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Functions and Algorithms

Functions considered in Complexity theory:

Number Functions f : Z
n 7→ Z

I The determinant of a matrix.
I Optimal value of an LP.

Decision functions f : Zn 7→ {0, 1}.
I Is the determinant of a matrix zero?
I Is the optimum of an LP greater than a certain value?
I Is there an assignment of values to the variables of a Boolean

formula so that the formula is true?

In general consider a family of functions - example detm.

An Algorithm is a program which computes a family of functions.
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Measures

Every problem for which we need to design an algorithm comes with:

The input instance
I The matrix whose determinant is to be computed.
I The specific Boolean formula.

Input size
I for detm, the size, m2, of the matrix.
I Also the number of digits needed to write an entry of the matrix

What is important?

The resources consumed by the algorithm to solve the problem.
I Time taken by the algorithm.
I How many digits are needed to store each intermediate value;

how many intermediate values need to be stored.
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Computing with formulas

Let p(X1, . . . , Xn) be a polynomial. A formula is a particular way of
writing it using + and ∗.

formula = formula ∗ formula‖formula + formula

Formula size: The number of ∗ and + operations.
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Computing with formulas

Let p(X1, . . . , Xn) be a polynomial. A formula is a particular way of
writing it using + and ∗.

formula = formula ∗ formula‖formula + formula

Formula size: The number of ∗ and + operations.
Example
a3 − b3 = (a − b) ∗ (a2 + a ∗ b + b2)
Van-der-Monde (λ1, . . . , λn) = Πi 6=j(λi − λj)
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The permanent function

M = (mij), a square n × n matrix Then

Permn(M) =
∑

σ∈Sn

Π1≤i≤nmi ,σ(i)

Detn(M) =
∑

σ∈Sn

Π1≤i≤n(−1)l(σ)mi ,σ(i)

Question

Does Permn have a formula of size polynomially bounded in n?

If NOT, what is the proof?
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The complexity theory of detm and Permn

The class of functions which can be computed in polynomial
time in input size - P. Intuitively, what can be considered
feasibly computable.

detm is easy to compute - The standard Gaussian elimination for
example shows feasibility. A combinatorial algorithm (Meena,
Vinay) - allows us to compute it by a polynomial number of
computers running in poly(log n)time.

The permanent is believed to be hard. Intuitively, among the
hardest among functions f for which:

I There is an expression for f which involves only positive
coeffecients.

I Each term of f is computable in polynomial time.
I Number of terms is at most exponential in input size.
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G a group. V a vector space.

ρ : G 7→ GL(V )
I V is a representation of G .

W ⊆ V a subspace of V is a subrepresentation.
I ρ(g) · w ∈ W , ∀g ∈ G ,∀w ∈ W .

Irreducible representation.
I No proper non-trivial subrepresentation.
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G a group. V a vector space.

ρ : G 7→ GL(V )
I V is a representation of G .

W ⊆ V a subspace of V is a subrepresentation.
I ρ(g) · w ∈ W , ∀g ∈ G ,∀w ∈ W .

Irreducible representation.
I No proper non-trivial subrepresentation.

G reductive.
I Every finite dimensional representation is a direct sum of

irreducible representations.
I V = ⊕λmλVλ(G )
I λ - labels of irreducible representations of G - building blocks in

the representation theory of reductive groups.
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Examples of representations of GLn(C)

G acting on an C
n by A · v = A ∗ v .

I The zero vector is left fixed. A subrepresentation.
I Ireducible representation.

G acting on the vector space V of n × n matrices,
A · X = AXA−1.

I The vector space of scalar matrices is left invariant.
I Not irreducible.

X = (xi ,j) an n × n matrix of indeterminates. G acts on the

vector space of functions C[xi ,j] by A · xi ,j =
∑k=n

k=1 ak,ixk,j .
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Representations of GLn(C),Sd

GL(n) – the general linear group over C

Sd – the symmetric group on d letters
Partition – a decreasing sequence of positive integers

Pictorially, partition (5, 2, 2) is represented as
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Partition – a decreasing sequence of positive integers

Pictorially, partition (5, 2, 2) is represented as

GL(n), Sd are reductive

Irreducible polynomial representations of GL(n) are
parameterized by partitions with at most n rows - denoted
Vλ(GLn)

Irreducible representations of Sd are parameterized by partitions
of d - denoted Wλ(Sd)
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The irreducible representations of GLn

Z - an n × n variable matrix.
C[Z ] - ring of polynomial functions in the entries of Z - a
representation of GLn.

I (σ·f )(Z ) = f (Zσ)
Semi-standard tableau T -

I

1 1 3 3 4
2 3
3 5

CT is the product of determinants of minors such as




x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3



,





x1,1 x1,3 x1,5

x2,1 x2,3 x2,5

x3,1 x3,3 x3,5



, x1,3, x1,3, x1,4
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representation of GLn.
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
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x2,1 x2,2 x2,3

x3,1 x3,2 x3,3



,





x1,1 x1,3 x1,5

x2,1 x2,3 x2,5

x3,1 x3,3 x3,5



, x1,3, x1,3, x1,4

Theorem

Vλ is the subrepresentation spanned by CT , T-semi standard.
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Irreducible representations of Sd

C[x1, · · · , xd ] - polynomials in n variables - a representation of
Sd .

I (σ · f ) = f(xσ(1), · · · , xσ(d)).

Standard tableau T -
I

1 4 5 7 9
2 6
3 8

I fT is the product of discriminant of columns
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Irreducible representations of Sd

C[x1, · · · , xd ] - polynomials in n variables - a representation of
Sd .

I (σ · f ) = f(xσ(1), · · · , xσ(d)).

Standard tableau T -
I

1 4 5 7 9
2 6
3 8

I fT is the product of discriminant of columns
I Πi<j ,i ,j∈{1,2,3}(xi − xj) Πi<j ,i ,j∈{4,6,8}(xi − xj) x(5) x(7) x(9)

Theorem

Wλ - the subrepresentation spanned by fT , T-standard.
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Tensor Products

V a representation of G .

W a representation of G .

V ⊗ W a representation of G :
I σ(v ⊗ w) = (σ · v) ⊗ (σ · w)
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Tensor Products

V a representation of G .

W a representation of G .

V ⊗ W a representation of G :
I σ(v ⊗ w) = (σ · v) ⊗ (σ · w)

Question

Find an explicit decomposition of the tensor product in terms of
irreducible representations of G .
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Littlewood-Richardson coefficients

G = GLn((C )).

Find the multiplicity, cγ
α,β, of the irreducible representation of

shape γ in Vα ⊗ Vβ .
I Vα ⊗ Vβ = ⊕γc

γ
α,βVγ
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Littlewood-Richardson coefficients

G = GLn((C )).

Find the multiplicity, cγ
α,β, of the irreducible representation of

shape γ in Vα ⊗ Vβ .
I Vα ⊗ Vβ = ⊕γc

γ
α,βVγ

LR-rule:
I γ = (4, 3, 3, 2), α = (2, 2, 1), β = (3, 2, 2)
I If α ≤ γ, form LR skew-tableau with content β:
I

1 1
2

2 3
1 3

Theorem

c
γ
α,β = # LR skew-tableau of shape γ\α with content β
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Complexity theory implications of LR

cγ
α,β in #P, like permanent - it has a positive formula
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Complexity theory implications of LR

cγ
α,β in #P, like permanent - it has a positive formula

It is among the hardest such functions - computing this is #P
complete - as hard as permanent.

If we could compute this fast, then we would also be able to
compute the Permanent fast!

Theorem, GCT III

Checking non-zeroness of LR coeff is in P

The precursor to Saturated linear programming.
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Kronecker coefficients

G = Sd :

Find the multiplicity, kγ
α,β, of the irreducible representation of

shape γ in Wα ⊗ Wβ.
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G = Sd :

Find the multiplicity, kγ
α,β, of the irreducible representation of

shape γ in Wα ⊗ Wβ.
I Wα ⊗ Wβ = ⊕γk

γ
α,βWγ

No rule akin to LR rule known.
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Find the multiplicity, kγ
α,β, of the irreducible representation of

shape γ in Wα ⊗ Wβ.
I Wα ⊗ Wβ = ⊕γk

γ
α,βWγ

No rule akin to LR rule known.
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Kronecker coefficients

G = Sd :

Find the multiplicity, kγ
α,β, of the irreducible representation of

shape γ in Wα ⊗ Wβ.
I Wα ⊗ Wβ = ⊕γk

γ
α,βWγ

No rule akin to LR rule known.

Question

Does the Kronecker coefficient belong to #P?

Conjecture

kγ
α,β is in #P.

non-zeroness of kγ
α,β is in P.
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Affine varieties

V = Cn, X = (x1, x2, . . . , xn) be the coordinates of V .

An affine algebraic set, Z ⊆ V , is the zero set of a collection of
polynomials in C[X ] = C[x1, . . . , xn].

Irreducible - if it is not the union of two proper affine algebraic
sets - Affine variety

Coordinate ring C[Z ] - C[X ]/I (Z ) where I (Z ) is the set of all
polynomial functions vanishing on Z .

Elements of C[Z ] - polynomial functions on Z .

Examples
I X axis union Y axis is the zero set of xy = 0 in C[x , y ].
I The parabola is the zero set of y2 = x in C[x , y ].
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Projective Varieties

Pn−1 def
= P(V ), the projective space of lines in V through the

origin.

The homogeneous coordinate ring of P(V ) is defined to be
C[X ].

A projective algebraic set Y ⊆ V is the set of zeros of
homogeneous functions on V .

The affine cone Ŷ ⊆ V is the union of lines in V corresponding
to points in Y .

The homogeneous coordinate ring R(Y ) = C[X ]/I (Y ).

Elements of R[Y ] - homogeneous functions on the cone over Y .

Degree d component of R[Y ], is the space of homogeneous
polynomials of degree d on Y .
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G -varieties

Let V be a representation of a reductive group G .
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G -varieties

Let V be a representation of a reductive group G .
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through the origin in V .
I Get an action of G on P(V ).
I Get a representation of G on C[X ]
I (σ · f )(X ) = f (σ−1X ).

Y ⊆ P(V ) is a G -variety if its ideal I (Y ) ⊆ C[X ] is a
subrepresentation of G .
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G -varieties

Let V be a representation of a reductive group G .
I Then G takes a line through the origin in V to another line

through the origin in V .
I Get an action of G on P(V ).
I Get a representation of G on C[X ]
I (σ · f )(X ) = f (σ−1X ).

Y ⊆ P(V ) is a G -variety if its ideal I (Y ) ⊆ C[X ] is a
subrepresentation of G .

C[X ]/I (Y ) - a representation of G .

For p ∈ Y , σ(p) is in Y - G moves points of Y around.
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Orbit closures as special G -varieties

v ∈ P(V ), a point and Gv the orbit of v .

Gv = {gv |g ∈ G}

H = Gv
def
= {g ∈ G |gv = v}

∆V [v ] = Gv ⊆ P(V ), the orbit closure of v .
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Orbit closures as special G -varieties

v ∈ P(V ), a point and Gv the orbit of v .

Gv = {gv |g ∈ G}

H = Gv
def
= {g ∈ G |gv = v}

∆V [v ] = Gv ⊆ P(V ), the orbit closure of v .

Example: The Grassmanian

Let Vλ the irreducible GLn module given by shape λ. Take the point
vλ. Then the orbit of vλ is closed, and is isomorphic to G/P. (Very
well studied in algebraic geometry)
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Valiant’s reduction

Theorem

If p(X1, . . . , Xn) has a formula of size m/2 then there is a matrix A of
size 2m × 2m, with entries being constants (from the underlying
field), or variables with p(X1, . . . , Xn) = detm(A).

Lets homogenize this construction:

Add an extra variable X0.

Let pm(X0, X1, . . . , Xn) be the degree m homogenization of p.

Homogenize Aij using X0.

Then pm(X0, . . . , Xn) = detm(A).
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The �hom reduction

Let X = (X1, . . . , Xr ). For two forms f , g ∈ Symd(X ) we say we say
f �hom g if f (X ) = g(AX ), where A ∈ gl(X ).
If permn has a formula of size m/2 -
Consider the space of all m × m matrices. For m > n we construct a
new function, permm

n ∈ Symm(X ).

Let X ′ be the principal
n × n sub matrix of X .

permm
n (X ) =

xm−n
mm permn(X

′).

n X’

X

m

Thus permn has been inserted into Symm(X ), of which detm(X ) is a
special element. permm

n �hom detm
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Group actions

Let V = Symm(X ).
Recall GL(X ) action on V :
(σ · f )(X ) = f (σ−1X ).
Two notions:

Orbit: O(g) =
{σ · g |σ ∈ GL(X )}

The projective orbit
closure:
∆V (g) = O(g)

If f �hom g then f = g(µ · X ), so:

If µ is full rank, then f is in
the GL(X ) orbit of g .

If not, then µ is approximated
by elements of GL(X ).

In either case,
f �hom g =⇒ f ∈ ∆(g)
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A faithful algebraization

If permn has a formula of size m/2 then permm
n ∈ ∆(detm).

On the other hand if permm
n (X ) ∈ ∆(detm) then for all ε > 0,

there is a a σ ∈ GL(X ) such that σ · detm approximates permm
n

to ε.
Gives a poly time approximation algorithm for permanent

Recall permn is #P-complete.

Approach

To show permn has no formula of size nc/2 it suffices to show that
permnc

n 6∈ ∆(detnc )
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Group theoretic varieties, and orbit closure

membership

To determine if a form f belongs to ∆(g) (assuming both live in the
same space), is in generalhopeless!

∆(detnc ) - the class variety associated to NC 2 is group theoretic.

∆(permnc

n ) - the extended #P variety is also group theoretic.
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Group theoretic varieties, and orbit closure

membership

To determine if a form f belongs to ∆(g) (assuming both live in the
same space), is in generalhopeless!

∆(detnc ) - the class variety associated to NC 2 is group theoretic.

∆(permnc

n ) - the extended #P variety is also group theoretic.

This is why we expect this problem to be tractable!
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Rich stabilizers

The stabilizer Gdetm of the
determinant in G = GL(m2)

I X 7→ AXB ,
A,B ∈ GL(m);

I X 7→ XT

detm ∈ Symm(m2)
determined by its
stabilizer.

The stabilizer of the
permanent in GL(n2).

I X ′ 7→ PX ′Q, P ,Q
permutation matrices
in GL(n).

I X ′ 7→ D1X
′D2, D1,D2

diagonal matrices in
GL(n).

I X ′ 7→ X ′T

permn ∈ Symn(n2) is
determined by its
stabilizer.

The embedding of Gdet is (almost) the natural embedding

GL(Cm) × GL(Cm) 7→ GL(Cm ⊗ C
m)
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Consequences of permanent having poly-sized

formulas

Facts

If permm
n ∈ ∆(detm) then ∆(permm

n ) ⊆ ∆(det).
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Consequences of permanent having poly-sized

formulas

Facts

If permm
n ∈ ∆(detm) then ∆(permm

n ) ⊆ ∆(det).

Let R(n, m2) denote the coordinate ring of ∆(permm
n ) and S the

coordinate ring of ∆(det). Then Rd ↪→ Sd for all d .
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If permm
n ∈ ∆(detm) then ∆(permm

n ) ⊆ ∆(det).

Let R(n, m2) denote the coordinate ring of ∆(permm
n ) and S the

coordinate ring of ∆(det). Then Rd ↪→ Sd for all d .

Recall: Both R and S are G = GL(m2) representations.
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Consequences of permanent having poly-sized

formulas

Facts

If permm
n ∈ ∆(detm) then ∆(permm

n ) ⊆ ∆(det).

Let R(n, m2) denote the coordinate ring of ∆(permm
n ) and S the

coordinate ring of ∆(det). Then Rd ↪→ Sd for all d .

Recall: Both R and S are G = GL(m2) representations.

So every irreducible representation Vλ
def
= Vλ(G ) that occurs in

Rd as a subrepresentation, also occurs in Sd as a
subrepresentation.
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Obstructions as witnesses

Definition

We say Vλ is an obstruction for the pair n, m2 and the pair
(perm, det) in degree d if it occurs in Rd and not in Sd .

Conjecture

An obstruction for n, m2 and the pair (perm, det) exists if m = 2na

,
for a small constant a > 0 as n → ∞. There exists such an
obstruction of a small degree mb, b > 0, a large constant.

The specification of an obstruction is given in the form of its label λ.
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Why such obstructions?
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Algebraic groups are completely determined by their
representations

The class varieties are essentially determined by their associated
triples.

I #P by Gpermn ↪→ GL(n2) ↪→ GL(V )
I NC 2 by Gdetm ↪→ GL(m2) ↪→ GL(W )
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Why such obstructions?

Algebraic groups are completely determined by their
representations

The class varieties are essentially determined by their associated
triples.

I #P by Gpermn ↪→ GL(n2) ↪→ GL(V )
I NC 2 by Gdetm ↪→ GL(m2) ↪→ GL(W )

A witness for the non-existence of the embedding ought to be
present in the representation-theoretic datum, assuming
#P 6= NC 2.
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Representation theory of homogeneous spaces,

GL(V )/H

Suppose H1, H2 are reductive subgroups of a reductive group
G = GL(Cl).

Assume H2 is not a conjugate of H1.
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Suppose H1, H2 are reductive subgroups of a reductive group
G = GL(Cl).

Assume H2 is not a conjugate of H1.

Fact

I G/H1,G/H2 are affine algebraic varieties

I G/H1 cannot be embedded in G/H2 and vice versa.
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G = GL(Cl).

Assume H2 is not a conjugate of H1.

Fact

I G/H1,G/H2 are affine algebraic varieties

I G/H1 cannot be embedded in G/H2 and vice versa.

Question Is there a representation theoretic obstruction?
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Assume H2 is not a conjugate of H1.

Fact

I G/H1,G/H2 are affine algebraic varieties

I G/H1 cannot be embedded in G/H2 and vice versa.

Question Is there a representation theoretic obstruction?

Peter-Weyl theorem implies,
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Representation theory of homogeneous spaces,

GL(V )/H

Suppose H1, H2 are reductive subgroups of a reductive group
G = GL(Cl).

Assume H2 is not a conjugate of H1.

Fact

I G/H1,G/H2 are affine algebraic varieties

I G/H1 cannot be embedded in G/H2 and vice versa.

Question Is there a representation theoretic obstruction?

Peter-Weyl theorem implies,
I C[G ] = ⊕λVλ ⊗ Vλ.
I C[G/H] = ⊕λVλ ⊗ V H

λ
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The work of Larsen and Pink

Vλ(G ) is an obstruction for the pair (G/H1, G/H2) is it contains an
H1 invariant and does not contain an H2 invariant.
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H1 invariant and does not contain an H2 invariant.

Theorem:Larsen,Pink

Such an obstruction always exists.
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The work of Larsen and Pink

Vλ(G ) is an obstruction for the pair (G/H1, G/H2) is it contains an
H1 invariant and does not contain an H2 invariant.

Theorem:Larsen,Pink

Such an obstruction always exists.

The embeddibility problem in GCT is a generalization of this situation

Conjecture, GCT II

Let V = Symm(x11, x12, . . . , xmm). Let Π be the set of G = GL(m2)
submodules of C[V ] whose duals do not contain a Gdet invariant. Let
X (Π) ⊆ P(V ) be the zero set of forms in Π. Then X (Π) = ∆(detm).
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What is known

Theorem, GCTII

There is a dense open neighbourhood U ⊆ P(V ) of the orbit of the
determinant such that ∆(detm) ∩ U = X (Π) ∩ U.

Assuming the conjecture and the belief that the permanent cannot be
approximated infinitely closely by circuits of poly-logarithmic depth,

Theorem

Obstructions do exist. GCT II.

We need to show obstructions exist, Unconditionally.
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Assuming the conjecture and the belief that the permanent cannot be
approximated infinitely closely by circuits of poly-logarithmic depth,

Theorem

Obstructions do exist. GCT II.

We need to show obstructions exist, Unconditionally.

Important to note that existence of obstructions depends upon
the special nature of detm and so, also of the variety ∆(detm).

K V Subrahmanyam ( C. M. I. ) Geometric Complexity Theory: a high level overview.5/09/07 @CMI 41 / 71



What is known

Theorem, GCTII

There is a dense open neighbourhood U ⊆ P(V ) of the orbit of the
determinant such that ∆(detm) ∩ U = X (Π) ∩ U.

Assuming the conjecture and the belief that the permanent cannot be
approximated infinitely closely by circuits of poly-logarithmic depth,

Theorem

Obstructions do exist. GCT II.

We need to show obstructions exist, Unconditionally.

Important to note that existence of obstructions depends upon
the special nature of detm and so, also of the variety ∆(detm).

The conjecture will not be true for varieties arising out of many
other NC 2-complete forms - the class variety may not be group
theoretic.
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The Kronecker problem and NC 2 vs #P

We need to understand which GL(m2) modules contain the
stabilizer of the determinant form.
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The Kronecker problem and NC 2 vs #P

We need to understand which GL(m2) modules contain the
stabilizer of the determinant form.

Recall that the stabilizer of the determinant form detm in
projective space, is GL(m) × GL(m) ↪→ GL(m2) via
(A, B) 7→ A ⊗ B .
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stabilizer of the determinant form.

Recall that the stabilizer of the determinant form detm in
projective space, is GL(m) × GL(m) ↪→ GL(m2) via
(A, B) 7→ A ⊗ B .

Now irreducible representations of GL(m) × GL(m) are of the
form Vα ⊗ Vβ , α, β, shapes, with at most m rows.
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The Kronecker problem and NC 2 vs #P

We need to understand which GL(m2) modules contain the
stabilizer of the determinant form.

Recall that the stabilizer of the determinant form detm in
projective space, is GL(m) × GL(m) ↪→ GL(m2) via
(A, B) 7→ A ⊗ B .

Now irreducible representations of GL(m) × GL(m) are of the
form Vα ⊗ Vβ , α, β, shapes, with at most m rows.

Given an GL(m2) module of shape γ, we need to understand the
multiplicity kγ

α,β - this is exactly the Kronecker problem using
Schur Weyl duality.
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Implementing the flip

Flip

Non existence of algorithms reduced to existence of
representation theoretic obstructions
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Implementing the flip

Flip

Non existence of algorithms reduced to existence of
representation theoretic obstructions

How to prove existence of an obstruction for permnc

m ?

A probabilistic approach - choose a random label λ(n) of high
degree randomly and show that it is an obstruction with high
probability
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degree randomly and show that it is an obstruction with high
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Implementing the flip

Flip

Non existence of algorithms reduced to existence of
representation theoretic obstructions

How to prove existence of an obstruction for permnc

m ?

A probabilistic approach - choose a random label λ(n) of high
degree randomly and show that it is an obstruction with high
probability

In the context of P vs NP this will be naturalizable

The GCT VI approach: GO FOR EXPLICIT OBSTRUCTIONS!

This will overcome the naturalizability barrier!
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The GCT VI hypothesis

Hypothesis, GCT VI

The following problems belong to P.

Verification There is a poly(m2, n, < d >, < λ >) algorithm for
deciding, given m, n, d , λ, if Vλ is an obstruction of degree d for
(n, m2) and the pair (permn, detm).

Explicit construction of obstructions Suppose m = 2na

for a
small constant a > 0. Then, for every n → ∞, a label λ(n) of
an obstruction for (n, m2) and the pair (permn, detm) can be
constructed in time poly(m), thereby proving the existence of an
obstruction for every such n, m2.

Discovery of obstructionsThere exists a poly(n, m) algorithm for
deciding, if there exists an obstruction for (n, m2) and the pair
(permn, detm), and for constructing the label of one, if it exists.
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Why the hypothesis?

GCT VI: Proving that the hypothesis is true, will be the hardest
step in the flip.
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Why the hypothesis?

GCT VI: Proving that the hypothesis is true, will be the hardest
step in the flip.

The hypothesis is believable because of the special nature of the
perm function and, so, of ∆(permm

n ).
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GCT VI: Proving that the hypothesis is true, will be the hardest
step in the flip.

The hypothesis is believable because of the special nature of the
perm function and, so, of ∆(permm

n ).

There are many #P forms - probabilistic method would show so.

K V Subrahmanyam ( C. M. I. ) Geometric Complexity Theory: a high level overview.5/09/07 @CMI 47 / 71



Why the hypothesis?

GCT VI: Proving that the hypothesis is true, will be the hardest
step in the flip.

The hypothesis is believable because of the special nature of the
perm function and, so, of ∆(permm

n ).

There are many #P forms - probabilistic method would show so.

We could have taken any such form, say h, and argued that h is
not computable by a poly-sized formula.How?
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Why the hypothesis?

GCT VI: Proving that the hypothesis is true, will be the hardest
step in the flip.

The hypothesis is believable because of the special nature of the
perm function and, so, of ∆(permm

n ).

There are many #P forms - probabilistic method would show so.

We could have taken any such form, say h, and argued that h is
not computable by a poly-sized formula.How?

By exhibiting an obstruction. SAME IDEA, take ∆(hm
n ) and

show this is not embeddable in ∆(detm).
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Why the hypothesis?

GCT VI: Proving that the hypothesis is true, will be the hardest
step in the flip.

The hypothesis is believable because of the special nature of the
perm function and, so, of ∆(permm

n ).

There are many #P forms - probabilistic method would show so.

We could have taken any such form, say h, and argued that h is
not computable by a poly-sized formula.How?

By exhibiting an obstruction. SAME IDEA, take ∆(hm
n ) and

show this is not embeddable in ∆(detm).

Of course, such obstructions exist in plenty! thanks to the
special nature of determinant - , however
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The P-barrier thesis

It is unlikely that the hypothesis holds for a general h.
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The P-barrier thesis

It is unlikely that the hypothesis holds for a general h.

Using currently available techniques, Gröbner basis, etc, we only
get an algorithm which is double exponential in m, or triple
exponential in n to verify, given λ, if Vλ is an obstruction for the
pair (h, detm)!

Unlikely we will be able to do better, given general lower bounds
for construction of Gröbner basis

The P-barrier thesis

For any approach towards P 6= NP to be viable and
non-naturalizeable, at least the problem of verifying an obstruction
should be in P.
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Crossing the P-barrier

Theorem

Hypothesis (a) is true assuming certain mathematical positivity
hypothesis.
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Crossing the P-barrier

Theorem

Hypothesis (a) is true assuming certain mathematical positivity
hypothesis.

Theorem, GCT III

Checking non-zeroness of LR coefficients can be done in polynomial
time - that is, given partitions α, β, γ,and n, checking if cγ

α,β is
non-zero can be done in time polynomial in n, < α >, < β >, < γ >.
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Roadmap
1 Basics in Complexity theory, Algebraic Geometry

Complexity Theory
Representation theory
Algebraic geometry

2 Algebraizing the formula complexity question
Reduction
Geometry and class varieties

3 From lower bounds to obstructions
Geometry of class varieties is tractable
The first flip

4 Saturated Integer programming

Overcoming the Razbarov-Rudich barrier
Non-zeroness of LR-coeffs in poly time
Saturated functions

5 Implementing the flip for #P vs NC 2

Saturation of Kronecker coefficients
Towards a mathematical positivity hypothesisK V Subrahmanyam ( C. M. I. ) Geometric Complexity Theory: a high level overview.5/09/07 @CMI 50 / 71



LR coefficients as integral points in a polytope

Recall cγ
α,β = # of LR skew-tableau of shape γ/α with content

β.
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LR coefficients as integral points in a polytope

Recall cγ
α,β = # of LR skew-tableau of shape γ/α with content

β.

r i
j (T ), 1 ≤ i ≤ n, 1 ≤ j ≤ n, denote the number of j ’s in i -th

row of T . Then
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LR coefficients as integral points in a polytope

Recall cγ
α,β = # of LR skew-tableau of shape γ/α with content

β.

r i
j (T ), 1 ≤ i ≤ n, 1 ≤ j ≤ n, denote the number of j ’s in i -th

row of T . Then

Non-neg r i
j ≥ 0. Shape For i ≤ n, αi +

∑

j r
i
j = γi .
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LR coefficients as integral points in a polytope

Recall cγ
α,β = # of LR skew-tableau of shape γ/α with content

β.

r i
j (T ), 1 ≤ i ≤ n, 1 ≤ j ≤ n, denote the number of j ’s in i -th

row of T . Then

Non-neg r i
j ≥ 0. Shape For i ≤ n, αi +

∑

j r
i
j = γi .

Content For j ≤ n,
∑

i r
i
j = βj .
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LR coefficients as integral points in a polytope

Recall cγ
α,β = # of LR skew-tableau of shape γ/α with content

β.

r i
j (T ), 1 ≤ i ≤ n, 1 ≤ j ≤ n, denote the number of j ’s in i -th

row of T . Then

Non-neg r i
j ≥ 0. Shape For i ≤ n, αi +

∑

j r
i
j = γi .

Content For j ≤ n,
∑

i r
i
j = βj .

Tableau No k < j occurs in row i + 1 of T below a j or a higher
integer in row i of T .

αi+1 +
∑

k≤j

r i+1
k ≤ αi +

∑

k′<j

r i
k′
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LR coefficients as integral points in a polytope

Recall cγ
α,β = # of LR skew-tableau of shape γ/α with content

β.

r i
j (T ), 1 ≤ i ≤ n, 1 ≤ j ≤ n, denote the number of j ’s in i -th

row of T . Then

Non-neg r i
j ≥ 0. Shape For i ≤ n, αi +

∑

j r
i
j = γi .

Content For j ≤ n,
∑

i r
i
j = βj .

Tableau No k < j occurs in row i + 1 of T below a j or a higher
integer in row i of T .

αi+1 +
∑

k≤j

r i+1
k ≤ αi +

∑

k′<j

r i
k′

LR constraint
I r i

j = 0, i < j .
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LR coefficients as integral points in a polytope

Recall cγ
α,β = # of LR skew-tableau of shape γ/α with content

β.

r i
j (T ), 1 ≤ i ≤ n, 1 ≤ j ≤ n, denote the number of j ’s in i -th

row of T . Then

Non-neg r i
j ≥ 0. Shape For i ≤ n, αi +

∑

j r
i
j = γi .

Content For j ≤ n,
∑

i r
i
j = βj .

Tableau No k < j occurs in row i + 1 of T below a j or a higher
integer in row i of T .

αi+1 +
∑

k≤j

r i+1
k ≤ αi +

∑

k′<j

r i
k′

LR constraint
I r i

j = 0, i < j .

I

∑

i ′<i r
i ′

j ≤
∑

i ′<i r
i ′

j−1.
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Consequences of the Knutson-Tao Saturation

conjecture

Theorem, GCT III

The polytope P described by the linear inequalities above has an
integer point iff it is non-empty
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Consequences of the Knutson-Tao Saturation

conjecture

Theorem, GCT III

The polytope P described by the linear inequalities above has an
integer point iff it is non-empty

Proof.

P of the form Ar ≤ b, where b is homogeneous in α, β, γ.
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Consequences of the Knutson-Tao Saturation

conjecture

Theorem, GCT III

The polytope P described by the linear inequalities above has an
integer point iff it is non-empty

Proof.

P of the form Ar ≤ b, where b is homogeneous in α, β, γ.

P has rational vertices.
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Consequences of the Knutson-Tao Saturation

conjecture

Theorem, GCT III

The polytope P described by the linear inequalities above has an
integer point iff it is non-empty

Proof.

P of the form Ar ≤ b, where b is homogeneous in α, β, γ.

P has rational vertices.

If P non-empty, qP non-empty for all q integer, q > 0.
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Consequences of the Knutson-Tao Saturation

conjecture

Theorem, GCT III

The polytope P described by the linear inequalities above has an
integer point iff it is non-empty

Proof.

P of the form Ar ≤ b, where b is homogeneous in α, β, γ.

P has rational vertices.

If P non-empty, qP non-empty for all q integer, q > 0.

However number of integral points in qP is precisely cqγ
qα,qβ
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Consequences of the Knutson-Tao Saturation

conjecture

Theorem, GCT III

The polytope P described by the linear inequalities above has an
integer point iff it is non-empty

Proof.

P of the form Ar ≤ b, where b is homogeneous in α, β, γ.

P has rational vertices.

If P non-empty, qP non-empty for all q integer, q > 0.

However number of integral points in qP is precisely cqγ
qα,qβ

cqγ
qα,qβ is non-zero!

Theorem, Knutson, Tao: cqγ
qα,qβ 6= 0 =⇒ cγ

α,β 6= 0.
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Roadmap
1 Basics in Complexity theory, Algebraic Geometry

Complexity Theory
Representation theory
Algebraic geometry

2 Algebraizing the formula complexity question
Reduction
Geometry and class varieties

3 From lower bounds to obstructions
Geometry of class varieties is tractable
The first flip

4 Saturated Integer programming

Overcoming the Razbarov-Rudich barrier
Non-zeroness of LR-coeffs in poly time
Saturated functions

5 Implementing the flip for #P vs NC 2

Saturation of Kronecker coefficients
Towards a mathematical positivity hypothesisK V Subrahmanyam ( C. M. I. ) Geometric Complexity Theory: a high level overview.5/09/07 @CMI 53 / 71



Generalized Littlewood Richardson coefficients

Given weights α, β, γ of a semi-simple Lie algebra G the
generalized LR coefficient is the multiplicity of Vγ in Vα ⊗ Vβ ,
where Vµ denotes the irreducible representation of G with
highest weight µ.
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Generalized Littlewood Richardson coefficients

Given weights α, β, γ of a semi-simple Lie algebra G the
generalized LR coefficient is the multiplicity of Vγ in Vα ⊗ Vβ ,
where Vµ denotes the irreducible representation of G with
highest weight µ.

Berenstein-Zelevinsky associate a polytope for the coefficient
C γ

α,β.

C γ
α,β is exactly the number of integral points in this polytope.
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Generalized Littlewood Richardson coefficients

Given weights α, β, γ of a semi-simple Lie algebra G the
generalized LR coefficient is the multiplicity of Vγ in Vα ⊗ Vβ ,
where Vµ denotes the irreducible representation of G with
highest weight µ.

Berenstein-Zelevinsky associate a polytope for the coefficient
C γ

α,β.

C γ
α,β is exactly the number of integral points in this polytope.

No saturation type theorem known for these coefficients.
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A mathematical positivity hypothesis

Let C nγ
nα,nβ be the stretching function associated with C γ

α,β . Then
the stretching function is a quasi-polynomial with period at most
two i.e.there exists two polynomials C1, C2 such that

C nγ
nα,nβ =

{

C1(n), n odd
C2(n), n even
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A mathematical positivity hypothesis

Let C nγ
nα,nβ be the stretching function associated with C γ

α,β . Then
the stretching function is a quasi-polynomial with period at most
two i.e.there exists two polynomials C1, C2 such that

C nγ
nα,nβ =

{

C1(n), n odd
C2(n), n even

Positivity hypothesis, De Loera, McAllister

The quasi-polynomial is positive - i.e. the coefficients of C1, C2 are
positive.
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Polynomiality under the hypothesis

Theorem GCT V

Assume G is simple of type B,C,D. Under the positivity hypothesis
the following are equivalent.

1 C γ
α,β ≥ 1

2 There exists an odd integer n such that C nγ
nα,nβ ≥ 1.

3 The BZ polytope contains a rational point whose denominators
are all odd.

4 The affine span of the BZ polytope contains a rational point
whose denominators are all odd.
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Polynomiality under the hypothesis

Theorem GCT V

Assume G is simple of type B,C,D. Under the positivity hypothesis
the following are equivalent.

1 C γ
α,β ≥ 1

2 There exists an odd integer n such that C nγ
nα,nβ ≥ 1.

3 The BZ polytope contains a rational point whose denominators
are all odd.

4 The affine span of the BZ polytope contains a rational point
whose denominators are all odd.

Proof.

(2) =⇒ (1): If for some n odd, nP has an integral point then
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Polynomiality under the hypothesis

Theorem GCT V

Assume G is simple of type B,C,D. Under the positivity hypothesis
the following are equivalent.

1 C γ
α,β ≥ 1

2 There exists an odd integer n such that C nγ
nα,nβ ≥ 1.

3 The BZ polytope contains a rational point whose denominators
are all odd.

4 The affine span of the BZ polytope contains a rational point
whose denominators are all odd.

Proof.

(2) =⇒ (1): If for some n odd, nP has an integral point then C1()
should be a non-zero polynomial. Its coefficients are all positive. So
C1(1) is also non-zero!
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Saturated quasi-polynomials

A function f (n) is called a quasi-polynomial if there exist l
polynomials fj(n), 1 ≤ j ≤ l , such that f (n)=fj(n) if n = j mod
l . Here l is supposed to be the smallest such integer, and is
called the period of f (n).

The smallest j , 1 ≤ j ≤ l , such that fj is not identically zero, is
called the index of the quasi-polynomial.

We say that the quasi-polynomial f (n) which is not identically
zero is saturated , if f (index(f )) 6= 0.

Positivity =⇒ Saturation. If each fj is guaranteed to have
positive coefficients, f is saturated.
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Saturated Integer programming

Integer Programming: Does the polytope {x |Ax ≤ b} contain
an integer point?
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Saturated Integer programming

Integer Programming: Does the polytope {x |Ax ≤ b} contain
an integer point?
In general very hard - NP-complete.
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Saturated Integer programming

Integer Programming: Does the polytope {x |Ax ≤ b} contain
an integer point?
In general very hard - NP-complete.

Associate to a polytope P a function;

fP(n) = #integral points in the polytope nP
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Saturated Integer programming

Integer Programming: Does the polytope {x |Ax ≤ b} contain
an integer point?
In general very hard - NP-complete.

Associate to a polytope P a function;

fP(n) = #integral points in the polytope nP

Theorem Stanley

fP() is a quasi-polynomial.
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Saturated Integer programming

Integer Programming: Does the polytope {x |Ax ≤ b} contain
an integer point?
In general very hard - NP-complete.

Associate to a polytope P a function;

fP(n) = #integral points in the polytope nP

Theorem Stanley

fP() is a quasi-polynomial.

Theorem, GCT VI

The index of the quasi-polynomial fP associated to a polytope
(specified by a separation oracle), can be determined in oracle
polynomial time.
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Saturated Integer programming

Integer Programming: Does the polytope {x |Ax ≤ b} contain
an integer point?
In general very hard - NP-complete.

Associate to a polytope P a function;

fP(n) = #integral points in the polytope nP

Theorem Stanley

fP() is a quasi-polynomial.

Theorem, GCT VI

The index of the quasi-polynomial fP associated to a polytope
(specified by a separation oracle), can be determined in oracle
polynomial time.

Saturated integer programming has a polynomial time algorithm.
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Questions associated with quasi-polynomials

Given a quasi-polynomial g(n) we may ask:

Is g convex? Is there a polytope P whose Ehrhart polynomial
fP(n) coincides with g(n).

Is g positive?

Is g saturated?

Does G (t)
def
=

∑

n g(n)tn, have a reduced, positive form?
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Roadmap
1 Basics in Complexity theory, Algebraic Geometry

Complexity Theory
Representation theory
Algebraic geometry

2 Algebraizing the formula complexity question
Reduction
Geometry and class varieties

3 From lower bounds to obstructions
Geometry of class varieties is tractable
The first flip

4 Saturated Integer programming
Overcoming the Razbarov-Rudich barrier
Non-zeroness of LR-coeffs in poly time
Saturated functions

5 Implementing the flip for #P vs NC 2

Saturation of Kronecker coefficients
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Kirillov’s conjecture

Associate with the Kronecker constant kγ
α,β the following

stretching function.
k̃γ

α,β(n) = knγ
nα,β

Conjecture,Kirillov

The generating function, K γ
α,β(t) =

∑

n≥0

knγ
nα,βtn is a rational function.

K V Subrahmanyam ( C. M. I. ) Geometric Complexity Theory: a high level overview.5/09/07 @CMI 62 / 71



Kirillov’s conjecture verified, GCT VI

Theorem

(a) Rationality The generating function K γ
α,β(t) is rational.

(b) Quasi-polynomiality The stretching function k̃γ
α,β(n) is a

quasi-polynomial function of n.
(c) There exist graded, normal C-algebras S = S(kγ

α,β) = ⊕nSn, and
T = T (kγ

α,β) = ⊕nTn such that:

1 The schemes spec(S) and spec(T ) are normal and have rational
singularities.

2 T = SGLn(C), the subring of GLn(C)-invariants in S.

3 The quasi-polynomial k̃γ
α,β(n) is the Hilbert function of T . In

other words, it is the Hilbert function of the homogeneous
coordinate ring of the projective scheme Proj(T ).

(d) Positivity The rational function K γ
α,β(t) can be expressed in a

positive form:
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Kirillov .....

K γ
α,β(t) =

h0 + h1t + · · · + hdtd

∏

j(1 − ta(j))d(j)
,

where a(j)’s and d(j)’s are positive integers,
∑

j d(j) = d + 1, where

d is the degree of the quasi-polynomial k̃γ
α,β(n), h0 = 1, and hi ’s are

nonnegative integers.
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Kirillov .....

K γ
α,β(t) =

h0 + h1t + · · · + hdtd

∏

j(1 − ta(j))d(j)
,

where a(j)’s and d(j)’s are positive integers,
∑

j d(j) = d + 1, where

d is the degree of the quasi-polynomial k̃γ
α,β(n), h0 = 1, and hi ’s are

nonnegative integers.

The rational function we get from the theorem is not unique.
Depends upon a homogeneous system of parameters we choose.
We have
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Kirillov .....

K γ
α,β(t) =

h0 + h1t + · · · + hdtd

∏

j(1 − ta(j))d(j)
,

where a(j)’s and d(j)’s are positive integers,
∑

j d(j) = d + 1, where

d is the degree of the quasi-polynomial k̃γ
α,β(n), h0 = 1, and hi ’s are

nonnegative integers.

The rational function we get from the theorem is not unique.
Depends upon a homogeneous system of parameters we choose.
We have

Hypothesis, PH3

For the lex least system of parameters, K γ
α,β(t) has a reduced positive

form, with max(ai) bounded by a polynomial in the height of the
shapes α, β and γ.
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Kirillov .....

K γ
α,β(t) =

h0 + h1t + · · · + hdtd

∏

j(1 − ta(j))d(j)
,

where a(j)’s and d(j)’s are positive integers,
∑

j d(j) = d + 1, where

d is the degree of the quasi-polynomial k̃γ
α,β(n), h0 = 1, and hi ’s are

nonnegative integers.

The rational function we get from the theorem is not unique.
Depends upon a homogeneous system of parameters we choose.
We have

Hypothesis, PH3

For the lex least system of parameters, K γ
α,β(t) has a reduced positive

form, with max(ai) bounded by a polynomial in the height of the
shapes α, β and γ.

If so, then we will be able to conclude that k̃γ
α,β is saturated.
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Proof of quasipolynomiality of K
γ
α,β

.

Theorem

Let R = ⊕dRd be a graded ring with an action of a connected
reductive group H. Let Vπ be a fixed irreducible H module with label
π. Let sπ

d denote the multiplicity of the Vπ in Rd .Take its stretching
function s̃π

d (n) to be the multiplicity of Vnπ in Rnd . Take the
generating function Sπ

d (t) =
∑

n≥0 s̃π
d (n)tn. Then S satisfies the

claims of the theorem.
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Proof

Consider the action of the cyclic group of order d with generator
ζ ; it acts on R sending x ∈ Rk to ζkx . The invariant ring
B =

∑

n Rnd , for this action is normal and has rational
singularities.
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Proof

Consider the action of the cyclic group of order d with generator
ζ ; it acts on R sending x ∈ Rk to ζkx . The invariant ring
B =

∑

n Rnd , for this action is normal and has rational
singularities.

Let Vπ∗ = V ∗
π . Consider the homogeneous coordinate ring

Cπ∗ =
∑

n Vnπ∗ , of the orbit of vπ∗. This too is normal with
rational singularities.(It is a G/P)
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π . Consider the homogeneous coordinate ring

Cπ∗ =
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n Vnπ∗ , of the orbit of vπ∗. This too is normal with
rational singularities.(It is a G/P)

B ⊗ Cπ∗ is normal and spec(B ⊗ Cπ∗) has rational singularities.
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Consider the action of the cyclic group of order d with generator
ζ ; it acts on R sending x ∈ Rk to ζkx . The invariant ring
B =

∑

n Rnd , for this action is normal and has rational
singularities.

Let Vπ∗ = V ∗
π . Consider the homogeneous coordinate ring

Cπ∗ =
∑

n Vnπ∗ , of the orbit of vπ∗. This too is normal with
rational singularities.(It is a G/P)

B ⊗ Cπ∗ is normal and spec(B ⊗ Cπ∗) has rational singularities.

C∗ acts on this; x · (b ⊗ c) = (xb ⊗ x−1c). The invariant ring
has rational singularities and S = ⊕Sn = ⊕nRnd ⊗ Vnπ∗ . This is
an H module. The H invariants form a ring T . The multiplicity
of the trivial H module in Sn is precisely s̃π

d (n), and is the
dimension of Tn.
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Consider the action of the cyclic group of order d with generator
ζ ; it acts on R sending x ∈ Rk to ζkx . The invariant ring
B =

∑

n Rnd , for this action is normal and has rational
singularities.

Let Vπ∗ = V ∗
π . Consider the homogeneous coordinate ring

Cπ∗ =
∑

n Vnπ∗ , of the orbit of vπ∗. This too is normal with
rational singularities.(It is a G/P)

B ⊗ Cπ∗ is normal and spec(B ⊗ Cπ∗) has rational singularities.

C∗ acts on this; x · (b ⊗ c) = (xb ⊗ x−1c). The invariant ring
has rational singularities and S = ⊕Sn = ⊕nRnd ⊗ Vnπ∗ . This is
an H module. The H invariants form a ring T . The multiplicity
of the trivial H module in Sn is precisely s̃π

d (n), and is the
dimension of Tn.

Our desired generating function is the Hilbert series of this ring
T .
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Roadmap
1 Basics in Complexity theory, Algebraic Geometry

Complexity Theory
Representation theory
Algebraic geometry

2 Algebraizing the formula complexity question
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Geometry and class varieties

3 From lower bounds to obstructions
Geometry of class varieties is tractable
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4 Saturated Integer programming
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Implications of the theorem - positivity

hypothesis

Hypothesis; PH1

The Kronecker stretching function is convex.
For every (α, β, γ) there exists a polytope P=Pγ

α,β ⊆ R
m such that:

(1) The Ehrhart quasi-polynomial of P coincides with the stretching
quasi-polynomial k̃γ

α,β(n).
(2) The dimension m of the ambient space, and hence the dimension
of P as well, are polynomial in the bit-lengths of α, β and γ.
(3) Whether a point x ∈ Rm lies in P can be decided in
poly(< α >, < β >, < γ >) time. That is, the membership problem
belongs to the complexity class P. If x does not lie in P, then this
algorithm outputs a hyper plane separating x from P.
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Polynomiality of k
γ
α,β under PH1,PH3

Theorem

Under PH1, PH3, determining if kγ
α,β is non-zero can be done in

polynomial time.

Experimental evidence for PH3, and positivity of k̃γ
α,β.
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Polynomiality of k
γ
α,β under PH1,PH3

Theorem

Under PH1, PH3, determining if kγ
α,β is non-zero can be done in

polynomial time.

Experimental evidence for PH3, and positivity of k̃γ
α,β.

Current proofs of PH1 for type B , C , D are based on quantum
groups

The homogeneous coordinate rings of the canonical models
associated with the Littlewood-Richardson coefficients have
quantizations endowed with canonical bases Kashiwara and
Lusztig.

Positivity of the basis is also based on the Riemann hypothesis
over finite fields, and work of Beilinson, Bernstein, Deligne.
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A plan to prove PH1, PH2, PH3
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A plan to prove PH1, PH2, PH3

1 Construct quantizations of the homogeneous coordinate rings of
the canonical models associated with these structural constants,
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1 Construct quantizations of the homogeneous coordinate rings of
the canonical models associated with these structural constants,

2 Show that they have positive bases as per PH0.
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A plan to prove PH1, PH2, PH3

1 Construct quantizations of the homogeneous coordinate rings of
the canonical models associated with these structural constants,

2 Show that they have positive bases as per PH0.

3 Prove PH1 and SH (and, possibly, the stronger PH2, and 3 as
well) by a detailed analysis and study of these positive bases.
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