
Lecture 10: Complementation via Alternating Automata

The last theorem of Lecture 9 assures us that in any Büchi game one of the two players
has a positional winning strategy. Thus, for any alternating Büchi automaton (ABA ) A
and word w, either the automaton or the pathfinder has a positional winning strategy in
the game G(A,w). Thus, if A accepts w there is a positional run for A on w. Consider the
ABA A1 from the previous lecture. Here is a positional accepting run for this automaton
on input bababaaaa . . ..
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Observe that positionality only places requirements on occurances of a state at the same
level and NOT across levels. The move at the s-labelled state at level 2 is not the same as
that at the s-labelled state at level 6. However, both the q0-labelled states at level 6 have
identical subtrees below them. In any level, we can collapse together all the vertices that are
labelled by the same state (or equivalently (since the run is positional) whenever the entire
subtree rooted at these vertices is isomorphic) to obtain a DAG. Such a DAG has at the
most |Q| vertices at each level. Here is the DAG obtained from the above run:
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Henceforth, by a “positional run” we refer to this DAG representation of the run. We can
also directly define this run-DAG for an automaton A = (Q,Σ, δ, s, F ) on an input a1a2 . . .
as the DAG satisfying:

1. The vertices at level i in are labelled by elements of Q × {i} (and at the most one
vertex is labelled by any label.)

2. There is unique vertex at level 1 labelled by (s, 1).
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3. If some vertex at level i is labelled by (q, i) and the set of vertices at level i + 1 to
which this vertex is connected by edges is {(q1, i + 1), (q2, i + 1) . . . (qm, i + 1)} then
{q1, . . . qm} |= δ(q, ai).

( We could also insist that any vertex at levels 2, 3, . . . must have an indegree of at least 1,
but we don’t have to. )

A run is accepting if every vertex in the run has an outdegree of at least 1 and every
path through the DAG visits vertices in F infinitely often.

As in the case finite automata, positional runs of an alternating automaton can be sim-
ulated using a nondeterministic automaton which simply generates the run-DAG level by
level. That is, given an alternating autmaton A = (Q,Σ, δ, s, F ) we can construct the non-
deterministic automaton A′ = (2Q,Σ, δ′, {s}, ∅) (ignore the accepting set for the moment),
with δ′(X, a) = {X ′ | ∀q ∈ X. X ′ |= δ(q, a)}. Thus X ′ must have enough states to ensure
that δ(q, a) is satisfied for each q ∈ X . It is quite easy to check that this automaton simulates
the positional runs of the alternating automaton level by level.

Can we set the accepting set to some F ′ so that the resulting NBA accepts the same
language as A? Well, some obvious candidates are F ′

1 = {X | X ∩ F 6= ∅} and F ′
2 =

{X | X ⊆ F}. Will either of these work? Here is a counter example to the choice F ′
1. The

transitions out of s are conjunctive and the right-handside of the figure indicates the unique
run of this automaton on aaa . . ..
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At each level there is at least one state from F , however the run is not accepting as there is a
path that does not visit F infintely often. Thus this word is not accepted by the alternating
Büchi automaton. On the other hand, every level of this run intersects the set F . In the
above figure, the dotted boxes indicate the states of the NBA simulating the ABA level by
level. From the second state onwards every state of this NBA is in F1 and thus it would
erroneously accept this word.

Now, consider the following example:
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Here the word is accepted by the alternating automaton as you can see that every path in
the unique run on aaa . . . visits p infinitely often. The states of the NBA are marked by the
dotted lines. Notice that none of these states would belong to F ′

2 since q 6∈ {p} = F .
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In effect the first choice is an overapproximation and the latter an underapproximation.
It turns out that in order for the NBA to simulate the ABA and verify that every path visits
F infinitely often we need to maintain more information in the NBA. The idea is to do the
following:

1. Simulate the ABA level by level.

2. Verify that we can slice the run into infinitely many segments such that in each segment
every path in the segment visits F .

The dark circles denote elements of F . The solid curve on the left identifies a segment
(everything to its left) in which every path visits an element of F . The part between the
first solid curve and the dotted curve is not good enough. There is one path (“forked” within
this segment) that does not visit states in F . The part between the first and second solid
curves is a good segment — every path in this segment visits F .

We simulate the run of the ABA level by level as usual. At the “beginning” of each
slice, we make a copy of the current set of paths (that are not already in a state in F ) in
the simulation. In this second copy we extend a path only if it has not visited a final state
yet. If at some point the second copy becomes empty (indicating that we have completed
one more good slice), we copy the current set of paths from the first copy and repeat this
process all over again. If the second copy becomes empty infinitely often then we know that
the run can be sliced into infinitely many good slices and thus every path in this run visits
F infinitely often. Here is an alternating automaton and a run of its equivalent NBA on the
word aaa . . ..
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The dotted rectagular boxs contains the states of the NBA. Each box is divided into two
by a line in the middle. The part of the state above the middle line simulates the ABA
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level by level. Below the middle line, a simulation on the current slice is carried out. At the
beginning s is copied at the lower level and after 2 moves we find that all paths starting at s
have visited a state in F . Thus the lower component of the state reached after reading aaa
is empty indicating that the first slice has ended. In the next move we copy the non-final
states from the upper copy to start the simulation on next slice and so on.

Here is a formal description of the NBA A′ simulating the alternating automaton A.
A′ = (Q′,Σ, δ′, ({s}, {s}), F ′) where

Q′ = {(X, Y ) ∈ 2Q | Y ⊆ X}
F ′ = {(X, ∅) | X ∈ 2Q}
δ′((X, Y ), a) = {(

⋃
q∈X Xq,

⋃
q∈Y Xq \ F ) | where Xq ∈ 2Q such that Xq |= δ(q, a)}

Note that for states in X ∩ Y , we make the same move in both copies and clearly this is
necessary.

Theorem 1 (Miyano and Hayashi) For any alternating Büchi automaton A with n states
there is a nondeterministic Büchi automaton A′ with at the most 2O(n) states with L(A′) =
L(A). Thus the class of languages accepted by alternating Büchi automata is the class of
ω-regular languages.

Proof: It is not difficult to check that the automaton A′ defined above satisfies the require-
ments of this theorem.

1 Complementation and co-Büchi Automata

How do we complement alternating Büchi automata? Well, we take the automaton with the
“dual” transition relation and “complement” the acceptance condition. Unfortunately, the
complement of the Büchi acceptance condition is NOT a Büchi condition. The complement
says that “the path does NOT visit F infinitely often” or equivalently it says that “ the path
visits F finitely often”. This is not equivalent to insisting that Q \ F is hit infinitely often
as a path could visit both Q as well as Q \ F infinitely often.

Let us define a co-Büchi automaton A to be a tuple (Q,Σ, δ, s, F ) where Q, Σ, δ, s and
F are as before. The definition of a run is also the same as for Büchi automata. The only
difference is in the definition of accepting runs. Here, a run ρ is accepting if inf(ρ) ∩ F = ∅.
We can also extend this idea to define alternating co-Büchi automata (Aco-BA ). We leave
the details to the reader.

Theorem 2 Let A = (Q,Σ, δ, s, F ) be an alternating Büchi automaton. Then, the alternat-
ing co-Büchi automaton Ad = (Q,Σ, δd, s, F ) accepts the language L(A).

Proof: Let w ∈ Σω. A does not accept w if and only if the automaton does not have a
winning strategy in the Büchi game G(A,w). This happens if and only if the pathfinder has
a winning strategy in the game G(A,w). That is, if and only if, the pathfinder has a strategy
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that ensures that every play in G(A,w) visits F only finitely often. But the game G(Ad, w)
is just the game G(A,w) with the roles of the automaton and the pathfinder interchange.
Thus this is equivalent to saying that the automaton has a strategy in the game G(Ad, w)
to ensure that any play consistent with this strategy visits F finitely often. And by the
connection between wins and strategies, this happens if and only if the co-Büchi automaton
Ad has an accepting run on the word w.

Here is a NBA automaton Af accepting the set of words with finite number of b′s and
the corresponding Aco-BA A∞ accepting the set of words with infinitely many bs.
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Since the only state exhibiting nondeterminism is p, the correponding dual automaton is one
in which this state is a ∀ state. Here is an accepting run for this automaton on the word
ababab . . .
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Notice that every path through this DAG visits q only finitely often (as a matter of fact, no
path visits q more than twice).

To obtain a NBA accepting L(A) from a NBA A, we need to tranform the Aco-BA A′

to an equivalent NBA.

2 Transforming co-Büchi automata into Büchi Automata

How do we transform a Nondeterministic co-Büchi automaton into an equivalent Büchi
automaton? For this, let us examine the structure of an accepting run of a Nco-BA . The

run looks like q1
a1−→ q2 . . . qi−1

ai−1
−→ qi

ai−→ . . ., where qj 6∈ F for all j ≥ i for some i. The
run decomposes into two parts, an initial finite fragment and an infinite suffix which stays
entirely within Q \ F . Thus, we simply have to nondeterministically guess a position and
verify that F is not visited beyond that point.
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Can we translate this into a Büchi condition? We need to transform a property of the
form ∃x.∀y > x.φ(y) to a property of the form ∃∞y.φ(y) (i.e. there exists infinitely many ys
such that ...).

This is quite easy to arrange. Make two copies of the automaton, in the second copy
delete all the states in F . The automaton begins in the first copy and nondeterministically
moves to the second copy. This automaton visits states in the second copy infinitely often if
and only if beyond a point it stays entirely within the second copy. Thus by treating every
state in the second copy as an accepting state (recall that the second copy only has the states
Q \ F ) we get an equivalent Büchi automaton.

Here is a co-Büchi automaton A and its equivalent Büchi automaton A′:
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Moreover, observe that the automaton A′ when considered as a co-Büchi automaton with
the set of states in the first copy as the accepting set accepts L(A). This is because of the
special structure of this automaton. A run either visits the first copy infinitely often and
the second copy finitely often or visits the first copy finitely often and second copy infinitely
often. So saying “finitely often” about one copy is the same as saying “infinitely often”
about the other copy.

Theorem 3 Let A = (Q,Σ, δ, s, F ) be a nondeterministic co-Büchi automaton. Then, the
Büchi automaton A′ = (Q′,Σ, δ′, (s, 0), Q× {1}) where

Q′ = Q× {0} ∪ (Q \ F )× {1}
δ((q, 0), a) = δ(q, a)× {0, 1} ∩Q′

δ((q, 1), a) = δ(q, a)× {1} ∩Q′

accepts the same language as A. Further the co-Büchi automaton (Q′,Σ, δ, (s, 0), Q × {0})
also accepts the same language.

Exercise: Write down a formal proof of Theorem ??.

2.1 Alternating co-Büchi automata to Büchi automata

Can we lift the above argument to work for Alternating co-Büchi automata? Let us consider
the Aco-BA A∞ described in the previous section and its run on ababab . . .
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No matter where we slice this DAG the suffix always contains states in F . Thus, a simple
two copy idea like the one used for nondeterministic co-Büchi automata will not work here.

Well, in this run no path visits an accepting state more than twice. If we try go generalize
this to claim that we may bound the number of visits to accepting states visited along any
path in an accepting run of a Aco-BA we shall fail miserably. Consider a run of A∞ on
abaabaaabaaaab . . . and you will see that for each i there is a path in this DAG that visits
the accepting state q at least i times. Yet, there is no path with infinitely many visits to q.
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This reason why we cannot slice the run into two with the suffix staying entirely within
Q \ F , is because we are dealing with a DAG and not a path. Even though a path within
the DAG may have settled down to staying within Q \ F , there may be other branches that
lead out from this path that visit F . Now, let us consider any such branch. Any extension
of such a branch would also settle down to staying within Q \ F , but once again there may
be other branches that lead out that visit final states and so on.

In this figure, the dashed lines correspond to suffices of paths that do not visit states in F .
The top line branches after it settles into its Q \ F phase to the second line, which in turn
branches into the third line after settling into its Q \ F phase and so on. We shall call such
a branch from a Q \ F suffix to a segment that visits F to be a bad branch. Once we enter
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a bad branch (i.e. a segment that visits F ) we stay within the SAME bad branch as long as
we do not reach a point from where there is a Q \ F path leading out.

To be precise: First let us say that a vertex is good if there is an infinite path leading out
from the vertex that stays entirely within Q \ F . Thus any good vertex must be in Q \ F .
We call a vertex bad if it is not good. The set of good vertices will divide the set of bad
vertices into groups and it is these groups that we refer to as bad branches. Two bad vertices
belong to the same bad branch if we can reach one from the other without visiting any good
vertices, using the edges of the DAG in either direction.

In the above figure there are 3 bad branches and the largest of the three is indicated by an
enclosing dotted line.

Can any path through the run DAG visit infinitely many bad branches? Of course not,
for if that were the case there would also be an infinite path that that visits F infinitely
often. (Well, this needs proof, but take it on faith for the moment!)

So any path visits only a finite number of bad branches. From the assertion that every
path visits F finitely often we have moved to the assertion that any path visits finitely many
bad branches.

Suppose that there is a bound K for the longest sequence of such branchings among all
accepting runs of A. With this assumption I claim that we can now translate the automaton
A into an equivalent Büchi automaton that uses 2K + 1 copies of the A. I shall sketch the
construction in words here and a more formal presentation is made a little later.

The idea is to duplicate the construction used in the nondeterministic case, but with
2K + 1 copies. The copies 0, 2, . . . 2K have an entire copy of the automaton A. The copies
1, 3, 5 . . .2K +1 have only copies of states in Q \F . Transitions are set up so that one could
either move at the same level or to the next level (or for that matter any lower level.) Note
that now we are dealing with alternating automata, and so the effect of a transition is a set
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of states (that satisfy δ(q, a)). We are free to choose which subset of this set is to stay at
the same level and which subsets move to each of the higher numbered levels.

We start at the state s in level 0. We simulate the accepting run of the alternating
automaton in the Büchi automaton by moving down to the next odd level from a even level
whenever the current path has an extension that never visits F and moving down from an
odd level to the next even level on a branch that visits final states. The fact that the number
of bad branchings along any path is bounded by K ensures that we have enough levels to
go down. Moreover, since every path eventually visits no more bad branches, it settles down
in some odd level. Thus, in the simulation of an accepting run of the Alternating co-Büchi
automaton by this alternating automaton, every path in the run settles down in some odd
numbered level. On the other hand, in the simulation of a nonaccepting run, there must be
at least one path that settles down in an even numbered level (since odd numbered levels do
not have any F labelled vertices). Thus, we have constructed a Alternating Büchi automaton
(with the set of vertices at odd numbered levels as the accepting set) that accepts the same
language as the Alternating co-Büchi automaton we started with.

2.2 The Kupferman-Vardi Construction

Let G be an accepting run (DAG) of the alternating co-Büchi automaton A on some work
a1a2 . . . ai . . .. We shall associate a number rank(v) with each vertex v in this DAG. It
measures the maximum number of bad branches along any path starting at this vertex.
Clearly, if there is a path from v to v′ then rank(v) ≥ rank(v′). Since G is a DAG computing
such a rank is sort of similar to a topological sorting of this graph starting at the “leaves”
and that is what we do. Leaves in our setting will correspond to vertices from where one
cannot visit bad branches. These are vertices from where every path stays within Q− F .

In any DAG G′, for any vertex v we write IG′(v) to mean the sub-DAG rooted at v.
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The ideal defined by (p, 2) in the accepting run of A on abab . . ..
We define two sequences of vertices G0, G1, . . . and D0, D1, . . .. We shall refer to these

sets also as DAGs, to mean the induced sub-DAG on these vertices.

G0 = G

D2i = {v | IG2i
(v) is finite}

D2i+1 = {v | IG2i+1
has no vertices from F}

Gi+1 = Gi \Di
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Thus, at even numbered levels we remove vertices that have only a finite number of reachable
vertices. In odd numbered levels we remove a vertex v if the subDAG rooted at v has no
vertices in F . Here is the breakup of the accepting run of A on abab . . ..
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Note that any vertex in D1, D3, . . . must be a good vertex. Vertices in D2, D3 . . . are
bad vertices. D0 is an anamoly as it might pick up vertices that have only finitely many
successors but none of those successors may be in F . We will assume that D0 is empty
(equivalently that δ(q, a) 6= false for any q, a, which can always be arranged).

In D1 we pick out all the vertices in the DAG for which the subtree below contains no
vertices in F . That is, the vertices in the DAG for which any path starting at any of these
vertices stays within Q \ F and thus visits NO bad branches.

In D2 we pick up all the vertices that form parts of bad branches which lead into D1.
Thus starting from any such vertex we can visit at the most one bad branch before settling
into D1. In D3 we pick up good vertices such that any bad branch reachable from these
vertices lead into D1. Thus any path starting at these vertices visits at most one bad branch
along the way.

In D4 we pick out bad vertice that form parts of bad branches that lead into D3, D2 and
D1. In D5 we pick up good vertices that lead into D4, D3, .... Thus any path leading out
from such a vertex may visit at the most two bad branches (one from D4 and one from D2)
and so on.

Thus, for any vertex inD2i∪D2i+1 we may visit at the most i bad branches along any path.
We now show that G2n is empty. Thus every vertex in G belongs to one of D1, D2 . . .D2n−1.
Thus no path in the run-DAG visits more than n bad branches.

The following facts are quite easy to check:

1. Any path through vertices in D2i is finite. This follows from the definition of D2i.

2. If G2i+1 is nonempty then it is infinite. As a matter of fact if v ∈ G2i+1 then there is
an infinite path starting at v.

3. If G2i is infinite then G2i+1 is nonempty (and hence infinite). This follows from the
fact (using König’s Lemma) whenever G2i is infinite, it must have an infinite path and
all the vertices in this infinite path will appear in G2i+1.

4. For each i if G2i+1 is non-empty then D2i+1 is nonempty.
Proof: We know that if G2i+1 is nonempty then it is infinite. If D2i+1 is empty then
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every vertex v in G2i+1 has some vertex labelled by F in IG2i+1
(v). It is quite trivial

to conclude via König’s Lemma that then there must be a path visiting F labelled
vertices infinitely often in G2i+1. This contradicts the fact that we started with an
accepting run.

5. If v ∈ D2i+1 then every node in IG2(i+1)
(v) is in D2i+1.

Let the width of a level in a DAG be the number of vertices at that level.

Lemma 4 For each i, there is an Ni such that for each j ≥ Ni the width of level j in G2i

is bounded by n− i.

Proof: By induction on i. The base case with i = 0 is trivially true. Suppose the result
holds for G2i. If this graph is finite then G2i+1 and G2i+2 are both empty and the result
follows. Otherwise, this graph is infinite, which means G2i+1 is infinite and thus D2i+1 is
non-empty. Thus, by 2 and 5 above, there is an N such that at least one vertex from all
levels above N belongs to D2i+1. Thus, there is an Ni+1 = Max(N,Ni) such that the width
of all levels above Ni+1 is at the most n− i− 1.

Thus, G2n = ∅. We set rank(v) = i if v ∈ Di. Thus if rank(v) = m then any path starting
at v visits at the most m/2 bad branches. Moreover, rank(v) ≤ 2n for any v ∈ G.

2.3 Constructing the equivalent alternating Büchi automaton

The automaton A′ has 2n+ 1 copies, numbered 0, 1, . . . 2n, of the automaton A.
Let A′ = (Q′,Σ, δ′, (s, 2n), F ′) where

Q′ = Q× {0, 2, 4, . . . , 2n} ∪ (Q \ F )× {1, 3, . . . , 2n− 1}
F ′ = (Q \ F )× {1, 3, . . . , 2n− 1}
δ′((q, i), a) = δ(q, a)⊗ {i, i− 1, . . . , 0}

where φ⊗{i, i−1, . . . 0} is the formula obtained by replacing each occurance of any state
p in φ by

∨
j≥i(p, i).

Note the special structure of the transitions: They simulate the transitions of A, however
one is free to choose to move to a lower numbered copy. Moreover, transitions either connect
states in the same copy or go from a higher numbered copy to a lower numbered copy. In
particular, there is no way a run can move from a lower numbered copy to a higher numbered
copy. Thus, any path must eventually settle down in one of the copies {0, 1, . . . , 2n} (i.e. In
any path, there is an infinite suffix that stays within one copy.)

Given an accepting run ρ of the Alternating co-Büchi automaton A on a word w, by
computing the rank of each vertex v and labelling it by (ρ(v), rank(v)) we get a run of the
Alternating Büchi automaton A′ on w. We claim that this run is also accepting. This is
because, if some path settles down in some even numbered copy 2i that means that there is
an infinite path in G of vertices in D2i which is not possible. So it must settle down in some
odd numbered level. Thus this run is accepting.
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Further, given any run of A′ on w, by simply erasing the second component, we get a
run of A on w. Moreover, if this run was accepting then every path settles down in some
fixed odd numbered level and thus every path stays within Q \ F eventually. Thus we get
an accepting run of A. Hence L(A) = L(A′). Thus we have the following theorem:

Theorem 5 (Kupferman–Vardi) Let A be a alternating co-Büchi automaton with n states.
Then the alternating Büchi automaton constructed above, with O(n2) states, accepts the same
language.

Since every run of A′ eventually settles down in some level or the other it follows that the
alternating co-Büchi automaton A′′ = (Q′,Σ, δ′, (s, 2n), Q′ \ F ′) accepts the same language
as A and A′.

Definition 6 (Muller-Schupp) An alternating automaton A = (Q,Σ, δ, s, F ) is said to be a
weak alternating automaton if there is a partial order (P,<) and a map rank : Q → P such
that every state p that appears in δ(q, a), rank(p) ≤ rank(q) and F = λ−1(X) for some subset
X of P .

The construction described above has thus translated an Alternating co-Büchi automaton
into an equivalent weak alternating automaton.

It is quite trivial to observe that the weak alternating Büchi automaton A = (Q,Σ, δ, s, F )
accepts the same language as the weak alternating co-Büchi automatonA = (Q,Σ, δ, s, Q\F ).
Thus, we have identified a subclass of alternating automata for which the translation from
the co-Büchi acceptance to Büchi acceptance is trivial, and shown how to translate any
alternating co-Büchi automaton into this class.

Putting together the theorems ?? and ?? we see that every alternating co-Büchi automa-
ton can be translated to an equivalent nondeterministic Büchi automaton A′′ of size 2O(n2)

(its state space is {(X, Y ) | Y ⊆ X ⊆ Q′}). Hence, we can complement any Büchi automaton
with a state space blowup of at most 2O(n2).

A simple observation will allow us to reduce this complexity to 2O(nlogn). The accepting
run of A′ constructed from an accepting run of A (described above) has a special property:
At any level there is at the most one copy of any state. Thus, if X is any state reached
in the level by level simulation of this automaton and (p, i) ∈ X for some p ∈ Q, then
(p, j) 6∈ X for any j 6= i. Thus, we can restrict the first component of the states of A′′ to
be {X ⊆ Q′ | ∀p. ((p, j) ∈ X ∧ (p, k) ∈ X) ⇒ j = k}. What is the size of this set? This
size of this set is bounded by the product of the number of subsets of Q′ (2O(n)) and the
number of maps that assign ranks (in the range 0, 1, . . . 2n) to elements of Q (O(n!)). That
is, O(2O(n)nO(logn)) = O(2O(nlogn)). As we shall see in the next lecture this is optimal.
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