated functions
 - Implementing the flip for #P vs NC^2
 - Saturation of Kronecker coefficients

Group theoretic varieties, and orbit closure membership

To determine if a form f belongs to $\Delta(g)$ (assuming both live in the same space), is in generalhopeless!

- $\Delta(det_{n^c})$ the *class variety* associated to NC^2 is group theoretic.
- $\Delta(perm_n^{n^c})$ the extended #P variety is also group theoretic.

Group theoretic varieties, and orbit closure membership

To determine if a form f belongs to $\Delta(g)$ (assuming both live in the same space), is in generalhopeless!

- $\Delta(det_{n^c})$ the *class variety* associated to NC^2 is group theoretic.
- $\Delta(perm_n^{n^c})$ the extended #P variety is also group theoretic.
- This is why we expect this problem to be tractable!

Rich stabilizers

٩

The stabilizer G_{det_m} of the determinant in $G = GL(m^2)$

- $X \mapsto AXB,$ $A, B \in GL(m);$ $X \mapsto X^T$
- det_m ∈ Sym^m(m²) determined by its stabilizer.

The stabilizer of the permanent in $GL(n^2)$.

- $X' \mapsto PX'Q$, P, Qpermutation matrices in GL(n).
 - X' → D₁X'D₂, D₁, D₂ diagonal matrices in *GL(n)*.
 X' → X'^T

•
$$perm_n \in Sym^n(n^2)$$
 is
determined by its
stabilizer.
The embedding of G_{det} is (almost) the natural embedding

 $GL(\mathbb{C}^m) \times GL(\mathbb{C}^m) \mapsto GL(\mathbb{C}^m \otimes \mathbb{C}^m)$

Facts

• If $perm_n^m \in \Delta(det_m)$ then $\Delta(perm_n^m) \subseteq \Delta(det)$.

Facts

- If $perm_n^m \in \Delta(det_m)$ then $\Delta(perm_n^m) \subseteq \Delta(det)$.
- Let $R(n, m^2)$ denote the coordinate ring of $\Delta(perm_n^m)$ and S the coordinate ring of $\Delta(det)$. Then $R_d \hookrightarrow S_d$ for all d.

Facts

- If $perm_n^m \in \Delta(det_m)$ then $\Delta(perm_n^m) \subseteq \Delta(det)$.
- Let $R(n, m^2)$ denote the coordinate ring of $\Delta(perm_n^m)$ and S the coordinate ring of $\Delta(det)$. Then $R_d \hookrightarrow S_d$ for all d.
- Recall: Both R and S are $G = GL(m^2)$ representations.

Facts

- If $perm_n^m \in \Delta(det_m)$ then $\Delta(perm_n^m) \subseteq \Delta(det)$.
- Let $R(n, m^2)$ denote the coordinate ring of $\Delta(perm_n^m)$ and S the coordinate ring of $\Delta(det)$. Then $R_d \hookrightarrow S_d$ for all d.
- Recall: Both R and S are $G = GL(m^2)$ representations.
- So every irreducible representation $V_{\lambda} \stackrel{\text{def}}{=} V_{\lambda}(G)$ that occurs in R_d as a subrepresentation, also occurs in S_d as a subrepresentation.

Roadmap

- Basics in Complexity theory, Algebraic Geometry
 - Complexity Theory
 - Representation theory
 - Algebraic geometry
- 2 Algebraizing the formula complexity question
 - Reduction
 - Geometry and class varieties
 - From lower bounds to obstructions
 - Geometry of class varieties is tractable

• The first flip

- Saturated Integer programming
 - Overcoming the Razbarov-Rudich barrier
 - Non-zeroness of LR-coeffs in poly time
 - Saturated functions
- Implementing the flip for #P vs NC^2
 - Saturation of Kronecker coefficients

Obstructions as witnesses

Definition

We say V_{λ} is an obstruction for the pair n, m^2 and the pair (perm, det) in degree d if it occurs in R_d and not in S_d .

Conjecture

An obstruction for n, m^2 and the pair (perm, det) exists if $m = 2^{n^a}$, for a small constant a > 0 as $n \to \infty$. There exists such an obstruction of a small degree $m^b, b > 0$, a large constant.

The specification of an obstruction is given in the form of its label λ .

・ 同・ ・ ヨ・

• Algebraic groups are completely determined by their representations

- Algebraic groups are completely determined by their representations
- The class varieties are essentially determined by their associated triples.

- Algebraic groups are completely determined by their representations
- The class varieties are essentially determined by their associated triples.
 - #P by $G_{perm_n} \hookrightarrow GL(n^2) \hookrightarrow GL(V)$
 - NC^2 by $G_{det_m} \hookrightarrow GL(m^2) \hookrightarrow GL(W)$

- Algebraic groups are completely determined by their representations
- The class varieties are essentially determined by their associated triples.
 - ▶ #P by $G_{perm_n} \hookrightarrow GL(n^2) \hookrightarrow GL(V)$ ▶ NC^2 by $G_{det_m} \hookrightarrow GL(m^2) \hookrightarrow GL(W)$
- A witness for the non-existence of the embedding ought to be present in the representation-theoretic datum, assuming #P ≠ NC².

- Suppose H_1 , H_2 are reductive subgroups of a reductive group $G = GL(\mathbb{C}^l)$.
- Assume H_2 is not a conjugate of H_1 .

- Suppose H_1 , H_2 are reductive subgroups of a reductive group $G = GL(\mathbb{C}^l)$.
- Assume H_2 is not a conjugate of H_1 .

Fact

- $G/H_1, G/H_2$ are affine algebraic varieties
- G/H_1 cannot be embedded in G/H_2 and vice versa.

- Suppose H_1 , H_2 are reductive subgroups of a reductive group $G = GL(\mathbb{C}^l)$.
- Assume H_2 is not a conjugate of H_1 .

Fact

- $G/H_1, G/H_2$ are affine algebraic varieties
- G/H_1 cannot be embedded in G/H_2 and vice versa.
- Question Is there a representation theoretic obstruction?

- Suppose H_1 , H_2 are reductive subgroups of a reductive group $G = GL(\mathbb{C}^l)$.
- Assume H_2 is not a conjugate of H_1 .

Fact

- $G/H_1, G/H_2$ are affine algebraic varieties
- G/H_1 cannot be embedded in G/H_2 and vice versa.
- Question Is there a representation theoretic obstruction?
- Peter-Weyl theorem implies,

- Suppose H_1 , H_2 are reductive subgroups of a reductive group $G = GL(\mathbb{C}^l)$.
- Assume H_2 is not a conjugate of H_1 .

Fact

- $G/H_1, G/H_2$ are affine algebraic varieties
- G/H_1 cannot be embedded in G/H_2 and vice versa.
- Question Is there a representation theoretic obstruction?
- Peter-Weyl theorem implies,

•
$$\mathbb{C}[G] = \bigoplus_{\lambda} V_{\lambda} \otimes V_{\lambda}.$$

• $\mathbb{C}[G/H] = \oplus_{\lambda} V_{\lambda} \otimes V_{\lambda}^{H}$

 $V_{\lambda}(G)$ is an obstruction for the pair $(G/H_1, G/H_2)$ is it contains an H_1 invariant and does not contain an H_2 invariant.

 $V_{\lambda}(G)$ is an obstruction for the pair $(G/H_1, G/H_2)$ is it contains an H_1 invariant and does not contain an H_2 invariant.

Theorem:Larsen,Pink

Such an obstruction always exists.

 $V_{\lambda}(G)$ is an obstruction for the pair $(G/H_1, G/H_2)$ is it contains an H_1 invariant and does not contain an H_2 invariant.

Theorem:Larsen,Pink

Such an obstruction always exists.

The embeddibility problem in GCT is a generalization of this situation

 $V_{\lambda}(G)$ is an obstruction for the pair $(G/H_1, G/H_2)$ is it contains an H_1 invariant and does not contain an H_2 invariant.

Theorem:Larsen,Pink

Such an obstruction always exists.

The embeddibility problem in GCT is a generalization of this situation

Conjecture, GCT II

Let $V = Sym^m(x_{11}, x_{12}, ..., x_{mm})$. Let Π be the set of $G = GL(m^2)$ submodules of $\mathbb{C}[V]$ whose duals do not contain a G_{det} invariant. Let $X(\Pi) \subseteq P(V)$ be the zero set of forms in Π . Then $X(\Pi) = \Delta(det_m)$.

What is known

Theorem, GCTII

There is a dense open neighbourhood $U \subseteq P(V)$ of the orbit of the determinant such that $\Delta(det_m) \cap U = X(\Pi) \cap U$.

Assuming the conjecture and the belief that the permanent cannot be approximated infinitely closely by circuits of poly-logarithmic depth,

Theorem Obstructions do exist. GCT II.

We need to show obstructions exist, Unconditionally.

What is known

Theorem, GCTII

There is a dense open neighbourhood $U \subseteq P(V)$ of the orbit of the determinant such that $\Delta(det_m) \cap U = X(\Pi) \cap U$.

Assuming the conjecture and the belief that the permanent cannot be approximated infinitely closely by circuits of poly-logarithmic depth,

Theorem Obstructions do exist. GCT II.

We need to show obstructions exist, Unconditionally.

• Important to note that existence of obstructions depends upon the special nature of det_m and so, also of the variety $\Delta(det_m)$.

What is known

Theorem, GCTII

There is a dense open neighbourhood $U \subseteq P(V)$ of the orbit of the determinant such that $\Delta(det_m) \cap U = X(\Pi) \cap U$.

Assuming the conjecture and the belief that the permanent cannot be approximated infinitely closely by circuits of poly-logarithmic depth,

Theorem Obstructions do exist. GCT II.

We need to show obstructions exist, Unconditionally.

- Important to note that existence of obstructions depends upon the special nature of det_m and so, also of the variety $\Delta(det_m)$.
- The conjecture will not be true for varieties arising out of many other *NC*²-complete forms the class variety may not be group theoretic.

• We need to understand which $GL(m^2)$ modules contain the stabilizer of the determinant form.

- We need to understand which $GL(m^2)$ modules contain the stabilizer of the determinant form.
- Recall that the stabilizer of the determinant form det_m in projective space, is GL(m) × GL(m) → GL(m²) via (A, B) → A ⊗ B.

- We need to understand which $GL(m^2)$ modules contain the stabilizer of the determinant form.
- Recall that the stabilizer of the determinant form det_m in projective space, is GL(m) × GL(m) → GL(m²) via (A, B) → A ⊗ B.
- Now irreducible representations of $GL(m) \times GL(m)$ are of the form $V_{\alpha} \otimes V_{\beta}$, α, β , shapes, with at most *m* rows.

- We need to understand which $GL(m^2)$ modules contain the stabilizer of the determinant form.
- Recall that the stabilizer of the determinant form det_m in projective space, is GL(m) × GL(m) → GL(m²) via (A, B) → A ⊗ B.
- Now irreducible representations of $GL(m) \times GL(m)$ are of the form $V_{\alpha} \otimes V_{\beta}$, α, β , shapes, with at most *m* rows.
- Given an *GL(m²)* module of shape *γ*, we need to understand the multiplicity k^γ_{α,β} this is exactly the Kronecker problem using Schur Weyl duality.

Flip

• Non existence of algorithms reduced to existence of representation theoretic obstructions

5/09/07 @CMI

43 / 71

Flip

• Non existence of algorithms reduced to existence of representation theoretic obstructions

Flip

• Non existence of algorithms reduced to existence of representation theoretic obstructions

How to prove existence of an obstruction for $perm_m^{n^c}$?

 A probabilistic approach - choose a random label λ(n) of high degree randomly and show that it is an obstruction with high probability

Flip

• Non existence of algorithms reduced to existence of representation theoretic obstructions

- A probabilistic approach choose a random label λ(n) of high degree randomly and show that it is an obstruction with high probability
- In the context of *P* vs *NP* this will be *naturalizable*

Flip

• Non existence of algorithms reduced to existence of representation theoretic obstructions

- A probabilistic approach choose a random label λ(n) of high degree randomly and show that it is an obstruction with high probability
- In the context of *P* vs *NP* this will be *naturalizable*
- The GCT VI approach: GO FOR EXPLICIT OBSTRUCTIONS!

Flip

• Non existence of algorithms reduced to existence of representation theoretic obstructions

- A probabilistic approach choose a random label λ(n) of high degree randomly and show that it is an obstruction with high probability
- In the context of *P* vs *NP* this will be *naturalizable*
- The GCT VI approach: GO FOR EXPLICIT OBSTRUCTIONS!
- This will overcome the naturalizability barrier!

Roadmap

5/09/07 @CMI

44 / 71

- Basics in Complexity theory, Algebraic Geometry
 - Complexity Theory
 - Representation theory
 - Algebraic geometry
- 2 Algebraizing the formula complexity question
 - Reduction
 - Geometry and class varieties
 - From lower bounds to obstructions
 - Geometry of class varieties is tractable
 - The first flip
 - Saturated Integer programming
 - Overcoming the Razbarov-Rudich barrier
 - Non-zeroness of LR-coeffs in poly time
 - Saturated functions
 - Implementing the flip for #P vs NC^2
 - Saturation of Kronecker coefficients

Roadmap

- Basics in Complexity theory, Algebraic Geometry
 - Complexity Theory
 - Representation theory
 - Algebraic geometry
- 2 Algebraizing the formula complexity question
 - Reduction
 - Geometry and class varieties
 - From lower bounds to obstructions
 - Geometry of class varieties is tractable
 - The first flip
 - Saturated Integer programming
 - Overcoming the Razbarov-Rudich barrier
 - Non-zeroness of LR-coeffs in poly time
 - Saturated functions
 - Implementing the flip for #P vs NC^2
 - Saturation of Kronecker coefficients

The GCT VI hypothesis

Hypothesis, GCT VI

The following problems belong to P.

- Verification There is a poly(m², n, < d >, < λ >) algorithm for deciding, given m, n, d, λ, if V_λ is an obstruction of degree d for (n, m²) and the pair (perm_n, det_m).
- Explicit construction of obstructions Suppose m = 2^{n^a} for a small constant a > 0. Then, for every n → ∞, a label λ(n) of an obstruction for (n, m²) and the pair (perm_n, det_m) can be constructed in time poly(m), thereby proving the existence of an obstruction for every such n, m².
- Discovery of obstructions There exists a poly(n, m) algorithm for deciding, if there exists an obstruction for (n, m²) and the pair (perm_n, det_m), and for constructing the label of one, if it exists.

- 4 回 ト 4 ヨ ト 4 ヨ ト

• GCT VI: Proving that the hypothesis is true, will be the hardest step in the flip.

- GCT VI: Proving that the hypothesis is true, will be the hardest step in the flip.
- The hypothesis is believable because of the special nature of the perm function and, so, of Δ(perm^m_n).

- GCT VI: Proving that the hypothesis is true, will be the hardest step in the flip.
- The hypothesis is believable because of the special nature of the perm function and, so, of Δ(perm^m_n).
- There are many #P forms probabilistic method would show so.

- GCT VI: Proving that the hypothesis is true, will be the hardest step in the flip.
- The hypothesis is believable because of the special nature of the perm function and, so, of Δ(perm^m_n).
- There are many #P forms probabilistic method would show so.
- We could have taken any such form, say *h*, and argued that *h* is not computable by a poly-sized formula.How?

- GCT VI: Proving that the hypothesis is true, will be the hardest step in the flip.
- The hypothesis is believable because of the special nature of the perm function and, so, of Δ(perm^m_n).
- There are many #P forms probabilistic method would show so.
- We could have taken any such form, say *h*, and argued that *h* is not computable by a poly-sized formula.How?
- By exhibiting an obstruction. SAME IDEA, take $\Delta(h_n^m)$ and show this is not embeddable in $\Delta(det_m)$.

Why the hypothesis?

- GCT VI: Proving that the hypothesis is true, will be the hardest step in the flip.
- The hypothesis is believable because of the special nature of the perm function and, so, of Δ(perm^m_n).
- There are many #P forms probabilistic method would show so.
- We could have taken any such form, say *h*, and argued that *h* is not computable by a poly-sized formula.How?
- By exhibiting an obstruction. SAME IDEA, take $\Delta(h_n^m)$ and show this is not embeddable in $\Delta(det_m)$.
- Of course, such obstructions exist in plenty! thanks to the special nature of determinant , however

The P-barrier thesis

• It is unlikely that the hypothesis holds for a general *h*.

The *P*-barrier thesis

- It is unlikely that the hypothesis holds for a general *h*.
- Using currently available techniques, Gröbner basis, etc, we only get an algorithm which is double exponential in m, or triple exponential in n to verify, given λ, if V_λ is an obstruction for the pair (h, det_m)!
- Unlikely we will be able to do better, given general lower bounds for construction of Gröbner basis

The P-barrier thesis

For any approach towards $P \neq NP$ to be viable and non-naturalizeable, at least the problem of verifying an obstruction should be in P.

Crossing the P-barrier

Theorem

Hypothesis (a) is true assuming certain mathematical positivity hypothesis.

Crossing the P-barrier

Theorem

Hypothesis (a) is true assuming certain mathematical positivity hypothesis.

Theorem, GCT III

Checking non-zeroness of *LR* coefficients can be done in polynomial time - that is, given partitions α, β, γ , and *n*, checking if $c_{\alpha,\beta}^{\gamma}$ is non-zero can be done in time polynomial in $n, <\alpha >, <\beta >, <\gamma >$.

Roadmap

- Basics in Complexity theory, Algebraic Geometry
 - Complexity Theory
 - Representation theory
 - Algebraic geometry
- 2 Algebraizing the formula complexity question
 - Reduction
 - Geometry and class varieties
 - From lower bounds to obstructions
 - Geometry of class varieties is tractable
 - The first flip
 - Saturated Integer programming
 - Overcoming the Razbarov-Rudich barrier
 - Non-zeroness of LR-coeffs in poly time
 - Saturated functions
 - Implementing the flip for #P vs NC^2
 - Saturation of Kronecker coefficients

• Recall $c_{\alpha,\beta}^{\gamma} = \#$ of LR skew-tableau of shape γ/α with content β .

- Recall $c_{\alpha,\beta}^{\gamma} = \#$ of LR skew-tableau of shape γ/α with content β .
- $r_j^i(T)$, $1 \le i \le n$, $1 \le j \le n$, denote the number of j's in *i*-th row of T. Then

- Recall $c_{\alpha,\beta}^{\gamma} = \#$ of LR skew-tableau of shape γ/α with content β .
- $r_j^i(T)$, $1 \le i \le n$, $1 \le j \le n$, denote the number of j's in *i*-th row of T. Then
- Non-neg $r_j^i \ge 0$. Shape For $i \le n$, $\alpha_i + \sum_j r_j^i = \gamma_i$.

- Recall $c_{\alpha,\beta}^{\gamma} = \#$ of LR skew-tableau of shape γ/α with content β .
- $r_j^i(T)$, $1 \le i \le n$, $1 \le j \le n$, denote the number of j's in *i*-th row of T. Then
- Non-neg $r_j^i \ge 0$. Shape For $i \le n$, $\alpha_i + \sum_j r_j^i = \gamma_i$.
- Content For $j \leq n$, $\sum_i r_j^i = \beta_j$.

- Recall $c_{\alpha,\beta}^{\gamma} = \#$ of LR skew-tableau of shape γ/α with content β .
- $r_j^i(T)$, $1 \le i \le n$, $1 \le j \le n$, denote the number of j's in *i*-th row of T. Then
- Non-neg $r_j^i \ge 0$. Shape For $i \le n$, $\alpha_i + \sum_j r_j^i = \gamma_i$.
- Content For $j \leq n$, $\sum_{i} r_{j}^{i} = \beta_{j}$.
- Tableau No k < j occurs in row i + 1 of T below a j or a higher integer in row i of T.

$$\alpha_{i+1} + \sum_{k \le j} r_k^{i+1} \le \alpha_i + \sum_{k' < j} r_{k'}^{i}$$

- Recall $c_{\alpha,\beta}^{\gamma} = \#$ of LR skew-tableau of shape γ/α with content β .
- $r_j^i(T)$, $1 \le i \le n$, $1 \le j \le n$, denote the number of j's in *i*-th row of T. Then
- Non-neg $r_j^i \ge 0$. Shape For $i \le n$, $\alpha_i + \sum_j r_j^i = \gamma_i$.
- Content For $j \leq n$, $\sum_{i} r_{j}^{i} = \beta_{j}$.
- Tableau No k < j occurs in row i + 1 of T below a j or a higher integer in row i of T.

$$\alpha_{i+1} + \sum_{k \le j} r_k^{i+1} \le \alpha_i + \sum_{k' < j} r_{k'}^i$$

• LR constraint

▶
$$r_j^i = 0, i < j.$$

- Recall $c_{\alpha,\beta}^{\gamma} = \#$ of LR skew-tableau of shape γ/α with content β .
- $r_j^i(T)$, $1 \le i \le n$, $1 \le j \le n$, denote the number of j's in *i*-th row of T. Then
- Non-neg $r_j^i \ge 0$. Shape For $i \le n$, $\alpha_i + \sum_j r_j^i = \gamma_i$.
- Content For $j \leq n$, $\sum_{i} r_{j}^{i} = \beta_{j}$.
- Tableau No k < j occurs in row i + 1 of T below a j or a higher integer in row i of T.

$$\alpha_{i+1} + \sum_{k \le j} r_k^{i+1} \le \alpha_i + \sum_{k' < j} r_{k'}^{i}$$

• LR constraint

►
$$r_j^i = 0, i < j.$$

► $\sum_{i' < i} r_j^{i'} \le \sum_{i' < i} r_{j-1}^{i'}.$

5/09/07 @CMI 51 / 71

Theorem, GCT III

The polytope P described by the linear inequalities above has an integer point iff it is non-empty

Theorem, GCT III

The polytope P described by the linear inequalities above has an integer point iff it is non-empty

Proof.

• *P* of the form $Ar \leq b$, where *b* is homogeneous in α, β, γ .

Theorem, GCT III

The polytope P described by the linear inequalities above has an integer point iff it is non-empty

- *P* of the form $Ar \leq b$, where *b* is homogeneous in α, β, γ .
- P has rational vertices.

Theorem, GCT III

The polytope P described by the linear inequalities above has an integer point iff it is non-empty

- *P* of the form $Ar \leq b$, where *b* is homogeneous in α, β, γ .
- P has rational vertices.
- If P non-empty, qP non-empty for all q integer, q > 0.

Theorem, GCT III

The polytope P described by the linear inequalities above has an integer point iff it is non-empty

- *P* of the form $Ar \leq b$, where *b* is homogeneous in α, β, γ .
- P has rational vertices.
- If P non-empty, qP non-empty for all q integer, q > 0.
- However number of integral points in qP is precisely $c_{q\alpha,q\beta}^{q\gamma}$

Theorem, GCT III

The polytope P described by the linear inequalities above has an integer point iff it is non-empty

- *P* of the form $Ar \leq b$, where *b* is homogeneous in α, β, γ .
- P has rational vertices.
- If P non-empty, qP non-empty for all q integer, q > 0.
- However number of integral points in qP is precisely $c_{a\alpha,a\beta}^{q\gamma}$
- $c_{q\alpha,q\beta}^{q\gamma}$ is non-zero!
- Theorem, Knutson, Tao: $c_{q\alpha,q\beta}^{q\gamma} \neq 0 \implies c_{\alpha,\beta}^{\gamma} \neq 0$.

Roadmap

5/09/07 @CMI

53 / 71

- Basics in Complexity theory, Algebraic Geometry
 - Complexity Theory
 - Representation theory
 - Algebraic geometry
- 2 Algebraizing the formula complexity question
 - Reduction
 - Geometry and class varieties
 - From lower bounds to obstructions
 - Geometry of class varieties is tractable
 - The first flip
 - Saturated Integer programming
 - Overcoming the Razbarov-Rudich barrier
 - Non-zeroness of LR-coeffs in poly time
 - Saturated functions
 - Implementing the flip for #P vs NC^2
 - Saturation of Kronecker coefficients

Generalized Littlewood Richardson coefficients

Given weights α, β, γ of a semi-simple Lie algebra G the generalized LR coefficient is the multiplicity of V_γ in V_α ⊗ V_β, where V_μ denotes the irreducible representation of G with highest weight μ.

Generalized Littlewood Richardson coefficients

- Given weights α, β, γ of a semi-simple Lie algebra G the generalized LR coefficient is the multiplicity of V_γ in V_α ⊗ V_β, where V_μ denotes the irreducible representation of G with highest weight μ.
- Berenstein-Zelevinsky associate a polytope for the coefficient $C^{\gamma}_{\alpha,\beta}.$
- $C^{\gamma}_{\alpha,\beta}$ is exactly the number of integral points in this polytope.

Generalized Littlewood Richardson coefficients

- Given weights α, β, γ of a semi-simple Lie algebra G the generalized LR coefficient is the multiplicity of V_γ in V_α ⊗ V_β, where V_μ denotes the irreducible representation of G with highest weight μ.
- Berenstein-Zelevinsky associate a polytope for the coefficient $C^{\gamma}_{\alpha,\beta}.$
- $C^{\gamma}_{\alpha,\beta}$ is exactly the number of integral points in this polytope.
- No saturation type theorem known for these coefficients.

A mathematical positivity hypothesis

Let C^{nγ}_{nα,nβ} be the stretching function associated with C^γ_{α,β}. Then the stretching function is a quasi-polynomial with period at most two i.e.there exists two polynomials C₁, C₂ such that

$$C_{n\alpha,n\beta}^{n\gamma} = \left\{ egin{array}{c} C_1(n), n \ odd \\ C_2(n), n \ even \end{array}
ight.$$

A mathematical positivity hypothesis

Let C^{nγ}_{nα,nβ} be the stretching function associated with C^γ_{α,β}. Then the stretching function is a quasi-polynomial with period at most two i.e.there exists two polynomials C₁, C₂ such that

$$C_{n\alpha,n\beta}^{n\gamma} = \begin{cases} C_1(n), n \text{ odd} \\ C_2(n), n \text{ even} \end{cases}$$

Positivity hypothesis, De Loera, McAllister The quasi-polynomial is positive - i.e. the coefficients of C_1 , C_2 are positive. Polynomiality under the hypothesis

Theorem GCT V

Assume G is simple of type B,C,D. Under the positivity hypothesis the following are equivalent.

$$C_{\alpha,\beta}^{\gamma} \geq 1$$

- **2** There exists an odd integer *n* such that $C_{n\alpha,n\beta}^{n\gamma} \ge 1$.
- The BZ polytope contains a rational point whose denominators are all odd.

5/09/07 @CMI

56 / 71

The affine span of the BZ polytope contains a rational point whose denominators are all odd. Polynomiality under the hypothesis

Theorem GCT V

Assume G is simple of type B,C,D. Under the positivity hypothesis the following are equivalent.

$$C_{\alpha,\beta}^{\gamma} \geq 1$$

- **2** There exists an odd integer *n* such that $C_{n\alpha,n\beta}^{n\gamma} \ge 1$.
- The BZ polytope contains a rational point whose denominators are all odd.
- The affine span of the BZ polytope contains a rational point whose denominators are all odd.

Proof.

(2) \implies (1): If for some *n* odd, *nP* has an integral point then

Polynomiality under the hypothesis

Theorem GCT V

Assume G is simple of type B,C,D. Under the positivity hypothesis the following are equivalent.

$$C_{\alpha,\beta}^{\gamma} \geq 1$$

- **2** There exists an odd integer *n* such that $C_{n\alpha,n\beta}^{n\gamma} \ge 1$.
- The BZ polytope contains a rational point whose denominators are all odd.
- The affine span of the BZ polytope contains a rational point whose denominators are all odd.

Proof.

(2) \implies (1): If for some *n* odd, *nP* has an integral point then $C_1()$ should be a non-zero polynomial. Its coefficients are all positive. So $C_1(1)$ is also non-zero!

Saturated quasi-polynomials

- A function f(n) is called a quasi-polynomial if there exist / polynomials f_j(n), 1 ≤ j ≤ l, such that f(n)=f_j(n) if n = j mod l. Here l is supposed to be the smallest such integer, and is called the period of f(n).
- The smallest j, $1 \le j \le l$, such that f_j is not identically zero, is called the index of the quasi-polynomial.
- We say that the quasi-polynomial f(n) which is not identically zero is saturated, if $f(index(f)) \neq 0$.
- Positivity \implies Saturation. If each f_j is guaranteed to have positive coefficients, f is saturated.

 Integer Programming: Does the polytope {x | Ax ≤ b} contain an integer point?

- Integer Programming: Does the polytope {x | Ax ≤ b} contain an integer point?
- In general very hard NP-complete.

- Integer Programming: Does the polytope {x | Ax ≤ b} contain an integer point?
- In general very hard NP-complete.
- Associate to a polytope *P* a function;

 $f_P(n) = \#integral \text{ points in the polytope } nP$

5/09/07 @CMI

58 / 71

- Integer Programming: Does the polytope {x | Ax ≤ b} contain an integer point?
- In general very hard NP-complete.
- Associate to a polytope *P* a function;

 $f_P(n) = \#integral \text{ points in the polytope } nP$

5/09/07 @CMI

58 / 71

Theorem Stanley

 $f_P()$ is a quasi-polynomial.

- Integer Programming: Does the polytope {x | Ax ≤ b} contain an integer point?
- In general very hard NP-complete.
- Associate to a polytope *P* a function;

 $f_P(n) = \#integral \text{ points in the polytope } nP$

Theorem Stanley

 $f_P()$ is a quasi-polynomial.

Theorem, GCT VI

The index of the quasi-polynomial f_P associated to a polytope (specified by a separation oracle), can be determined in oracle polynomial time.

- Integer Programming: Does the polytope {x | Ax ≤ b} contain an integer point?
- In general very hard NP-complete.
- Associate to a polytope *P* a function;

 $f_P(n) = \#integral \text{ points in the polytope } nP$

Theorem Stanley

 $f_P()$ is a quasi-polynomial.

Theorem, GCT VI

The index of the quasi-polynomial f_P associated to a polytope (specified by a separation oracle), can be determined in oracle polynomial time.

• Saturated integer programming has a polynomial time algorithm.

5/09/07 @CMI

58 / 71

K V Subrahmanyam (C. M. I.) Geometric Complexity Theory: a high

Questions associated with quasi-polynomials

Given a quasi-polynomial g(n) we may ask:

- Is g convex? Is there a polytope P whose Ehrhart polynomial $f_P(n)$ coincides with g(n).
- Is g positive?
- Is g saturated?

• Does $G(t) \stackrel{\text{def}}{=} \sum_{n} g(n) t^{n}$, have a reduced, positive form?

Roadmap

5/09/07 @CMI

60 / 71

- Basics in Complexity theory, Algebraic Geometry
 - Complexity Theory
 - Representation theory
 - Algebraic geometry
- 2 Algebraizing the formula complexity question
 - Reduction
 - Geometry and class varieties
- 3) From lower bounds to obstructions
 - Geometry of class varieties is tractable
 - The first flip
- Saturated Integer programming
 - Overcoming the Razbarov-Rudich barrier
 - Non-zeroness of LR-coeffs in poly time
 - Saturated functions

Implementing the flip for $\#P \ vs \ NC^2$

• Saturation of Kronecker coefficients

Roadmap

5/09/07 @CMI

61 / 71

- Basics in Complexity theory, Algebraic Geometry
 - Complexity Theory
 - Representation theory
 - Algebraic geometry
- 2 Algebraizing the formula complexity question
 - Reduction
 - Geometry and class varieties
- 3) From lower bounds to obstructions
 - Geometry of class varieties is tractable
 - The first flip
- Saturated Integer programming
 - Overcoming the Razbarov-Rudich barrier
 - Non-zeroness of LR-coeffs in poly time
 - Saturated functions

Implementing the flip for $\#P \ vs \ NC^2$

• Saturation of Kronecker coefficients

Kirillov's conjecture

Associate with the Kronecker constant k^γ_{α,β} the following stretching function.

$$ilde{k}^{\gamma}_{lpha,eta}({\it n})=k^{{\it n}\gamma}_{{\it n}lpha,eta}$$

Conjecture, Kirillov

The generating function, $K^{\gamma}_{\alpha,\beta}(t) = \sum_{n\geq 0} k^{n\gamma}_{n\alpha,\beta}t^n$ is a rational function.

Kirillov's conjecture verified, GCT VI

Theorem

(a) Rationality The generating function $K^{\gamma}_{\alpha,\beta}(t)$ is rational.

(b) Quasi-polynomiality The stretching function $\tilde{k}^{\gamma}_{\alpha,\beta}(n)$ is a quasi-polynomial function of n.

(c) There exist graded, normal \mathbb{C} -algebras $S = S(k_{\alpha,\beta}^{\gamma}) = \bigoplus_n S_n$, and $T = T(k_{\alpha,\beta}^{\gamma}) = \bigoplus_n T_n$ such that:

- The schemes spec(S) and spec(T) are normal and have rational singularities.
- **2** $T = S^{GL_n(\mathbb{C})}$, the subring of $GL_n(\mathbb{C})$ -invariants in S.
- Solution The quasi-polynomial $\tilde{k}_{\alpha,\beta}^{\gamma}(n)$ is the Hilbert function of T. In other words, it is the Hilbert function of the homogeneous coordinate ring of the projective scheme Proj(T).

(d) Positivity The rational function $K_{\alpha,\beta}^{\gamma}(t)$ can be expressed in a positive form:

$$\mathcal{K}^{\gamma}_{lpha,eta}(t)=rac{h_0+h_1t+\cdots+h_dt^d}{\prod_j(1-t^{a(j)})^{d(j)}},$$

where a(j)'s and d(j)'s are positive integers, $\sum_j d(j) = d + 1$, where d is the degree of the quasi-polynomial $\tilde{k}_{\alpha,\beta}^{\gamma}(n)$, $h_0 = 1$, and h_i 's are nonnegative integers.

$$\mathcal{K}^\gamma_{lpha,eta}(t)=rac{h_0+h_1t+\cdots+h_dt^d}{\prod_j(1-t^{a(j)})^{d(j)}},$$

where a(j)'s and d(j)'s are positive integers, $\sum_j d(j) = d + 1$, where d is the degree of the quasi-polynomial $\tilde{k}_{\alpha,\beta}^{\gamma}(n)$, $h_0 = 1$, and h_i 's are nonnegative integers.

• The rational function we get from the theorem is not unique. Depends upon a homogeneous system of parameters we choose. We have

$$\mathcal{K}^\gamma_{lpha,eta}(t)=rac{h_0+h_1t+\cdots+h_dt^d}{\prod_j(1-t^{a(j)})^{d(j)}},$$

where a(j)'s and d(j)'s are positive integers, $\sum_j d(j) = d + 1$, where d is the degree of the quasi-polynomial $\tilde{k}_{\alpha,\beta}^{\gamma}(n)$, $h_0 = 1$, and h_i 's are nonnegative integers.

• The rational function we get from the theorem is not unique. Depends upon a homogeneous system of parameters we choose. We have

Hypothesis, PH3

For the lex least system of parameters, $K_{\alpha,\beta}^{\gamma}(t)$ has a reduced positive form, with $max(a_i)$ bounded by a polynomial in the height of the shapes α, β and γ .

$$\mathcal{K}^\gamma_{lpha,eta}(t)=rac{h_0+h_1t+\cdots+h_dt^d}{\prod_j(1-t^{a(j)})^{d(j)}},$$

where a(j)'s and d(j)'s are positive integers, $\sum_j d(j) = d + 1$, where d is the degree of the quasi-polynomial $\tilde{k}_{\alpha,\beta}^{\gamma}(n)$, $h_0 = 1$, and h_i 's are nonnegative integers.

• The rational function we get from the theorem is not unique. Depends upon a homogeneous system of parameters we choose. We have

Hypothesis, PH3

For the lex least system of parameters, $K_{\alpha,\beta}^{\gamma}(t)$ has a reduced positive form, with $max(a_i)$ bounded by a polynomial in the height of the shapes α, β and γ .

• If so, then we will be able to conclude that $\tilde{k}^{\gamma}_{\alpha,\beta}$ is saturated.

5/09/07 @CMI

64 / 71

Proof of quasipolynomiality of $K^{\gamma}_{\alpha,\beta}$

Theorem

Let $R = \bigoplus_d R_d$ be a graded ring with an action of a connected reductive group H. Let V_{π} be a fixed irreducible H module with label π . Let s_d^{π} denote the multiplicity of the V_{π} in R_d . Take its stretching function $\tilde{s}_d^{\pi}(n)$ to be the multiplicity of $V_{n\pi}$ in R_{nd} . Take the generating function $S_d^{\pi}(t) = \sum_{n \ge 0} \tilde{s}_d^{\pi}(n)t^n$. Then S satisfies the claims of the theorem.

Consider the action of the cyclic group of order *d* with generator ζ; it acts on *R* sending *x* ∈ *R_k* to ζ^k*x*. The invariant ring B = ∑_n R_{nd}, for this action is normal and has rational singularities.

- Consider the action of the cyclic group of order *d* with generator ζ; it acts on *R* sending *x* ∈ *R_k* to ζ^k*x*. The invariant ring B = ∑_n R_{nd}, for this action is normal and has rational singularities.
- Let $V_{\pi^*} = V_{\pi}^*$. Consider the homogeneous coordinate ring $C_{\pi^*} = \sum_n V_{n\pi^*}$, of the orbit of v_{π^*} . This too is normal with rational singularities.(It is a G/P)

- Consider the action of the cyclic group of order *d* with generator ζ; it acts on *R* sending *x* ∈ *R_k* to ζ^k*x*. The invariant ring B = ∑_n R_{nd}, for this action is normal and has rational singularities.
- Let $V_{\pi^*} = V_{\pi}^*$. Consider the homogeneous coordinate ring $C_{\pi^*} = \sum_n V_{n\pi^*}$, of the orbit of v_{π^*} . This too is normal with rational singularities.(It is a G/P)
- $B \otimes C_{\pi^*}$ is normal and $spec(B \otimes C_{\pi^*})$ has rational singularities.

- Consider the action of the cyclic group of order *d* with generator ζ; it acts on *R* sending *x* ∈ *R_k* to ζ^k*x*. The invariant ring B = ∑_n R_{nd}, for this action is normal and has rational singularities.
- Let $V_{\pi^*} = V_{\pi}^*$. Consider the homogeneous coordinate ring $C_{\pi^*} = \sum_n V_{n\pi^*}$, of the orbit of v_{π^*} . This too is normal with rational singularities.(It is a G/P)
- $B \otimes C_{\pi^*}$ is normal and $spec(B \otimes C_{\pi^*})$ has rational singularities.
- \mathbb{C}^* acts on this; $x \cdot (b \otimes c) = (xb \otimes x^{-1}c)$. The invariant ring has rational singularities and $S = \oplus S_n = \bigoplus_n R_{nd} \otimes V_{n\pi^*}$. This is an *H* module. The *H* invariants form a ring *T*. The multiplicity of the trivial *H* module in S_n is precisely $\tilde{s}_d^{\pi}(n)$, and is the dimension of T_n .

- Consider the action of the cyclic group of order *d* with generator ζ; it acts on *R* sending *x* ∈ *R_k* to ζ^k*x*. The invariant ring B = ∑_n R_{nd}, for this action is normal and has rational singularities.
- Let $V_{\pi^*} = V_{\pi}^*$. Consider the homogeneous coordinate ring $C_{\pi^*} = \sum_n V_{n\pi^*}$, of the orbit of v_{π^*} . This too is normal with rational singularities.(It is a G/P)
- $B \otimes C_{\pi^*}$ is normal and $spec(B \otimes C_{\pi^*})$ has rational singularities.
- \mathbb{C}^* acts on this; $x \cdot (b \otimes c) = (xb \otimes x^{-1}c)$. The invariant ring has rational singularities and $S = \oplus S_n = \bigoplus_n R_{nd} \otimes V_{n\pi^*}$. This is an *H* module. The *H* invariants form a ring *T*. The multiplicity of the trivial *H* module in S_n is precisely $\tilde{s}_d^{\pi}(n)$, and is the dimension of T_n .
- Our desired generating function is the Hilbert series of this ring *T*.

Roadmap

5/09/07 @CMI

67 / 71

- Basics in Complexity theory, Algebraic Geometry
 - Complexity Theory
 - Representation theory
 - Algebraic geometry
- 2 Algebraizing the formula complexity question
 - Reduction
 - Geometry and class varieties
- 3) From lower bounds to obstructions
 - Geometry of class varieties is tractable
 - The first flip
- Saturated Integer programming
 - Overcoming the Razbarov-Rudich barrier
 - Non-zeroness of LR-coeffs in poly time
 - Saturated functions

Implementing the flip for $\#P \text{ vs } NC^2$

• Saturation of Kronecker coefficients

Implications of the theorem - positivity hypothesis

Hypothesis; PH1

The Kronecker stretching function is convex. For every (α, β, γ) there exists a polytope $P = P_{\alpha,\beta}^{\gamma} \subseteq \mathbb{R}^m$ such that: (1) The Ehrhart quasi-polynomial of P coincides with the stretching quasi-polynomial $k_{\alpha\beta}^{\gamma}(n)$. (2) The dimension m of the ambient space, and hence the dimension of P as well, are polynomial in the bit-lengths of α, β and γ . (3) Whether a point $x \in \mathbb{R}^m$ lies in P can be decided in $poly(<\alpha>,<\beta>,<\gamma>)$ time. That is, the membership problem belongs to the complexity class P. If x does not lie in P, then this algorithm outputs a hyper plane separating x from P.

Roadmap

5/09/07 @CMI

69 / 71

- Basics in Complexity theory, Algebraic Geometry
 - Complexity Theory
 - Representation theory
 - Algebraic geometry
- 2 Algebraizing the formula complexity question
 - Reduction
 - Geometry and class varieties
- 3) From lower bounds to obstructions
 - Geometry of class varieties is tractable
 - The first flip
- Saturated Integer programming
 - Overcoming the Razbarov-Rudich barrier
 - Non-zeroness of LR-coeffs in poly time
 - Saturated functions

Implementing the flip for $\#P \text{ vs } NC^2$

• Saturation of Kronecker coefficients

Polynomiality of $k_{\alpha,\beta}^{\gamma}$ under PH1,PH3

Theorem

Under *PH*1, *PH*3, determining if $k_{\alpha,\beta}^{\gamma}$ is non-zero can be done in polynomial time.

• Experimental evidence for PH3, and positivity of $\tilde{k}_{\alpha,\beta}^{\gamma}$.

Polynomiality of $k_{\alpha,\beta}^{\gamma}$ under PH1,PH3

Theorem

Under *PH*1, *PH*3, determining if $k_{\alpha,\beta}^{\gamma}$ is non-zero can be done in polynomial time.

- Experimental evidence for *PH*3, and positivity of $\tilde{k}_{\alpha,\beta}^{\gamma}$.
- Current proofs of *PH*1 for type *B*, *C*, *D* are based on quantum groups
- The homogeneous coordinate rings of the canonical models associated with the Littlewood-Richardson coefficients have quantizations endowed with canonical bases Kashiwara and Lusztig.
- Positivity of the basis is also based on the Riemann hypothesis over finite fields, and work of Beilinson, Bernstein, Deligne.

70 / 71

・ 同 ト ・ ヨ ト ・ ヨ ト

 Construct quantizations of the homogeneous coordinate rings of the canonical models associated with these structural constants,

- Construct quantizations of the homogeneous coordinate rings of the canonical models associated with these structural constants,
- Show that they have positive bases as per PH0.

- Construct quantizations of the homogeneous coordinate rings of the canonical models associated with these structural constants,
- Show that they have positive bases as per PH0.
- Prove PH1 and SH (and, possibly, the stronger PH2, and 3 as well) by a detailed analysis and study of these positive bases.