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Abstract. If we regard a set of s lines in P2 over either the reals or the complex
numbers as an algebraic plane curve, then it is an open problem to classify for all s
those for which the number t2 of points of multiplicity 2 satisfies t2 < bs/2c. By the
Sylvester-Gallai theorem, there are no nontrivial (i.e., not a pencil or a near pencil)
real arrangements with t2 = 0, but there are complex arrangements with t2 = 0 and
it is an open problem to classify them. In this paper, we initiate a classification of an
interesting class of line arrangements called the supersovable line arrangements and give
a partial classification for them over the reals or the complex numbers. In particular,
we show that a complex line arrangement which is nontrivial cannot have more than 4
modular points and we completely describe those with 3 or 4 modular points.

1. Introduction

Line arrangements have provided useful insight in studying a range of recent problems
in algebraic geometry. They have played a fundamental role for studying the containment
problem (see [10, 9]), for the bounded negativity problem and H-constants [4], and for
unexpected curves [6, 7]. The supersolvable arrangements are a particularly tractable
subclass of line arrangements which have played a role in the study of unexpected curves
[6, 7]. Understanding supersolvable arrangements better should make them even more
useful. Thus the goal of the present paper is to pin down, as much as currently possible,
properties of real and complex supersolvable line arrangements.

A line arrangement is simply a finite set of s > 1 distinct lines L = {L1, . . . , Ls} in
the projective plane. A point p is a modular point for L if it is a crossing point (i.e., a
point where two or more of the lines meet) with the additional property that whenever
q is any other crossing point, then the line through p and q is Li for some i. We say L
is supersolvable if it has a modular point (see Figure 1).

If the s lines of L are concurrent (i.e., all meet at a point), then L is supersolvable
since it has only one crossing point and hence it is modular. Such an arrangement is
called a pencil. If L consists of s lines where exactly s − 1 of them are concurrent, it
is called a near pencil; near pencils are also supersolvable, since every crossing point for
a near pencil is modular. For example, consider Figure 1: removing any line from the
arrangement, other than the line through the two white dots, results in a near pencil.
We will refer to pencils and near pencils as being trivial arrangements.
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Figure 1. A supersolvable line arrangement with 2 modular points
(shown as white dots).

We refer to the number of lines of an arrangement L containing a point as the multi-
plicity of the point. So crossing points always have multiplicity at least 2. The modular
points in Figure 1 have multiplicity 3, while the other crossing points in the figure have
multiplicity 2. For k ≥ 2, we will use tk(L) to denote the number of crossing points of
L of multiplicity k.

For example, a pencil of s ≥ 2 lines has a unique crossing point and it has multiplicity
s, so ts = 1 and otherwise tk = 0. A near pencil of s lines has s crossing points; when
s > 3, s − 1 of the s crossing points have multiplicity 2 and one has multiplicity s − 1
(so t2 = s − 1, ts−1 = 1 and otherwise tk = 0), while if s = 3 all three crossing points
have multiplicity 2 (so t2 = 3 and otherwise tk = 0).

It is an open problem to determine which vectors (t2, . . . , ts) can arise for real or
complex line arrangements, even for supersolvable line arrangements. It is also an open
problem to classify all complex line arrangements with t2 = 0. By the Sylvester-Gallai
theorem (first proved by Melchior [14]; see inequality (2.3)), no nontrivial real line ar-
rangement can have t2 = 0. However, three nontrivial kinds of complex line arrangements
are known with t2 = 0 (see §4) but there is no proof that there are no others. Anzis and
Tohǎneanu [3] conjectured that a nontrivial complex supersolvable arrangement of s lines
has t2 ≥ s/2, and the first version of the present paper proposed a weaker conjecture,
namely that t2 > 0. After our paper was posted to the arXiv, Abe [1] posted a proof of
the Anzis and Tohǎneanu conjecture, thereby showing also that t2 = 0 is impossible for
nontrivial complex supersolvable line arrangements.

The fact that these problems were, at the time of the writing of this paper, also open for
the subclass of supersolvable line arrangements motivated this paper. Our approach here
is to begin a classification of all supersolvable real or complex line arrangements. The
partial classification that we obtain is of interest in its own right. In particular, we show
that a complex line arrangement which is nontrivial cannot have more than 4 modular
points, we completely describe those with 3 or 4 modular points, and we completely
describe those for which the modular points do not all have the same multiplicity. In all
of these cases it happens that t2 ≥ s/2. This supported our conjecture that t2 > 0 and
the much stronger conjecture of Anzis and Tohǎneanu that t2 ≥ s/2. (After posting the
first version of this paper on the arXiv, Abe and Dimca [2] extended our classification
to cover the case of supersolvable line arrangements with exactly two modular points of
equal multiplicity, and Abe [1] proved the conjecture of Anzis and Tohǎneanu.)
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Given a line arrangement L, we denote by µL the number of modular points of L, so
L is supersolvable exactly when µL > 0. We denote the number of lines of L by sL, the
number of crossing points by nL and the maximum k such that tk(L) > 0 by mL.

We divide supersolvable line arrangements (over any field) into two broad classes.
Given a supersolvable line arrangement L, if it has two or more modular points and they
do not all have the same multiplicity, we say L is not homogeneous, but if all modular
points of L have the same multiplicity, we say L is homogeneous and m-homogeneous if
the common multiplicity is m, in which case we have m = mL by Lemma 2.

Our main results are summarized by the following theorem.

Theorem 1. Let L be a line arrangement (over any field) with µL > 0.
(a) If L is not homogeneous, then either L is a near pencil or µL = 2; if µL = 2,

then L consists of a ≥ 2 lines through one modular point, b > a lines through the
other modular point, and we have sL = a+ b− 1 and t2 = (a− 1)(b− 1).

(b) If L has a modular point of multiplicity 2, then L is trivial.
(c) If L is complex and homogeneous with m = mL > 2, then 1 ≤ µL ≤ 4. If

3 ≤ µL ≤ 4, we have the following possibilities. If µL = 4, then sL = 6, m = 3,
t2 = 3, t3 = 4 and tk = 0 otherwise; up to change of coordinates L consists of
the lines x = 0, y = 0, z = 0, x − y = 0, x − z = 0 and y − z = 0 (intuitively,
an equilateral triangle and its angle bisectors). And if µL = 3, then m > 3 and
up to change of coordinates L consists of the lines defined by the linear factors of
xyz(xm−2−ym−2)(xm−2−zm−2)(ym−2−zm−2), hence sL = 3(m−1), t2 = 3(m−2),
t3 = (m− 2)2, tm = 3 and tk = 0 otherwise.

The proof of Theorem 1 is as follows. Theorem 1(a,b) follows from Corollary 3. The
fact that 1 ≤ µL ≤ 4 in Theorem 1(c) follows from Theorem 7, and, when µL ≥ 3, the
classification in Theorem 1(c) for mL = 3 is done in §3.2.2 and for mL > 3 it is done in
§3.2.4.

Theorem 1 thus gives a complete classification of supersolvable line arrangements L if
either there is a modular point of multiplicity 2, or the arrangement is not homogeneous,
or the arrangement is homogeneous, defined over C and has 3 or more modular points.
In addition, we give a complete classification of real supersolvable line arrangements with
more than 1 modular point (see §3.4), but our methods only give partial results for the
case that µL = 2 over C. For this latter case, we direct the reader to the paper [2] of Abe
and Dimca, which builds on our results by finishing the classification for µL = 2 over
C. Thus all that is left for our classification program is the case µL = 1. Such cases do
occur, but it is still an open problem to classify them. See §3.3 for some partial results.

The structure of this paper is as follows. In Section 2 we recall facts we will use later.
In Section 3 we study the classification of supersolvable real and complex line arrange-
ments, and prove Theorem 7. In Section 4 we consider various conjectures related to the
occurrence of points of multiplicity 2 on real and complex line arrangements (including
Conjectures 12 and 13, now known to be true by Abe [1]), and we demonstrate what our
methods can say about these formerly open conjectures (see for example Theorem 18).
Finally, in Section 5, we discuss the application of supersolvable line arrangements to
the occurrence of unexpected plane curves, and raise the question of whether all which
can occur are already known.
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2. Preliminaries

Let L = {L1, . . . , Ls} be a line arrangement in the projective plane over an arbitrary
field K. In this section we include some well-known results that we use in this paper.

First we have the following combinatorial identity which holds for any field K.(
s

2

)
=
∑
k≥2

(
k

2

)
tk. (2.1)

If K = C and L is nontrivial, we have the following inequality due to Hirzebruch [12].

t2 +
3

4
t3 ≥ s+

∑
k>4

tk(k − 4). (2.2)

If K = R and L is not a pencil, we have the following inequality due to Melchior [14].

t2 ≥ 3 +
∑
k≥3

(k − 3)tk. (2.3)

When char(K) = 0 and L is supersolvable, we have the following inequality proved in
[3, Proposition 3.1].

t2 ≥ 2nL −mL(s−mL)− 2. (2.4)
The following result is [15, Lemma 2.1]. For the reader’s convenience we include a

proof.

Lemma 2. Let L be a supersolvable line arrangement (over any field K) with a modular
point p of multiplicity m. If q is a crossing point of multiplicity n ≥ m, then q is also
modular.

Proof. In addition to the line L = Lp1 = Lq1 through p and q, L contains m − 1 lines
through p (denote them by Lp2, . . . , Lpm) and n − 1 lines through q (denote them by
Lq2, . . . , Lqn). Let rij be the point where Lpi intersects Lqj. Suppose A and B are any
two distinct lines in L. Let r be the point where A and B meet. We must show r is on
a line in L through q. If either A or B contain q, then r is on a line in L through q, so
assume neither A nor B contains q.

First say n > m. Let aj be the point where A and Lqj meet. Since q 6= aj, we get
n− 1 distinct points aj, each of which is on some line Lpij since p is modular. But there
are only m − 1 < n − 1 lines Lpi, so we must have ij = ij′ for some j 6= j′, and hence
A = Lpij = Lpij′

, so p ∈ A. Likewise p ∈ B, so r = p ∈ L is on a line in L through q.
(This also shows that n > m implies that every line in L contains either p or q; i.e., the
lines in L are the m+ n− 1 lines through p and q.)

Now say n = m. If both A and B contain p, then r = p ∈ L is on a line in L through
q. So assume either A or B does not contain p; say p 6∈ A. But p is modular, so the
point r where A and B meet is on Lpi′ for some i′. Again, let aj be the point where A
and Lqj meet. Since q 6= aj, we get n − 1 distinct points aj, each of which is on some
line Lpij since p is modular. If ij = ij′ for some j 6= j′, then A = Lpij = Lpij′

, so p ∈ A
contrary to assumption. Hence ij 6= ij′ whenever j 6= j′, the n − 1 = m − 1 values of
j > 1 map under j 7→ ij to all m− 1 = n− 1 values of i > 1, hence for some j′ we have
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i′ = ij′ , so A meets Lpi′ at aj′ = rij′j′ = ri′j′ ∈ Lpi′ . But A meets Lpi′ at r ∈ Lpi′ , so
r = aj′ ∈ Lqj′ , so r is on a line in L through q. Thus q is modular. �

3. Classifying supersolvable line arrangements

3.1. Supersolvable line arrangements with modular points of multiplicity 2.
We first classify all line arrangements, over any field K, having one or more modular
points of multiplicity 2, or two (or more) modular points, not all of the same multiplicity.
Thus, after this section, we may assume all modular points have the same multiplicity,
which is at least 3.

As a corollary of the proof of Lemma 2, we have the following result, which classifies
line arrangements with a modular point of multiplicity 2, or where at least two distinct
multiplicities occur as multiplicities of modular points.

Corollary 3. Let L be a supersolvable line arrangement (over any field K) with a mod-
ular point p of multiplicity m. If m = 2, then every crossing point is modular and L is
either a pencil or a near pencil. If m > 2 and L has a crossing point q of multiplicity
n > m, then q is modular, the only modular points are p and q, and L consists exactly
of the m lines through p and the n lines through q (hence sL = m+ n− 1).

Proof. Say m = 2. Then by Lemma 2 every crossing point is modular. Thus if p is the
only modular point, then L is a pencil. Now say there is another modular point q. Let
L be the line through p and q and let Lp ∈ L be the line through p not through q. First
assume q has multiplicity 2. Let Lq ∈ L be the line through q not through p. Let r be
the point where Lp and Lq cross. Since p and q have multiplicity 2, no point off L other
than r is a crossing point of L. In particular, if A ∈ L is a line other than L and Lp,
then A meets Lp away from p, hence at r; i.e., every line in L other than L contains r.
Thus L is a near pencil. Now assume q has multiplicity more than 2. Thus there are at
least two lines Bi ∈ L, i = 1, 2, through q other than L. If A ∈ L is a line other than
Lp which does not go through q, let bi be the point where A meets Bi. Since b1 and b2
are on A and A 6= Lp, at most one of the points bi can be on Lp. Assume b1 6∈ Lp. Then
b1 ∈ L (since the only lines of L through p are L and Lp, and p is modular). But b1 ∈ B1

and B1 6= L but B1 meets L at q, so b1 = q. This contradicts our assumption that A
does not go through q. Thus every line of L except Lp contains q, so L is a near pencil.

Now say m > 2 and L has a crossing point q of multiplicity n > m. Then q is modular
by Lemma 2. We saw in the proof of Lemma 2 that the lines in L are the m + n − 1
lines through p and q. Thus there are n − 1 > m − 1 ≥ 2 lines through q other than
L, and on each of these n − 1 lines there are m − 1 ≥ 2 crossing points of multiplicity
2 (these being the points of intersection with the m − 1 lines through p other than L),
and these (n − 1)(m − 1) crossing points are the only crossing points other than p and
q. But a point of multiplicity 2 on one line through q is connected to at most one point
of multiplicity 2 on any other line through q, and hence no point of multiplicity 2 is
modular. I.e., the only modular crossing points are p and q. �

Proposition 4. Let L be a line arrangement (over any field) having one or more modular
points, exactly one of which has multiplicity 2 (call this point p). Then L is the pencil
consisting of the two lines through p.
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Proof. If L had a crossing point of multiplicity n > m = 2, then by Corollary 3, L is
a near pencil, and thus would have n points of multiplicity 2. Thus L has exactly one
crossing point, and it has multiplicity 2, so L is the pencil consisting of the two lines
through p. �

Proposition 5. Let L be a line arrangement (over any field) having two or more modular
points, at least two of which have multiplicity 2. Then L is a near pencil.

Proof. Let p and q be modular points of multiplicity 2. Since L is supersolvable, given a
crossing point other than p, the line from p to that point is in L. But p has multiplicity 2,
so every crossing point must be on one or the other of the two lines through p. Likewise,
every crossing point must be on one or the other of the two lines through q.

Let L be the line through both p and q; thus L ∈ L. Let Lp be the other line in L
through p and let Lq be the other line in L through q. Let r be the point where Lp and
Lq meet. Thus any crossing point not on L must be on both Lp and Lq; i.e., r is the
only crossing point not on L. Thus every line in L other than L must contain r, so L is
a near pencil. �

3.2. Homogeneous supersolvable line arrangements (mostly for char(K) = 0).
By our foregoing results, we see that it remains to understand supersolvable line ar-
rangements such that all modular points have the same multiplicity m (we say such
a supersolvable line arrangement is homogeneous or m-homogeneous) with m ≥ 3. It
follows from Lemma 2 in this case that tk = 0 for k > m, so m = mL.

3.2.1. The values of tmL that arise for char(K) = 0. When K is algebraically closed but
of finite characteristic, there is no bound to the number of modular points a supersolvable
line arrangement can have. (Just take all lines defined over a finite field F of a elements.
Then the arrangement has a2 + a + 1 lines and the same number of crossing points; all
are modular and all have multiplicity a+1.) In characteristic 0 things are very different,
as we show in Theorem 7.

To prove the theorem, we will use the following result.

Proposition 6. For an m-homogeneous supersolvable complex line arrangement L with
m = mL ≥ 3, no three modular points are collinear.

Proof. Suppose that p, q and r are collinear modular points. Then the line L that contains
them is in L. Moreover, L contains m − 1 additional lines through each of p, q and r.
Denote the union of these m − 1 lines through p by Cp. Similarly, we have Cq and Cr.
The intersection of the curves Cp and Cq is a complete intersection of (m − 1)2 points,
which are also contained in Cr. Since the curves all have degree m− 1, we see that Cr is
in the pencil defined by Cp and Cq. I.e., the forms Fp, Fq and Fr defining the curves are
such that Fr is a linear combination of Cp and Cq. we can choose coordinates such that L
is x = 0, p is x = y = 0, q is x = z = 0 and r is y = z = 1. In terms of these coordinates,
the restrictions of Fp, Fq, Fr to L are ym−1, zm−1 and aym−1 + bzm−1 = (y − z)m−1 for
some nonzero constants a and b. Setting z = 1, we thus see that aym−1+ b = (y−1)m−1,
so aym−1 + b has a multiple root at y = 1. This contradicts the fact that the derivative
a(m− 1)ym−2 + b is not 0 at y = 1. �
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Theorem 7. For an m-homogeneous supersolvable complex line arrangement L with
m = mL ≥ 3, we have 1 ≤ tm = µL ≤ 4.

Proof. By Lemma 2 we have tm = µL. First we show that tm < 7. Suppose tm ≥ 7
for some m ≥ 3. Each non-modular crossing point is connected by a line to each of
the tm ≥ 7 modular points. Since at most two modular points can lie on any line by
Proposition 6, we see that each crossing point must have multiplicity at least 4. Also,
each modular point has multiplicity m ≥ 6 since each one connects to each of the others.
Thus t2 = t3 = 0, but this is impossible by Inequality (2.2).

Next we show that tm < 6. Suppose L has tm = 6. It is enough to show tm < 6
under the assumption that every line in L contains a modular point. (This is because
if we let L′ be the line arrangement obtained from L by deleting all lines not through a
modular point, L′ still has tmL′ = 6.) Since every modular point is on a line in L through
another modular point, we have m ≥ 5. Every crossing point q of L also connects to
every modular point so has multiplicity at least 3 (since a line can go through at most
2 modular points), with multiplicity exactly 3 if and only if q is 3 lines through pairs of
modular points.

There are 2
(
6
4

)
= 30 possible locations for crossing points of multiplicity 3, hence

t3 ≤ 30. To see this note that there are
(
6
4

)
ways to pick 4 of the 6 modular points.

There are 3 reducible conics through these 4 points. The singular points of these three
conics are crossing points where two lines through disjoint pairs chosen from the 4 points
intersect. In order to get a point q of multiplicity 3, the line H through the remaining
2 points of the 6 modular points must contain q. This might not happen for any of the
three singular points, but it can be simultaneously true for at most two of the three
singular points, since at most two of the singular points can be on the line H (this is
merely because the three singular points cannot be collinear in characteristic 0). Thus
we get at most 2

(
6
4

)
= 30 possible locations for crossing points of multiplicity 3.

Now apply Inequality (2.2), using the fact that our assumption (that every line in L
contains a modular point) implies that L has (m− 5)6 +

(
6
2

)
lines:

22.5 =
3

4
30 ≥ 3

4
t3 ≥ ((m− 5)6 +

(
6

2

)
) + (m− 4)6.

For m ≥ 6 this is 22.5 ≥ 12m − 39 ≥ 33, thus the only possibility for tm = 6 is m = 5.
For m = 5 we see L has

(
6
2

)
= 15 lines and every crossing point has multiplicity at least

3 and at most 5, so from Equation (2.1) we get:

105 =

(
15

2

)
= 3t3 + 6t4 + 10t5 = 3t3 + 6t4 + 60

so 15 = t3 + 2t4, hence t3 ≤ 15. Inequality (2.2) now gives (3/4)15 ≥ 15 + 6, which is
false.

Finally, we show that tm < 5. So assume tm = 5. Arguing as before, we may
assume that every line in L contains a modular point. We still have that all non-
modular points have multiplicity at least 3, and the 5 modular points have multiplicity
m ≥ 4. Each choice of 4 of the 5 modular points gives 3 possible locations for a
triple point, hence t3 ≤ 3(5) = 15. Thus Inequality (2.2) gives 11.25 = (3/4)15 ≥
(
(
5
2

)
+ (m− 4)5) + (m− 4)5 = 10m− 30, which is impossible for m ≥ 5. For m = 4 we
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see L has
(
5
2

)
= 10 lines and every crossing point has multiplicity at at least 3 and at

most 4, so from Equation (2.1) we get:

45 =

(
10

2

)
= 3t3 + 6t4 = 3t3 + 30

so 5 = t3. Inequality (2.2) now gives (3/4)5 ≥ 10, which is false. �

Example 8. Form-homogeneous supersolvable line arrangements over both the complex
numbers and the reals, all four cases 1 ≤ tmL ≤ 4 arise. It is easy to obtain examples
with exactly one modular point; see Section 3.3. (However, the fact that there are many
examples makes it hard to classify them!) It is also easy to obtain examples with exactly
two modular points; see Corollary 3. For exactly three modular points, consider the line
arrangement defined by the linear factors of xyz(xn − yn)(xn − zn)(yn − zn) for n ≥ 2.
The coordinate vertices are the modular points, and have multiplicity n+ 2. For n = 2
the arrangement is real (see the arrangement of 9 lines shown in Figure 3); for n > 2 it is
complex but not real. Taking n = 1, so xyz(x− y)(x− z)(y− z), gives the only example
we know over the complexes or reals with exactly four modular points; see Case 2 of
Figure 2. (We thank Ş. Tohǎneanu for pointing out that a line arrangement equivalent to
the one defined by the linear factors of xyz(xn− yn)(xn− zn)(yn− zn) for n = 2 arose as
an example in section 3.1.1 of [3], to show that a certain bound on the number of crossing
points was sharp. For the line arrangements given by xyz(xn − yn)(xn − zn)(yn − zn)
the bound is t ≤ d2 + d+ 1, where t = n2 + 3n+ 3 is the number of crossing points and
d = mL − 1 = n+ 1. Thus we see that t = d2 + d+ 1, so this bound is in fact sharp for
all values of n.)

3.2.2. Classifying m-homogeneous L for tm > 1 and m = 3. Consider the case of a line
arrangement L with two or more modular points of multiplicity m ≥ 3. Since we have
at least two modular points, we pick two and call them p and q.

First say m = 3. We will show that there are three cases, shown in Figure 2: L has
either 5, 6 or 7 lines, and either 2, 4 or 7 modular points, respectively. The case of 7
lines occurs only in characteristic 2. The other cases occur for any field.

Clearly, L has at least 5 lines: the line L defined by p and q, and in addition lines
p ∈ Lpi and q ∈ Lqi, for i = 1, 2. No other lines in L (if any) can contain p or q. Let r1 be
where Lp1 and Lq1 meet and let r2 be where Lp2 and Lq2 meet. And let s1 be where Lp1

and Lq2 meet and let s2 be where Lp2 and Lq1 meet. Any other line in L must intersect
the lines Lpi and Lqi only at r1, r2, s1, or s2.

One possibility is that L has only the five lines mentioned above. Alternatively, assume
L has another line, A. Of the six pairs two points chosen from the four points r1, r2, s1
and s2, A must contain either r1 and r2 or s1 and s2 (A cannot contain r1 and s1, for
example, because that line is Lp1). Up to relabeling, the case r1 and r2 is the same as s1
and s2, so say A contains r1 and r2. Up to projective equivalence, we may assume that
p = (0, 0, 1), q = (0, 1, 0), r1 = (1, 0, 0) and r2 = (1, 1, 1), in which case s1 = (1, 0, 1)
and s2 = (1, 1, 0). So a second possibility is that L has six lines, with A being the sixth
line. Note that in this case that L has 4 modular points: the points p, q, r1 and r2 are
modular, and all have multiplicity 3. The only option for L to contain an additional line
is for the additional line (call it B) to be the line through s1 and s2. But A is y− z = 0
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Case 1 Case 2 Case 3 (char 2)

Figure 2. Classification of supersolvable line arrangements with 2 or
more modular points (shown as white dots), all of multiplicity m = 3.

and B is x − y − z = 0, so A and B intersect at the point (2, 1, 1). When the ground
field does not have characteristic 2, this is not on any of the three lines through p (or on
any of the three lines through q), hence including B would make L not be supersolvable.
Thus when the characteristic is not 2, L must either have 5 or 6 lines, and be Case 1
or Case 2 shown in Figure 2. If the characteristic is 2, the point (2, 1, 1) is on the line
through p and q, in which case L consists of the 7 lines of the Fano plane, there are 7
crossing points, all are modular and have multiplicity 3.

3.2.3. Classifying m-homogeneous L over R for tm > 1 and m > 3. Now we consider
the case m ≥ 4 for real line arrangements. So, in addition to the line L through p and q,
there are m− 1 lines through p and m− 1 lines through q. These lines form a complete
intersection (i.e., a grid) of (m− 1)2 crossing points. The only other crossing points for
these 2m− 1 lines are p and q. Certainly L could consist of only these 2m− 1 lines, in
which case p and q are the only modular points and we have tk = 0 except for tm = 2
and t2 = (m− 1)2.

The question now is what additional lines can be added to these 2m−1 while maintain-
ing supersolvability. To answer this, let’s choose coordinates so that p becomes (0, 1, 0)
and q becomes (1, 0, 0). Thus the line through p and q is now the line at infinity, and
the m− 1 other lines through p are parallel to the x = 0 axis, and the m− 1 other lines
through q are parallel to the y = 0 axis.

Any additional line must avoid p and q, and must intersect the m − 1 vertical lines
only at points where they meet the m − 1 horizontal lines. By inspection we can see
that this can happen in exactly to ways. First is that the four corners of the grid form
a rectangle and the ith vertical line (counting from the left) meets the ith horizontal
line (counting up from the bottom) meet on the anti-diagonal of the rectangle (in which
case the anti-diagonal can be added to L). The second way is that the four corners of
the grid form a rectangle (as before) and the ith vertical line (counting from the left)
meets the ith horizontal line (counting down this time from the top) meet on the main
diagonal of the rectangle (in which case the main diagonal can be added to L). In case
both cases hold, both diagonals can be added if and only if m is even.

Thus there are three cases: L has 2m− 1 lines and we have tm = 2 and t2 = (m− 1)2

but only two modular points, namely p and q; L has 2m lines where the additional line
is one of the two major diagonals (assuming the lines are spaced correctly) and we still
have only two modular points (p and q), with tm = 2, t2 = (m − 1)2 − (m − 1) + 1; or
L has 2m + 1 lines where the additional lines are the two major diagonals (assuming
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the lines are spaced correctly and m is even), in which case either m = 4 and we have
tm = 3, t2 = 6, t3 = 4 and there are three modular points (p, q and the center of the
rectangle), or m > 4 and we have tm = 2, t2 = (m− 1)2− (2m− 1)+ 2, t3 = 2m− 4 and
t4 = 1 and there are only two modular points (p and q).

Thus we have a complete classification of real supersolvable line arrangements when
there is more than one modular point of multiplicity at least 3.

3.2.4. Classifying m-homogeneous L over C for tm > 2 and m > 3. Now we consider the
case m ≥ 4 for complex line arrangements with at least 3 modular points. By Theorem
7, the number of modular points cannot be more than 4.

We begin with the case of exactly tm = 3 modular points. If L has a line that does not
contain a modular point, deleting it gives an arrangement which is still supersolvable,
so we first assume every line in L goes through a modular point.

After a change of coordinates, we may assume that the three modular points, p, q, r,
are the coordinate vertices of P2, so say p = (0, 0, 1), q = (0, 1, 0), r = (1, 0, 0). In
addition to the three coordinate axes, L must contain m − 2 lines through each of p,
q and r. Let Fp be the form defining the union of these m − 2 lines through p, other
than the coordinate axes. Note that Fp is a form of degree m− 2 and involves only the
variables x and y, hence is Fp(x, y). Likewise we have Fq(x, z) and Fr(y, z) for q and r.
Since the coordinate axes are not among the lines defined by Fp, Fq or Fr, we see that
none of these forms is divisible by a variable.

The crossing points for the lines from Fp and the lines from Fq form a complete
intersection of (m − 2)2 points on which Fr also vanishes, so Fr = aFp + bFq for some
scalars a and b. The only term that Fp and Fq can have in common is xm−2. Thus in
order that all terms involving x cancel in aFp + bFq so that Fr involves only y and z, we
see that xm−2 is the only term in either Fp or Fq involving x. Thus (after dividing by the
coefficient of xm−2 in each case) we have Fp = xm−2−αym−2 and Fq = xm−2−βzm−2. By
absorbing the α into y and the β into z, we get Fp = xm−2−ym−2 and Fq = xm−2−zm−2,
so Fr = ym−2 − zm−2.

Thus if every line in L goes through one of the three modular points, then the lines
in L correspond to the linear factors of xyz(xm−2 − ym−2)(xm−2 − zm−2)(ym−2 − zm−2).
Now we check that no line not through p, q or r can be added to L while still preserving
supersolvability. If such a line L existed, it would need to intersect every line of L in a
crossing point. In particular, L must contain one of the (m − 2)2 intersection points of
the lines from Fp and the lines from Fq. Let n := m − 2. By an appropriate change of
coordinates obtained by multiplying x, y and z by appropriate powers of an nth root of 1,
we may assume that L contains (1, 1, 1). Let ε = cos(2π/n) + ı sin(2π/n) be a primitive
nth root of 1. The line L must intersect y− εz = 0 at a crossing point (hence at (εi, ε, 1)
for some 1 ≤ i ≤ n) and also y− ε2z = 0 at a crossing point (hence at (εj, ε2, 1) for some
1 ≤ j ≤ n). The question is whether i and j exist such that these points lie on a line
through (1, 1, 1) which does not go through p, q or r.

The lines through (1, 1, 1) are of the form a(x− z) + b(y − z) = 0. For the line not to
go through p, q or r, we need ab 6= 0. Thus we can write the line as c = (y − z)/(x− z)
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for some c 6= 0. For (εi, ε, 1) and (εj, ε2, 1) both to lie on this line we must have

ε− 1

εi − 1
=
ε2 − 1

εj − 1
.

This simplifies to
εi−1(ε+ 1) = εj−1 + 1.

Thus the complex norms are equal; i.e., |ε+ 1| = |εj−1 + 1|. But if γ = cos(θ) + ı sin(θ),
the norm |γ + 1| is a decreasing function of θ for 0 ≤ θ ≤ π, so the only possibilities for
|ε+ 1| = |εj−1 + 1| are j = 2, n. If j = 2, then εi−1(ε+ 1) = εj−1 + 1 forces i = 1, so the
line through (εi, ε, 1) and (εj, ε2, 1) then is x − y = 0, which contains p. If j = n, then
εi−1(ε+1) = εj−1 +1 = (1+ ε)/ε forces εi = 1. and hence i = n, so the line is x− z = 0,
which contains q.

Thus the only possibility for 3 modular points of multiplicity m > 3, is (up to choice
of coordinates) for the line arrangement to be the lines defined by the linear factors of
xyz(xm−2 − ym−2)(xm−2 − zm−2)(ym−2 − zm−2).

Now suppose L has 4 modular points withm > 3. We can, up to choice of coordinates,
assume that the four points are p, q, r, s, where p, q, r are as above, and s = (1, 1, 1). If we
delete any lines not through p, q, r, then the resulting arrangement must come from the
linear factors of xyz(xm−2 − ym−2)(xm−2 − zm−2)(ym−2 − zm−2). To get L, we must add
back in lines through s which intersect the lines coming from xyz(xm−2− ym−2)(xm−2−
zm−2)(ym−2− zm−2) only at crossing points for the lines from xyz(xm−2− ym−2)(xm−2−
zm−2)(ym−2 − zm−2). But as we just saw there are no such lines. Thus L having 4
modular points with m > 3 is impossible.

Thus, up to choice of coordinates, the only complex supersolvable line arrangement
with 4 modular points is the one we found before; i.e., xyz(xm−2 − ym−2)(xm−2 −
zm−2)(ym−2 − zm−2) with m = 3, displayed in Case 2 of Figure 2. And up to choice
of coordinates the only complex supersolvable line arrangements with 3 modular points
are given by the linear factors of xyz when m = 2, and by the linear factors of
xyz(xm−2 − ym−2)(xm−2 − zm−2)(ym−2 − zm−2) for m > 3.

We do not have a classification of complex supersolvable line arrangement with just 1
or 2 modular points, but the case of 2 modular points has now been handled by Abe and
Dimca [2]. If for m ≥ 3 you remove one or more of the linear factors of ym−2−zm−2 from
the set of linear factors of xyz(xm−2 − ym−2)(xm−2 − zm−2)(ym−2 − zm−2), then we get
examples of complex supersolvable line arrangement with just 2 modular points. Thus
more examples occur over C than over R, but it was not clear to us what the full range
of possibilities was.

In any case, we have given a full classification over C for supersolvable line arrangement
with 3 or 4 modular points. We discuss the case of 1 modular point in the next section.

3.3. Having a single modular point. The case that there is a single modular point
is the hardest to classify and we can give only partial results in this case.

We begin with a lemma.

Lemma 9. Let L be a line arrangement (not necessarily supersolvable, not necessarily
over the reals). Let m be the maximum of the multiplicities of the crossing points and let
n be the number of crossing points. If n < 2m, then L is either a pencil or near pencil.
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Proof. Assume L is not a pencil or a near pencil. Let p be a point of multiplicity m and
take lines A and B not through p. Then A and the m lines through p give m+1 crossing
points, and B then gives at least another m − 1 crossing points, for a total of at least
2m crossing points. �

We now consider the case of a line arrangement L with a single modular point, which
we assume has multiplicity m > 2; call it p. By [3] every other crossing point of L
has multiplicity less than p (because for a supersolvable line arrangement, all points of
maximum multiplicity are modular). Assume L is not a pencil or a near pencil. Let
L′ be the arrangement obtained from L by removing the m lines through p. We can
recover L by adding to L′ every line from p to a crossing point of L′. What is difficult
to know is how many lines get added, since one line through p might contain more than
one crossing point of L′. But we see that tm = 1 and tk+1 = t′k for all 2 < k < m, where
t′k is the number of crossing points of L′ of multiplicity k. Even knowing how many lines
are in L′ and the value of t′k for every k, it’s hard to say how many lines are in L, or
what the value of t2 is, except in certain special situations.

Suppose, for example, we know that no two crossing points of L′ are on the same
line through p. Since L′ has t′2 + · · · + t′m crossing points and L′ has s′ lines, where(
s′

2

)
=
∑

k t
′
k

(
k
2

)
(see (2.1)), we then know that L has s = s′+ t′2+ · · ·+ t′m lines and then

from
(
s
2

)
=
∑

k tk
(
k
2

)
we can determine t2.

Alternatively, start with any line arrangement L′ (over any field) which is not a pencil
or a near pencil. By Lemma 9, n′ ≥ 2m′, where n′ is the number of crossing points of
L′ and m′ is the maximum of their multiplicities. For a general point p, no line through
p will contain more than one crossing point of L′. Now add to L′ each line from p to a
crossing point of L′ to get a larger line arrangement L of s = n′+ s′ lines, where s′ is the
number of lines of L′. We also know that tk+1 = t′k for all k > 2, and we can determine
t2 from

(
s
2

)
=
∑

k tk
(
k
2

)
. Moreover, p is the unique modular point of L. Note that p has

multiplicity n′ ≥ 2m′ and the maximum multiplicity of any other crossing point of L is
m′+1 < 2m′. Thus if L has another modular point, it has multiplicity d < n′, hence by
our classification L has d + n′ − 1 lines. But in fact s′ ≥ d + 1 since L′ is not a pencil
or near pencil, and L has s = s′ + n′ > d + 1 − n′ lines. Thus L has a unique modular
point, namely p. Thus classifying line arrangements with a unique modular point, even
when that point is general, comes down to classifying line arrangements in general.

3.4. Summary. The real supersolvable line arrangements having more than one mod-
ular point can be subsumed by one general construction. Take two points, p and q, on
a line L. Take ap ≥ 0 additional lines through p and aq ≥ 0 additional lines through
q. This gives a supersolvable line arrangement as long as ap + aq > 0. In addition, if
ap = aq ≥ 2 and the obvious collinearity condition obtains, an additional line can be
added in two possible ways (shown by the dashed and dashed-dotted lines in Figure 3
in the case of ap = aq = 3). If both can be added separately and if ap = aq is odd,
both can be added simultaneously. These constructions cover all possible cases of real
supersolvable line arrangements with 2 or more modular points.

The case of complex supersolvable line arrangements with more than two modular
points are all given, up to choice of coordinates, by the linear factors of xyz(xm−2 −
ym−2)(xm−2 − zm−2)(ym−2 − zm−2) for m ≥ 3.
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p

q

Figure 3. A supersolvable line arrangement with 2 modular points of
equal multiplicity with possible added lines.

4. Points of multiplicity 2 in supersolvable line arrangements

4.1. Questions and conjectures. By Inequality (2.3), every non-pencil real line ar-
rangement has t2 ≥ 3. More generally, there is the still open Dirac-Motzkin Conjecture
[8] (now known for s� 0; see [11]):

Conjecture 10. The inequality t2 ≥ bs/2c holds for every non-pencil real line arrange-
ment of s lines.

Things over C are more complicated. Four types of complex line arrangements with
t2 = 0 are currently known: pencils of 3 or more lines; the lines defined by the linear
factors of (xn−yn)(xn− zn)(yn− zn) for n ≥ 3 (known as the Fermat arrangement, Fn);
an arrangement due to F. Klein [13] with 21 lines and tk = 0 except for t3 = 28 and
t4 = 21; and an arrangement due to A. Wiman [16] with 45 lines and tk = 0 except for
t3 = 120, t4 = 45 and t5 = 36 (see [5] for more information about the Klein and Wiman
arrangements).

We believe the following question is open.

Question 11. Are there any complex line arrangements with t2 = 0 other than the four
types listed above?

For the case of supersolvable line arrangements, an earlier version of this paper posed
the the following conjecture.

Conjecture 12. Every nontrivial complex supersolvable line arrangement has t2 > 0.

A much stronger conjecture was posed by [3].

Conjecture 13. Every non-pencil complex supersolvable line arrangement of s lines has
t2 ≥ s/2.

Recently, Abe [1] proved Conjecture 13 in full generality. An earlier version of our
present paper, which appeared before [1], made some progress toward the conjecture by
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proving it in some cases. We include these results below, since our methods are very
different from those of [1].

In the previous section, we have found all complex supersolvable line arrangements
with at least 3 modular points, and for these t2 ≥ s/2 holds. Thus if the conjecture
is false, then it must fail for a line arrangement with either one or at most 2 modular
points.

It is also interesting to ask:

Question 14. Which non-pencil complex line arrangements of s lines fail to satisfy
t2 ≥ bs/2c?

Of course, as noted above, there are non-pencil line arrangements with t2 = 0, and for
these t2 ≥ bs/2c fails to hold. Also, by adding or deleting lines from such line arrange-
ments one can sometimes get additional examples. For example, the line arrangement L
with s = 3n lines defined by the linear factors of (xn− yn)(xn− zn)(yn− zn) has t2 = 0;
by adding the line x = 0, we get a line arrangement L′ with s = 3n + 1 and t2 = n, so
t2 ≥ bs/2c still fails. For another example, each line of the Klein arrangement of 21 lines
contains four crossing points of multiplicity 4 and four of multiplicity 3. By removing
one line we thus get an arrangement of s = 20 lines with t4 = 17, t3 = 28 and t2 = 4,
so here too t2 ≥ bs/2c fails. But this leaves the question: are there any examples where
t2 ≥ bs/2c fails to hold which do not come in this way from the known examples with
t2 = 0?

If L is defined over R, [3] proves Conjecture 13 (see [3, Theorem 2.4]). A key step in
their proof is [3, Lemma 2.2], a version of which we now state. For the convenience of
the reader we include a slightly simplified version of the proof from [3].

Lemma 15. Let p be a modular point of some multiplicity m in a non-pencil real su-
persolvable line arrangement L containing s lines. Then every line in L not containing
p contains a crossing point of multiplicity 2.

Proof. At left in Figure 4 we see the m lines (L1, . . . , Lm enumerated from bottom to
top) through p and some line L not through p. To these we’ve added a dotted line below
L1, and a dashed line above Lm. After a change of coordinates, the dotted line becomes
y = 0, the dashed line becomes the line z = 0 at infinity, L becomes x = 0 and p becomes
the point (1, 0, 0). Thus in the affine plane as shown at right in Figure 4, the lines Li

become horizontal lines and L becomes vertical.
Let pi be the point of intersection of Li with L. Since p is modular, every line in L

(other than L itself) must intersect L at one of the points pi. We want to show that one
of the points pi has multiplicity 2. Suppose by way of contradiction that the multiplicity
of pi is more than 2 for each i. Thus we can pick an additional line Hi in L through pi
for each i. The slope of Hi in the affine picture at right in Figure 4 is defined and not 0.

For each i 6=, the intersection of Hi and Hj must be on one of the lines Lk, since p
is modular. If the slopes of H1 and Hm have the same sign, it is easy to see that they
intersect either above Lm (if the slopes are both positive and H1 has the larger slope, or
if the slopes are both negative and H1 has the more negative slope) or below L1 (if the
slopes are both positive and Hm has the larger slope, or if the slopes are both negative
and Hm has the more negative slope).
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p

L1

L2

L3

Lm

L

L

Figure 4. At left, a modular point p of multiplicity m in a real supersolv-
able line arrangement L and a line L in L = {L1, . . . , Lm} not through p,
and at right an affine version of the same arrangement after an appropriate
change of coordinates moving the dashed line to infinity.

Thus in order for p to be modular, H1 and Hm must have slopes of opposite sign. This
means as you go from H1 to H2 and on to Hm, there is a least i such that Hi and Hi+1

have slopes of opposite sign. But this means that Hi and Hi+1 intersect between Li and
Li+1 and hence that the point of intersection is not on any of the horizontal lines Lk,
contradicting modularity of p. Thus at least one of the points pi must have multiplicity
2. (For example, we could have pm have multiplicity 2 so there would be no Hm, and
H1, . . . , Hm1 could all meet at a point of Lm.) �

We now state and give a simplified proof of a slightly strengthened version of [3,
Theorem 2.4].

Theorem 16. Let L be a real non-pencil supersolvable line arrangement containing
s lines. Let p be any modular point of L and let m be the multiplicity of p. Then
t2 ≥ max{s−m,m} ≥ s/2.

Proof. By Lemma 15, each of the s − m lines in L not through p contain a point of
multiplicity 2. These points are all distinct since if two different lines not through p
shared a point of multiplicity 2, no other lines in L could contain that point, hence no
line through p could contain the point, contradicting modularity of p. Thus t2 ≥ s−m.
On the other hand, by Inequality (2.3) we have t2 ≥ 3+(m−3)tm ≥ 3+(m−3) = m. �

The preceding result prompts the following question:

Question 17. Does every non-pencil supersolvable complex line arrangement of s lines
with a modular point of multiplicity m satisfy t2 ≥ max{s−m,m}?

Although Conjecture 12 is now known to be true [1], it may be of interest to see how
a special case can be obtained using the methods above.

Theorem 18. Let L = {L1, . . . , Ls} be a nontrivial complex line arrangement (i.e., not
a pencil or near pencil). Assume that every crossing point of L has multiplicity equal to
3 or 4. Then the line arrangement L is not supersolvable.

Proof. Since L is not a pencil or a near pencil by hypothesis, we can apply Inequality
(2.2). In our case, it takes the form: 3

4
t3 ≥ s.
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By (2.1), we have s(s− 1) = 6t3 + 12t4.
Suppose that L is supersolvable. Then, by (2.4), we have t2 ≥ 2n − m(s − m) − 2,

where n is the total number of crossings and m is the maximum k such that tk > 0. In
our case, this gives 0 ≥ 2(t3 + t4)−m(s−m)− 2, where m = 3 or m = 4.

First we assume m = 4 and obtain a contradiction. We have 2(s − 4) + 1 ≥ t3 + t4.
This implies 12(s− 4) + 6 ≥ 6(t3 + t4) ≥ 8s + 6t4. The last inequality follows from the
Hirzebruch inequality. So we get 6t4 + 12(s− 4) + 6 ≥ 6t3 + 12t4 = s(s− 1), where the
last equality follows from (2.1).

This, in turn, gives, 12(s− 4) + 6 ≥ 6t4 + 8s ≥ s(s− 1)− 12(s− 4)− 6 + 8s. Looking
at the first and third terms in this and rearranging terms, we get s2 − 17s + 84 ≤ 0.
But since this quadratic in s has positive leading coefficient and negative discriminant,
s2 − 17s+ 84 > 0 for every s, giving us the desired contradiction.

The calculation is similar if m = 3. By (2.4), we get 3(s − 3) + 2 ≥ 2t3. Using the
Hirzebruch inequality (2.2), we get 9(s− 3) + 6 ≥ 6t3 ≥ 8s. This forces s ≥ 21. On the
other hand, s(s − 1) = 6t3 by (2.1). Hence we obtain 9(s − 3) + 6 ≥ 6t3 = s(s − 1), or
equivalently, (s− 3)(s− 7) ≤ 0. So 3 ≤ s ≤ 7. This is not possible. �

Example 19. We do not know many nontrivial examples of complex line arrangements
where every crossing point has multiplicity 3 or 4. We get two examples by taking the
lines defined by the linear factors of (xn − yn)(xn − zn)(yn − zn) for n = 3 and n = 4.
The only other example we know is the one due to Klein [13], having 21 lines with tk = 0
except for t3 = 28 and t4 = 21.

5. Applications to unexpectedness

One of the most interesting applications of line arrangements in P2 is to finding unex-
pected curves. More specifically, given a line arrangement in P2 one considers the dual
arrangement of points. The question then is whether these points admit an unexpected
curve. For more details, see [6].

The existence of unexpected curves depends on some properties of the line arrange-
ment. If the arrangement is supersolvable, then [7, Theorem 3.17] proves that there
is an unexpected curve through the dual points if and only if s > 2m, where s is the
number of lines and m is the maximum multiplicity of a crossing point. We now use this
characterization to determine which supersolvable arrangements in the classification of
Section 3 admit unexpected curves.

5.1. Real line arrangements admitting unexpected curves. First, let us consider
a real supersolvable line arrangement L.

If L has exactly one modular point, then the only arrangement we know which satisfies
the condition s > 2m is given by considering a regular n-gon for even n and adding the
line at infinity. For more details, see [7, Theorem 3.15].

If L has exactly two modular points, then the only arrangement which admits an
unexpected curve is given by the following. Let m ≥ 6 be even and consider an ar-
rangement of m horizontal and m vertical lines, along with the line at infinity. This is
supersolvable with the two modular points of multiplicity m + 1 at infinity where the
horizontal and vertical lines meet the line at infinity. Since there are only s = 2m + 1
lines, this arrangement does not admit an unexpected curve. But we can add the two
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diagonals (as in Figure 3, which shows the case of m = 4, but in that case there are three
modular points) to this arrangement without changing the maximum multiplicity while
preserving supersolvability. Now the condition s = 2m + 3 > 2(m + 1) is satisfied and
hence the new arrangement admits an unexpected curve. This arrangement is a special
type of tic-tac-toe arrangement described in [7, Theorem 3.19]. The multiplicities of the
two modular points (or three when m = 4) in this tic-tac-toe arrangement are equal.
There are no other supersolvable arrangements with exactly two modular points which
admit unexpected curves.

The only other real supersolvable line arrangement admitting an unexpected curve is
the Fermat arrangement for n = 2 with three coordinate axes added. More precisely,
this arrangement is defined by xyz(x2 − y2)(x2 − z2)(y2 − z2) = 0. This has 9 lines and
three modular points of multiplicity 4 each (it is displayed in Figure 3).

In summary, except for possibly more supersolvable arrangements with a unique mod-
ular point, the only real supersolvable line arrangements which admit an expected curve
are listed above. We ask the following question.

Question 20. Are there any other real supersolvable line arrangements (other than the
one coming from a regular n-gon) with exactly one modular point whose dual points admit
an unexpected curve?

5.2. Complex line arrangements admitting unexpected curves. We now consider
complex line arrangements. The only examples known to us of supersolvable arrange-
ments which admit unexpected curves are obtained by adding two or three coordinate
axes to the Fermat arrangement Fn. In other words, we are considering the complex line
arrangement given by xy(xn−yn)(xn−zn)(yn−zn), or xyz(xn−yn)(xn−zn)(yn−zn) = 0.

This has s = 3n + ε lines, where ε = 2 or 3 and maximum multiplicity m = n + 2.
Hence the condition s > 2m is satisfied for ε = 2, n ≥ 3 or ε = 3, n ≥ 2. In the first case,
there is a unique modular point and in the second case, there are three modular points.

We end with the following question.

Question 21. Are there any other complex supersolvable line arrangements (different
from the arrangements coming from the Fermat arrangement described above) whose dual
points admit an unexpected curve?
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