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Abstract
Inspired by recent work of Kondor [11], and Cohen and Welling [2], we build rotation

equivariant autoencoders to obtain a basis of images adapted to the group of planar
rotations SO(2), directly from the data. We do this in an unsupervised fashion, working
in the Fourier domain of SO(2). Working in the Fourier domain we build a rotation
equivariant classifier to classify images. A novel aspect of our autoencoder and classifier is
the use of nonlinearity in the Fourier domain, as in the recent papers of Thomas et al. [19]
and Kondor et al. [12] . Our experiments indicate that this nonlinearity is strong enough
to discover the basis using a small sample of inputs. As a consequence our classifier is
robust to rotations - the classifier trained on upright images, classifies rotated versions
of images, achieving state of the art. In order to deal with images under different scales
simultaneously, we define the notion of a coupled-bases and show that a coupled-bases
can be learned using Fourier nonlinearity.

1 Introduction
Convolutional neural networks [13] have met with tremendous success on a wide range of
learning problems. GPUs bring enormous computational power to such networks. But this is
not the only reason for their impressive performance. CNNs learn features of images using
nonlinearities such as RELU and are able to detect local patterns. Features are learned using
cross-correlation with filters. Weight sharing ensures that even if the image is translated, a
useful feature is still captured, so the networks performance is invariant to translations of the
inputs. Invariance seems to be one reason why CNNs do so well, see [5].

Cohen and Welling [2] were among the first to use the representation theory of compact
Lie groups to give invariance a sound mathematical framework. They developed on ideas
from earlier works of Rao and Ruderman [17] and Sohl-Dickstein et al. [18] on the Lie
group model, and built a model for SO(2), the group of rotations of the plane. In his thesis
Kondor [10] used the representation theory of SO(3) to extract nonlinear, invariant features of
images wrapped around a sphere. Mimisevic [15] showed that learning relationships between
images can be viewed as detecting rotations in the simultaneous eigenspaces of a collection
of orthogonal matrices. Bruna and Mallat [1] introduced scattering networks which compute
representations of images that are invariant to translations and are stable under deformations.

Given the incredible success of these deep networks, recent work has focused on building
networks that have invariance to a larger group of symmetries. Jaderberg et al. [8] show
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how allowing spatial manipulation of data within CNNs results in networks which are
invariant to scale, rotations, translations and warping. Cohen and Welling [3] designed Group
Convolutional Networks (GCNN’s) in order to learn representations of images which are
invariant to the symmetries of the square and to translations. Harmonic nets were introduced by
Worrall et al. [20] to learn representations of images invariant to rotations. Using sophisticated
ideas from group representation theory Cohen and Welling [4] introduced Steerable CNN’s.
In order to deal with 3D images Cohen et al. [5] introduced Spherical CNNs, equivariant
to SO(3). They generalized cross-correlation of CNNs to spherical cross-correlation using
ideas from non-commutative harmonic analysis. A drawback of [5] is the need to implement
exact group based convolutions in order to achieve equivariance. Spherical CNNs work in
the image space but need to go back and forth from the image space to the Fourier domain
of functions on SO(3). Clebsch-Gordon networks were introduced by Kondor et al. [12] to
avoid going back and forth between the image space and the Fourier domain.

Recall the intuitive definition from Kondor et al. [12] of what it would mean for a
network to be equivariant to a group G. Denoting the activations of neurons in layer l by
f l ,mathematically, equivariance would mean that if the networks inputs are transformed by
g ∈ G, f l should transform as T l

g ( f l), for some fixed set of linear transformations {T l
g}g∈G.

In Clebsch-Gordon networks such equivariance is shown to hold for G = SO(3), by choosing
the activations to be Fourier coefficients of functions on SO(3). Kondor et al. [12] introduced
a novel nonlinearity in the Fourier domain which allowed them to extract features of images
invariant to SO(3). This use of nonlinearity in the Fourier domain is relatively new and can
also be seen in the recent works of Thomas et al. [19]. See also Pratt et al. [16], wherein the
authors implement CNNs in the Fourier domain.

In this paper we propose a network model working in the Fourier domain which learns
features of 2-D images invariant to the group SO(2). Our model is inspired by the works of
[2] and [11]. 1 Our model first learns a basis of images adapted to the group SO(2), and we
propose a simple autoencoder architecture for this which uses Fourier nonlinearity. We learn
the basis using a small sample of inputs. For images in different scales we define the notion
of a coupled-bases of images adapted to rotations. We learn a coupled-bases using Fourier
nonlinearity. We build a classifier for images using Fourier nonlinearity.

2 Fourier coefficients of functions on S1 as activations.

A rotation about the origin in the XY plane by an angle θ is given in the standard basis by the

matrix R(θ) =
[

cosθ −sinθ

sinθ cosθ

]
. This group of planar rotations SO(2), is isomorphic to the

complex circle group of roots of 1, T, with R(θ) mapping to eiθ . We abuse notation and use
θ to denote the element eiθ ∈ T. As a topological group T is isomorphic to S1 := R/2πZ and
so we use the notation S1 instead of T.

The activations in our model will be Fourier coefficients of functions on S1, just like in
the architecture of [12] where the activations were Fourier coefficients (matrices) of functions
on SO(3). We first recall the relevant notions from Fourier analysis.

1After completing this work we were pointed to Kondor et al. [12] and discovered that our model is similar to
theirs, albeit much simpler, since the features learned in our model are invariant to a smaller group of transformations.
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2.1 Fourier theory on S1

It is easy to see that every group automorphism of S1 is given by eiθ 7→ einθ , for some integer
n. So the dual group of S1 is the set of integers, which is the domain for the Fourier transform
of a function f ∈ L2(S1). The Fourier transform of f is the function f̂ defined as

f̂ (n) =
1

2π

∫ 2π

0
f (θ)e−inθ dθ (1)

The functions {einθ}n∈Z are an orthonormal basis for functions in L2(S1). The inverse Fourier
transform then gives us the Fourier expansion of a function on the circle,

f (θ) =
n=∞

∑
n=−∞

f̂ (n)einθ (2)

Remark 1. We say a function f ∈ L2(S1) is transformed by S1 (or use the terminology, S1

acts on f ∈ L2(S1)) by defining θ0 · f := fθ0 to be the function, fθ0(θ) := f (θ −θ0).
Clearly (θ1 +θ2) · f = θ1 · (θ2 · f ) and the identity (θ = 0) fixes f .

It is easy to see from equation 2 that

f̂θ0(n) = e−inθ f̂ (n) (3)

It will be useful to think of the activations at each layer in a standard CNN’s as functions
Z×Z→C, with the activations in the input layer mapping to C3, one coordinate each for the
three R,G,B channels. The activation f `+1 in layer `+1 is computed from the activation f `

in layer ` by cross-correlation with a filter h`, also a function from Z×Z→ C.
The activations in our network will be thought of as elements of L2(S1) (we postpone the

discussion of what to do to the input layer to Section2.2). Borrowing from what happens
in a CNN, the activation at layer `+ 1 will be computed from the activation at layer ` by
cross-correlation with a function h` ∈ L2(S1). Recall that cross-correlation of h ∈ L2(S1) with
f ∈ L2(S1) is the function

[h? f ](θ0) =
1

2π

∫ 2π

0
h(θ −θ0) f (θ)dθ (4)

An easy computation shows

ĥ? f (n) = ĥ(n) · f̂ (n) (5)

So we have

Proposition 2. Let f ∈ L2(S1) be an activation and let h∈ L2(S1). Under the action of θ ∈ S1,
the Fourier coefficients of the cross-correlation 4 transform as ĥ? f (n) 7→ e−inθ ĥ? f (n).

Proof. Using Equation 3, under the action of θ ∈ S1, the n-th Fourier coefficient of [h? f ]θ
is e−inθ ĥ? f (n). We check that this is also equal to ĥ? fθ (n). Again, using Equation 3 and

Equation 5, this is equal to e−inθ ĥ(n) · f̂ (n), as required.

We now take up the input layer.
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2.2 Representations of S1

Assume we are dealing with images of size N×N. We vectorize the image and regard it
as a function on a complex vector space V of dimension N2, with a natural basis indexed
by the N2 pixel positions. When an image is rotated about its centre by an angle θ , the N2

pixels move, and extending this linearly to all vectors in V , we get a linear transformation
of V 2. This transformation can be described by an N2×N2 dimensional transformation
matrix T (θ) whose entries are functions of the single variable θ . We have T (0) = T (2π), is
the identity matrix. The transformations compose as T (θ0)◦T (θ1) = T (θ0 +θ1), so T (θ)
has an inverse T (−θ) i.e. the transformations T (θ) form a group. So we have a group
homomorphism ρ from S1 to GL(V ) (the group of invertible linear transformations of V )
given by ρ(R(θ)) = T (θ). We will just abbreviate this by ρ(θ) = T (θ). In such a scenario
one says that V is a representation of S1, and g ∈ S1 acts on vectors in V via g · v = ρ(g)v.
Under the transformation T (θ), the image I is also transformed. The transformed image
T (θ)(I) thought of as a function on V is given by T (θ)(I)(x) = I(T (θ)−1(x)), as the intensity
value now at x is the intensity it was at T (θ)−1(x). So we get a representation of S1 on the
space of linear functions, V ∗.

Recall the following theorem from harmonic analysis. We sketch a proof in the appendix.

Theorem 3. If W is a representation of S1 then W = ⊕̂n∈ZWn where

Wn = {w ∈W : θ ·w = e−inθ w, f or all θ ∈ S1}

Definition 4. Let W be a representation of S1. A subspace W ′ ⊆W is said to be invariant
under S1 if for all θ ∈ S1, and w′ ∈W ′ we have θ ·w′ ∈W ′. We say W is irreducible if there
is no proper subspace which is invariant under S1.

From the above theorem it is clear that each Wn is an invariant subspace. It is also clear
that the only irreducible subspaces are one dimensional subspaces contained in Wn, for some
n. We say the irreducible subspace of type n occurs in W with multiplicity dim(Wn).

We apply the above theorem to the space V ∗, of N×N images under the action of S1. Let
{b j

n} be a basis of V ∗n . Each input image I can be written as I = ∑n ∑
j=mn
j=1 p j

nb j
n. Here mn is the

multiplicity of the irreducible of type n. Using Theorem 3 it follows that when the image is
transformed by θ , the {p j

n}’s transform as p j
n 7→ e−inθ p j

n, exactly like the Fourier coefficients
of the cross-correlation, see Proposition 2. So we call {p j

n} j=mn
j=1 , the Fourier coefficients of

the image I of type n. The totality of Fourier coefficients of an image of all types are the
activations of the input layer.

2.3 S1-equivariant maps
Definition 5. If F and H are representations of S1, an S1-morphism (aka a S1-equivariant
map) from F to H is a (complex)-linear map φ from F to H such that for all f ∈ F, and
θ ∈ S1, φ(θ · f ) = θ ·φ( f ).

Now if F is an irreducible representation of type n with basis vector f and H is an
irreducible representation of type m with basis vector h, and n 6= m, then the only equivariant
map from F to H is the zero map since φ(θ · f ) = φ(e−inθ f ) = e−inθ φ( f ) but the right hand
side in the definition above gives e−imθ φ( f ). On the other hand if they are of the same type,

2we do not worry about the fact that some pixels go out of bounds
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then sending f to any complex multiple of h gives us an S1-morphism. Note that any linear
combination of vectors of the same type, is a vector of the same type. It follows that if the
multiplicity of the irreducible representation of type n in F , H are fn, hn respectively, the
dimension of the space of S1-equivariant maps from F to H is fn ·hn, and such a map is given
by an hn× fn matrix.

2.4 Fourier nonlinearity, Classifier and Autoencoder architectures

2.5 The classifier, a first attempt
Our classifier network operates in the Fourier domain. The activations in layer j are the
collection of Fourier coefficients

{ f `1,−r, f `2,−r, . . . , f `m`
−r ,−r, . . . , . . . , f `1,0, f `2,0, . . . , f `m`

0,0
, . . . , . . . , f `1,k f `2,k, . . . , f `m`

k,k
}

Here m`
i is the multiplicity of Fourier coefficient of type i, i = −r,−r+ 1, . . . ,k in layer `.

This makes sense even in the input layer as per the discussion in Section 2.2. We assume in
this section that we know the types and multiplicities of Fourier coefficients in the input layer,
and we also know a basis W of the image space and the action of S1 on W . We will describe
how to do this in Section 2.7. The types and multiplicities of the Fourier coefficients in the
other layers will be hyperparameters, which we will tune.

We can think of layer ` as representing a vector space F` spanned by basis elements
indexed by the Fourier coefficients. Since we know the action of S1 on each Fourier coefficient,
F` is in fact a representation of S1 (extend the action linearly). Since we are only interested
in S1-equivariant maps between layers `, `+ 1, it follows from the discussion following
Definition 5 that the dimension of our search space of equivariant maps between F` and F`+1

is ∑
i=k
i=−r m`

i m
`+1
i . And the variables of the map can be put in a block diagonal matrix with

blocks of size m`+1
i ×m`

i . These are the variables we will learn in a supervised manner.

2.5.1 Fourier nonlinearity

There is one issue with the above formulation, there is no nonlinearity in the network. To bring
in nonlinearity, consider the tensor product F`+1⊗F`+1. This vector space is a representation
of S1, and is spanned by basis vectors of the form f `+1

j,k ⊗ f `+1
i,m . Under the action of θ ∈ S1

the basis vector transforms as f `+1
j,k ⊗ f `+1

i,m 7→ e−i(k+m)θ f `+1
j,k ⊗ f `+1

i,m . To bring in nonlinearity,
we take as the output of layer ` not only F`+1, but also the unordered products of pairs of
Fourier coefficients, taking note of their types. We call this Fourier or tensor nonlinearity.

2.6 The final classifier
Figure 1 shows a 2 layer classification network for 28×28 images, incorporating nonlinearity.
We learn two S1-equivariant maps φ1,φ2. The input image x is projected onto neurons in layer
0 using the known basis W and their types to obtain the Fourier coefficients of x. φ1 applied
to the activations in layer 0 gives us the activations in layer 1, φ1(W T x). The output of layer 1
is φ1(W T x)⊕φ1(W T x)⊗φ1(W T x). This is the input to the neurons in layer 2. These blocks
repeat in a deeper network.

We initialize φ1, φ2 at random, and minimize classification error.
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Figure 1: Classification network
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Figure 2: Autoencoder architecture (AE).

2.7 The autoencoder

It remains to describe the architecture to learn a basis {b j
n} j,n of images under rotations

described at the end of Section 2.2. The problem of discovering such a basis of images under
rotations was first considered by Cohen and Welling [2]. So we call such a basis of images
adapted to rotations a CW-basis. In [2] an expectation maximization algorithm was proposed
for this.

The activations of our autoencoder are a collection of Fourier coefficients (the notation
being analogous to what we used for the classifier). These are hyperparameters to be tuned.

{a`1,−s,a
`
2,−s, . . . ,a

`
b`−s,−s, . . . , . . . ,a

`
1,0,a

`
2,0, . . . ,a

`
b`0,0

, . . . , . . . ,a`1,ka`2,k, . . . ,a
`
b`k,k
}

Figure 2 gives the schematic diagram for an autoencoder with four layers of activations. The
types and multiplicities of the Fourier coefficients in layer 0, layer 2 and layer 3 are identical.
We learn a CW-basis W of the input image space, with Fourier types and multiplicities as in
layer 0. We also learn S1-equivariant maps φ ,ψ (SO(2)-equivariant maps in the figure).

The input image is rotated by an angle θ and projected onto the current basis W to obtain
ŷ, the Fourier coefficients of the rotated image, the activations of layer 0. Due to the rotation,
the Fourier coefficients of the image of type n get scaled by e−inθ . An S1-equivariant map φ

applied to layer 0 activations gives us the activations in layer 1, φ(ŷ). To bring in nonlinearity
we take the activations φ(ŷ)⊕φ(ŷ)⊗φ(ŷ). A second S1-equivariant map ψ applied to these
activations, gives us the activations in layer 2. Since these coefficients have the same types
and multiplicities as that in layer 0, we scale activations of type n here by einθ , to cancel the
effect of the rotation to the input. We expect to recover the Fourier coefficients of the image
now. We reconstruct the image using the current basis W and the coefficients in layer 3. We
compare the reconstructed image with the original image and minimize reconstruction loss.
We want W to be orthonormal, so we apply the regularization λ ||W TW − Id||2.
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Figure 3: The W28 learned in AE

Figure 4: The rotation by the basis
learned in experiment 1.

2.8 The coupled autoencoder

We find CW-bases of images in two different scales, simultaneously, with each influencing
the discovery of the other, so as to be able to use a classifier trained on large size images on
downsampled inputs. In Appendix B we give a schematic diagram to learn a coupled bases
CAE-W14 and CAE-W28 and coupling maps φ ,ψ . We first formulate the question precisely in
the language of tensor algebras, and define the notion of a coupled-bases and coupled-features.

3 Experiments - Learning CW-basis

We learn a CW-basis for MNIST (see, LeCun et al. [14]). About 500 samples suffices to
learn a good CW-basis, W28. No pre-processing is done to the input images. To deal with
downsampling, we implement the coupled-autoencoder of Appendix B and learn CAE-W14,
CAE-W28 and the coupling maps φ ,ψ . We also learn CW-basis for the Fashion-MNIST
dataset [21].Details of the datasets are given in the Appendix F.

In Figure 3 we visualize 64 of the W28 basis-vectors learned. We use the learned basis to
rotate MNIST images. These results are shown in Figure 4.

We evaluate these bases in terms of image reconstruction error (MSE) and rotation
reconstruction error by comparing with scikit-image rotation. We report the errors for MNIST-
rot. Figure 5, Figure 6 show graphs of the errors for W28 and CAE-W28 as a function of
the number of input samples used to learn the bases. Using only 50 samples, we discover
CW-bases good at rotation and reconstruction, in both architectures.

4 Experiments - Classification using the learned CW-basis

4.1 Results on Classification, MNIST

In Figure 7 we plot the accuracy of these various W28 obtained above when deployed for
classification. We plot the accuracy of the classifier as a function of the number of samples
used to construct the CW-bases. When the number of samples is as low as 50 a CAE-W28
performs better than an AE-W28. Beyond 100 samples the difference is insignificant.
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Figure 5: MSE - Reconstruction of images Figure 6: MSE - Rotation of images

Figure 7: Classification accuracy

In Table 1 we give the mean accuracy(and stdev) of our classifier when trained and tested
on combinations using MNIST(NR) and MNIST-rot(R). The R/NR column for example de-
notes the accuracy when trained on MNIST-rot and tested on MNIST. No data augmentation is
done to the training data. We compare with CNN (comparable parameter space) and Spherical
CNN . Since Spherical CNN’s work by wrapping an image around the 2-sphere causing
distortion, this comparison is unfair. For a fairer comparison we use MNIST wrapped around
the Northern hemisphere as NR and MNIST-rot wrapped around the northern hemisphere as
R. We were not able to run Clebsch-Gordan nets (Kondor et al. [12]) on our GPU.

The third row shows the accuracy of our classifier which used CAE-W28. This was
obtained using the CAE-architecture trained on all of MNIST-rot train data. Our classifier
performs better in all scenarios.

Coupling interchangeability To test how coupled the CAE-W28 and CAE-W14 are, the

Samples R / R R / NR NR / NR NR / Rused to
learn W

CNN - 91.06 91.73 99.32 43.28
Spherical CNN - 88.73 90.83 95.95 91.62
Ours 12000 96.94 (0.35) 97.01 (0.23) 98.15 (0.08) 99.43 (0.06)
14 / 28 Coupled 12000 96.17 (0.35) 96.51 (0.27) 97.10 (0.70) 97.51 (0.09)
14 / 28 Scaled 12000 94.79 (0.59) 95.56 (0.55) 93.86 (0.87) 91.66 (1.36)
Ours 500 96.40 (0.09) 96.64 (0.06) 97.41 (0.09) 98.24 (0.05)
14 / 28 Coupled 500 95.78 (0.12) 95.98 (0.09) 96.53 (0.12) 97.03 (0.07)
14 / 28 Scaled 500 94.37 (0.39) 95.34 (0.23) 92.67 (1.02) 89.62 (1.51)

Table 1: MNIST - Accuracies - rotated, unrotated combinations
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Samples used R / R R / NR NR / NR NR / Rto learn W
CNN - 80.86 (0.57) 79.83 (0.66) 90.68 (0.31) 20.86 (0.46)
Ours 20000 86.34 (0.18) 84.67 (0.27) 86.70 (0.29) 85.42 (0.18)

Table 2: Fashion MNIST - Accuracies - rotated, unrotated combinations

classifier trained in row 3 with CAE-W28 was presented with down sized 14x14 images for
classification. No additional training was done. Instead we use the top half of the coupling
network from Figure 8 (in Appendix B) - given a test image y we compute ŷ =CAE-W T

14y and
feed the activation ψ((ŷ⊗ ŷ)⊕ ŷ) to the trained classifier of row 3. These results are reported
in row 4 as [14/28 Coupled]. For comparison we took the 14x14 images and scaled them
up to 28x28 and fed them to the trained classifier of row 3. These results are reported in
Row 5 as [14/28 Scaled]. CAE-W14 outperforms, indicating that a coupled bases retains scale
information.

We repeated the same experiment when the coupled network was given 500 samples to
learn the CAE-W28, CAE-W14. In row 7 we see there is only a marginal drop in performance.

4.2 Results on Classification, Fashion-MNIST
In Table 2 we report the mean classification accuracy(and stdev) on the Fashion-MNIST
data set [21]. We rotate each data point around the origin by an angle chosen uniformly
between 0 and 2π to create F-MNIST-rot. The CW basis was learned in the AE architecture
with Fashion-MNIST as input. Our classifier for this dataset is a four layer network (96K
parameters). We compare our results with a depth 5 CNN having 102K parameters.

4.3 Implementation details
Our classifier and autoencoder were implemented in TensorFlow. We used Adam optimizer.
We also implemented an S1-equivariant batch normalization, normalizing only neurons of
Fourier type 0. Batch normalization does improves accuracy. The accuracies reported in row
3 of Table 1 is after batch normalization. Without batch normalization, the accuracies were
close to those given in row 6. More details of the implementation are in Appendix D.

In the entire paper we assumed we were working over complex numbers for ease of
presentation. Our implementation was however done over reals. In Appendix E we discuss
this transition. This also explains why we continue to use SO(2) in our title.

5 Conclusion
We use simple neural network architectures to learn a CW-basis of images adapted to rotations.
We show that Fourier nonlinearity is strong enough to learn such a CW-basis. Starting with a
CW-basis we build a classifier in the Fourier domain using tensor nonlinearity in the Fourier
domain. Our classifier is naturally robust to rotations, and shows good accuracy. The notion
of a coupled CW-bases is a natural way to deal with the issue of downsampling. Using Fourier
nonlinearity we learn a coupled CW-bases of images in different scales, simultaneously.
Although we only consider the group SO(2), the ideas and definitions in this paper apply to
all finite groups, and many interesting infinite groups as well. Using Fourier analysis on the
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group Z16×Z16 we build an autoencoder learning a CW-basis of images equivariant to these
translations. We do not give details. In Appendix C we visualize the basis learned and see that
they are very similar to the standard Fourier basis of images. Using the group Z28×Z28×S1

constructed a classifier in the Fourier domain of Z28×Z28×S1. For Fashion-MNIST we get
an accuracy of 88.8 in the NR/NR regime, better than what we report using only SO(2) .

References
[1] Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE

transactions on pattern analysis and machine intelligence, 35(8):1872–1886, 2013.

[2] Taco S. Cohen and Max Welling. Learning the Irreducible Representations of Com-
mutative Lie Groups. In Proceedings of the 31st International Conference on Machine
Learning, volume 32, pages 1755–1763, February 2014. ISBN 9781634393973.

[3] Taco S. Cohen and Max Welling. Group Equivariant Convolutional Networks. Proceed-
ings of The 33rd International Conference on Machine Learning, 48, feb 2016.

[4] Taco S Cohen and Max Welling. Steerable cnns. arXiv preprint arXiv:1612.08498,
2016.

[5] Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. arXiv
preprint arXiv:1801.10130, 2018.

[6] Roe W Goodman and Nolan R Wallach. Symmetry, Representations, and Invariants.
Graduate Texts in Mathematics. Springer, Dordrecht, 2009.

[7] Kennether Hoffman and Ray Kunze. Linear algebra, 2nd, 1990.

[8] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial
transformer networks. In NIPS, 2015.

[9] Kenichi Kanatani. Shape from texture. In Group-Theoretical Methods in Image Under-
standing, pages 327–355. Springer, 1990.

[10] Imre Risi Kondor. Group theoretical methods in machine learning. Columbia University,
2008.

[11] Risi Kondor. N-body networks: a covariant hierarchical neural network architecture for
learning atomic potentials. arXiv preprint arXiv:1803.01588, 2018a.

[12] Risi Kondor, Zhen Lin, and Shubhendu Trivedi. Clebsch–gordan nets: a fully fourier
space spherical convolutional neural network. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems 31, pages 10117–10126. Curran Associates, Inc., 2018.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[14] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The MNIST database of
handwritten digits. URL http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/


MUTHU, KV: SO(2) EQUIVARIANT CLASSIFIERS USING FOURIER NONLINEARITY 11

[15] Roland Memisevic. Learning to relate images. IEEE transactions on pattern analysis
and machine intelligence, 35(8):1829–1846, 2013.

[16] Harry Pratt, Bryan Williams, Frans Coenen, and Yalin Zheng. Fcnn: Fourier convo-
lutional neural networks. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 786–798. Springer, 2017.

[17] Rajesh P N Rao and Daniel L Ruderman. Learning Lie groups for invariant visual
perception. Advances in Neural Information Processing Systems, 816:810–816, 1999.
ISSN 1049-5258. doi: 10.1.1.50.8859.

[18] Jascha Sohl-Dickstein, Jimmy C. Wang, and Bruno A Olshausen. An Unsupervised
Algorithm For Learning Lie Group Transformations. CoRR, abs/1001.1:8, January 2010.

[19] Nathaniel Thomas, Tess Smidt, Steven M. Kearnes, Lusann Yang, Li Li, Kai Kohlhoff,
and Patrick Riley. Tensor field networks: Rotation- and translation-equivariant neural
networks for 3d point clouds. CoRR, abs/1802.08219, 2018.

[20] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow.
Harmonic networks: Deep translation and rotation equivariance. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), volume 2, 2017.

[21] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017.



12 MUTHU, KV: SO(2) EQUIVARIANT CLASSIFIERS USING FOURIER NONLINEARITY

Appendix A Proof of Theorem 3
Proof. Since ρ is a homomorphism it follows that each T (θ) is a diagonalizable operator
(see Goodman and Wallach [6][Theorem 1.3.5]). Since the T (θ) for various θ commute, the
family of operators T (θ) is a commuting family of diagonalizable operators and so they can
be simultaneously diagonalized (see Hoffman and Kunze [7][Chapter 6]). There is a invertible
orthogonal matrix P such that PT (θ)P−1 is a diagonal matrix for all θ . So we can write
W =⊕ jWj with T (θ)Wj ⊆Wj, for all j since Wj are simultaneous eigen spaces for the T (θ).
Each Wj is in fact a one-dimensional sub-representation of S1 and we call it an irreducible
representation of S1, say spanned by w j. Since T (θ) = T (θ +2π) and T (0) = Id (the identity
matrix) it follows that there is an integer n j such that T (θ)w j = e−in jθ w j. This integer n j
is the type of the irreducible representation Wj and we write W = ⊕ jWj,n j to indicate the
type. The span of all w j of the same type n j = n gives us Wn and we can write W =⊕nWn
completing the proof. The proof works even if W is infinite dimensional.

Appendix B Coupled bases
We first formulate the question precisely by making a definition.

Definition 6. We say S1-representations U and Ũ are coupled if U is the image of a S1-
morphism φ of a finite dimensional sub-representation of the tensor algebra of Ũ, and Ũ
is the image of a S1-morphism ψ , of a finite dimensional sub-representation of the tensor
algebra of U.

Definition 7. Let U be the vector space of 14×14 images and let W be the vector space of
28×28 images. Assume the rotation group S1 acts on both. We say a Cohen-Welling basis
X of U is coupled to a Cohen-Welling basis Y of W if the vector space dual of the subspace
spanned by X (with its S1-action) is coupled to the vector space dual of the subspace spanned
by Y .

Unraveling the definition, there is a sub-representation X̃ of X⊕X⊗X⊕X⊗X⊗X⊕ . . .
such that φ(X̃) = Y and a sub-representation Ỹ of Y ⊕Y ⊗Y ⊕Y ⊗Y ⊗Y ⊕ . . . such that
ψ(Ỹ ) = X . The definition above is motivated by our question of whether one can build
CW-bases in two different scales, with one influencing the discovery of the other, so as to be
able to use a classifier trained on larger images on downsampled images also, with little loss
in accuracy and without additional training. Our definition suggests that in order to generate
coupled CW-bases we will need to view the images at different scales simultaneously, and use
tensor product nonlinearity to generate them, thereby forcing the influence we are looking for.

Motivated by the above definition we say features obtained by projections on a coupled
basis are coupled features.

We give a schematic diagram to discover a coupled-bases.

B.1 Coupled Autoencoder(CAE) architecture
The schematic diagram for learning a coupled-bases is given in Figure 8. The idea is similar
to the autoencoder described in Section 2.7. However in this setup we learn CW-bases W14,
W28 for 14×14 images and 28×28 images in tandem. We feed both, an image X and a scaled
down version of the image x to the network. The network on top takes x and produces X̂ , a
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Figure 8: Coupled autoencoder architecture (CAE)

28x28 image. The bottom network takes X and produces x̂, a 14x14 image. The two networks
are connected and we use the same W28, and W14 in the top and bottom layer. The network on
top has four layers of activations, layers 0,1,2,3, as in the autoencoder in Figure 2. The types
and multiplicities of the activations in layer 2 and layer 3 are the same (as multisets). The
bottom half of the network has three layers of activations. The types and multiplicities of the
Fourier coefficients in layer 1 and layer 2 in the bottom are the same (as multisets).

The types and multiplicities of activations in layer 2 on the top are the same as that of
layer 0 in the bottom. The types and multiplicities of activations in layer 1 on the bottom are
the same as that of layer 0 in the top.

We learn the W14, W28 and two SO(2)-equivariant maps ψ and φ .
Both W28, W14 are initialized at random. The bottom network takes an image X , rotates

it by θ and projects the resulting image on the current W28, to get Ŷ = W T
28Y , the Fourier

coefficients of the rotated image, the activations in layer 0 in the bottom. Applying φ we get
φ(Ŷ ) the activations in layer 1 in the bottom. To cancel the effect of rotation, we unrotate, i.e.
multiply the the activations in layer 1 in the bottom of type n by einθ , to get the activations in
layer 2 in the bottom. Recall these have the same types and multiplicities as that of layer 0 on
the top, the types and multiplicities of 14×14 images. We take a linear combination of the
basis elements of the current W14, with coefficients the activations in layer 2 in the bottom to
get x̂, a 14×14 image.

The top network takes x and rotates it by the same θ . This is projected onto the current
W14 to get ŷ the Fourier coefficients or activations in layer 0 on the top. We bring in Fourier
nonlinearity and so the activations in layer 1 on the top are now ŷ⊕ (ŷ⊗ ŷ) (we make a note
of their types). We apply ψ to the activations in layer 1. To cancel the effect of rotation we
unrotate, by scaling the activations of type n in layer 1 by einθ . The types and multiplicities of
these Fourier coefficients match that of 28×28 images. So we use the current W28 and the
activations in layer 3 on the top to construct a 28×28 image, X̂ . We minimize the sum of the
reconstruction errors |X− X̂ |2 + |x− x̂|2.

Appendix C Bases learned for the translation group.

The bases learned for the translation group are visualized below.
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Figure 9: The W16 for translation group learned in AE

Appendix D Implementation details
In this section we give details of the hyperparameters of our model, the types and multiplicities
of the activations in different layers. The type and multiplicities of the Fourier coefficients
in layer 0 and layer 1 of the autoencoder architecture (see Figure 2) used to discover the
CW-basis of 28×28 images are given below. The first row gives the types and multiplicities
of the activations in layer 0 and the second gives the types and multiplicities of activations in
layer 1. Multiplicities are given in brackets. Here ±1−4(5) means that types ±1,±2,±3,and
±4 were chosen to have mutiplicity 5.

0(10),±1−4(5),±5−9(4),±10−14(3),±15−19(2),±20−24(1)

0(8),±1−4(4),±5−9(3),±10−14(2),±15−19(1)

Appendix E Working over reals in Tensor Flow
Let S1 act on a vector space W . It can be shown that for every irreducible subspace Wj
with type n j 6= 0 and basis vector w j, there is an irreducible subspace with type −n j, with
basis vector the complex conjugate w̄ j of w j, see for example [9][2.3.1]. In fact this can
be deduced from our identification of SO(2) with diagonal matrices having entries e−iθ ,eiθ .
Setting b j1 =

w j+w̄ j
2 and b j2 =

w j−w̄ j
2i it is easy to see that b j1,b j2 are real and they transform

according to the columns of the matrix R(n jθ). This two dimensional subspace (over the real
numbers R) of the image space is invariant to the real rotation group, SO(2) and is irreducible
for the action of SO(2) on W . For our implementation purposes we work over real numbers.
We call n j the type of this irreducible representation of SO(2). On the other hand subspaces
Wj of type n j = 0 with basis vector w j, are invariant vectors, and satisfy ρ(R(θ))w j = w j.
These are one dimensional irreducible representations of SO(2). Over reals Theorem 3 takes
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the form, W =⊕n≥0Wn. Here Wn is the subspace spanned by SO(2)-invariant subspaces of
type n. Working over R, the tensor product of two irreducible SO(2) representations of type
s≥ t ≥ 0 splits into a direct sum of two irreducible SO(2) representations of type s+ t,s− t.

Appendix F Datasets used
We have used MNIST and MNIST_rot dataset in our experiments. Each sample in the dataset
is a 28x28 gray scale image. MNIST dataset contains handwritten digits(upright, we call them
NR). There are 60000 train samples and 10000 test samples. MNIST_rot dataset contains
handwritten digits(rotated, we call them R) MNIST_rot has 12000 train samples and 50000
test samples.

We have used Fashion MNIST in our experiments. Each sample in the dataset is a 28x28
gray scale image. There are 10 different classes. Each label is one among the ten labels index
by 0 to 9. The label index and the corresponding description is given in Table 3

Label Description
0 T-shirt/top
1 Trouser
2 Pullover
3 Dress
4 Coat
6 Shirt
7 Sneaker
8 Bag
9 Ankle boot

Table 3: Fashion MNIST - Label index and Description

There are 60000 train samples and 10000 test samples. We call this set as upright (NR).
For the rotated case (we call it as R), we rotate each sample in the test and the train by a
random angle between 0 and 360.


