
Lecture 6c: Green’s Relations

We now discuss a very useful tool in the study of monoids/semigroups called Green’s
relations. Our presentation draws from [1, 2]. As a first step we define three relations on
monoids that generalize the prefix, suffix and infix relations over Σ∗. Before that , we write
down an useful property of idempotents:

Proposition 1 Let (M, ., 1) be a monoid and let e be an idempotent. Then, if x = ey then
x = ex. Similarly, if x = ye then x = xe.

Proof: Let x = ey. Multiplying both sides by e on the left we get ex = eey, and hence
ex = ey = x. The other result follows similarly.

Definition 2 Let (M, ., 1) be a monoid. The relations ≤L,≤R,≤J are defined as follows:

s ≤L t , ∃u. s = ut

s ≤R t , ∃v. s = tv

s ≤J t , ∃u, v. s = utv

Clearly, s ≤L t iff Ms ⊆Mt, s ≤R t iff sM ⊆ tM and s ≤J t iff MsM ⊆MtM .

Observe that 1 is a maximal element w.r.t. to all of these relations. Further, from
the definitions, ≤L is a right congruence (i.e. s ≤L t implies su ≤L tu) and ≤R is a left
congruence.

These relations are reflexive and transitive, but not necessarily antisymmetric. As a
matter of fact, the equivalences induced by these relations will be the topic of much of our
study.

Proposition 3 For any monoid M , ≤J = ≤R ◦ ≤L = ≤L ◦ ≤R.

Proof: Since ≤R and ≤L are contained in ≤J and ≤J is transitive the containment of the
last two relations in ≤J is immediate. Further, s = utv then, s ≤R ut ≤L t and s ≤L tv ≤R t.

Definition 4 Let (M, ., 1) be a monoid. The relations L,R and J on M are defined as
follows:

sLt , s ≤L t and t ≤L s

sRt , s ≤R t and t ≤R s

sJ t , s ≤J t and t ≤J s

sHt , sLt and sRt
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ClearlyH ⊆ L,R and L,R ⊆ J . Further, L is a right congruence andR is a left congruence.
These relations are clearly equivalence relations and the corresponding equivalence classes
are called L-classes, R-classes,... For any element x, we write L(v) to denote its L-class and
similarly for the other relations.

The following Proposition says that the relation J also factors via L and R for finite
monoids.

Proposition 5 For any finite monoid M , J = R ◦ L = L ◦ R.

Proof: Once again, the containment of the last two relations in J follows easily. The other
side requires some work.

Before we give the proof, we observe that this is not a direct consequence of Proposition
3: Suppose sJ t. Using that proposition we can only conclude that there are u′ and u′′ such
that s ≤L t′ ≤R t and s ≤R t′′ ≤L t and not that there is a u such that s ≤L u ≤R t and
s ≤R u ≤L t.

Let sJ t, so that s = utv and t = xsy. Substituting for t we get s = uxsyv. Iterating,
we get s = (ux)Ns(yv)N , where N is the idempotent power of ux. Applying Proposition 1,
s = (ux)Ns and thus xsLs.

Similarly, we can show that s = s(yv)M and conclude that sRsy. Using the left congru-
ence property for R we get xsRxsy.

Thus we have sLxsRxsy = t. By substituting for s in t and following the same route
we can show that tLutRutv = s. Thus J is contained in both L ◦ R and R ◦ L. So
J = L ◦ R = R ◦ L.

It turns out that the equality L◦R = R◦L holds for arbitrary monoids and consequently
this relation defines an equivalence on M as well. The proof of this result is not difficult and
is left as an exercise.

Definition 6 The relation D on M is defined as sDt iff s L◦R t (ore equivalently s R◦L t).
Over finite monoids D = J .

The following says that over finite monoids, any pair of elements of a D-class are either
equivalent or incomparable w.r.t to the ≤L and ≤R relations.

Proposition 7 Over any finite monoid we have

1. If sJ t and s ≤L t then sLt.

2. If sJ t and s ≤R t then sRt.

Proof: Suppose s ≤R t and sJ t. Then we may assume that s = tu and t = xsy. Substitut-
ing for s we get t = xtuy. Iterating, we get t = xN t(uy)N for the idempotent power N of uy.
By Proposition 1, we then have t = t(uy)N and thus t = tu.y.(uy)N−1, so that t ≤R tu = s
and hence tRs. The other result is proved similarly.
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At this point we note that every J -class decomposes into a set of R-classes as well as
into a set of L-classes. (Those in turn decompose into a set of H-classes.) Further, since
J = D = L ◦ R = R ◦ L we see that, every such L-class and R-class has a non-empty
intersection.

Proposition 8 For any finite monoid if sJ t then L(s) ∩R(t) 6= ∅.

Proof: For a finite monoid sJ t implies sDt and hence there is an x such that sLxRt. So,
L(s) ∩R(t) 6= ∅.

As a consequence of this, we have what is called the egg box diagram for any J -class
(D-class) of any finite monoid, where every row is an R-class, each column is an L-class and
the small squares are the H-classes. And by the previous proposition, every one of these
H-classes is non-empty.

...
H(x) R(x)

.

.
L(x) .

.

.
...

A lot more remains to be said about the structure of these D-classes. To start with, we
shall show that every R-class (L-class) in a D-class has the same size and the same holds
for H-classes.

Given an element u of the monoid M we write .u to denote the map given by x 7→ xu
and write u. to denote the map given by x 7→ ux.

Lemma 9 (Green’s Lemma) Let (M, ., 1) be a finite monoid and let sDt (or equivalently
sJ t). Then

1. If sRt and su = t and tv = s then the maps .u and .v are bijections between L(s) and
L(t). Further, they preserve H-classes.

2. If sLt and us = t and vt = s then the maps u. and v. are bijections between R(s) and
R(t). Further, they preserve H-classes.

Proof: L is a congruence w.r.t. right multiplication and hence .u (.v) maps L(s) into L(t)
(L(t) into L(s)). Further, for any x ∈ L(s), we have x = ys. Therefore, xuv = ysuv = ytv =
ys = x. Thus, .uv is the identity function on L(s) and similarly .vu is the identify function
on L(t) and .u and .v are bijections (and inverses of each other).

Moreover, xu ≤L x for any x ∈ L(s). Thus, the elements in H(x) are mapped to elements
in H(xu). So, .u (and .v) preserve H-classes.

The other statement is proved similarly.
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Corollary 10 In any D-class of a finite monoid, every L-class (R-class) has the same size.
Every H-class has the same size and if xDy then there are u, v such that the map z 7→ uzv
is a bijection between H(x) and H(y).

Idempotents and D-classes

We say that a D-class (or a H-class or R-class or L-class) is regular if it contains an idem-
potent. Regular D-classes have many interesting properties. First, we prove a very useful
lemma.

Lemma 11 (Location Lemma (Clifford/Miller)) Let M be a finite monoid and let sDt. Then
stDs (or equivalently, stRs and stLt) iff the H-class L(s) ∩R(t) contains an idempotent.

Proof: In effect, this lemma can be summarized by the following egg box diagram.

s st

... ... ...

e t

First note that since sJ t and s ≤R st and t ≤L st, using Proposition 7, sJ st holds iff
sRst and tLst hold. This proves the equivalence claimed in paranthesis in the statement of
the Lemma.

Suppose stJ sJ t. Then, by Green’s Lemma, .t is bijection from L(s) to L(t). Therefore,
there is an x ∈ L(s) such that xt = t. Further, since .t preserves H-classes, there is a y such
that x = ty. Thus, substituting for x we get tyt = t and hence tyty = ty. Thus, ty = x is
an idempotent in L(s) ∩R(t).

Conversely, suppose e is an idempotent in L(s) ∩ R(t). So, there are x and y such that
xe = s and ey = t. But by Proposition 1 we have se = e and et = t. Thus, by Green’s
Lemma, .t is a H-class preserving bijection from L(e) to L(t) and hence stRs and stLt.

An immediate corollary of this result is that every H-class containing an idempotent is
a sub-semigroup.

Corollary 12 Let M be a monoid and e be an idempotent in M . Then H(e) is a subsemi-
group.

Proof: If s, t ∈ H(e) then by the location lemma stLs and stHt and stHe.
But something much stronger holds. In fact H(e) is a group.
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Theorem 13 (Green’s Theorem) Let (M, ., 1) be a finite monoid and let e be an idempotent.
Then H(e) is a group. Thus, for any H-class H, if H ∩H2 6= ∅ then H is a group.

Proof: By the previous corollary, H(e) is a subsemigroup. Further for any s ∈ H(e), there
are x, y such that ex = s and ye = s and thus by Proposition 1, es = s and se = s. Thus, it
forms a sub-monoid with e as the identity.

Further, we know that there are sl and sr such that sls = e and ssr = e so that we almost
already have left and right inverses. But, there are no guarantees that such sl and sr are in
H(e). However, we can manufacture equivalent inverses inside H(e) by conjugating with e.

Let tl = esle and tr = esre. Then, tl.s = esles = esls = ee = e. Similarly s.tr = e.
Moreover, this also shows that eLtl and eRtr. And quite clearly eLtl, tr and eRtl, tr. Thus,
by Proposition 7, eHtl and eHtr. Thus, every element in this monoid has a left and right
inverse and this means they are identical and they form a group.

Finally, if H ∩ H2 is not empty then there is s, t ∈ H such that st ∈ H, which by the
Location Lemma means H contains an idempotent. Thus, it forms a group.

Suppose (M, ., 1) is a monoid and (G, ., e) is a subgroup of this monoid (as a sub-
semigroup, hence e need not be 1). Then, G ⊆ H(e). This is because, for any g ∈ G,
eg = ge = g (by Proposition 1) and e = gg−1 = g−1g and thus eHg. Thus, any group is
contained in a group of the form H(e). Thus we have the following result.

Theorem 14 (Maximal Subgroups) The maximal subgroups (as sub-semigroups) of a monoid
M are exactly those of the form H(e), e an idempotent.

Further, if a D-class contains an idempotent then it contains many!

Proposition 15 Every R-class (L-class) of a regular D-class contains an idempotent.

Proof: Let D be a D-class, e is an idempotent in D and s ∈ D. Let t ∈ R(e)∩L(s). Then,
there is u such that tu = e. So, utut = uet = ut is an idempotent. Moreover, tut = et = t
thus utLtLs.

Definition 16 Let (M, ., 1) be a monoid. An element s ∈ M is said to be regular if there
is an element t such that s = sts.

First we relate regular elements and regular D-classes.

Lemma 17 Let M be any finite monoid. A D-class is regular if and only if every element in
the class is regular. Further a D-class contains a regular element if and only if it is regular.

Proof: Suppose s is a regular element in a D-class D. Therefore, there is t such that s = sts
and thus st = stst is an idempotent. Further, since sts = s, s ≤R st ≤R s and so stDs and
so D is a regular D-class.

On the other hand if D is a regular D-class then we know that everyR class in D contains
an idempotent. So if s ∈ D then there is an idempotent e and t such that st = e. Right
multiplying by s we get sts = es = s and thus every element is regular.
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