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Linear-time Temporal Logic

LTL — convenient specification language

@ Atomic propositions, boolean connectives, temporal
modalities.
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Linear-time Temporal Logic

LTL — convenient specification language

@ Atomic propositions, boolean connectives, temporal
modalities.

@ Models are words.
Formulas are interpreted at positions of a word.
W= wiwows... with w; € X

w,iE=p?
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Syntax and Semantics

Atomic propositions: elements of X.

w,iEFa <<= w=a

a b b c b a c b b
0O—4+>0—+>0—>0—3>0—>0—>0—>0—>0—
a,—b,~c
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Syntax and Semantics

Atomic propositions: elements of X.
w,iFa <= wi=a
a b b c b a c b b
0O—4+>0—+>0—>0—3>0—>0—>0—>0—>0—
a,—b,~c

The Next state operator:

w,iEXe <=  w,i+lEyp

X
O—>-0—a>-0—a>0—a>0—a>-0—> 00— 0 — 0 —

2
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Syntax and Semantics

The Until operator:

w,iEpUy <= Jj>iwjE¢vandVi<k<jwkEgp

pUy
O—+>0—>0—>0Q—>0—> -+ —3>0—">0—>0— -
¥ ¥ ¥ P
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Syntax and Semantics

The Until operator:

w,iEpUy <= Jj>iwjE¢vandVi<k<jwkEgp

pUy
O—+>0—>0—>0Q—>0—> -+ —3>0—">0—>0— -
¥ ¥ ¥ P

Boolean Connectives:

N ¢7 2

with the usual interpretation.
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Other Modalities

The Future modality
w,iEFp << Jj>iwjEep

Fo
O—>0—>0—>0Q—>0— -+ —3>0—>0—>0—
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Other Modalities

The Future modality
Fop = TUp

Fe

O—>0—>0—>0Q—>0— -+ —3>0—>0—>0—>
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Other Modalities

The Future modality
Fop = TUp

Fe

0O—>0—>0—>0Q—>0— -+ —0—0—0—> --1he
¥
Henceforth modality:

w,iEGp = VYiZiwjEe

Gy
O—+>0—>0—3>0Q—>0—> -+ —>0—>0—>0— -
¥ ¥ ¥ ¥
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Other Modalities

The Future modality

Fop = TUp
Fo
0O—4>0—>0—>Q—+>0— - —>>0—>0—>0— --1he
2
Henceforth modality:
Gp = —Fop
Gy
O—+>0—>0—3>0Q—>0—> -+ —>0—>0—>0— -
Y P Y p

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



The Universal Modality

The Next-Until modality:

w,i =Xy = Ji>iwjEvYandVi<k<jwkEgp
O—+>0—>0—3>0Q—>0—> -+ —3>0—">0—>0— -
¥ ¥ P
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The Universal Modality

The Next-Until modality:

O—»0—>0—3>Q—>0— -+ —3>»0—>0—>0—> -
¥ ¥ P
ey = X(pU)
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The Universal Modality

The Next-Until modality:

O—»0—>0—3>Q—>0— -+ —3>»0—>0—>0—> -
¥ ¥ P
ey = X(pU)

Next-Until can express everthing else

X = L1XUp
eUy = V(oA eXUy)
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LTL definable languages

A word satisfies ¢ if the initial position satisfies

wEe <= wlEyp
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LTL definable languages

A word satisfies ¢ if the initial position satisfies
wEe = wlEgp
Formulas define languages. For example,
G(a = Fb)

describes words in which there is a b somewhere to the right of
every a.
b*(aa*bb*)*
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Finite/Infinite Words

@ LTL formulas are interpreted over both finite and infinite
words.
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@ LTL formulas are interpreted over both finite and infinite
words.

@ Satisfiability of a formula may depend on the class of models.
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Finite/Infinite Words

@ LTL formulas are interpreted over both finite and infinite
words.

@ Satisfiability of a formula may depend on the class of models.
GXT
is satisfied only over infinite words.
F—-XT

is satisfied only by finite words.

@ The empty word is not a model.
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Finite/Infinite Words

@ LTL formulas are interpreted over both finite and infinite
words.

@ Satisfiability of a formula may depend on the class of models.
GXT
is satisfied only over infinite words.
F—-XT

is satisfied only by finite words.

@ The empty word is not a model.

We restrict ourselves to finite word models (for now!).
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LTL to FO over Words

@ LTL formulas are interpreted at a pair w, i.
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LTL to FO over Words

@ LTL formulas are interpreted at a pair w, i.

@ Translated to FO formulas with a single free variable x.
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LTL to FO over Words

@ LTL formulas are interpreted at a pair w, i.

@ Translated to FO formulas with a single free variable x.

7(a) = a(x)
T(Xa) = Jy. (y=x+1)AT(a)ly/x]
T(eUy) = Jy. (y =2 x) ANT(¥)y/x]A

Vz.(x < z<y) = T(p)[z/x]
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LTL to FO over Words

@ LTL formulas are interpreted at a pair w, i.

@ Translated to FO formulas with a single free variable x.

7(a) = a(x)
T(Xa) = Jy. (y=x+1)AT(a)ly/x]
T(eUy) = Jy. (y =2 x) ANT(¥)y/x]A

Vz.(x < z<y) = T(p)[z/x]

o w,i=ET(p) <= w,iFEop.
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LTL to FO over Words

@ LTL formulas are interpreted at a pair w, i.

@ Translated to FO formulas with a single free variable x.

7(a) = a(x)
T(Xa) = Jy. (y=x+1)AT(a)ly/x]
T(eUy) = Jy. (y =2 x) ANT(¥)y/x]A

Vz.(x < z<y) = T(p)[z/x]

o w,i=ET(p) <= w,iFEop.
@ 7 () uses at the most 3 variables (x,y and z). So, LTL is
expressible in FO(3).
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Complexity of LTL and FO

Satisfiability: Given a formula ¢ determine whether there is some
word w such tha w |= ¢.
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Complexity of LTL and FO

Satisfiability: Given a formula ¢ determine whether there is some
word w such tha w |= ¢.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is
PSPACE complete.
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Complexity of LTL and FO

Satisfiability: Given a formula ¢ determine whether there is some
word w such tha w |= ¢.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is
PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in
time 2141

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



Complexity of LTL and FO

Satisfiability: Given a formula ¢ determine whether there is some
word w such tha w |= ¢.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is
PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in
time 2141

Not very different from the best known for propositional formulas.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



Complexity of LTL and FO

Satisfiability: Given a formula ¢ determine whether there is some
word w such tha w |= ¢.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is
PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in
time 2141

Not very different from the best known for propositional formulas.

What about FO?
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Complexity of LTL and FO

Satisfiability: Given a formula ¢ determine whether there is some
word w such tha w |= ¢.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is
PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in
time 2141

Not very different from the best known for propositional formulas.

Theorem: (Albert Meyer) Satisfiability checking for FO over
words is non-elementary.
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Complexity of LTL and FO

Satisfiability: Given a formula ¢ determine whether there is some
word w such tha w |= ¢.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is
PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in
time 2141

Not very different from the best known for propositional formulas.

Theorem: (Albert Meyer) Satisfiability checking for FO over
words is non-elementary.

Conclusion:  FO seems to be a stronger logic than LTL.
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Model Checking

Given a FA A and a formula ¢ check if every word accepted by the
automaton A satisfies the formula ¢.
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Model Checking

Given a FA A and a formula ¢ check if every word accepted by the
automaton A satisfies the formula ¢.

Theorem:(Clarke/Sistla) The Model checking problem for LTL over
words is PSPACE-complete.
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Model Checking

Given a FA A and a formula ¢ check if every word accepted by the
automaton A satisfies the formula ¢.

Theorem:(Clarke/Sistla) The Model checking problem for LTL over
words is PSPACE-complete.

In particular
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Model Checking

Given a FA A and a formula ¢ check if every word accepted by the
automaton A satisfies the formula ¢.

Theorem:(Clarke/Sistla) The Model checking problem for LTL over
words is PSPACE-complete.

In particular

Theorem:(Vardi/Wolper) The model-checking problem for LTL is
solvable in time O(|A|.29#D).
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Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.
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Theorem: (Kamp) LTL is as expressive as FO over words.

@ Kamp's logic uses “future” and “past” modalities.

@ Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for
the future fragment.
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Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.

@ Kamp's logic uses “future” and “past” modalities.

@ Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for
the future fragment.

@ Other proofs: Cohen, Perrin and Pin, Thomas Wilke.
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Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.

@ Kamp's logic uses “future” and “past” modalities.

@ Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for
the future fragment.

@ Other proofs: Cohen, Perrin and Pin, Thomas Wilke.

Wilke's proof uses a simple double induction. Has been generalized
to Mazurkiewicz traces.
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Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.

@ Kamp's logic uses “future” and “past” modalities.

@ Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for
the future fragment.

@ Other proofs: Cohen, Perrin and Pin, Thomas Wilke.

Wilke's proof uses a simple double induction. Has been generalized
to Mazurkiewicz traces.

Our presentation shall follow a variation of Wilke's proof due to
Volker Diekert and Paul Gastin.
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Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.

@ Kamp's logic uses “future” and “past” modalities.

@ Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for
the future fragment.

@ Other proofs: Cohen, Perrin and Pin, Thomas Wilke.

Wilke's proof uses a simple double induction. Has been generalized
to Mazurkiewicz traces.

Our presentation shall follow a variation of Wilke's proof due to
Volker Diekert and Paul Gastin.

The rest of this talk and the next would be devoted to proving this
result.
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Star-free Regular Languages

Regular expressions constructed without the * operator:

e =a|ete | e | ae
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Star-free Regular Languages

Regular expressions constructed without the * operator:
e =a|ete | e | ae

Theorem:(Schutzenberger) L is aperiodic if and only if it is
star-free.

Theorem:(McNaughton and Papert) L is star-free if and only if it is
FO expressible.
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Star-free Regular Languages

Regular expressions constructed without the * operator:
e =a|ete | e | ae

Theorem:(Schutzenberger) L is aperiodic if and only if it is
star-free.

Theorem:(McNaughton and Papert) L is star-free if and only if it is
FO expressible.

Question: Can we translate star-free expressions into LTL?
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Star-free Regular Languages

Regular expressions constructed without the * operator:
e =a|ete | e | ae

Theorem:(Schutzenberger) L is aperiodic if and only if it is
star-free.

Theorem:(McNaughton and Papert) L is star-free if and only if it is
FO expressible.

Question: Can we translate star-free expressions into LTL?

How do we put together LTL formulas 7 and ¢» to describe the
language L(¢1).L(2)?
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Star-free Regular Languages

Regular expressions constructed without the * operator:
e =a|ete | e | ae

Theorem:(Schutzenberger) L is aperiodic if and only if it is
star-free.

Theorem:(McNaughton and Papert) L is star-free if and only if it is
FO expressible.

Question: Can we translate star-free expressions into LTL?

How do we put together LTL formulas 7 and ¢» to describe the
language L(¢1).L(2)?

L1.C.L2
Ly or Ly
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:
@ M is the trivial monoid.
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:
@ M is the trivial monoid.
o LisXt. Use T.
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:
@ M is the trivial monoid.

o LisXt. Use T.
o Lis (. Use L.
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:
@ M is the trivial monoid.

o LisXt. Use T.
o Lis (. Use L.

@ X is singleton.
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:
@ M is the trivial monoid.

o LisXt. Use T.
o Lis (. Use L.

@ X is singleton.
e L is finite. Easy.
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:
@ M is the trivial monoid.

o LisXt. Use T.
o Lis (. Use L.

@ X is singleton.

e L is finite. Easy.
o Lis{a'|i> N}. Easy.
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Induction Step: Given L over an alphabet X recognized by a
monoid M such that:
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The Proof:

Induction Step: Given L over an alphabet X recognized by a
monoid M such that:

o if [M'| < [M| then any language recognized by M’ is
expressible in LTL.
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The Proof:

Induction Step: Given L over an alphabet X recognized by a
monoid M such that:

o if [M'| < [M| then any language recognized by M’ is
expressible in LTL.

e if L’ is a language over an alphabet A with |A| < ||
recognized by M then L’ is expressible in LTL,.

show that L is expressible in LTLy.
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The Proof:

Induction Step: Given L over an alphabet X recognized by a
monoid M such that:
o if [M'| < [M| then any language recognized by M’ is
expressible in LTL.
e if L’ is a language over an alphabet A with |A| < |Z|
recognized by M then L’ is expressible in LTL,.

show that L is expressible in LTLy.

Observation 1: If ¢ is a LTLa formula describing the language L
and A C ¥ then

@A /\ G-a

acY\A

isa LTLy formula that describes L.
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Splitting by a letter

Let L be recognized by M via the morphism h as h=1(X).
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Splitting by a letter

Let L be recognized by M via the morphism h as h=1(X).

Pick a letter ¢ such that h(c) # 1.
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Splitting by a letter

Let L be recognized by M via the morphism h as h=1(X).

Pick a letter ¢ such that h(c) # 1.

Such a ¢ must exist. Otherwise, L is recognized by the
trivial monoid.
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Splitting by a letter

Let L be recognized by M via the morphism h as h=1(X).

Pick a letter ¢ such that h(c) # 1.
Such a ¢ must exist. Otherwise, L is recognized by the
trivial monoid.
Decompose L into three disjoint sets:
@ L consisting of words of L with no cs.
@ [ consisting of words of L with exactly one c.

@ [, consisting of words of L with at least two cs.
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Splitting by a letter

Let L be recognized by M via the morphism h as h=1(X).

Pick a letter ¢ such that h(c) # 1.

Such a ¢ must exist. Otherwise, L is recognized by the
trivial monoid.

Decompose L into three disjoint sets:
@ L consisting of words of L with no cs.
@ [ consisting of words of L with exactly one c.

@ [, consisting of words of L with at least two cs.

“No c¢s”, “Exactly 1 " and “Atleast 2 cs" are expressible in LTL.
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Splitting by a letter

Let L be recognized by M via the morphism h as h=1(X).

Pick a letter ¢ such that h(c) # 1.

Such a ¢ must exist. Otherwise, L is recognized by the
trivial monoid.

Decompose L into three disjoint sets:
@ L consisting of words of L with no cs.
@ [ consisting of words of L with exactly one c.

@ [, consisting of words of L with at least two cs.

“No c¢s”, “Exactly 1 " and “Atleast 2 cs" are expressible in LTL.
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The Trivial Case: L

Let A=2%\ {c}.
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The Trivial Case: L

Let A=2%\ {c}.

@ Lo is language over a smaller alphabet A, recognized by M via
h.
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The Trivial Case: L

Let A=2%\ {c}.

@ Lo is language over a smaller alphabet A, recognized by M via
h.

@ So, Lo is defined by an LTL, formula g over A.
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The Trivial Case: L

Let A=2%\ {c}.

@ Lo is language over a smaller alphabet A, recognized by M via
h.

@ So, Lo is defined by an LTL, formula g over A.
@ By Observation 1, it is expressible in LTLy.
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The Easy Case: L4

L, = (h~Y(a) N A*).c.(h"1(B) N A*)
a.h(c).peX
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The Easy Case: L4

L, = (h~Y(a) N A*).c.(h"1(B) N A*)
a.h(c).peX

Why?
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The Easy Case: L4

L, = U (h_l(a) N A*).c.(h71(3) N A%)
a.h(c)
Why?
@ If xcy is in the RHS then h(xcy) = a.h(c).5 € X. Thus
xcy € L.
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The Easy Case: L4

L, = U (h_l(a) N A*).c.(h71(3) N A%)
a.h(c)
Why?
@ If xcy is in the RHS then h(xcy) = a.h(c).5 € X. Thus
xcy € L.

® Let w € L;. Therefore, w = xcy. Take oo = h(x) and

B = h(y).
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The Easy Case: L4

L, = U (h_l(a) N A*).c.(h71(3) N A%)

a.h(c).

Let L, = h™}(a) N A* and Lg = h=1(B) N A*.
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The Easy Case: L4

L, = U (h_l(a) N A*).c.(h71(3) N A%)

a.h(c)
Let L, = h~}(a) N A* and L = h=1(3) N A*.

Ly is a union of languages of the form L,.c.Lg where L, L3 C A*
are recognized by M and hence LTL4 (and therefore LTLy)
expressible.
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The Easy Case: L4

L, = U (h_l(a) N A*).c.(h71(3) N A%)

a.h(c)
Let L, = h~}(a) N A* and L = h=1(3) N A*.

Ly is a union of languages of the form L,.c.Lg where L, L3 C A*
are recognized by M and hence LTL4 (and therefore LTLy)
expressible.
L,NAT LN At
€
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Dealing with Unambiguous Concatenations

We may rewrite L,.c.Lg as

Acllg N Ly.c.X”
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Dealing with Unambiguous Concatenations

We may rewrite L,.c.Lg as

Acllg N Ly.c.X”

If pp is the LTLy formula expressing Lz N A™ then
©1 = TU(c A Xpg) describes A*.c.(Lg N AT).
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Dealing with Unambiguous Concatenations

We may rewrite L,.c.Lg as

Acllg N Ly.c.X”
If pp is the LTLy formula expressing Lz N A™ then
©1 = TU(c A Xpg) describes A*.c.(Lg N AT).

If €  Lg then 1 also describes the language A*.c.Lg.
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Dealing with Unambiguous Concatenations

We may rewrite L,.c.Lg as

Acllg N Ly.c.X”

If pp is the LTLy formula expressing Lz N A™ then
©1 = TU(c A Xpg) describes A*.c.(Lg N AT).
If €  Lg then 1 also describes the language A*.c.Lg.

Otherwise, 1 V TU(c A =XT) describes the language A*.c.Lg.
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Dealing with Unambiguous Concatenations

We may rewrite L,.c.Lg as
Acllg N Ly.c.X”
If pp is the LTLy formula expressing Lz N A™ then
©1 = TU(c A Xpg) describes A*.c.(Lg N AT).
If €  Lg then 1 also describes the language A*.c.Lg.

Otherwise, 1 V TU(c A =XT) describes the language A*.c.Lg.

Ly.c.X¥
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Unambiguous Concatenation: L,.c.2*

Let ¢, be a LTL, formula describing L, N A™.
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Unambiguous Concatenation: L,.c.2*

Let ¢, be a LTL, formula describing L, N A™.

We cannot use ¢, to describe L,.c.X* since the modalities may
walk to the right and cross the ¢ boundary.
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Formally, w = ¢, iff w = xcy, x € AT and x = ¢q.
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Unambiguous Concatenation: L,.c.2*

Let ¢, be a LTL, formula describing L, N A™.

Pa (Pﬁx
c Pa

Formally, w = ¢, iff w = xcy, x € AT and x = ¢q.

This relativization is defined via structural recursion as follows:

a = aAXFc
(pAY) = @AY
(=) = (=¢')A—-cAFc
(eXUp) = (" A=c)XU(Y' A —c)
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Unambiguous Concatenation: L,.c.2*

Let ¢, be a LTL, formula describing L, N A™.

Pa (Pﬁx
c Pa

Formally, w = ¢, iff w = xcy, x € AT and x = ¢q.

This relativization is defined via structural recursion as follows:

a = aAXFc

(e AY) = ¢ A

(=) = (=¢')A—-cAFc
(X)) = (" A=c)XU(P A =)

2 = ¢!, describes (L, N AT).c.X*. If € € L, then o, also
describes L,.c.2*. Otherwise, use s, V c.
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The Interesting Case: L,

So far, we got away by examining the alphabet. Here we need to
examine M and induct on its size.
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A word w in Ly is of the form tgctictoc. .. tyx_qcty for some k > 1,
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An Outline of the proof

We show that the language L3 M A is LTL definable as follows:
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We show that the language L3 M A is LTL definable as follows:

© Translate each word in A to a word over the alphabet M
(actually h(A*) C M) via a map o.
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An Outline of the proof

We show that the language L3 M A is LTL definable as follows:
© Translate each word in A to a word over the alphabet M
(actually h(A*) € M) via a map o.
© Construct a language K over M such that:
@ s HK)=LzNA
@ K is recognized by a aperiodic monoid smaller than M.
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An Outline of the proof

We show that the language L3 M A is LTL definable as follows:

© Translate each word in A to a word over the alphabet M
(actually h(A*) € M) via a map o.
© Construct a language K over M such that:
@ s HK)=LzNA
@ K is recognized by a aperiodic monoid smaller than M.

© the LTLy, formula describing K can be lifted to a formula in
LTLys describing Lg N A.

We use m to denote elements of M when treated as letters and m
when they are treated as elements of the monoid M.
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The map ¢ and Language K

The map o is the obvious one:

O'(Ct1Ct2 ce tk_2Ctk_1C) = h(t1 )h(tg) ca h(tk,l)

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



The map ¢ and Language K

The map o is the obvious one:
O'(Ct1Ct2 ce tk_2Ctk_1C) = h(t1 )h(tg) ca h(tk,l)

Given the map ¢ and requirement 2.1, the definition of K is also
quite obvious:

K = {mums...my | h(c)mih(c)my...h(c)mgh(c) = B}
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The map ¢ and Language K

The map o is the obvious one:
O'(Ct1Ct2 ce tk_2Ctk_1C) = h(t1 )h(tg) ca h(tk,l)

Given the map ¢ and requirement 2.1, the definition of K is also
quite obvious:

K = {mumy...myg | h(c)mih(c)my... h(c)mih(c) = B}
With these definitions:
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K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



The map ¢ and Language K

The map o is the obvious one:
O'(Ct1Ct2 ce tk_2Ctk_1C) = h(t1 )h(tg) ca h(tk,l)

Given the map ¢ and requirement 2.1, the definition of K is also
quite obvious:

K = {mumy...myg | h(c)mih(c)my... h(c)mih(c) = B}
With these definitions:

U_l(K) = {Ctlctz ... CtC ‘ h(tl)h(tg) R h(tk) S K}
= {ctictr...ctxc | h(c)h(t1)h(c)h(t2) ... h(c)h(tx)h(c) = [
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The map ¢ and Language K

The map o is the obvious one:
O'(Ct1Ct2 ce tk_2Ctk_1C) = h(t1 )h(tg) ca h(tk,l)

Given the map ¢ and requirement 2.1, the definition of K is also
quite obvious:

K = {mumy...myg | h(c)mih(c)my... h(c)mih(c) = B}
With these definitions:

U_l(K) = {Ctlctz ... CtC ‘ h(tl)h(tg) R h(tk) S K}
= {ctictr...ctxc | h(c)h(t1)h(c)h(t2) ... h(c)h(tx)h(c) = [
= LgN A as required by 2.1
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Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.
The Monoid Loc,(M): Let M be a monoid and m € M. Then

Locm(M) = (mMn Mm, o, m)

where (xm) o (my) 2 xmy .
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Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.
The Monoid Loc,(M): Let M be a monoid and m € M. Then

Locm(M) = (mMn Mm, o, m)
A
where (xm) o (my) = xmy.

@ Observe that xmo ym = xm o my’ = xmy’ = xym. Thus o is
associative and m = 1.m is the identity w.r.t. o.
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Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.
The Monoid Loc,(M): Let M be a monoid and m € M. Then
Locm(M) = (mMn Mm, o, m)
A
where (xm) o (my) = xmy.
@ Observe that xmo ym = xm o my’ = xmy’ = xym. Thus o is
associative and m = 1.m is the identity w.r.t. o.

@ xmoxmo...xm = xNm. Thus, Locy,(M) is aperiodic
whenever M is aperiodic.
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Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.
The Monoid Loc,(M): Let M be a monoid and m € M. Then
Locm(M) = (mMn Mm, o, m)

where (xm) o (my) 2 xmy .

@ Observe that xmo ym = xm o my’ = xmy’ = xym. Thus o is
associative and m = 1.m is the identity w.r.t. o.

@ xmoxmo...xm = xNm. Thus, Locy,(M) is aperiodic
whenever M is aperiodic.

o 1 ¢ Locy,(M) if m# 1. This follows from the fact that
1% m'mfor any m,m' # 1.
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A Monoid for K

We now show that the monoid Locy)(M) accepts the language
K.
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A Monoid for K

We now show that the monoid Locy)(M) accepts the language
K.

Let g : M* — Locy(c)(M) be given by g(m) = h(c)mh(c).

Claim: K = g }3)
Proof:
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A Monoid for K

We now show that the monoid Locy)(M) accepts the language
K.

Let g : M* — Locy(c)(M) be given by g(m) = h(c)mh(c).

Claim: K = g }3)
Proof:
o Note that # € Locy(c)(M) whenever h=*(8) N A # 0.
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A Monoid for K

We now show that the monoid Locy)(M) accepts the language
K.

Let g : M* — Locy(c)(M) be given by g(m) = h(c)mh(c).

Claim: K = g }3)
Proof:
o Note that # € Locy(c)(M) whenever h=*(8) N A # 0.

@ g(mymy...my) = if and only if
o o... = A if and only if
h(c)mih(c)mah(c)...h(c)myh(c) = 3 if and only if

mimsy...my € K.
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A Monoid for K

We now show that the monoid Locy)(M) accepts the language
K.

Let g : M* — Locy(c)(M) be given by g(m) = h(c)mh(c).

Claim: K = g }3)
Proof:
o Note that # € Locy(c)(M) whenever h=*(8) N A # 0.

@ g(mymy...my) = if and only if
o o... = A if and only if
h(c)mih(c)mah(c)...h(c)myh(c) = 3 if and only if
mimsy...my € K.
K LTLy
K
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Lifting the formula for K

We show that for any formula ¢ in LTLy, there is a formula 7 in
LTLy such that

w = o <= w=ctictrc...tx_1cty, with t; € A*
and U(Ct1Ct2 ce tkflc) ’: ()
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Lifting the formula for K

We show that for any formula ¢ in LTLy, there is a formula 7 in
LTLy such that

w = o <= w=ctictrc...tx_1cty, with t; € A*
and U(Ct1Ct2 ce tkflc) ’: ()
The formula 7 is defined recursively on the structure as follows:

m# = (c AXFc) A (X))
where 1), is the formula in LTL, describing
h=Y(m) N AT and v/, is its relativization

(e Apa)* = oF Ao¥
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Lifting the formula for K

We show that for any formula ¢ in LTLy, there is a formula 7 in
LTLy such that
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Lifting the formula for K

We show that for any formula ¢ in LTLy, there is a formula 7 in
LTLy such that

w = o <= w=ctictrc...tx_1cty, with t; € A*

and U(Ct1Ct2 ce tkflc) ’: ()

The formula 7 is defined recursively on the structure as follows:

m# = (c AXFc) A (XeV X))
where 1), is the formula in LTLp describing
h=Y(m) N AT and v/, is its relativization

(p1 A @2)* = of Ayl

(—p)# = —(¢*) A (c AXFe)
(Xp)# = X(=cU(c A ¢#))
(erUg2)# = (c = @] )U(cA¢})
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Combining the Three parts

The formula describing (Lo, N A*).(Lg N A).(Ly N A*) is the
conjunction of the formulas describing the following languages.

Q (Lo NA*).(cA*)t.c.A".
Q@ A*.(cA")T.c(L,NA*).

© A“((LsNA).AY).
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Combining the Three parts

The formula describing (Lo, N A*).(Lg N A).(Ly N A*) is the
conjunction of the formulas describing the following languages.

Q (L, N A*).(cA*)*.c.A".
' N (F(c A XFc))

Q@ A*.(cA")T.c(L,NA*).

F(c A XF(c A F(c A —=(XFc) A Xyp)))

© A“((LsNA).AY).
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Combining the Three parts

The formula describing (Lo, N A*).(Lg N A).(Ly N A*) is the
conjunction of the formulas describing the following languages.

Q (Lo N A).(cA*)T.c. A",

' N (F(c A XFc))

Q@ A*.(cA")T.c(L,NA*).

F(c A XF(c A F(c A —=(XFc) A Xyp)))

Q A ((LgNA).A%).
—cU(c A ™)
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