
Lecture 1a: Monoids: An Example and an Application

Consider the language L of words over the alphabet {a, b, c} consisting of all the words in
which the last a (if any) does not occur to the right of all the b’s. In other words, for every
a there must a b somewhere to its right. Here is the minimal automaton for this language:

p q

c,b c,a

a

b

By the exercise on page 4 of Lecture 1, the syntactic monoid of L is the transition monoid
of the above automaton. We now compute this transition monoid. Clearly δε is the identity
and as a matter of fact it equals δci for any i ≥ 0. Further, δa is the constant function that
returns q while δb is the constant function that returns p. Finally, it is easy to verify that
δwav = δa for v ∈ c∗ and δwbv = δb for v ∈ c∗. Hence the syntactic monoid of L is the monoid
U2 = ({e, 1, 2}, ., e) with the following multiplication table:

e 1 2

e e 1 2
1 1 1 2
2 2 1 2

The monoid U2 is the monoid with two reset elements (we say y is a reset if x.y = y for all
x), and it plays an important role in the study of the algebraic theory of regular languages.

Exercise: Enumerate all the languages over {a, b} whose syntactic monoid is U2.

An Application: Alphabetic Languages

Given a monoid (M, ., e), we say that i ∈M is an idempotent if i.i = i. A monoid is said to
be idempotent if every element is an idempotent. The monoid U2 is idempotent. A monoid
(M, ., e) is said to be commutative if p.q = q.p for each p, q ∈ M . The monoid U2 is not
commutative. For example, the monoid M = ({e, p, q}, ., e) with the following multiplication
table is commutative (and idempotent).

e p q

e e p q
p p p q
q q q q

1



Consider the morphism h : {a, b, c}∗ −→M that sends a, b to p and c to q. Observe that
h−1(q) is all the words that contain at least one c and h−1(p) is all the words that contain at
least one a or one b but no c’s. As a matter of fact any two words which contain the same set of
letters are mapped by h to the same element of M . For example h(abbacbacaa) = h(abc) = q.
This is not peculiar to h or M , but true of any morphism into any idempotent commutative
monoid, as stated below, where α(w) is the set of letters that occur in the word w.

Lemma 1 Let (M, ., e) be any commutative, idempotent monoid and let h : (Σ∗, ., ε) −→
(M, ., e) be any morphism. If w,w′ are words over Σ such that α(w) = α(w′) then h(w) =
h(w′). Consequently, if L is any language recognized by M then either both w and w′ belong
to L or neither of them belong to L.

We say w ≡α w′ iff α(w) = α(w′). This is a finite index congruence on Σ∗. For each A ⊆ Σ
there is exactly one equivalence class containing all the words w such that α(w) = A. From
the above lemma, ≡α saturates any L recognised by a commutative, idempotent monoid.
Thus, such a language is just the union of some of the equivalence classes of ≡α.

Notice that {w|α(w) = A} is exactly the same as the language A∗ \
⋃
a∈A(A \ a)∗.

Consequently, every language definable by a commutative, idempotent monoid can be defined
from languages of the form A∗, A ⊆ Σ, using unions and complementation (i.e. they are
boolean combinations of languages of the form A∗, A ⊆ Σ.)

Interestingly, the converse is true as well. As a first step, observe that if A ⊆ Σ then the
following is a minimal automaton for A∗.

p q

A Σ

Σ \ A

We leave it as an easy exercise to verify that the transition monoid of this automaton
is indeed commutative and idempotent. Thus, every language of the form A∗ is recognised
by a commutative, idempotent monoid. Further, the complement of such languages are
recognised as well, as implied by the following proposition.

Proposition 2 If L is recognised by a monoid M then so is L.

What about L1∪L2? The following lemma explains how to contruct a monoid recognising
L1 ∪ L2.

Proposition 3 Let M1 = (M1, ., e1) and M2 = (M2, ., e2) recognize the languages L1 and L2

via the morphisms h1 and h2 and sets X1 and X2 respectively. Let M1 ×M2 be the monoid
given by (M1 ×M2, ., (e1, e2)) where (x1, y1).(x2, y2) = (x1.x2, y1.y2). Then h : (Σ∗, ., ε) −→
(M1 ×M2, ., (e1, e2)), with h(w) = (h1(w), h2(w) is a morphism and L1 ∪ L2 = h−1(M1 ×
X2 ∪X1 ×M2) and L1 ∩ L2 = h−1(X1 ×X2).

2



The monoid M1 ×M2 is called the product of M1 and M2. Here is an useful fact about
commutative, idempotent monoids:

Proposition 4 If M1 and M2 are commutative, idempotent monoids then so is M1 ×M2.

Notice that this means that the class of languages recognized by commutative, idempotent
monoids is closed under union and intersection. Thus, the boolean combination of languages
of the form A∗ are also recognized by commutative, idempotent monoids, giving the following
theorem.

Theorem 5 The class of languages recognised by commutative, idempotent monoids are
exactly the class of languages that can be expressed as boolean combinations of languages of
the form A∗ (A ⊆ Σ).

As we shall see later there are many more interesting examples of classes of languages that
can be characterized using appropriately chosen classes of monoids. However, there remains
the question: Why are were interested in such characterizations? To suggest an answer
to this question, we establish one more property of the class of commutative, idempotent
monoids.

Proposition 6 The class of commutative, idempotent monoids is closed under submonoids
and homomorphic images. That is, if M ≺ N and N is commutative and idempotent then
so is M .

Proof: Closure under submonoids is trivial. Suppose h : (M, ., e) −→ (N, ., f) is a surjective
morphism. Then, if x, y ∈ N there is p, q ∈M such that h(x) = p and h(y) = q. Thus,

p.q = h(x).h(y) = h(x.y) = h(y.x) = h(y).h(x) = q.p

Further, p.p = h(x).h(x) = h(x.x) = h(x) = p. Thus (N, ., e) is also commutative and
idempotent.

As an immediate corollary we see that

Corollary 7 If L is recognised by a commutative, idempotent monoid then Syn(L) is com-
mutative and idempotent.

This result allows us to check if a given regular language can be expressed as the boolean
combination of languages of the form A∗ — compute its syntactic monoid and check that it
is commutative and idempotent. As we shall see later for many interesting class of languages
one can follow the same route as described above: characterize the class of monoids recog-
nising them, show that the class is closed under division and check membership by checking
properties on the syntactic monoid.

References

[1] V. Diekart, P. Gastin and M. Kufleitner: A Survey on Small Fragments of First-Order
Logic over Finite Words, Int. J. Found. Comput. Sci., Vol 19, 2008.

3


