Lecture 6c: Green's Relations

We now discuss a very useful tool in the study of monoids/semigroups called Green's relations. Our presentation draws from [1, 2]. As a first step we define three relations on monoids that generalize the prefix, suffix and infix relations over Σ^* . Before that , we write down an useful property of idempotents:

Proposition 1 Let (M, ., 1) be a monoid and let e be an idempotent. Then, if x = ey then x = ex. Similarly, if x = ye then x = xe.

Proof: Let x = ey. Multiplying both sides by e on the left we get ex = eey, and hence ex = ey = x. The other result follows similarly.

Definition 2 Let (M, .., 1) be a monoid. The relations \leq_L, \leq_R, \leq_J are defined as follows:

$$s \leq_L t \triangleq \exists u. \ s = ut$$

$$s \leq_R t \triangleq \exists v. \ s = tv$$

$$s \leq_J t \triangleq \exists u, v. \ s = ut$$

Clearly, $s \leq_L t$ iff $Ms \subseteq Mt$, $s \leq_R t$ iff $sM \subseteq tM$ and $s \leq_J t$ iff $MsM \subseteq MtM$.

Observe that 1 is a maximal element w.r.t. to all of these relations. Further, from the definitions, \leq_L is a right congruence (i.e. $s \leq_L t$ implies $su \leq_L tu$) and \leq_R is a left congruence.

These relations are reflexive and transitive, but not necessarily antisymmetric. As a matter of fact, the equivalences induced by these relations will be the topic of much of our study.

Proposition 3 For any monoid $M, \leq_J = \leq_R \circ \leq_L = \leq_L \circ \leq_R$.

Proof: Since \leq_R and \leq_L are contained in \leq_J and \leq_J is transitive the containment of the last two relations in \leq_J is immediate. Further, s = utv then, $s \leq_R ut \leq_L t$ and $s \leq_L tv \leq_R t$.

Definition 4 Let (M, ., 1) be a monoid. The relations \mathcal{L}, \mathcal{R} and \mathcal{J} on M are defined as follows:

$$s\mathcal{L}t \triangleq s \leq_L t \text{ and } t \leq_L s$$

$$s\mathcal{R}t \triangleq s \leq_R t \text{ and } t \leq_R s$$

$$s\mathcal{J}t \triangleq s \leq_J t \text{ and } t \leq_J s$$

$$s\mathcal{H}t \triangleq s\mathcal{L}t \text{ and } s\mathcal{R}t$$

Clearly $\mathcal{H} \subseteq \mathcal{L}, \mathcal{R}$ and $\mathcal{L}, \mathcal{R} \subseteq \mathcal{J}$. Further, \mathcal{L} is a right congruence and \mathcal{R} is a left congruence. These relations are clearly equivalence relations and the corresponding equivalence classes are called \mathcal{L} -classes, \mathcal{R} -classes,... For any element x, we write $\mathcal{L}(v)$ to denote its \mathcal{L} -class and similarly for the other relations.

The following Proposition says that the relation \mathcal{J} also factors via \mathcal{L} and \mathcal{R} for finite monoids.

Proposition 5 For any finite monoid M, $\mathcal{J} = \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R}$.

Proof: Once again, the containment of the last two relations in \mathcal{J} follows easily. The other side requires some work.

Before we give the proof, we observe that this is not a direct consequence of Proposition 3: Suppose $s\mathcal{J}t$. Using that proposition we can only conclude that there are u' and u'' such that $s \leq_L t' \leq_R t$ and $s \leq_R t'' \leq_L t$ and not that there is a u such that $s \leq_L u \leq_R t$ and $s \leq_R u \leq_L t$.

Let $s\mathcal{J}t$, so that s = utv and t = xsy. Substituting for t we get s = uxsyv. Iterating, we get $s = (ux)^N s(yv)^N$, where N is the idempotent power of ux. Applying Proposition 1, $s = (ux)^N s$ and thus $xs\mathcal{L}s$.

Similarly, we can show that $s = s(yv)^M$ and conclude that $s\mathcal{R}sy$. Using the left congruence property for \mathcal{R} we get $xs\mathcal{R}xsy$.

Thus we have $s\mathcal{L}xs\mathcal{R}xsy = t$. By substituting for s in t and following the same route we can show that $t\mathcal{L}ut\mathcal{R}utv = s$. Thus \mathcal{J} is contained in both $\mathcal{L} \circ \mathcal{R}$ and $\mathcal{R} \circ \mathcal{L}$. So $\mathcal{J} = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$.

It turns out that the equality $\mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$ holds for arbitrary monoids and consequently this relation defines an equivalence on M as well. The proof of this result is not difficult and is left as an exercise.

Definition 6 The relation \mathcal{D} on M is defined as $s\mathcal{D}t$ iff $s\mathcal{L}\circ\mathcal{R} t$ (ore equivalently $s\mathcal{R}\circ\mathcal{L} t$). Over finite monoids $\mathcal{D} = \mathcal{J}$.

The following says that over finite monoids, any pair of elements of a \mathcal{D} -class are either equivalent or incomparable w.r.t to the \leq_L and \leq_R relations.

Proposition 7 Over any finite monoid we have

- 1. If $s\mathcal{J}t$ and $s \leq_L t$ then $s\mathcal{L}t$.
- 2. If $s\mathcal{J}t$ and $s \leq_R t$ then $s\mathcal{R}t$.

Proof: Suppose $s \leq_R t$ and $s\mathcal{J}t$. Then we may assume that s = tu and t = xsy. Substituting for s we get t = xtuy. Iterating, we get $t = x^N t(uy)^N$ for the idempotent power N of uy. By Proposition 1, we then have $t = t(uy)^N$ and thus $t = tu.y.(uy)^{N-1}$, so that $t \leq_R tu = s$ and hence $t\mathcal{R}s$. The other result is proved similarly.

At this point we note that every \mathcal{J} -class decomposes into a set of \mathcal{R} -classes as well as into a set of \mathcal{L} -classes. (Those in turn decompose into a set of \mathcal{H} -classes.) Further, since $\mathcal{J} = \mathcal{D} = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$ we see that, every such \mathcal{L} -class and \mathcal{R} -class has a non-empty intersection.

Proposition 8 For any finite monoid if $s\mathcal{J}t$ then $\mathcal{L}(s) \cap \mathcal{R}(t) \neq \emptyset$.

Proof: For a finite monoid $s\mathcal{J}t$ implies $s\mathcal{D}t$ and hence there is an x such that $s\mathcal{L}x\mathcal{R}t$. So, $\mathcal{L}(s) \cap \mathcal{R}(t) \neq \emptyset$.

As a consequence of this, we have what is called the *egg box* diagram for any \mathcal{J} -class (\mathcal{D} -class) of any finite monoid, where every row is an \mathcal{R} -class, each column is an \mathcal{L} -class and the small squares are the \mathcal{H} -classes. And by the previous proposition, every one of these \mathcal{H} -classes is non-empty.

A lot more remains to be said about the structure of these \mathcal{D} -classes. To start with, we shall show that every \mathcal{R} -class (\mathcal{L} -class) in a \mathcal{D} -class has the same size and the same holds for \mathcal{H} -classes.

Given an element u of the monoid M we write .u to denote the map given by $x \mapsto xu$ and write u to denote the map given by $x \mapsto ux$.

Lemma 9 (Green's Lemma) Let (M, ., 1) be a finite monoid and let $s\mathcal{D}t$ (or equivalently $s\mathcal{J}t$). Then

- 1. If $s\mathcal{R}t$ and su = t and tv = s then the maps .u and .v are bijections between $\mathcal{L}(s)$ and $\mathcal{L}(t)$. Further, they preserve \mathcal{H} -classes.
- 2. If $s\mathcal{L}t$ and us = t and vt = s then the maps u. and v. are bijections between $\mathcal{R}(s)$ and $\mathcal{R}(t)$. Further, they preserve \mathcal{H} -classes.

Proof: \mathcal{L} is a congruence w.r.t. right multiplication and hence .u(.v) maps $\mathcal{L}(s)$ into $\mathcal{L}(t)$ ($\mathcal{L}(t)$ into $\mathcal{L}(s)$). Further, for any $x \in \mathcal{L}(s)$, we have x = ys. Therefore, xuv = ysuv = ytv = ys = x. Thus, .uv is the identity function on $\mathcal{L}(s)$ and similarly .vu is the identity function on $\mathcal{L}(t)$ and .u and .v are bijections (and inverses of each other).

Moreover, $xu \leq_L x$ for any $x \in \mathcal{L}(s)$. Thus, the elements in $\mathcal{H}(x)$ are mapped to elements in $\mathcal{H}(xu)$. So, .u (and .v) preserve \mathcal{H} -classes.

The other statement is proved similarly. \blacksquare

Corollary 10 In any \mathcal{D} -class of a finite monoid, every \mathcal{L} -class (\mathcal{R} -class) has the same size. Every \mathcal{H} -class has the same size and if $x\mathcal{D}y$ then there are u, v such that the map $z \mapsto uzv$ is a bijection between $\mathcal{H}(x)$ and $\mathcal{H}(y)$.

Idempotents and \mathcal{D} -classes

We say that a \mathcal{D} -class (or a \mathcal{H} -class or \mathcal{R} -class or \mathcal{L} -class) is *regular* if it contains an idempotent. Regular \mathcal{D} -classes have many interesting properties. First, we prove a very useful lemma.

Lemma 11 (Location Lemma (Clifford/Miller)) Let M be a finite monoid and let $s\mathcal{D}t$. Then $st\mathcal{D}s$ (or equivalently, $st\mathcal{R}s$ and $st\mathcal{L}t$) iff the \mathcal{H} -class $\mathcal{L}(s) \cap \mathcal{R}(t)$ contains an idempotent.

Proof: In effect, this lemma can be summarized by the following egg box diagram.

	s		st	
	e		t	

First note that since $s\mathcal{J}t$ and $s \leq_R st$ and $t \leq_L st$, using Proposition 7, $s\mathcal{J}st$ holds iff $s\mathcal{R}st$ and $t\mathcal{L}st$ hold. This proves the equivalence claimed in parameters in the statement of the Lemma.

Suppose $st \mathcal{J}s\mathcal{J}t$. Then, by Green's Lemma, *.t* is bijection from $\mathcal{L}(s)$ to $\mathcal{L}(t)$. Therefore, there is an $x \in \mathcal{L}(s)$ such that xt = t. Further, since *.t* preserves \mathcal{H} -classes, there is a y such that x = ty. Thus, substituting for x we get tyt = t and hence tyty = ty. Thus, ty = x is an idempotent in $\mathcal{L}(s) \cap \mathcal{R}(t)$.

Conversely, suppose e is an idempotent in $\mathcal{L}(s) \cap \mathcal{R}(t)$. So, there are x and y such that xe = s and ey = t. But by Proposition 1 we have se = e and et = t. Thus, by Green's Lemma, t is a \mathcal{H} -class preserving bijection from $\mathcal{L}(e)$ to $\mathcal{L}(t)$ and hence $st\mathcal{R}s$ and $st\mathcal{L}t$.

An immediate corollary of this result is that every \mathcal{H} -class containing an idempotent is a sub-semigroup.

Corollary 12 Let M be a monoid and e be an idempotent in M. Then $\mathcal{H}(e)$ is a subsemigroup.

Proof: If $s, t \in \mathcal{H}(e)$ then by the location lemma $st\mathcal{L}s$ and $st\mathcal{H}t$ and $st\mathcal{H}e$.

But something much stronger holds. In fact $\mathcal{H}(e)$ is a group.

Theorem 13 (Green's Theorem) Let (M, .., 1) be a finite monoid and let e be an idempotent. Then H(e) is a group. Thus, for any \mathcal{H} -class H, if $H \cap H^2 \neq \emptyset$ then H is a group.

Proof: By the previous corollary, H(e) is a subsemigroup. Further for any $s \in \mathcal{H}(e)$, there are x, y such that ex = s and ye = s and thus by Proposition 1, es = s and se = s. Thus, it forms a sub-monoid with e as the identity.

Further, we know that there are s_l and s_r such that $s_l s = e$ and $ss_r = e$ so that we almost already have left and right inverses. But, there are no guarantees that such s_l and s_r are in $\mathcal{H}(e)$. However, we can manufacture equivalent inverses inside $\mathcal{H}(e)$ by conjugating with e.

Let $t_l = es_l e$ and $t_r = es_r e$. Then, $t_l \cdot s = es_l es = es_l s = ee = e$. Similarly $s \cdot t_r = e$. Moreover, this also shows that $e\mathcal{L}t_l$ and $e\mathcal{R}t_r$. And quite clearly $e\mathcal{L}t_l$, t_r and $e\mathcal{R}t_l$, t_r . Thus, by Proposition 7, $e\mathcal{H}t_l$ and $e\mathcal{H}t_r$. Thus, every element in this monoid has a left and right inverse and this means they are identical and they form a group.

Finally, if $H \cap H^2$ is not empty then there is $s, t \in H$ such that $st \in H$, which by the Location Lemma means H contains an idempotent. Thus, it forms a group.

Suppose (M, ., 1) is a monoid and (G, ., e) is a subgroup of this monoid (as a subsemigroup, hence e need not be 1). Then, $G \subseteq H(e)$. This is because, for any $g \in G$, eg = ge = g (by Proposition 1) and $e = gg^{-1} = g^{-1}g$ and thus $e\mathcal{H}g$. Thus, any group is contained in a group of the form $\mathcal{H}(e)$. Thus we have the following result.

Theorem 14 (Maximal Subgroups) The maximal subgroups (as sub-semigroups) of a monoid M are exactly those of the form $\mathcal{H}(e)$, e an idempotent.

Further, if a \mathcal{D} -class contains an idempotent then it contains many!

Proposition 15 Every \mathcal{R} -class (\mathcal{L} -class) of a regular \mathcal{D} -class contains an idempotent.

Proof: Let D be a \mathcal{D} -class, e is an idempotent in D and $s \in D$. Let $t \in \mathcal{R}(e) \cap \mathcal{L}(s)$. Then, there is u such that tu = e. So, utut = uet = ut is an idempotent. Moreover, tut = et = t thus $ut\mathcal{L}t\mathcal{L}s$.

Definition 16 Let (M, ., 1) be a monoid. An element $s \in M$ is said to be regular if there is an element t such that s = sts.

First we relate regular elements and regular \mathcal{D} -classes.

Lemma 17 Let M be any finite monoid. A \mathcal{D} -class is regular if and only if every element in the class is regular. Further a \mathcal{D} -class contains a regular element if and only if it is regular.

Proof: Suppose s is a regular element in a \mathcal{D} -class D. Therefore, there is t such that s = sts and thus st = stst is an idempotent. Further, since sts = s, $s \leq_R st \leq_R s$ and so $st\mathcal{D}s$ and so D is a regular \mathcal{D} -class.

On the other hand if D is a regular \mathcal{D} -class then we know that every \mathcal{R} class in D contains an idempotent. So if $s \in D$ then there is an idempotent e and t such that st = e. Right multiplying by s we get sts = es = s and thus every element is regular.

References

- [1] J.E.Pin: Mathematical Foundations of Automata Theory, MPRI Lecture Notes.
- [2] T. Colcombet: "Green's Relations and their Use in Automata Theory", *Proceedings of LATA 2011*, Spring LNCS 6638 (2011) 1-21.