
Lecture 8: Determinizing Büchi Automata

At the end of the last lecture we proved that every ω-regular language can be expressed
as a finite union of languages of the form U.V̂ . Let us try and design deterministic au-
tomata for a language of the form U.V̂ (This automaton cannot be a Büchi automaton.
But it will differ from a Büchi automaton only in the definition of accepting runs.) Let
AU = (QU , Σ, δU , sU , FU) and AV = (QV , Σ, δV , sV , FV) be two deterministic finite automata
accepting the languages U and V respectively. Note that AV , considered as a Büchi automa-
ton, recognises V̂ .

Exercise: Show that Û.V need not be equal to U.V̂ in general.

What we need is a sort of sequential composition of AU and AV . However, a given ω-word
σ may have several (possibly infinitely many) prefixes that belong to U and not all of them

may act as a witness to the membership of σ in U.V̂ . That is, even though σ ∈ U.V̂ , it may
be possible to write σ = u.σ′ where u ∈ U but σ′ 6∈ V̂ . So, our sequential composition must
be able to pick the “right” prefix of σ. Of course, one can construct an automaton that
nondeterministically picks some prefix of σ that belongs to U and verifies that the rest of
the word is in V̂ . But, we are looking for a deterministic automaton.

The right idea is to carry out a “powerset” construction on this nondeterministic au-
tomaton. Our automaton keeps a copy of AU and whenever it identifies that a prefix of σ is
in U , it forks a copy of AV to read the rest of the input. A word is accepted if any one of
these copies of AV visits its final state infinitely often.

sU

sV

sV

sV

The top line is the “run” of AU on σ. Note that at every prefix where AU enters an accepting
state, a new copy of AV is started off. As it stands, this construction is not finite state as
there may be even infinitely many prefixes of σ in U and so there would be unboundedly
many copies of AV .

The future behaviour of an automaton is completely determined by its current state.
Thus, if two of these forked copies reach the same state at some point we might as well
merge these two copies. Thus, at any point we will have at the most N copies where N

1

is the number of states in AV . With these intuitions in mind, we propose the following
construction. Let A = (Q, Σ, δ, s, ∅) be the deterministic automaton defined as follows: Q

consists of elements of QU × (QV ∪ {⊥})N+1 in which no element of QV repeats. We set
s = (sU ,⊥,⊥, . . . ,⊥) if ε 6∈ U and set s = (sU , sV ,⊥,⊥, . . . ,⊥) otherwise. The state is
designed to carry one state of AU and upto N +1 states of AV (We only need N . The reason
for using N + 1 will be apparent soon.) We use the symbol ⊥ to denote that a particular
coordinate in the state is not currently carrying a copy of AV .

Let (p, q0, q1, . . . , qN) be an element of Q and a be in Σ. Suppose p
a

−→ p′ and qi
a

−→ q′i
(where we assume ⊥

a
−→ ⊥ for each a ∈ Σ). Note that, at least one of the qis was ⊥ and so

at least one of the q′is will also be ⊥. Suppose j is the smallest index with q′i = ⊥. If p′ ∈ FU

then we set q′j = sV . Finally, if a state q appears more than once in q′0, q
′
1, . . . q

′
N then, replace

everything except the lowest index copy by ⊥. Let the resulting tuple be (p′, q′′0 , q
′′
1 , . . . , q

′′
N).

We set δ((p, q0, q1, . . . , qN), a) = (p′, q′′0 , q
′′
1 , . . . q

′′
N).

q
0

q
1

q
i

q
N

p

q
0

q
1

q
N

q
0

q
1

q
N

q
1

q
0

q
1

q
i

q
N

p

q
0

q
1

q
N

q
1

p’

’

’

’

’

q
0

q
1

q
N

p’

’

’

’

a

a

a

a

a

a

a

sVsV

p’

’

’

’

a

a

a

a

a

a

a

p’

’

’

’

’

In the picture above, the left handside illustrates a move when p′ 6∈ FU and the right handside
illustrates the case when p′ ∈ FU . Note, how q′i is replaced by ⊥ since q′i = q′1. The run of
the copy of AV at coordinate i has been “handed over” to copy at coordinate 1. We shall
refer to this as i merges with 1. Observe that whenever i merges with j, i > j.

Note that if the ith coordinate merges with the jth at a move, the resulting state neces-
sarily has ⊥ at coordinate i (If we did not use N + 1 copies this would not be guaranteed.
If we had only N copies then we might have to use this position to start a new copy of AV .)
Another point to note is that a newly created copy might immediately merge and thus “may
not start at all”. This happens if one of the other components is already at state sV .

We have not specified an acceptance condition as yet and left it as the empty set. Let
us examine the runs of this autmaton on words in U.V̂ . Suppose σ = u.σ′ with u ∈ U and
σ′ ∈ V̂ . After reading u, suppose our automaton is at state (p, q1, . . . , qi−1, sV ,⊥, . . . , qN)
(the state reached on reading u is guaranteed to be of this form since u ∈ U and from the

2

definition of δ). Suppose sV −→ r1 −→ r2 −→ . . . is the run of AV on σ′. This run visits
the set FV infinite often. The copy at coordinate i that reads σ′ would also follow the run
r1 −→ r2 −→, however it is not guaranteed that this copy would stay at coordinate i as it
may merge with a lower numbered coordinate and merge again and so on. Here is how the
corresponding run might look:

r
1

q
0

q
1

q
N

s
V

q
j

q
0

q
1

q
j

q
N

p p1

1

1

1

1

q
0

q
1

q
N

r
k

q
0

q
j

q
0

q
1

q
N

q
j

q
1

q
N

r
i

r i+1

q
0

q
N

r k+1

p5

5

5

p 4

4

4

4

4

p p3

1

3

3

2

2

2

2

2

u

Note how the dashed line of the “accepting run” of the copy of AV forked on reading u

merges with coordinate j and then from there with coordinate 1.
But the key point to note is the following, since a coordinate merges only with a lower

numbered coordinate, a copy changes coordinate only finitely often. Thus there is a finite
number of moves, say n0, after which the copy of AV forked on reading u stays at some co-
ordinate j forever. Thus the states rn0

, rn0+1, . . . appear consecutively as the jth component
of the states in some suffix of the run of A on σ. For this j, we have that

1. States from FV appear infinitely often at coordinate j. (In particular this happens
infinitely after the copy forked on reading u stabilises at coordinate j).

2. The symbol ⊥ appears only finitely often at coordinate j.

We shall now argue that the converse is also true. Suppose the run of A on σ satisfies
these two properties w.r.t. some coordinate j. Then, the run can be written in the form

s
u

−→ s′
σ′

−→ where, u ∈ U , the jth component of s′ is sV and further the jth component of
every state that appears to the right of this state is not ⊥. (A proof of this is quite easy.
There are two cases to consider. If the jth component was ⊥ sometime along the run, then
take the s′ to be the successor of the state where ⊥ appears for the last time at coordinate

j. Otherwise, take s′ = s.) Suppose the jth coordinate of the states in the run s′
σ′

−→ are

r1, r2 . . . then, it is clear from the definition of δ that r1

σ′

1−→ r2

σ′

2−→−→ is the run of AV

on σ′. By requirement 2, this run visits the set FV infinitely often. Thus σ′ ∈ V̂ and thus
σ ∈ U.V̂ .

For each coordinate j, we define two ω-regular languages Wi and W ′
i as follows:

Wi = {σ | In the run ρ of A on σ, the ith component visits FV infinitely often}
W ′

i = {σ | In the run ρ of A on σ, the ith component is ⊥ infinitely often}

3

By the above discussion, U.V̂ =
⋃

0≤i≤N Wi ∩ W ′
i . Further, both Wi and W ′

i are accepted
by deterministic Büchi Automata. For Wi we use the deterministic automaton A with
Fi = {(p, v0, . . . , vN | p ∈ QU , ∀j. vj ∈ AV and vi ∈ FV } as the set of good/accepting states
and for W ′

i we use Ei = {(p, v0, . . . , vj−1,⊥, vj+1, . . . , vN) | p ∈ QU and ∀j. vj ∈ QV } as the
set of good/accepting states.

Theorem 1 Every ω-regular language is a boolean combination of limit languages.

Proof: From the above discussion, any language of the form U.V̂ can be written as a boolean
combination of limit languages. We showed in the previous lecture that every ω-regular
language is a finite union of languages of the form U.V̂ .

1 Rabin and Müller Automata

We just showed that every ω-regular language can be expressed as a union of lanuages of
the form Wi ∩W ′

i , where Wi and W ′
i are limit languages accepted by Büchi automata which

differ merely in the set of good/accepting states. Rabin suggested an accepting criterion
that directly reflects this requirement.

Definition 2 A Rabin automaton A is of the form A = (Q, Σ, δ, s, (E1, F1), (E2, F2) . . . (Ek, Fk))
where Q, Σ, δ and s are as in the case of Büchi automata. Each Ei and Fi is a subset of
Q. Runs of such an automaton are defined as in the case of Büchi automata. A run ρ is
accepting if there is an i, 1 ≤ i ≤ k such that inf(ρ) ∩ Ei = ∅ and inf(ρ) ∩ Fi 6= ∅. Thus a
run is accepting if and only if there is an i such that, the set Ei is visited finitely often and
Fi is visited infinitely often.

A Rabin automaton is deterministic if δ is a transtion function. Thus the automaton
constructed above, A, with (E0, F0), . . . (EN , FN) as the set of accepting pairs (where the
definition of Ei and Fi is given at the end of the last section) is a deterministic Rabin

automaton that accepts U.V̂ .
Earlier Müller had proposed that acceptance be defined by directly specifying the inf(ρ)s

permitted.

Definition 3 A Muller automaton A is of the form A = (Q, Σ, δ, s,F) where F ⊆ 2Q. A
run ρ is accepting if inf(ρ) ∈ F . As usual, such an automaton is said to be deterministic if
δ is a function.

We can equip A with the following F

F = {X ⊆ Q | ∃i. X ∩ Ei = ∅ ∧ X ∩ Fi 6= ∅}

Quite clearly this automaton accepts a word precisely when the Rabin automaton de-
scribed earlier accepts a word and that is precisely when the word is in U.V̂ . (Notice that

4

this construction allows us to turn any Rabin automaton into an equivalent Müller automa-
ton.) Thus, if we can show that deterministic Müller automata are closed under union, that
would complete the proof showing that all ω-regular languages are accepted by deterministic
Müller automata, giving us the desired determinzation construction.

Lemma 4 If L1 and L2 are accepted by deterministic Müller automata then L1 ∪ L2 is
accepted by a deterministic Müller automaton.

Proof: Let A1 = (Q1, Σ, δ1, s1,F1) and A2 = (Q2, Σ, δ2, s2,F2) be deterministic Müller
automata accepting L1 and L2 respectively. Let A = (Q1 ×Q2, Σ, δ1 × δ2, (s1, s2),F), where
F = {X ⊂ Q | X ↓1∈ F1}∪{X ⊆ Q | X ↓2∈ F2} (where X ↓i is the projection to coordinate
i of X). It is quite easy to check that A accepts L1 ∪ L2.

Exercise: Show that deterministic Rabin automata are closed under union.

With this we have established that all ω-regular languages are accepted by Deterministic
Müller automata. But can they accept more? Notice that the language accepted by a
deterministic Müller automaton A = (Q, Σ, δ, s,F) is a boolean combination of the languages
accepted by the Deterministic Büchi automata Aq, q ∈ Q, given by Aq = (Q, Σ, δ, s, {q}). In
particular,

L(A) =
⋃

F∈F

(
⋂

q∈F

L(Aq) ∩
⋂

q 6∈F

L(Aq))

Exercise: Why does this construction fail in the case of Nondeterministic Muller au-
tomata?

Thus we have established that deterministic Müller automata accept precisely the class
of ω-regular languages. We now show that even nondeterministic Müller automata accept
ω-regular languages.

Lemma 5 Let A = (Q, Σ, δ, s,F) be a Müller automaton. Then, L(A) is ω-regular.

Proof:(Sketch) We construct a NBA accepting L(A) as follows: the NBA simulates the A.
Further it nondeterministically guesses a set X ∈ F and a position in the run and verifies
that after this point, every state in X is hit infinitely often and no state outside of X is
visited. How do we check that everything in X is hit infinitely often? Order the set X as say
x1, x2, . . . xk. The automaton keeps a current index from the set {0, 1, 2, . . . k}. Whenever the
automaton visits a state xi and the current index is i > 0, the current index is incremented
to i + 1 (modulo k+1) otherwise the index is left unchanged. If the current index is 0, the
index is always incremented to 1 in the next move. We use a Büchi condition to simply
check that the current index is 0 infinitely often.

5

Exercise: Write down the construction described in the proof of Lemma 5 precisely.

Theorem 6 The following statements are equivalent:
1. L is a ω-regular language.
2. L is a finite union of languages of the form U.V̂ .
3. L is a boolean combinated of languages of the form V̂ .
4. L is accepted by some nondeterministic Büchi automaton.
5. L is accepted by some nondeterministic Müller automaton.
6. L is accepted by some nondeterministic Rabin automaton.
7. L is accepted by some deterministic Müller automaton.
8. L is accepted by some deterministic Rabin automaton.

Proof: The equivalence of the first 4 statements was proved earlier. We have just shown
that NBA can be translated to DMA and that NMA can be translated to NBA. Thus NBA,
NMA and DMA are equivalent. We also showed that NRA can be translated to NMA.
One of the exercises (showing that DRAs are closed under union) shows that NBAs can be
translated to DRAs. That established the equivalence of NRAs and DRAs with ω-regular
languages.

2 MSO over infinite words

We can interpret the logic MSO over infinite words. The first order variables x, y, . . . are
interpreted as positions in the word, second order variables X,Y, . . . are interpreted as sets
of positions, x ∈ X, a(x) etc. have the usual interpretations. For instance, the following
formula

∀x.∃y. (x < y) ∧ a(x)

asserts that there are infinitely many a’s.

Exercise: Write down a formula in MSO that asserts that there is some subword of the
form ba2∗nb for some n > 1.

Let A = (Q, Σ, δ, s, F) be a NBA. Using one variable Xq for each state q ∈ Q, it is quite
easy to write down a formula in MSO, that describes the set of words accepted by A. There
are some differences w.r.t. to the proof for the finite case: Firstly, A may be nondeterministic.
It is quite trivial to generalize the construction there to work over nondeterministic automata.
Secondly, we need to describe the Büchi acceptance rather than asserting that the automaton
enters a final state at the end. Büchi acceptance is described by the following formula:

∀x.∃y.(x < y) ∧
∨

q∈F

(y ∈ Xq)

Thus, every ω-regular language can be described using sentences in MSO.

6

In order to describe the languages defined by formulas with free variables, we shall con-
sider (V,W)-words where V is a set of first order variables and W is a set of second order
variables (i.e. ω-words over the alphabet Σ× 2V × 2W where each x ∈ V appears exactly in
one letter in the word). It is quite easy to construct a NBA accepting precisely the set of
(V,W)-words. We now sketch an argument showing that for any MSO formula φ, and sets
V and W with free1(φ) ⊆ V and free2(φ) ⊆ W , the set of (V,W)-words satisfying φ is a
ω-regular language.

The construction of a NBA automaton accepting L(φ) proceeds by induction on the
structure of the formula. In all cases we assume that the autmaton is intersected with an
automaton recognising the set of (V,W)-words. Here are the automata for a(x), x ∈ X and
x < y in that order:

(a,F ,_)x
(_,_,_) (_,_,_)

(_,F ,_)x (_,F ,_)y
(_,_,_)

(_,_,_)

(_,_,_)

(a,F ,S)x X
(_,_,_) (_,_,_)

These are the same automata as used in Lecture 3. We simply interpret then as NBAs here.
Since we have already established that Büchi automata are closed under boolean op-

erations, translating the boolean operators is quite trivial and thus we are left with the
quantifiers. As usual, we can express the universal quantifiers using the existential quantifi-
cation and negation.

Suppose φ = ∃x.α. Let free1(φ) ⊆ V and free2(φ) ⊆ W . Then free1(α) ⊆ V ∪ {x} and
free2(α) ⊆ W . By the induction hypothesis, the set of (V ∪ {x},W)-words satisfying α is
a ω-regular language. Further, (a1, F1, S1)(a2, F2, S2) . . . satisfies α if and only if (a1, F1 \
{x}, S1), (a2, F2\{x}, S2) . . . satisfies ∃x.α. In the finite word case, we simply applied closure
under homomorphism at this point. Since homomorphic images of infinite words might be
finite words, we can’t directly use homomorphism closure. However, it is rather trivial to
construct a Büchi automaton that guesses a position for x and verifies that resulting word
satisfies α. We leave the details as an exercise. The construction for ∃X.α also proceeds
similarly.

7

Thus we have the following theorem due to J.R.Büchi.

Theorem 7 A language L is ω-regular if and only if it can be described by a sentence in
MSO.

As an immediate corollary of this result we have:

Corollary 8 The problem of checking whether a formula φ in MSO is satisfied by any word
is decidable. The problem of checking whether a formula φ in MSO satisfied by all words is
also decidable.

Proof: We can translate φ into a Büchi automaton A such that L(φ) = L(A). The first
question corresponds to checking emptiness of the automaton A, and the second corresponds
to checking that L(A) = Σ∗. Both of which are decidable.

3 Applications of MSO

As an application of this theorem, we shall show that Presburger arithmetic, that is, the
theory of natural numbers with addition, is a decidable theory.

Formulas in Presburger arithmetic use first order variables x, y, . . . that range over natural
numbers and the predicate x + y = z. Here is a valid sentence in this logic:

∀x.∀y.∃z.(x + z = y) ∨ (y + z = x)

Here is a sentence that is not true:

∀x.∀y.∃z.(x + z = y)

Notice that the relation x < y, x = y +1, and so on can be defined in Presberger arithmetic.
Presberger showed that the problem of determining whether a given sentence in Presburger
arithmetic is valid (or true) is decidable, by the method of quantifier elimination. Büchi
showed that one can translate sentences in Presburger arithmetic to sentences in MSO (over
the one letter alphabet) preserving validity. We can then use Corollary 8 to conclude the
decidability of Presburger arithmetic.

There is exactly one word over the one letter alphabet. Let the positions of this word be
0, 1, 2, Büchi’s idea as to denote a natural number n by a subset of positions. Suppose
n = 2i1 + 2i2 + . . . + 2ik . Then, n is represented by the set {i1, i2, . . . , ik}. Conversely, every
finite subset of 0, 1, 2, . . . represents a number. The translation map T is defined as follows:
T (∃x.φ) = ∃X.Fin(X) ∧ T (φ), T (∀x.φ) = ∀X.Fin(X) ⇒ T (φ), T (φ ∨ φ′) = T (φ) ∨ T (φ′),
T (¬φ) = ¬T (φ), and T (x + y = z) = Add(X,Y, Z). Here, Fin(X) simply asserts that
the set X is finite and it is quite easy to write a formula saying this. That leaves the
definition of Add(X,Y, Z). We need to show that there is MSO formula that verifies that
the number reprepresented by the set Z is the sum of the numbers represented by the sets
X and Y . One can write this down directly, but we prefer the route via automata. We need

8

to show that the set of (∅, {X,Y, Z})-words satisfying the sum property described above is
a ω-regular language. Each input letter can be thought of as consisting of 3 bits, one bit
indicating whether the position is in X or not, and similarly one each for Y and Z. With this
interpretation, the automaton is reading three bit sequences starting at the least significant
bit and it needs to verify that one sequence is the sum of the other two. This is an easy
programming exercise. Thus, we can translate formulas in Presburger arithmetic to MSO.

Theorem 9 (Presburger/Büchi) The theory of natural numbers with addition is decidable.

Things change quite drastically if we allow multiplication and this is one of the implications
of Gödel’s famous theorem.

As a second application of the decidability of MSO we turn to model checking. This is
a problem that arises in computer science. You are given a program and a property of runs
of programs and you wish to check that every run of the program satisfies this property.
For example, the property could say “It is never the case that more than one process is in
the critical section” or “ whenever a process requests for a resource, it is eventually granted
access to the resource”. Such properties can be quite easily seen to expressible in MSO. On
the program side, we know that almost everything is undecidable if we work with general
programs. However, if we restrict the set of programs to finite state programs then we
can think of the program as Buchi automaton (where all states are accepting) Ap and the
property as a MSO formula that can also be translated in to a Büchi Automaton Aφ and
the model checking problem reduces to checking if L(Ap) ⊆ L(Aφ). But this is quite easily
seen to be decidable.

Exercise: What is the complexity of the complementation construction for NBAs de-
scribed in this lecture?

It turns out that translating MSO into automata is prohibitively expensive. On the
other hand, there are restricted logics, in which properties such as the two listed above are
expressible, and that can be translated to automata with reasonable cost. These will be
some of the topics we shall study later in this course.

It turns out that it is possible to construct a complement BA whose size is bounded by
O(2O(nlogn)). We shall examine this in the coming lectures. Note that the translations from
one kind of ω-automata to another is also an expensive operation. We shall examine the
exact complexity of these translations later.

9

