Lecture 6f: $FO^2(<)$, Δ_2 and DA

In the previous lecture we showed that the set of languages definable in Σ_1 is precisely the set of languages that are upward closed (w.r.t. substrings). This immediately means that the set of languages that are definable in Π_1 are precisely those that are downward closed. What about languages that are definable in Σ_1 and Π_1 ? It is easy to check that a language is both and upwards and downwards closed if and only if it is Σ^* or \emptyset (if it contains any string, it contains ϵ and so contains Σ^*).

In general, we write Δ_i for the set of languages in $\Sigma_i \cap \Pi_i$. So, what we have just shown is that Δ_1 is the uninteresting class of languages $\{\emptyset, \Sigma^*\}$. In general, the class Δ_i is interesting as it is the largest complementation closed class within Σ_i (or Π_i) and hence the largest class closed under all boolean operations (\cup, \cap and complement) within Σ_i (or Π_i). The class Δ_2 has very many interesting characterizations and this is the topic of this lecture.

Recall that we characterized Σ_2 using the class of ordered monoids satisfying $ese \leq e$ for each idempotent e and $s \in S_e$. The following is a direct consequence of this result.

Proposition 1 A language L is in Δ_2 if and only if it is recognised by a monoid that satisfies the identity ese = e for each idempotent e and $s \in S_e$.

Proof: Let $L \in \Delta_2$. Since it is in Σ_2 , the ordered syntactic monoid of L, $\mathsf{oSyn}(L)$ satisfies $ese \leq_L e$ for all idempotents e and $s \in S_e$. Further the ordered syntactic monoid of \overline{L} is just the syntactic monoid of L with the order \leq_L^R . Since \overline{L} is also in Σ_2 we have $ese \leq_L^R e$ for all idempotents e and $s \in S_e$, i.e. $e \leq_L ese$ for all idempotents e and $s \in S_e$. Therefore we have ese = e in the syntactic monoid of L for all idempteents e and $s \in S_e$.

For the converse, suppose L is recognized by a monoid (M, ., 1) that satisfies ese = e for all idempotents e and $s \in S_e$. Then L is in Σ_2 as the ordered monoid (M, ., 1, =) recognizes L and satisfies ese = e for all idempotents e and $s \in S_e$. Since the same (ordered) monoid also recognizes \overline{L} , L is also in in Π_2 .

We write E_M for the set of idempotents in M. Next we show that the requirement in the previous proposition can be weakened to ese = e for all idempotents e and $s \in J_{\geq}(e)$, where $J_{\geq}(e) = \{s \mid e \leq_J s\}$. One direction is trivial since $J_{\geq}(e) \subseteq S_e$, while the other direction requires some work. We now derive an important property of the regular \mathcal{D} -classes of the monoids that satisfy ese = e for all $e \in E_m$, $s \in J_{\geq}(e)$.

Lemma 2 Let (M, ., 1) be a monoid that satisfies ese = e for all $e \in E_M$ and $s \in J_{\geq}(e)$. Then,

- 1. Every regular \mathcal{H} -class of M is trivial.
- 2. Every element of any regular \mathcal{D} -class is an idempotent.

Thus, every regular \mathcal{D} -class is an idempotent (and hence aperiodic) semigroup.

Proof: Let H be a regular \mathcal{H} -class with an idempotent e and let $s \in H$. Then, ese = e, by the hypothesis. Moreover, ese = s, as H is a group with e as the identity. Thus s = e and hence H is trivial.

Let s be in some regular \mathcal{D} -class D. Then there is an idempotent e in the \mathcal{R} class of s and es = s. But, by the hypothesis, ese = e and thus $s = es = eses = s^2$. Thus s is an idempotent.

If every element is an idempotent then, by the location lemma, D must be a semigroup as well. \blacksquare

An immediate consequence of this Lemma is the following:

Proposition 3 A monoid M satisfies ese = e for all $e \in E_M$ and $s \in S_e$ if and only if it satisfies ese = e for all $e \in E_M$ and $s \in J_{\geq}(e)$.

Proof: In one direction, the implication follows from the fact that $J_{\geq}(e) \subseteq S_e$. For the other direction, we first establish the following claim:

Claim: Let M satisfy ese = e for all $e \in E_M$ and all $s \in J_{\geq}(e)$. For any s_1, s_2 such that $es_1e = e$ and $es_2e = e$ we have $es_1s_2e = e$.

Assuming the Claim, we can complete the proof of the proposition as follows. If $s \in S_e$, then by definition $s = s_1 s_2 \dots s_k$ where each $s_i \in J_{\geq}(e)$ and then by repeated application of the Claim, we have $es_1 s_2 \dots s_k e = e$ as required.

We now complete the proof by establishing the Claim. Let D be the \mathcal{D} -class of e. Since $es_1e = e$ we have $es_1\mathcal{R}e$ and similarly $s_2e\mathcal{L}e$. Applying Lemma 2, $(s_2e)(es_1) = s_2es_1$ is in the same \mathcal{D} -class as e and is an idempotent. But $s_2es_1\mathcal{L}es_1$ and $s_2es_1\mathcal{R}s_2e$ and thus, by the Location Lemma, es_1s_2e is in D and hence in the same \mathcal{H} -class as e. We then use Lemma 2 to conclude that $es_1s_2e = e$. The argument is summarized by the following egg-box diagram:

	$e = es_1s_2e$		es_1	
	$s_2 e$		$s_2 ees_1$	

This completes the proof of the Claim. \blacksquare

Corollary 4 A language is in Δ_2 if and only if it is recognized by a monoid satisfying ese = e for all $e \in E_M$ and $s \in J_{\geq}(e)$.

The class of monoids with the properties identified by Lemma 2 form a very important class:

Definition 5 The class **DA** consists of all the monoids in which every regular \mathcal{D} -class is an aperiodic semigroup. We shall refer the class of languages recognized by monoids in **DA** by **DA** as well.

It turns out that this class also characterizes Δ_2 .

Theorem 6 A language is in Δ_2 iff it is in **DA**.

Proof: As a consequence of Corollary 4 and Lemma 2 it follows that every language in Δ_2 is in **DA**. The converse requires some work:

Let D be the \mathcal{D} -class of an idempotent e. Since D is an aperiodic semigroup

- 1. Every \mathcal{H} -class in D is trivial. (Since $\mathcal{H}(e)$ is a group and D is aperiodic, $\mathcal{H}(e)$ is trivial. So all H-classes in D are trivial.)
- 2. Every element in D is an idempotent. (Since D is an aperiodic semigroup, this is implied by the Location Lemma.)

Let $e \leq_J s$. Then, e = xsy and let $f = (syx)^N$ where N is the idempotent power of syx. Clearly $e \leq_J f$ and further, since $e = e^{N+1}$, $f \leq_J e$. Thus $e\mathcal{J}f$ and thus $e\mathcal{D}f$. This means $ef\mathcal{D}e$. But $ef \leq_R es$ and $es \leq_L e$.

References

- M. Bojanczyk: "Factorization Forests", Proceedings of DLT 2009, Springer LNCS 5583 (2009) 1-17.
- [2] T. Colcombet: "Green's Relations and their Use in Automata Theory", Proceedings of LATA 2011, Spring LNCS 6638 (2011) 1-21.
- [3] V Diekart, P Gastin and M Kufleitner: "A Survey on Small Fragments of First-Order Logic over Finite Words", International Journal of the Foundations of Computer Science 19(3), 2008.
- [4] J.E.Pin: Mathematical Foundations of Automata Theory, MPRI Lecture Notes.