
Lecture 4: EF games and first order definability

At the end of the last lecture we showed that a winning strategy for player 0 on the k

round game played on words w and w′ guarantees the existence of a formula with quantifier
depth bounded by k that distinguishes w and w′. Do distinguishing formulas lead to winning
strategies?

Consider the words w = abab and w′ = baba. One formula that distinguishes these two
words is φ = ∀x. (a(x) ⇒ ∃y. (y > x)). This formula is satisfied by w and not by w′. Here
is how we synthesise a winning strategy for player 0 from this formula: Since w′ does not
satisfy φ, there is an i so that with x = i the formula a(x) ⇒ ∃y. (y > x) is not satisfied.
Player 0 picks the word w′ and picks this position i (4) giving:

x1 x1 x2

ba a b b a b a

Now, player 1 will place his x1 against one of the two a’s in w. Say, he picks the a at position
3 to give:

x1x1

ba a b b a b a

Now, w with x = 3 satisfies ∃y. (y > x) while w′ with x = 4 does not. Player 0 then picks
the witness for this in word w, i.e. position 4 and places his x2 there.

x1x1 x2

ba a b b a b a

And now every move that player 1 makes will be losing.
The strategy construction using a distinguishing formula proceeds in the following way:

1. If the distinguishing formula is a quantifier free formula then clearly player 0 wins even
the 0 round game.

2. If the distinguishing formula is of the form ¬φ then φ is also a distinguishing formula
and we use that instead.

3. If the distinguishing formula is of the form φ1 ∧ φ2 then at least one of φ1 or φ2 is also
a distinguishing formula and we use that instead.

4. If the distinguishing formula is ∃x.φ(x) then in one of the words w or w′ there is a
position i such that φ(x) is true when x is assigned the position i. Player 0 picks this
word and the position i as his move. In the other word no matter which position we
assign to x, φ(x) is not satisfied. Thus, no matter how player 1 responds to this move,
resulting pair of words will be distinguished by φ(x), a formula of lower quantifier
depth.

1

This is a winning strategy as player 0 has arranged things so that the words formed after
each move are distinguished by formulas of lower quantifier depth. Thus after k rounds,
where k is the quantifier depth of the formula distinguishing the original words, he is left
with a quantifier free formula that distinguishes the two words. This gives us the following
theorem.

Theorem 1 Two V -words are distinguished by a formula of quantifier depth k if and only
if player 0 has a winning strategy in the k round EF game associated with these words. In
particular, if two words over Σ are distinguished by quantifier depth k sentences if and only
if player 0 has a winning strategy in the k round EF game associated with these words.

Proof: The direction from formulas to winning strategies is described above. The other
direction was proved in the last class.

0.1 Evenness is not first-order definable

We now show that the words am and am+1 are not distinguishable by quantifier depth k

sentences if m ≥ 2k. We do this by showing that player 1 has a winning strategy in the
k round game defined by these words. The proof proceeds by induction. When k = 0 we
have the words ai and ai+1, i ≥ 1 are clearly indistinguishable by atomic formulas (over the
empty set of variables!).

Let us suppose that player 1 has a winning strategy in the r round game over (am, am+1),
for all r < k and m ≥ 2r. Consider the k round game over the words (am, am+1) with m ≥ 2k.

The move by player 1 would divide one of the words (the word that he picks) into three
parts so that it looks like as a at (where s + 1 + t = m or s + 1 + t = m + 1, depending on
which word was picked). But note that either s or t is at least 2k−1.

Suppose t ≥ s then player 1 picks position s + 1 in the other word and plays that as his
response. This ensures that w.r.t. the first variable placed on both words, the words to the
left are identical and the words to the right are both of length ≥ 2k. After the first move
the words look like as(a, x)at and as(a, x)at′ where |t − t′| = 1, t, t′ ≥ 2k−1. Thus, by the
induction hypothesis, player 1 has a winning strategy on the k − 1 round game on (at, at′).
From now on, whenever player 0 picks a position among the initial s + 1 positions in one
word, player 1 simply duplicates the move in the other word. If player 0 picks a position in
at (or at′) then player 1 responds using his strategy on the game (at, at′). It is not difficult
to check that this is a winning strategy for player 1.

The construction of the strategy when s ≥ t proceeds similarly. Thus we have established
that player 1 has a winning strategy in the k round EF game played on the words a2k

and
a2k+1.

We have just shown that player 1 has a winning strategy in this game and thus player 0
cannot have a winning strategy in this game. Thus, there is no quantifier depth k formula
that can distinguish the words a2k

and a2k−1

.

Theorem 2 The language {a2n|n ≥ 0} is not definable in the first-order logic of words.

2

Proof: Suppose φ is a formula that defines this language. Let the quantifier depth of φ be
k. Then, either a2k

and a2k+1 are both in L(φ) or neither is in L(φ). This contradicts the
definition of φ.

0.2 EF games for MSO

We can extend EF games to allow “second order” moves: In such a move, player 0 picks a
subset of positions in one of the two words and labels them all by a second order variable
X. In reponse player 1 must pick a subset of positions in the other word and label them all
with X. As usual, after the k rounds are played, the winner is determined by whether the
two resulting models satisfy the same set of quantifier free formulas or not (or equivalently
by atomic formulas or not).

It is quite easy to establish that two words are distinguishable by MSO formulas of
quantifier depth k if and only if player 0 has a winning strategy in the k round second-order
EF game (where both first order and second order moves are allowed) played over these
words.

An Application: We shall use this characterization to give an alternative proof of the
fact that MSO formulas define regular languages: Let us write w ∼k w′ to denote that
player 1 has the winning strategy in the k round game on (w,w′) (Equivalently, w and w′

are indistinguishable via quantifier depth k formulas). Clealy ∼k is a equivalence relation
on Σ∗. Moreover, a simple extension of theorem 1 from the previous lecture, shows that it
is also of finite index.

We show that this relation is right invariant. Consider any pair of w.z and w′.z. The
winning strategy for player 1 is the following: when player 0 picks a position in z duplicate
the move in the other word. Whenver player 0 picks positions in w or w′ respond using the
winning strategy on (w,w′). It is not difficult to check this is a winning strategy for player
1. Thus w.z ∼k w′.z.

Finally observe that for any φ with quantifier depth k, L(φ) =
⋃

x|=φ[x]∼k
. Hence, ∼k is

a right congruence of finite index that saturates L(φ). Thus L(φ) is a regular language.

1 Aperiodic Monoids, Star-free sets and FO definabil-

ity

We say that a monoid M is group-free if it does not contain a nontrivial (i.e. other than
the 1 element group) subgroup (Note that we don’t insist that the identity of the monoid
appear in the group).

An element i in a monoid M is said to be an idempotent if i.i = i.

Lemma 3 (Frobenius) Any finite cyclic semigroup contains idempotents.

3

Proof: Consider a sequence a, a2, a3, . . . (where ai = a.a.a.a(i times)). There is some
least i and least j > i such that ai = ai+j = aiaj. Here, j called the period of the element a.
Thus the sequence looks like the following lollipop:

ai

ai+j−1
ai+1

Thus, ai = aiaj = aiajaj = . . . = ai(aj)n Our aim is to find a idempotent, i.e. an
element of the form ai+k such that ai+k.ai+k = ai+k. This would clearly be true if i + k is
divisible by j (since ai+k+i+k = ai+mj+k = ai+k). Thus, any i + k with i + k divisible by j is
an idempotent.

This allows us to characterize group-free monoids as follows:

Lemma 4 A monoid M is group-free if and only if there is an N such that for a ∈ M ,
aN = aN+1.

Proof: Suppose, there is such a N and suppose G is a group contained in M . Let a ∈ G

and let a−1 be its inverse in G. Therefore aN = aN+1 implies aN .(a−1)N = a.aN .i(a−1)N .
Thus idG = a. Thus the group is trivial.

Suppose M is group-free. Pick any a ∈ M . By Lemma 3, ai = ai+j for some j. If j > 1,
then {ai, ai+1, . . . , ai+j−1} forms a nontrivial subgroup of M . Thus j = 1. Thus ai = ai+1.
Since M has only finitely many elements it follows that we can pick a N such that aN = aN+1

for all a ∈ M .

A monoid M is said to be aperiodic if there is a N such that aN = aN+1 for each a ∈ M .
The above lemma shows that aperiodic monoids and group-free monoids are the same.

We say that a regular language is aperiodic if it is recognized by some aperiodic monoid.
We next show that a regular language L is recognized by an aperiodic monoid if and only if
its syntactic monoid is aperiodic.

Theorem 5 Let L be recognized by a morphism h : Σ∗ → M and suppose M is aperiodic.
Then Syn(L) is aperiodic.

Proof: Let N be such that xN = xN+1 for all x ∈ M . By Theorem 3 of lecture 1, ηL factors
via h as follows:

Σ∗ h
- h(Σ)∗ ⊂ - M

Syn(L)

hL

?

η
L

-

4

ηL is a surjective map and thus hL is also surjective. Thus if y ∈ Syn(L), y = hL(x). But
xN = xN+1. Thus hL(xN) = hL(xN+1), giving hL(x)N = hL(x)N+1.

This shows that checking whether a language is aperiodic is decidable. We just need to
check whether its syntactic monoid is aperiodic.

Exercise: Show that the syntactic monoid of the language {a2n | n ≥ 0} is not aperiodic.

One of the corner stones of the study of regular languages is the result of M.P.Schutzenberger
showing that languages recognized by aperiodic monoids are exactly the class of languages
that are described by regular expressions using the operators + (union) . (concatenation)
and (complementation). McNaughton showed that the the class of languages that can be
expressed using the first-order logic of words also coincides with this class. We shall establish
these two results in this and the following lecture.

2 From Star-free languages to Aperiodic Monoids

We shall show that every regular language that can be described by some star-free regular
expression is also recognized by an aperiodic monoid. This can be seen as follows:

1. It is trivial to specify aperiodic monoids recognizing the languages {a}, {ε} and ∅.

2. If L is accepted via the (aperiodic) monoid M , then so is L.

3. If L1 and L2 are recognised using the morphisms h1 and h2 to the monoid M1 and M2

respectively so that L1 = h−1(X1) and L2 = h−1(X2) then L1 ∪L2 is recognized by the
monoid M1 × M2 via the morphism h with h(a) = (h1(a), h2(a)) as the pre-image of
the set X1 × M2 ∪ M1 × X2.

4. Finally, suppose L1 and L2 are aperiodic so that xN = xN+1 for each x ∈ Syn(L1) ∪
Syn(L2). Then, we claim that for any word w ∈ Σ∗, uw2Nv ∈ L1.L2 if and only if
uw2N+1v ∈ L1.L2 (Exercise). Thus, [w2N]L1.L2

= [w2N+1]L1.L2
. Therefore, Syn(L1.L2)

is aperiodic.

Exercise: Show how to directly construct a monoid recognizing L1.L2 from monoids
accepting L1 and L2.

Exercise: Show that every language that can be described via star-free regular expressions
can also be expressed in the first-order logic of words.

Notes: Most of the results mentioned here are from [2] and [1].

5

References

[1] Nick Pippenger: Theories of Computability, Cambridge University Press, 1997.

[2] Howard Straubing: Finite Automata, Formal Logic and Circuit Complexity, Birkhäuser,
1994.

6

