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The Problem

Given a piece of text, find if a smaller string occurs in it.

Let T [1..n] be an array which holds the text. Call the smaller
string to be searched pattern: p[1..m].
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Naive Algorithm

Naive-String-Matcher(T [1..n],P[1..m])

1 for i from 0 to n −m

2 if P[1 . . . m] = T [i + 1 . . . i + m]

3 print “Pattern found starting at position ”, i

• Time complexity: O(mn).

• Space complexity: O(1).
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Can we do better?

Text: abaabaabac
Pattern: abaabac

The naive algorithm when trying to match the seventh character of
the text with the pattern fails. It discards all information about
text read from first seven characters and starts afresh. Can we
somehow use this information and improve?
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Improved algorithm

Improved-String-Matcher(T [1..n],P[1..m],f [1..m])

1 q = 0 (number of characters matched)

2 for i from 1 to n:

3 if P[q + 1] = T [i ]:

4 q = q + 1

5 else if q > 0

6 q = f [q]

7 goto line 3

Does this really help? What happens when text is abaabadaba . . .?
Note that q can increase by atmost 1 at each step.
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Computing f

• f [i ] denotes the longest proper suffix of P[1 . . . i ] which is a
prefix of P[1 . . . n]

• Just match the pattern with itself.
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Conclusion

KMP algorithm

• Time complexity: O(n + m)

• Space complexity: O(m)
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Think/read about

• Number of distinct substrings in a string

• Multiple patterns and single text

• Matching regular expresssions
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Thank you

Questions?
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The End
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