Lecture 1: Regular Languages and Monoids

We shall assume familiarity with the definitions and basic results regarding regular languages and finite automata (as presented in Hopcroft and Ullman [1] or Kozen [2]) and begin by recalling their connections to Myhill-Nerode relations.

1 Myhill-Nerode Characterization

An equivalence relation \(\sim \) over \(\Sigma^* \) is a right congruence if \(x \sim y \) implies \(xz \sim yz \) for every \(x, y, z \in \Sigma^* \).

- is of finite index if \(\Sigma^*/\sim \) is finite.

- saturates a language \(L \) if \(x \sim y \Rightarrow (x \in L \text{ iff } y \in L) \). Or equivalently, \(L \) is the union of some of the equivalence classes of \(\sim \), or equivalently for each \(x \in \Sigma^* \), \([x]_\sim \cap L = \emptyset \) or \([x]_\sim \subseteq L \). This is illustrated by the following diagram. The entire rectangle corresponds to \(\Sigma^* \) and the individual regions inside are the equivalence classes under \(\sim \) and the regions enclosed by the dotted lines are those that are contained in \(L \). Note that every region is either entirely contained in \(L \) or is disjoint from \(L \).

\[
\begin{array}{|c|c|c|c|c|}
\hline
& \text{Region 1} & \text{Region 2} & \text{Region 3} & \text{Region 4} \\
\hline
\text{Region 1} & \text{Region 5} & \text{Region 6} & \text{Region 7} & \text{Region 8} \\
\hline
\text{Region 2} & \text{Region 9} & \text{Region 10} & \text{Region 11} & \text{Region 12} \\
\hline
\text{Region 3} & \text{Region 13} & \text{Region 14} & \text{Region 15} & \text{Region 16} \\
\hline
\text{Region 4} & \text{Region 17} & \text{Region 18} & \text{Region 19} & \text{Region 20} \\
\hline
\end{array}
\]

Theorem 1 (Myhill-Nerode) A language \(L \) is regular if and only if there is a right congruence \(\sim \) of finite index, that saturates \(L \).

From any finite automaton \(A = (Q, \Sigma, \delta, s, F) \) recognising \(L \) it is easy to construct a right congruence \(\sim_A \) of the desired kind.

\[
x \sim_A y \iff \delta(s, x) = \delta(s, y)
\]

For the converse, an automaton recognising \(L \) can be constructed as \(A_\sim = (\Sigma^*/\sim, \Sigma, \delta, [\varepsilon], F) \) where, \(F = \{[x]_\sim \mid x \in L\} \) and \(\delta([x]_\sim, a) = [xa]_\sim \).

With every language \(L \) (regular or otherwise) one can associate the “coarsest” right congruence that saturates \(L \) (\(\sim_L \)) as follows:

\[
x \sim_L y \iff \forall z.(xz \in L \iff yz \in L)
\]
Quite evidently this relation is a right congruence that saturates L. It is also the coarsest because, if \sim is any other right congruence that saturates L and $x \sim y$ then $x \sim_L y$ — suppose not, then there is an z such that (w.l.o.g.) $xz \in L$ and $yz \notin L$, contradicting the right congruent property of \sim. Thus, not only does \sim_L saturate L, but further if \sim is any right congruence saturating L then the equivalences classes of \sim can be coalesced to form the equivalence classes of \sim_L.

In the above diagram the regions enclosed by the solid lines are the equivalence classes induced by \sim and they are all entirely contained inside the equivalence classes induced by \sim_L (the regions enclosed by the dotted lines).

If the language L is regular then \sim_L is of finite index (since we can start with any finite index relation saturating L and coalesce its states to obtain \sim_L). The automaton obtained from \sim_L is the minimal automaton for L.

An equivalence relation \equiv is said to be a congruence if $x \equiv y$ implies $uxv \equiv uyv$ for all $u, v, x, y \in \Sigma^*$. It is quite easy to show that a language is regular if and only if there is congruence of finite index that saturates L. The construction of the automaton recognising L from the congruence is identical to the one described above. For the other direction, starting with an automaton $A = (Q, \Sigma, \delta, s, F)$ with no unreachable states, define $x \equiv_A y$ iff for all $q \in Q$, $\delta(q, x) = \delta(q, y)$. (Check that this relation is indeed a congruence and that it saturates L.)

One can also define a canonical congruence for each language L, given by $x \equiv_L y$ if and only if for all $u, v \in \Sigma^*$ $uxv \in L$ if and only if $uyv \in L$. Understandably, this is the “coarsest” congruence saturating L (verify this), so that starting with any other congruence saturating L, one may obtain this congruence by coalescing some of the equivalence classes together.

Exercise: Verify that if A is the minimal automaton for L then \equiv_A is \equiv_L.

2 Monoids

A monoid is set M along with a associative binary operation \cdot and a special element $e \in M$ which acts as the identity element w.r.t to \cdot. We write (M, \cdot, e) to describe a monoid, but very often we shall write M instead. $(\mathbb{N}, +, 0)$ is a monoid and so is $(\Sigma^*, \cdot, \epsilon)$ where \cdot is the concatenation operation. These monoids are “infinite” as the underlying set is an infinite set. An example of a finite monoid is $(\mathbb{Z}_n, +, 0)$. Another class of finite monoids comes from
functions over a finite set. Let \(S \) be a set and let \(F \) be the set of functions from \(S \) to \(S \) and let \(\text{Id}_S \) be the identity function. Define \(f \circ g \) to be the composition of \(g \) with \(f \), i.e., \(f \circ g(x) = g(f(x)) \). Then \((F, \circ, \text{Id}_S)\) forms a monoid.

Given a finite automaton \(A = (Q, \Sigma, \delta, s, F) \), the set of functions on \(Q \) defines a finite monoid. But there is a second and significantly more interesting monoid that one can associate with \(A \). Let \(M_A = (\{\hat{\delta}_x \mid x \in \Sigma^*\}, \circ, \hat{\delta}_e = \text{Id}_Q) \) where, \(\hat{\delta}_x \) is the function from \(Q \) to \(Q \) defined by \(\hat{\delta}_x(q) = \hat{\delta}(q, x) \). This monoid consists of those functions over \(Q \) that are defined as transition functions of words over \(\Sigma^* \). Thus, it forms a submonoid of the set of functions over \(Q \) (any subset of a monoid containing the identity and closed w.r.t. the operation of the monoid is called a submonoid). This monoid associated with the automaton \(A \) is called the transition monoid of \(A \) and will play a critical role in the following developments.

A (homo)morphism from a monoid \((M, \cdot, e)\) to a monoid \((N, \ast, f)\) is a function \(h : M \longrightarrow N \) such that \(h(x \cdot y) = h(x) \ast h(y) \) and \(h(e) = f \). For example, \(\text{len} : \Sigma^* \longrightarrow \mathbb{N} \) with \(\text{len}(x) = |x| \) is a morphism. The monoid \((\Sigma^*, \cdot, e)\) is also called as the free monoid over \(\Sigma \) because, given any monoid \((N, \ast, f)\) and a function \(f : \Sigma \longrightarrow N \), we can define a morphism \(\hat{f} \) from \((\Sigma^*, \cdot, e)\) to \((N, \ast, f)\) such that \(\hat{f}(a) = f(a) \) for each \(a \in \Sigma \) (the definition of \(\hat{f} \) is quite obvious).

2.1 Monoids as Recognizers

We shall use monoids as recognizers of languages. Given a monoid \((M, \cdot, e)\), a subset \(X \) of \(M \) and a morphism \(h \) from \(\Sigma^* \) to \(M \), the language defined by \(X \) w.r.t. to the morphism \(h \) is \(h^{-1}(X) \). We say that a language \(L \) is recognised by a monoid \(M \) if there is a morphism \(h \) and \(X \subseteq M \) such that \(L = h^{-1}(X) \). The interesting case is when \(M \) is a finite monoid.

Theorem 2 \(L \) is a regular language if and only if it is recognised by some finite monoid.

Proof: Suppose \(L \) is recognised by the monoid \(M \) via the morphism \(h \) and the subset \(X \). Define the automaton \(A_M = (M, \Sigma, \delta, e, X) \) where \(\delta(m, a) = m.h(a) \). Then, \(\hat{\delta}(m, a_1a_2 \ldots a_n) = m.h(a_1).h(a_2) \ldots h(a_n) \) and therefore \(\hat{\delta}(e, a_1a_2 \ldots a_n) = e.h(a_1).h(a_2) \ldots h(a_n) = h(a_1a_2 \ldots a_n) \). Thus, \(L(A_M) = \{x \mid h(x) \in X\} = L(A_M) = L \).

For the converse, let \(A \) be any automaton recognising \(L \). Consider the transition monoid \(M_A = (\{\hat{\delta}_x \mid x \in \Sigma^*\}, \circ, \text{Id}_Q) \) and the morphism \(h \) from \(\Sigma^* \) to \(M_A \) defined by \(h(x) = \hat{\delta}_x \). The pre-image under \(h \) of \(X = \{\hat{\delta}_x \mid \hat{\delta}(s, x) \in F\} \) is easily seen to be \(L \). Thus, \(A \) is recognised by a finite monoid. \(\blacksquare \)

2.2 The Syntactic Monoid

With each regular language \(L \) we can associate a canonical (in a manner to be explained soon) monoid that recognizes \(L \). We associate a monoid structure on \(\Sigma^* \equiv_L \) by \([x]_{\equiv_L} \cdot [y]_{\equiv_L} = [xy]_{\equiv_L} \). It is easy to check that with this operation \(\Sigma^* \equiv_L \) forms a monoid with \([e]_{\equiv_L}\) as the identity. The natural morphism \(\eta_L \) defined by \(\eta_L(x) = [x]_{\equiv_L} \) recognises \(L \) as the pre-image of \(X = \{[x]_{\equiv_L} \mid x \in L\} \). This monoid, denoted \(\text{Syn}(L) \), is called the syntactic monoid of \(L \).
Exercise: Show by an example that \sim_L is not a congruence in general. Thus, there is no monoid structure on Σ^*/\sim_L.

Exercise: What is the syntactic monoid of the language $(aa)^*$?

This monoid is canonical because, first of all, this is the smallest monoid that recognises L, and more importantly, η_L factors via every homomorphism (to any monoid M) that recognises L. This is the import of the following theorem

Theorem 3 Let L be a regular language and suppose that L is recognised by the M via the morphism h. Then there is a morphism h_L from $h(M)$ (where $h(M)$ is the submonoid of M consisting of all the elements in the image of h) to $\text{Syn}(L)$ such that $\eta_L = h \circ h_L$.

$$
\begin{array}{ccc}
\Sigma^* & \xrightarrow{h} & h(\Sigma)^* \xrightarrow{\eta_L} M \\
& & \downarrow h_L \\
& & \text{Syn}(L) \\
\end{array}
$$

Proof: Note that \equiv_h defined by $x \equiv_h y$ if and only if $h(x) = h(y)$ is a congruence that saturates L: If $h(x) = h(y)$ then $h(uxv) = h(u)h(x)h(v) = h(u)h(y)h(v) = h(uyv)$. Thus, \equiv_h is a congruence. Further, if $x \equiv_h y$ and $h(x) \in X$ then $h(y) \in X$. Hence it also saturates L. Thus, \equiv_h refines \equiv_L (i.e. each equivalence class of \equiv_h is completely contained in some equivalence class of \equiv_L).

Note that \equiv_{η_L} is the same as \equiv_L. Hence, we may define the function h_L from $h(M)$ to $\text{Syn}(L)$ as $h_L(h(x)) = \eta_L(x)$. This function is well-defined since we know that $h(x) = h(y)$ implies $\eta_L(x) = \eta_L(y)$.

Exercise: Prove that the syntactic monoid of a regular language L is isomorphic to the transition monoid of the minimal automaton for L.

We say that a monoid M divides a monoid N (written $M \prec N$) if M is the homomorphic image of a submonoid of N. In this language, the above theorem can be restated as

Theorem 4 A monoid M recognises a regular language L only if $\text{Syn}(L) \prec M$.

We shall return to the study of regular languages via monoids after a couple of lectures. We shall see how we can use the structure of syntactic monoids to characterise subclasses of regular languages.
References
