
Introduction Knuth-Morris-Pratt algorithm Final remarks

The Knuth-Morris-Pratt algorithm

Kshitij Bansal

Chennai Mathematical Institute
Undergraduate Student

August 25, 2008



Introduction Knuth-Morris-Pratt algorithm Final remarks

Introduction
The Problem
Naive algorithm

Knuth-Morris-Pratt algorithm
Can we do better?
Improved algorithm
Computing f

Final remarks
Conclusion
Think/read about
References
Thankyou



Introduction Knuth-Morris-Pratt algorithm Final remarks

The Problem

Given a piece of text, find if a smaller string occurs in it.

Let T [1..n] be an array which holds the text. Call the smaller
string to be searched pattern: p[1..m].



Introduction Knuth-Morris-Pratt algorithm Final remarks

The Problem

Given a piece of text, find if a smaller string occurs in it.

Let T [1..n] be an array which holds the text. Call the smaller
string to be searched pattern: p[1..m].



Introduction Knuth-Morris-Pratt algorithm Final remarks

Naive Algorithm

Naive-String-Matcher(T [1..n],P[1..m])

1 for i from 0 to n −m

2 if P[1 . . . m] = T [i + 1 . . . i + m]

3 print “Pattern found starting at position ”, i

• Time complexity: O(mn).

• Space complexity: O(1).



Introduction Knuth-Morris-Pratt algorithm Final remarks

Naive Algorithm

Naive-String-Matcher(T [1..n],P[1..m])

1 for i from 0 to n −m

2 if P[1 . . . m] = T [i + 1 . . . i + m]

3 print “Pattern found starting at position ”, i

• Time complexity: O(mn).

• Space complexity: O(1).



Introduction Knuth-Morris-Pratt algorithm Final remarks

Naive Algorithm

Naive-String-Matcher(T [1..n],P[1..m])

1 for i from 0 to n −m

2 if P[1 . . . m] = T [i + 1 . . . i + m]

3 print “Pattern found starting at position ”, i

• Time complexity: O(mn).

• Space complexity: O(1).



Introduction Knuth-Morris-Pratt algorithm Final remarks

Naive Algorithm

Naive-String-Matcher(T [1..n],P[1..m])

1 for i from 0 to n −m

2 if P[1 . . . m] = T [i + 1 . . . i + m]

3 print “Pattern found starting at position ”, i

• Time complexity: O(mn).

• Space complexity: O(1).



Introduction Knuth-Morris-Pratt algorithm Final remarks

Naive Algorithm

Naive-String-Matcher(T [1..n],P[1..m])

1 for i from 0 to n −m

2 if P[1 . . . m] = T [i + 1 . . . i + m]

3 print “Pattern found starting at position ”, i

• Time complexity: O(mn).

• Space complexity: O(1).



Introduction Knuth-Morris-Pratt algorithm Final remarks

Introduction
The Problem
Naive algorithm

Knuth-Morris-Pratt algorithm
Can we do better?
Improved algorithm
Computing f

Final remarks
Conclusion
Think/read about
References
Thankyou



Introduction Knuth-Morris-Pratt algorithm Final remarks

Can we do better?

Text: abaabaabac
Pattern: abaabac

The naive algorithm when trying to match the seventh character of
the text with the pattern fails. It discards all information about
text read from first seven characters and starts afresh. Can we
somehow use this information and improve?



Introduction Knuth-Morris-Pratt algorithm Final remarks

Can we do better?

Text: abaabaabac
Pattern: abaabac

The naive algorithm when trying to match the seventh character of
the text with the pattern fails. It discards all information about
text read from first seven characters and starts afresh. Can we
somehow use this information and improve?



Introduction Knuth-Morris-Pratt algorithm Final remarks

Improved algorithm

Improved-String-Matcher(T [1..n],P[1..m],f [1..m])

1 q = 0 (number of characters matched)

2 for i from 1 to n:

3 if P[q + 1] = T [i ]:

4 q = q + 1

5 else if q > 0

6 q = f [q]

7 goto line 3

Does this really help? What happens when text is abaabadaba . . .?
Note that q can increase by atmost 1 at each step.



Introduction Knuth-Morris-Pratt algorithm Final remarks

Improved algorithm

Improved-String-Matcher(T [1..n],P[1..m],f [1..m])

1 q = 0 (number of characters matched)

2 for i from 1 to n:

3 if P[q + 1] = T [i ]:

4 q = q + 1

5 else if q > 0

6 q = f [q]

7 goto line 3

Does this really help? What happens when text is abaabadaba . . .?
Note that q can increase by atmost 1 at each step.



Introduction Knuth-Morris-Pratt algorithm Final remarks

Improved algorithm

Improved-String-Matcher(T [1..n],P[1..m],f [1..m])

1 q = 0 (number of characters matched)

2 for i from 1 to n:

3 if P[q + 1] = T [i ]:

4 q = q + 1

5 else if q > 0

6 q = f [q]

7 goto line 3

Does this really help? What happens when text is abaabadaba . . .?
Note that q can increase by atmost 1 at each step.



Introduction Knuth-Morris-Pratt algorithm Final remarks

Improved algorithm

Improved-String-Matcher(T [1..n],P[1..m],f [1..m])

1 q = 0 (number of characters matched)

2 for i from 1 to n:

3 if P[q + 1] = T [i ]:

4 q = q + 1

5 else if q > 0

6 q = f [q]

7 goto line 3

Does this really help? What happens when text is abaabadaba . . .?
Note that q can increase by atmost 1 at each step.



Introduction Knuth-Morris-Pratt algorithm Final remarks

Improved algorithm

Improved-String-Matcher(T [1..n],P[1..m],f [1..m])

1 q = 0 (number of characters matched)

2 for i from 1 to n:

3 if P[q + 1] = T [i ]:

4 q = q + 1

5 else if q > 0

6 q = f [q]

7 goto line 3

Does this really help? What happens when text is abaabadaba . . .?
Note that q can increase by atmost 1 at each step.



Introduction Knuth-Morris-Pratt algorithm Final remarks

Improved algorithm

Improved-String-Matcher(T [1..n],P[1..m],f [1..m])

1 q = 0 (number of characters matched)

2 for i from 1 to n:

3 if P[q + 1] = T [i ]:

4 q = q + 1

5 else if q > 0

6 q = f [q]

7 goto line 3

Does this really help? What happens when text is abaabadaba . . .?

Note that q can increase by atmost 1 at each step.



Introduction Knuth-Morris-Pratt algorithm Final remarks

Improved algorithm

Improved-String-Matcher(T [1..n],P[1..m],f [1..m])

1 q = 0 (number of characters matched)

2 for i from 1 to n:

3 if P[q + 1] = T [i ]:

4 q = q + 1

5 else if q > 0

6 q = f [q]

7 goto line 3

Does this really help? What happens when text is abaabadaba . . .?
Note that q can increase by atmost 1 at each step.



Introduction Knuth-Morris-Pratt algorithm Final remarks

Computing f

• f [i ] denotes the longest proper suffix of P[1 . . . i ] which is a
prefix of P[1 . . . n]

• Just match the pattern with itself.



Introduction Knuth-Morris-Pratt algorithm Final remarks

Computing f

• f [i ] denotes the longest proper suffix of P[1 . . . i ] which is a
prefix of P[1 . . . n]

• Just match the pattern with itself.



Introduction Knuth-Morris-Pratt algorithm Final remarks

Introduction
The Problem
Naive algorithm

Knuth-Morris-Pratt algorithm
Can we do better?
Improved algorithm
Computing f

Final remarks
Conclusion
Think/read about
References
Thankyou



Introduction Knuth-Morris-Pratt algorithm Final remarks

Conclusion

KMP algorithm

• Time complexity: O(n + m)

• Space complexity: O(m)



Introduction Knuth-Morris-Pratt algorithm Final remarks

Conclusion

KMP algorithm

• Time complexity: O(n + m)

• Space complexity: O(m)



Introduction Knuth-Morris-Pratt algorithm Final remarks

Think/read about

• Number of distinct substrings in a string

• Multiple patterns and single text

• Matching regular expresssions



Introduction Knuth-Morris-Pratt algorithm Final remarks

Think/read about

• Number of distinct substrings in a string

• Multiple patterns and single text

• Matching regular expresssions



Introduction Knuth-Morris-Pratt algorithm Final remarks

Think/read about

• Number of distinct substrings in a string

• Multiple patterns and single text

• Matching regular expresssions



Introduction Knuth-Morris-Pratt algorithm Final remarks

References

• Thomas H. Cormen; Charles E. Leiserson, Ronald L. Rivest,
Clifford Stein (2001). “Section 32.4: The Knuth-Morris-Pratt
algorithm”, Introduction to Algorithms, Second edition, MIT
Press and McGraw-Hill, 923931. ISBN 978-0-262-03293-3.

• The original paper: Donald Knuth; James H. Morris, Jr,
Vaughan Pratt (1977). “Fast pattern matching in strings”.
SIAM Journal on Computing 6 (2): 323350.
doi:10.1137/0206024.

• An explanation of the algorithm and sample C++ code by
David Eppstein:
http://www.ics.uci.edu/ eppstein/161/960227.html



Introduction Knuth-Morris-Pratt algorithm Final remarks

Thank you

Questions?



Introduction Knuth-Morris-Pratt algorithm Final remarks

The End


	Introduction
	The Problem
	Naive algorithm

	Knuth-Morris-Pratt algorithm
	Can we do better?
	Improved algorithm
	Computing f

	Final remarks
	Conclusion
	Think/read about
	References
	Thankyou
	


