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Abstract. For a positive integer n, let Xn → Xn−1 → . . . → X2 → X1 → X0 be a
Bott tower of height n, and let L be a nef line bundle on Xn. We compute Seshadri
constants ε(Xn, L, x) of L at any point x ∈ Xn under some conditions.

1. Introduction

Seshadri constants of line bundles reflect their local positivity. Soon after Demailly
introduced Seshadri constants in [Dem], there has been extensive work on them; they
have turned out to be important invariants. Let us briefly recall their definition.

Let X be a complex projective variety, and let L be a nef line bundle on X. For a point
x ∈ X, the Seshadri constant of L at x, denoted by ε(X,L, x), is defined to be

ε(X,L, x) := inf
x∈C

L · C
multxC

,

where the infimum is taken over all closed curves C ⊂ X passing through x. Here L · C
denotes the intersection number while multxC denotes the multiplicity of the curve C at
x. To compute the Seshadri constant ε(X,L, x), it suffices to take only irreducible and
reduced curves C in the above definition.

There is another formulation of Seshadri constants which is often useful. Let π : X̃ −→
X be the blow up of X at x and let E denote the exceptional divisor. Then

ε(X,L, x) = sup {λ ≥ 0 | π∗(L)− λE is nef}.

The Seshadri’s criterion for ampleness of a line bundle says that L is ample if and
only if ε(X,L, x) > 0 for all x ∈ X. Indeed, if L is ample then mL is very ample for
some positive integer m. Then it is easy to check that ε(X,L, x) ≥ 1

m
for all x. For the

converse, we use the Nakai-Moishezon criterion to verify ampleness of L. By induction on
the dimension of X, we can assume that Li · Y > 0 for every closed subvariety Y ⊂ X of
dimension i < n := dim(X). It remains to prove that Ln > 0, where Ln denotes the top

self-intersection number of L. For this, let π : X̃ −→ X be the blow up of X at a smooth
point x ∈ X as above. Then π∗L− ε(X,L, x)E is nef. So (π∗L− ε(X,L, x)E)n ≥ 0 which
implies Ln ≥ ε(X,L, x)n > 0. See the proof of [Har, Chapter 1, Page 37, Theorem 7.1]
for more details.

Let L be an ample line bundle on a projective variety X. It is easy to see that

ε(X,L, x) ≤ n
√
Ln .
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One then defines

ε(X,L, 1) := sup
x∈X

ε(X,L, x) .

Similarly, we have

ε(X,L) := inf
x∈X

ε(X,L, x) .

Seshadri constants have many interesting applications and they are now the focus of a
very active area of research. Some of the guiding problems on Seshadri constants involve
computing Seshadri constants, giving bounds on them, checking if they are irrational,
and interpolation problems. Computing Seshadri constants is frequently very difficult
and usually it is only possible to give some bounds. In some special cases, however, it is
possible to compute them exactly. In this paper we compute Seshadri constants of line
bundles on Bott towers at all points.

Most of the existing work on Seshadri constants has been in the case of surfaces. Among
the few cases in higher dimensions where Seshadri constants have been studied are abelian
varieties (for example, see [Na, La, Ba, Deb]), toric varieties (for example, see [DiR, HMP,
It1, It2]), Fano varieties (for example, see [BS, LZ]), and Grassmann bundles over curves
([BHNN]). For a survey of research around Seshadri constants, see [BDHKKSS].

In this paper, we study Seshadri constants for line bundles on Bott towers. We recall
that Bott towers are special classes of toric varieties constructed iteratively as projective
bundles of rank two vector bundles starting with the projective line P1. One can view
them as a generalization of Hirzebruch surfaces, which are geometrically ruled surfaces
over P1. See Section 2 for more details on Bott towers.

Seshadri constants of line bundles on Hirzebruch surfaces have been computed (see
[Sy, Ga, HM]). In this paper we generalize this computation to Bott towers under some
conditions. Our main result (Theorem 3.1) computes the Seshadri constants for an arbi-
trary nef line bundle on a Bott tower at any point.

As noted above, Seshadri constants for line bundles on toric varieties have been studied
by various authors. But for an arbitrary toric variety, Seshadri constants have been
computed only for some classes of points, such as torus fixed points or points on the
torus; see Remark 3.15 and Remark 3.17. In this paper, using the additional structure of
a Bott tower, we compute Seshadri constants at arbitrary points.

In Section 2, we recall the construction of Bott towers and prove some properties which
are used in Section 3. In Section 3, we prove our main theorem computing the Seshadri
constants of nef line bundles on Bott towers. In Subsection 3.1, we include some remarks
comparing our results with existing results in the literature and give examples illustrating
our results.

Notation. We work over the field of complex numbers. We write D1 ∼lin D2 (respec-
tively, D1 ≡ D2) if the divisors D1, D2 are linearly equivalent (respectively, numerically
equivalent). When the varietyX is clear from the context, the Seshadri constant ε(X,L, x)
is denoted simply by ε(L, x).
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2. Bott towers

In this section, after recalling the construction of Bott towers along with some results
about them, we prove some results about Bott towers that will be used in the computation
of Seshadri constants.

Bott towers are a particular class of nonsingular projective toric varieties. They were
constructed by Grossberg and Karshon (see [GK]). Grossberg and Karshon have also
shown that Bott towers are degenerations of Bott-Samelson varieties, which are desingu-
larizations of Schubert varieties.

For an integer n ≥ 0, a Bott tower of height n

Xn −→ Xn−1 −→ . . . −→ X2 −→ X1 −→ X0 = {point} (2.1)

is defined inductively as an iterated P1–bundle so that at the k-th stage of the tower, Xk

is of the form P(OXk−1
⊕L) for a line bundle L over Xk−1. So X1 is isomorphic to P1, X2

is a Hirzebruch surface and so on. A classical example is the product of projective lines,
which arises when the line bundle L is trivial at every stage.

We call any stage Xi of the tower Xn in (2.1) also a Bott tower.

2.1. Fan structure of a Bott tower. The multiplicative group C \ {0} will be denoted
by C∗. Let T ∼= (C∗)n be an algebraic torus. Define its character lattice

M := Hom(T, C∗) ∼= Zn

and the dual lattice N := HomZ(M,Z). Let ∆n be a fan in NR := N ⊗ZR which defines
the toric variety Xn under the action of the torus T . The set of edges of ∆n will be
denoted by ∆n(1). Let e1, · · · , en be the standard basis for Rn. Consider the following
vectors:

v1 = e1, · · · , vn = en,

vn+1 = −e1 + c1,2e2 + . . .+ c1,nen,

...

vn+i = −ei + ci,i+1ei+1 + . . .+ ci,nen, 1 ≤ i < n,

v2n = −en.

(2.2)
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The fan ∆n of Xn is complete, and it consists of these 2n edges and 2n maximal cones of
dimension n generated by these edges such that no cone contains both the edges vi and
vn+i for i = 1, · · · , n. It follows that any k-th stage Bott tower arises from a collection
of integers {ci,j}1≤i<j≤n as in (2.2). These integers are called the Bott numbers of the
given Bott tower. In this paper we will restrict our attention to the case when the Bott
numbers {ci,j}{1≤i<j≤n} are all positive integers.

2.2. Picard group of a Bott tower. The following is recalled from [KD, Section 2.2].

Let Di denote the invariant prime divisor corresponding to the edge vn+i, and let D′i
denote the invariant prime divisor corresponding to the edge vi for i = 1, · · · , n. We
have the following relations:

D′1 ∼lin D1, D
′
i ∼lin Di − c1,iD1 − . . .− ci−1,iDi−1 (2.3)

for i = 2, · · · , n. The Picard group of the Bott tower is

Pic(Xn) = ZD1 ⊕ · · · ⊕ ZDn .

If L is a line bundle on Xn which is numerically equivalent to a1D1 + . . .+ anDn for some
integers a1, · · · , an, then we write L ≡ (a1, · · · , an).

Let D =
∑k

i=1 aiDi be a Cartier divisor on Xn. Then D is ample (respectively, nef) if
and only if ai > 0 (respectively, ai ≥ 0) for all i = 1, · · · , n (see [KD, Theorem 3.1.1,
Corollary 3.1.2]).

2.3. Quotient construction of a Bott tower. We recall the quotient construction of
Bott tower from [BP, Theorem 7.8.7]. The Bott tower Xn can be obtained as the quotient
Un//Gn of

Un = {(z1, w1, · · · , zn, wn) ∈ C2n | |zi|2 + |wi|2 6= 0, 1 ≤ i ≤ n} ∼= (C2 \ 0)n

for the action of the group

Gn = {(tρ)ρ∈∆n(1) ∈ (C∗)∆n(1) |
∏

ρ∈∆n(1)

t〈ui,vρ〉ρ = 1} ∼= (C∗)n ,

where u1, · · · , un is a basis of M . More explicitly, the inclusion (C∗)n ↪→ (C∗)2n is given
by

(t1, · · · , tn) 7−→ (t1, t1, t
−c1,2
1 t2, t2, · · · , t

−c1,n
1 t

−c2,n
2 · · · tcn−1,n

n−1 tn, tn).

A point of Xn is denoted by the equivalence class [z1 : w1 : . . . : zn : wn]. Note that D′i
(respectively, Di) is just the vanishing locus of the coordinate zi (respectively, wi), i.e.,

D′i = V(zi) (respectively, Di = V(wi)) for 1 ≤ i ≤ n (2.4)

(see [CLS, Example 5.2.5]).

We have

Un ∼= Un−1 × (C2 \ 0), (z1, w1, · · · , zn, wn) 7−→ ((z1, w1, · · · , zn−1, wn−1)× (zn, wn))

and

Gn
∼= Gn−1 × C∗, (t1, · · · , tn) 7−→ ((t1, · · · , tn−1), tn),
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where the last factor tn acts trivially on Un−1. Thus Xn−1 = Un−1//Gn−1 is the Bott tower
associated to the Bott numbers {ci,j}{1≤i<j≤n−1}. This also induces the map

Xn −→ Xn−1, [z1 : w1 : . . . , : zn : wn] 7−→ [z1 : w1 : . . . : zn−1 : wn−1].

In general, for each 1 ≤ i ≤ n, there is a map

Xi −→ Xi−1, [z1 : w1 : . . . : zi : wi] 7−→ [z1 : w1 : . . . : zi−1 : wi−1]

together with a section given by

Xi−1 −→ Xi, [z1 : w1 : . . . : zi−1 : wi−1] 7−→ [z1 : w1 : . . . : zi−1 : wi−1 : 0 : 1] .

2.4. Basic set-up. Fix a point x ∈ Xn. Now we describe a special class of subvarieties

X
(j)
n of Xn for 1 ≤ j ≤ n equipped with rational curves Γ

(j)
n ⊂ X

(j)
n . We emphasize

that these subvarieties and rational curves depend on the given point x. However, for
convenience, we omit indicating this in the notation.

Set X
(1)
i := Xi for every 1 ≤ i ≤ n. For every 2 ≤ i ≤ n, let

πi : Xi −→ X1

be the composition of maps in (2.1). Define X
(2)
i := π−1

i (πn(x)). Note that x ∈ X
(2)
n .

Then X
(2)
n −→ X

(2)
n−1 −→ · · · −→ X

(2)
2 is a Bott tower (see Proposition 2.1 below).

For every 3 ≤ i ≤ n, let π2,i : X
(2)
i −→ X

(2)
2 be the composition of these maps. Define

X
(3)
i := π−1

2,i (π2,n(x)).

Proceeding this way, we define X
(j)
i for every 1 ≤ j ≤ i ≤ n. Note that x ∈ X(j)

n for

all 1 ≤ j ≤ n. Further, X
(i)
i = P1 for each 1 ≤ i ≤ n. See Figure 1 below.

Proposition 2.1. Each vertical tower in Figure 1 is a Bott tower with positive invariants.

Proof. Fix a point x = [z0
1 : w0

1 : . . . : z0
n : w0

n] ∈ Xn. Then for j ≤ i,

X
(j)
i = {[z0

1 : w0
1 : . . . : z0

j−1 : w0
j−1 : zj : wj : zj+1 :wj+1 : . . . : zi : wi] |

(zl, wl) ∈ C2 \ 0 for j ≤ l ≤ i} ⊂ Xi.

This can be identified with a Bott tower of dimension i− j + 1 with Bott numbers
{ck,l}{j≤k<l≤i} via the map

[z0
1 : w0

1 : . . . : z0
j−1 : w0

j−1 : zj : wj : . . . : zi : wi] 7−→ [zj : wj : . . . : zi : wi].

Similarly X
(j)
i−1 (provided j ≤ i−1) can be identified with a Bott tower of dimension i− j

with Bott numbers {ck,l}{j≤k<l≤i−1}. Also note that the map X
(j)
i → X

(j)
i−1 is defined by

[z0
1 : w0

1 : . . . : z0
j−1 : w0

j−1 :zj : wj : . . . : zi : wi]

7−→ [z0
1 : w0

1 : . . . : z0
j−1 : w0

j−1 : zj : wj : . . . : zi−1 : wi−1].

Thus each vertical tower in Figure 1 of the form

X(j)
n −→ X

(j)
n−1 −→ . . . −→ X

(j)
j+1 −→ X

(j)
j

is a Bott tower with Bott numbers {ck,l}{j≤k<l≤n}. Since all the Bott numbers were
assumed to be positive, this completes the proof. �
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P1 = X
(n)
n ⊂ X

(n−1)
n ⊂

��

X
(n−2)
n ⊂

��

... ⊂ X
(3)
n ⊂

��

X
(2)
n ⊂

��

X
(1)
n

��

P1 = X
(n−1)
n−1 ⊂ X

(n−2)
n−1 ⊂

��

.... ⊂ X
(3)
n−1 ⊂

��

X
(2)
n−1 ⊂

��

X
(1)
n−1

��

X
(n−2)
n−2 ⊂ .... ⊂ X

(3)
n−2 ⊂

��

X
(2)
n−2 ⊂

��

X
(1)
n−2

��. . . .

. .

��

.

��

.

��

X
(3)
3 ⊂ X

(2)
3 ⊂

��

X
(1)
3

��

X
(2)
2 ⊂ X

(1)
2

��

P1 = X
(1)
1

Figure 1. Construction of X
(j)
i , 1 ≤ j ≤ i ≤ n

Proposition 2.2. Let x ∈ Xn be a point. Then X
(2)
n ≡ D1.

Proof. Let x = [z0
1 : w0

1 : . . . : z0
n : w0

n] ∈ Xn be as before. Then

X(2)
n = {[z0

1 : w0
1 : z2 : w2 : . . . : zn : wn] | (zi, wi) ∈ C2 \ 0 for 2 ≤ i ≤ n}.

Note that if z0
1 = 0, then X

(2)
n = D′1 ∼lin D1 (by (2.3)), and X

(2)
n = D1 when w0

1 = 0.

So we can assume both z0
1 , w

0
1 are non-zero. Since X

(2)
n is a divisor in Xn, we can write

X(2)
n ≡ b1D1 + . . .+ bnDn, with b1, · · · , bn ∈ Z. (2.5)

Recall that the (n − 1)-dimensional cones in the fan correspond to invariant curves in
the toric variety; let V (τ) denote the invariant curve corresponding to the (n − 1)-
dimensional cone τ in the fan. Now consider the curves Ci = V (τi) in Xn, where
τi = Cone(v1, · · · , v̂i, · · · , vn) are the (n − 1)-dimensional cones in the fan ∆n. Since

Di ·Cj = δij (see [CLS, Corollary 6.4.3, Proposition 6.4.4]), (2.5) gives that bi = X
(2)
n ·Ci.

Let i > 1. Then Ci = D′1 ∩
(
∩j 6=1,iD

′
j

)
. This implies that X

(2)
n ∩ Ci = ∅, i.e., bi = 0.

Now X
(2)
n ∩ C1 = {[z0

1 : w0
1 : 0 : 1 : . . . : 0 : 1]}. So X

(2)
n · C1 = 1, i.e., b1 = 1. Thus

X
(2)
n ≡ D1. �
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Let 1 ≤ i ≤ n. Let X
(i)
n −→ X

(i)
n−1 −→ . . . −→ X

(i)
i+1 −→ X

(i)
i be a vertical Bott

tower in Figure 1. Then by the construction of projective bundles, there is a section map

X
(i)
j−1 −→ X

(i)
j for every i+ 1 ≤ j ≤ n.

For each 1 ≤ i ≤ n, let σi : X
(i)
i −→ X

(i)
n be the composition of section maps. Define

Γ(i)
n := σi(X

(i)
i ) . (2.6)

We have Γ
(i)
n ⊂ X

(i)
n for each i and Γ

(n)
n = X

(n)
n . We denote Γ

(1)
n also by Γn. See Figure 2

below.

X
(n)
n ⊂ X

(n−1)
n ⊂ ... ⊂ X

(3)
n ⊂ X

(2)
n ⊂ X

(1)
n

Γ
(n)
n

||

Γ
(n−1)
n

∪

... Γ
(3)
n

∪

Γ
(2)
n

∪

Γn = Γ
(1)
n

∪

σn(X
(n)
n )

||

σn−1(X
(n−1)
n−1 )

||

... σ3(X
(3)
3 )

||

σ2(X
(2)
2 )

||

σ1(X
(1)
1 )

||

Figure 2. Construction of Γ
(i)
n , 1 ≤ i ≤ n

Proposition 2.3. The curves Γn, Γ
(2)
n , · · · , Γ

(n)
n defined in (2.6) span NE(Xn), and they

are dual to D1, · · · , Dn.

Proof. Fix a point x = [z0
1 : w0

1 : . . . : z0
n : w0

n] ∈ Xn. Then for 1 ≤ i ≤ n,

Γ(i)
n = {[z0

1 : w0
1 : . . . : z0

i−1 : w0
i−1 : zi : wi : 0 : 1 : . . . : 0 : 1] | (zi, wi) ∈ C2 \ 0} ⊂ X(i)

n .
(2.7)

Now D1 ∩ Γ
(1)
n = {[1 : 0 : 0 : 1 : . . . : 0 : 1]}, and hence

D1 · Γ(1)
n = 1.

For 1 < i ≤ n, we have

D1 ∩ Γ(i)
n =

{
∅, if w0

1 6= 0,

Γ
(i)
n , if w0

1 = 0.

Thus D1 · Γ(i)
n = 0 when w0

1 6= 0. But D1 ∼lin D
′
1 by (2.3), and D′1 ∩ Γ

(i)
n = ∅ when

w0
1 = 0 because (z0

1 , w
0
1) ∈ C2 \ 0. Therefore, D1 · Γ(i)

n = 0 when 1 < i ≤ n. Thus for
1 ≤ i ≤ n, we have

D1 · Γ(i)
n = δi1.

Fix 1 < j ≤ n, and assume that

Dk · Γ(i)
n = δik (2.8)

whenever 1 ≤ i ≤ n and 1 ≤ k < j.

We will show that Dj · Γ(i)
n = δij for 1 ≤ i ≤ n. First note that

Dj ∩ Γ(j)
n = {[z0

1 : w0
1 : . . . : z0

j−1 : w0
j−1 : 1 : 0 : 0 : 1 : . . . : 0 : 1]}
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and hence Dj · Γ(j)
n = 1. For 1 ≤ i ≤ n, i 6= j, we have

Dj ∩ Γ(i)
n =

{
∅, if w0

j 6= 0,

Γ
(i)
n , if w0

j = 0.

Thus for w0
j 6= 0, we have that Dj · Γ(i)

n = 0. On the other hand, if w0
j = 0, then z0

j 6= 0
and hence

D′j · Γ(i)
n = 0. (2.9)

Again from (2.3), we have that

Dj ∼lin D
′
j + c1,jD1 + . . .+ cj−1,jDj−1. (2.10)

Note that w0
j = 0 is possible only if j < i, and then by (2.8), we have that

Dk · Γ(i)
n = 0 (2.11)

holds for 1 ≤ k < j.

Then from (2.9), (2.10) and (2.11), it follows that Dj · Γ(i)
n = 0. Hence Dj · Γ(i)

n = δij
holds also for 1 ≤ i ≤ n.

So Γn, Γ
(2)
n , · · · , Γ

(n)
n are dual to D1, · · · , Dn. This implies that they span NE(Xn),

because D1, · · · , Dn span the nef cone of Xn and NE(Xn) is dual to the nef cone of
Xn. �

Remark 2.4. As an immediate consequence of the descriptions in (2.4) and (2.7), we
have the following alternative characterization of the curve Γn:

Γn = D′2 ∩ . . . ∩D′n.
More generally, for a point x = [z0

1 : w0
1 : . . . : z0

n : w0
n] ∈ Xn, we have

x ∈ Γ(i)
n if and only if x ∈ D′i+1 ∩ . . . ∩D′n.

From (2.7), we see that x ∈ Γ
(i)
n implies that x is also in Γ

(i+1)
n . On the other hand,

let x ∈ Xn, and let C be an irreducible and reduced curve containing x. Assume that
x /∈ Γn. Then C 6= Γn. More generally, we have the following:

Lemma 2.5. For any 2 ≤ i ≤ n, if x ∈ Γ
(i)
n \ Γ

(i−1)
n , then C 6⊂ D′i.

Proof. Write x = [z0
1 : w0

1 : . . . : z0
n : w0

n] ∈ Xn. The condition that x ∈ Γ
(i)
n implies that

z0
j = 0 for all j ≥ i+ 1. Similarly x /∈ Γ

(i−1)
n implies that z0

j 6= 0 for some j ≥ i. Thus

z0
i 6= 0, i.e., x /∈ D′i. Since x ∈ C, it follows that C 6⊂ D′i. �

Lemma 2.6. Let L ≡ (a1, · · · , an) ∈ Pic(Xn). Then L|
X

(i)
n
≡ (ai, · · · , an) whenever

2 ≤ i ≤ n.

Proof. Let x = [z0
1 : w0

1 : . . . : z0
n : w0

n] ∈ Xn be as before. Note that

X(i)
n =

{
[z0

1 : w0
1 : · · · : z0

i−1 : w0
i−1 : zi : wi : · · · : zn : wn] | (zl, wl) ∈ C2 \ 0 for i ≤ l ≤ n

}
is isomorphic to{

[z′1 : w′1 : · · · : z′n−i+1 : w′n−i+1] | (z′l, w
′
l) ∈ C2 \ 0 for 1 ≤ l ≤ n− i+ 1

}
,
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which is a Bott tower of dimension n − i + 1, where we have identified z′j (respectively,
w′j) with zi−1+j (respectively, wi−1+j). Note that

Pic(X(i)
n ) = ZD(i)

1 ⊕ · · · ⊕ ZD(i)
n−i+1 ,

where D
(i)
j = V(w′j) for j = 1, · · · , n− i+ 1.

Let i ≤ j ≤ n, and consider

Dj ∩X(i)
n = {[z0

1 : w0
1 : . . . : z0

i−1 : w0
i−1 : zi : wi : . . . : zn : wn] ∈ Xn | wj = 0}

= V(w′j−i+1) ⊆ X(i)
n

= D
(i)
j−i+1.

Now using induction on j, we show that Dj|X(i)
n

= 0 for 1 ≤ j < i. Note that

Dj ∩X(i)
n =

{
∅, if w0

j 6= 0,

X
(i)
n , if w0

j = 0.
(2.12)

First suppose that j = 1. From (2.12), if w0
1 6= 0 then D1|X(i)

n
= 0. So assume w0

1 = 0.

Then from (2.3), we have D1 ∼lin D
′
1. Since w0

1 = 0, we have D′1 ∩X
(i)
n = ∅, which shows

that D1|X(i)
n

= 0. Now assume that Dl|X(i)
n

= 0 for all l < j. Again from (2.12), if w0
j 6= 0

then Dj|X(i)
n

= 0.

So let w0
j = 0. Then from (2.3),

Dj ∼lin D
′
j + c1,iD1 + . . .+ cj−1,jDj−1. (2.13)

Clearly, D′j ∩ X
(i)
n = ∅ as w0

j = 0. Now from (2.13) together with the induction
hypothesis, it follows that Dj|X(i)

n
= 0. This completes the proof. �

3. Seshadri constants

In this section we prove our main theorem which determines the Seshadri constants of
nef line bundles on Bott towers. We follow the notation developed in Section 2 about
Bott towers.

Let n be a positive integer. We consider Bott towers

Xn −→ Xn−1 −→ . . . −→ X2 −→ X1 −→ X0

of height n. Then X1 = P1. If L = OP1(a) is a nef line bundle on P1, then by convention,
the Seshadri constants of L are given by ε(P1,OP1(a), x) = a for every x ∈ P1.

Theorem 3.1. Let n be a positive integer. Let

Xn −→ Xn−1 −→ . . . −→ X2 −→ X1 −→ X0

be a Bott tower with positive Bott numbers. Take any x ∈ Xn. Let X
(2)
n be the subvariety

of Xn defined in Figure 1 and let Γn ⊂ Xn be the rational curve defined in Figure 2. Let
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L ≡ a1D1 + . . . + anDn be a nef line bundle on Xn. Then the Seshadri constants of L
are given by the following.

ε(Xn, L, x) =

{
min{a1, ε(X

(2)
n , L|

X
(2)
n
, x)}, if x ∈ Γn,

ε(X
(2)
n , L|

X
(2)
n
, x), if x /∈ Γn.

Remark 3.2. By Remark 2.4, the conclusion of Theorem 3.1 can re-phrased as

ε(Xn, L, x) =

{
min{a1, ε(X

(2)
n , L|

X
(2)
n
, x)}, if x ∈ D′2 ∩ . . . ∩D′n,

ε(X
(2)
n , L|

X
(2)
n
, x), if x /∈ D′2 ∩ . . . ∩D′n.

Remark 3.3. In Section 2 we defined subvarieties X
(i)
n of Xn for every i ≤ n; see Figure

1. So X
(i)
n is not defined when i > n. When n = 1, we note that X1 = Γ1. Therefore,

Theorem 3.1 is to be interpreted as follows when n = 1: Since X
(2)
1 is not defined, the

theorem asserts that ε(P1,OP1(a), x) = a for all x ∈ P1. This holds by the convention
on Seshadri constants for nef line bundles on P1.

We will prove Theorem 3.1 in this section. We start with some propositions.

Proposition 3.4. With the notation as in Theorem 3.1,

ε(L, x) ≥ min{a1, ε(X
(2)
n , L|

X
(2)
n
, x)}

for all x ∈ Xn.

Proof. Let C ⊂ Xn be an irreducible and reduced curve such that m := multx(C) > 0.

Write C = p1Γn + p2Γ
(2)
n + . . .+ pnΓ

(n)
n , for some non-negative integers p1, . . . , pn.

First suppose that C 6⊂ X
(2)
n . Then, using Proposition 2.2, we have

C ·X(2)
n = C ·D1 ≥ m(multx(X

(2)
n )) ≥ m,

by Bézout’s theorem. Proposition 2.3 implies C ·D1 = p1. So p1 ≥ m. Thus

L · C
m

=
a1p1 + . . .+ anpn

m
≥ a1.

Next suppose that C ⊂ X
(2)
n . Then from the definition of ε(L|

X
(2)
n
, x) it follows that

L · C
m

=
L|

X
(2)
n
· C

m
≥ ε(L|

X
(2)
n
, x).

Consequently, L·C
m
≥ min{a1, ε(L|X(2)

n
, x)} for all irreducible and reduced curves C ⊂

Xn. The proposition follows. �

Proposition 3.5. For n > 0, let

Xn −→ Xn−1 −→ . . . −→ X2 −→ X1 −→ X0

be a Bott tower with positive Bott numbers. Let L ≡ a1D1 + . . . + anDn be a nef line

bundle on Xn. Take any x ∈ Γn := Γ
(1)
n (see (2.6)). Then

ε(L, x) = min{a1, ε(X
(2)
n , L|

X
(2)
n
, x)}.
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Proof. We know that Γn is a smooth rational curve. Since x ∈ Γn, we have ε(L, x) ≤
L · Γn = a1.

On the other hand, we always have

ε(L, x) = inf
x∈C⊂Xn

L · C
multxC

≤ inf
x∈C⊂X(2)

n

L · C
multxC

= ε(L|
X

(2)
n
, x).

So ε(L, x) ≤ min{a1, ε(X
(2)
n , L|

X
(2)
n
, x)} and the proposition follows from Proposition

3.4. �

Lemma 3.6. With the notation as in Theorem 3.1, suppose that

L · C
multxC

≥ ε(X(2)
n , L|

X
(2)
n
, x)

for all irreducible and reduced curves C 6⊂ X
(2)
n . Then ε(L, x) = ε(X

(2)
n , L|

X
(2)
n
, x).

Proof. For any irreducible and reduced curve C ⊂ X
(2)
n , we have

L · C
multxC

≥ ε(X(2)
n , L|

X
(2)
n
, x) (3.1)

by the definition of Seshadri constants. So by the given hypothesis, (3.1) holds for all

curves in Xn. So ε(L, x) ≥ ε(X
(2)
n , L|

X
(2)
n
, x). Since the opposite inequality ε(L, x) ≤

ε(X
(2)
n , L|

X
(2)
n
, x) holds, the lemma is proved. �

Next we consider the second case of Theorem 3.1. Note that if x /∈ Γn, then n ≥ 2.

Proposition 3.7. Let n ≥ 2 be an integer. Let

Xn −→ Xn−1 −→ . . . −→ X2 −→ X1 −→ X0

be a Bott tower with positive Bott numbers. Let L ≡ a1D1 + . . . + anDn be a nef line

bundle on Xn. Take x ∈ Xn such that x /∈ Γn. Then ε(Xn, L, x) = ε(X
(2)
n , L|

X
(2)
n
, x).

Proof. We prove this by using induction on n. First set n = 2. This implies that X
(2)
2 =

P1 and L|
X

(2)
2

= (a2) by Lemma 2.6. Hence ε(X
(2)
n , L|

X
(2)
n
, x) = a2. So we need to prove

that ε(X2, L, x) = a2, under the assumption that x /∈ Γ2.

Let C = p1Γ2 + p2Γ
(2)
2 ⊂ X2 be an irreducible and reduced curve for some non-

negative integers p1, p2 such that m := multx(C) > 0. Note that x ∈ Γ
(2)
2 = X

(2)
2 .

Hence x ∈ Γ
(2)
2 \ Γ2 and we have C 6⊂ D′2 by Lemma 2.5. By (2.3),

D′2 ∼lin D2 − c1,2D1 ,

where c1,2 is a positive integer. Hence

0 ≤ C ·D′2 = C · (D2 − c1,2D1) = p2 − c1,2p1 .

So p2 ≥ p1.
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Now suppose that C 6= Γ
(2)
2 = X

(2)
2 . Then Bézout’s theorem and Proposition 2.2

together give that m ≤ C ·X(2)
2 = C ·D1 = p1. Hence

L · C
m

=
a1p1 + a2p2

m
≥ a2.

On the other hand, since x ∈ Γ
(2)
2 , it contributes to the Seshadri constant of L at x.

So ε(X2, L, x) ≤ L · Γ(2)
2 = a2. Since L·C

m
≥ a2 for every curve C 6= Γ

(2)
2 , it follows that

ε(X2, L, x) = a2.

Now assume that

• n ≥ 3, and
• the proposition holds for all Bott towers of height at most n− 1.

Note that L|
X

(2)
n
≡ (a2, · · · , an) by Lemma 2.6. By the induction hypothesis and

Proposition 3.5, we know that

ε(X(2)
n , L|

X
(2)
n
, x) =

{
min{a2, ε(X

(3)
n , L|

X
(3)
n
, x)}, if x ∈ Γ

(2)
n ,

ε(X
(3)
n , L|

X
(3)
n
, x), if x /∈ Γ

(2)
n .

Case 1: x ∈ Γ
(2)
n .

In this case, ε(X
(2)
n , L|

X
(2)
n
, x) = min{a2, ε(X

(3)
n , L|

X
(3)
n
, x)} ≤ a2.

Lemma 3.8. Let C ⊂ Xn be an irreducible and reduced curve such that C 6⊂ X
(2)
n and

m := multx(C) > 0. Then L·C
m
≥ a2.

Proof. Write C = p1Γn + p2Γ
(2)
n + . . .+ pnΓ

(n)
n for some non-negative integers p1, · · · , pn.

Since x ∈ Γ
(2)
n \ Γn, we have C 6⊂ D′2 by Lemma 2.5. From (2.3) we know that

D′2 ≡ D2 − c1,2D1 for a positive integer c1,2. Hence 0 ≤ C · D′2 = p2 − c1,2p1. This in
turn implies p2 ≥ p1.

On the other hand, since C 6⊂ X
(2)
n , we have p1 ≥ m (see the proof of Proposition

3.4). So
L · C
m

=
a1p1 + a2p2 + . . .+ anpn

m
≥ a2.

Hence the lemma is proved. �

So L·C
m
≥ a2 ≥ ε(X

(2)
n , L|

X
(2)
n
, x) for all curve C 6⊂ X

(2)
n . Then, from Lemma 3.6 it

follows that ε(L, x) = ε(X
(2)
n , L|

X
(2)
n
, x), as required.

Case 2: x /∈ Γ
(2)
n .

In this case, ε(X
(2)
n , L|

X
(2)
n
, x) = ε(X

(3)
n , L|

X
(3)
n
, x). Now choose the smallest integer i

such that x ∈ Γ
(i)
n . Note that such an i exists, since x ∈ Γ

(n)
n = X

(n)
n . It follows that

3 ≤ i ≤ n and x /∈ Γ
(j)
n for j ≤ i− 1.

By the induction hypothesis,

ε(X(2)
n , L|

X
(2)
n
, x) = ε(X(3)

n , L|
X

(3)
n
, x) = · · · = ε(X(i)

n , L|
X

(i)
n
, x).
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Note that L|
X

(i)
n

= (ai, · · · , an) by Lemma 2.6. Again, by the induction hypothesis,

ε(X(i)
n , L|

X
(i)
n
, x) = min{ai, ε(X(i+1)

n , L|
X

(i+1)
n

, x)}, if i ≤ n− 1

and ε(X(i)
n , L|

X
(i)
n
, x) = ai, if i = n.

In either case, we get that ε(X
(i)
n , L|

X
(i)
n
, x) ≤ ai.

Hence ε(X
(2)
n , L|

X
(2)
n
, x) = · · · = ε(X

(i)
n , L|

X
(i)
n
, x) ≤ ai.

Lemma 3.9. Let C ⊂ Xn be an irreducible and reduced curve such that C 6⊂ X
(2)
n and

m := multx(C) > 0. Then L·C
m
≥ ai.

Proof. Write C = p1Γn + p2Γ
(2)
n + . . .+ pnΓ

(n)
n for some non-negative integers p1, · · · , pn.

Since x ∈ Γ
(i)
n \ Γ

(i−1)
n , we have C 6⊂ D′i by Lemma 2.5. Further,

D′i ≡ Di − c1,iD1 − c2,iD2 − . . .− ci−1,iDi−1

for positive integers c1,i, · · · , ci−1,i. Hence

0 ≤ C ·D′i = pi − c1,ip1 − . . .− ci−1,ipi−1

and this gives pi ≥ p1.

On the other hand, since C 6⊂ X
(2)
n , we have that p1 ≥ m (see the proof of Proposition

3.4). So
L · C
m

=
a1p1 + a2p2 + . . .+ anpn

m
≥ ai.

Hence the lemma is proved. �

Consequently, L·C
m
≥ ai ≥ ε(X

(2)
n , L|

X
(2)
n
, x) for all curves C 6⊂ X

(2)
n . Then, by

Lemma 3.6 it follows that ε(L, x) = ε(X
(2)
n , L|

X
(2)
n
, x), as required. This completes the

proof of the proposition. �

Proof of Theorem 3.1. The theorem follows immediately from Proposition 3.5 and Propo-
sition 3.7. �

Remark 3.10. A Bott tower of height two is a Hirzebruch surface (a geometrically ruled
surface over P1) and Seshadri constants for ample line bundles on such surfaces were
computed in [Sy, Theorem 3.27] and [Ga, Theorem 4.1]. When n = 2, Theorem 3.1
recovers the results of [Sy, Ga].

Corollary 3.11. For n > 0, let Xn → Xn−1 → . . . → X2 → X1 → X0 be a Bott tower
with positive Bott numbers. Let L ≡ a1D1 + . . . + anDn be a nef line bundle on Xn. Let
x ∈ Xn. Then the following hold:

(1) ε(Xn, L, x) = min
{
L · Γ(i)

n | x ∈ Γ
(i)
n

}
= min

{
ai | x ∈ D′i+1 ∩ . . . ∩D′n

}
. In

particular, ε(Xn, L, x) = ai for some i.
(2) ε(Xn, L, x) ≥ min{a1, · · · , an}.
(3) ε(Xn, L, x) ≤ an.
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Proof. The statements in the corollary are derived from Theorem 3.1. If x /∈ Γn, then

ε(X, L, x) = ε(X
(2)
n , L|

X
(2)
n
, x) and the statements follow immediately from induction on

n.

If x ∈ Γn, then ε(X, L, x) = min{a1, ε(X
(2)
n , L|

X
(2)
n
, x)}. It is easy to see that the

statements in the corollary hold for ε(Xn, L, x) if they hold for ε(X
(2)
n , L|

X
(2)
n
, x). �

Remark 3.12. Let L be any nef line bundle on a surface X and let x ∈ X. If ε(X,L, x) =
L·C

multxC
, then C is said to be a Seshadri curve for L at x. If Xn is a Bott tower and L is

a nef line bundle on Xn, then the first statement of Corollary 3.11 shows that one of the

curves Γn, Γ
(2)
n , · · · , Γ

(n)
n (defined in (2.6)) is a Seshadri curve for L at any point x ∈ Xn.

Corollary 3.13. For n > 0, let Xn → Xn−1 → . . . → X2 → X1 → X0 be a Bott tower
with positive Bott numbers. Let L ≡ a1D1 + . . .+anDn be a nef line bundle on Xn. Then

(1) ε(Xn, L) = min{a1, · · · , an}, and
(2) ε(Xn, L, 1) = an.

Proof. We first prove (1). Let ai = min{a1, · · · , an}. It is easy to choose a point x ∈ Xn

such that x ∈ Γ
(i)
n \ Γ

(i−1)
n ; for example, we can take x = [z0

1 : w0
1 : . . . : z0

n : w0
n] such that

z0
i 6= 0 and z0

l = 0, w0
l = 1 for l > i. Then x /∈ Γ

(j)
n for any j ≤ i− 1. By Theorem 3.1,

ε(L, x) = ε(L|
X

(2)
n
, x) = . . . = ε(L|

X
(i)
n
, x) = min{ai, ε(L|X(i+1)

n
, x)} = ai .

For the last equality, use Corollary 3.11(1) and ai = min{a1, · · · , an}. Now it follows
(again, using Corollary 3.11(1)) that the smallest Seshadri constant of L is ai. Hence
ε(Xn, L) = ai.

To prove (2), choose a point x ∈ Xn satisfying x /∈ Γ
(n−1)
n . Then

ε(L, x) = ε(L|
X

(2)
n
, x) = . . . = ε(L|

X
(n)
n
, x) = ε(P1, OP1(an), x) = an .

Since all Seshadri constants are bounded above by an and the value an is achieved at some
point, it follows that ε(L, 1) = an. �

Remark 3.14. From the proof of Corollary 3.13, we observe that ε(L, 1) = ε(L, x) = an
for any x /∈ Γ

(n−1)
n . It is easy to see that for a general point x ∈ Xn, we have x /∈ Γ

(n−1)
n .

Thus ε(L, 1) is achieved at general points of Xn. On the other hand, ε(X,L) is achieved

at special points of Xn; namely, points x satisfying Γ
(i)
n \ Γ

(i−1)
n if ai = min{a1, . . . , an}.

3.1. Remarks and Examples. Now we will compare our results with some other results
on Seshadri constants on toric varieties in literature. We will then give some examples to
illustrate our results.

Remark 3.15. Seshadri constants for line bundles on toric varieties at torus fixed points
are investigated in [DiR] via generation of jets. The case of equivariant vector bundles on
toric varieties is studied in [HMP]. At a torus fixed point x, the Seshadri constant of an
equivariant vector bundle E is computed via the restriction of E to the invariant curves
passing through x (see [HMP, Proposition 3.2]). We show now that Corollary 3.11(1)
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recovers this result for line bundles. So for line bundles, Corollary 3.11(1) can be viewed
as a generalization of these results for all points on a Bott tower.

Recall that there is one-one correspondence between the set of torus-fixed points in a
smooth complete toric variety and the set of maximal cones. Let us denote the fixed point
corresponding to a maximal cone σ by xσ. Let L ≡ a1D1 + . . .+anDn be a nef line bundle
on Xn. By [HMP, Corollary 3.3], ε(L) = min

xσ
ε(L, xσ), where the minimum varies over

all maximal cones σ in ∆n. Now consider the maximal cone σ = Cone(v1, . . . , vn). Then
by [BDHKKSS, Corollary 4.2.2], we have ε(L, xσ) = min{a1, . . . , an}, since the invariant
curves passing through xσ are V (τi), where τi = Cone(v1, . . . , v̂i, . . . , vn) for i = 1, . . . , n
(see also [HMP, Proposition 3.2]). Now consider a maximal cone σ′ other that σ. Let C
be an invariant curve passing through xσ′ . Then C = V (τ) for an (n − 1)-dimensional
cone τ of the form

τ = Cone(v1, . . . , v̂i
1
, . . . , v̂ir , . . . , vn, vn+i

1
, vn+i

2
, . . . , v̂n+i

j
, . . . , vn+ir

)

for some j = 1, . . . , r, where r varies from 1 to n and D · V (τ) ≥ min{a1, . . . , an}
(see [KD, proof of Theorem 3.1.1]). Thus ε(L, xσ′) ≥ min{a1, . . . , an}. Hence ε(L) =
min{a1, . . . , an}, which agrees with Corollary 3.13 (1).

Remark 3.16. Theorem 3.1 shows that the Seshadri constants of ample line bundles on
Bott towers are integers at all points. By [BDHKKSS, Corollary 4.2.2], this holds for torus
fixed points on an arbitrary toric variety. Note however that Seshadri constants can be
non-integral on an arbitrary toric variety; see [It2, Example 1.4]. This example describes
an ample line bundle L on a toric surface X such that L2 = 3 and 3/2 ≤ ε(X,L, x) ≤

√
3

for some point x ∈ X. In fact, in this example X is a cubic surface in P3 and L = OX(1).
Let x ∈ X be a general point. By considering a hyperplane H ⊂ P3 tangent to X at x
and taking C = H ∩X, we obtain an equality ε(X,L, x) = 3/2. See also [ST, Example
2.1]).

Remark 3.17. In [It2], the author gives bounds on Seshadri constants on an arbitrary
toric variety at any point. In some cases, these bounds give exact values. To apply this in
our situation, let L ≡ a1D1 + . . .+ anDn be an ample line bundle on Xn. Let x ∈ T , the
torus of Xn. By a repeated application of [It2, Theorem 3.6], it is possible to show that
ε(L, x) = an. This is a special case of our results; for example, it follows from Corollary

3.11, since clearly x /∈ Γ
(n−1)
n .

We now give some examples illustrating our main theorem. We use the same set-up as
in Theorem 3.1. Note that in each example below Corollary 3.13 is verified.

Example 3.18. Let L ≡ (1, 3, 8, 4) ∈ Pic(X4) and x ∈ X4. We repeatedly use Theorem
3.1 and Corollary 3.11 to compute the Seshadri constants of L. If x ∈ Γ4 then ε(L, x) = 1.
So assume now that x /∈ Γ4. Then ε(L, x) = ε(L|

X
(2)
4
, x). Note that L|

X
(2)
4
≡ (3, 8, 4). If

x ∈ Γ
(2)
4 then ε(L, x) = 3. Finally, if x /∈ Γ

(2)
4 , then ε(L, x) = ε(L|

X
(3)
4
, x) = 4.
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Thus

ε(L, x) =


1, if x ∈ Γ4,

3, if x /∈ Γ4, x ∈ Γ
(2)
4 ,

4, if x /∈ Γ4, x /∈ Γ
(2)
4 .

Example 3.19. Let L ≡ (1, 2, 3, 8) ∈ Pic(X4) and x ∈ X4. Repeatedly applying Theorem
3.1 and Corollary 3.11,

ε(L, x) =


1, if x ∈ Γ4,

2, if x /∈ Γ4, x ∈ Γ
(2)
4 ,

3, if x /∈ Γ4, x /∈ Γ
(2)
4 , x ∈ Γ

(3)
4 ,

8, if x /∈ Γ4, x /∈ Γ
(2)
4 , x /∈ Γ

(3)
4 .

Example 3.20. Let L ≡ (3, 6, 2, 7) ∈ Pic(X4) and x ∈ X4. Here note that x ∈ Γ4 ⇒ x ∈
Γ

(2)
4 ⇒ x ∈ Γ

(3)
4 .

Then

ε(L, x) =


2, if x ∈ Γ4,

2, if x /∈ Γ4, x ∈ Γ
(3)
4 ,

7, if x /∈ Γ4, x /∈ Γ
(3)
4 .

Example 3.21. Let L ≡ (3, 6, 5, 7, 9) ∈ Pic(X5) and x ∈ X5. Here note that x ∈ Γ5 ⇒
x ∈ Γ

(2)
5 ⇒ x ∈ Γ

(3)
5 ⇒ x ∈ Γ

(4)
5 .

Then

ε(L, x) =



3, if x ∈ Γ5,

5, if x /∈ Γ5, x ∈ Γ
(2)
5 ,

5, if x /∈ Γ5, x /∈ Γ
(2)
5 , x ∈ Γ

(3)
5 ,

7, if x /∈ Γ5, x /∈ Γ
(2)
5 , x /∈ Γ

(3)
5 , x ∈ Γ

(4)
5 ,

9, if x /∈ Γ5, x /∈ Γ
(2)
5 , x /∈ Γ

(3)
5 , x /∈ Γ

(4)
5 .
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[HMP] M. Hering, M. Mustaţă and S. Payne, Positivity properties of toric vector bundles, Ann. Inst.

Fourier 60 (2010), 607–640.
[It1] A. Ito, Okounkov bodies and Seshadri constants, Adv. Math. 241 (2013), 246–262.
[It2] A. Ito, Seshadri constants via toric degenerations, Jour. Reine Angew. Math. 695 (2014), 151–

174.
[KD] B. Khan and J. Dasgupta, Toric vector bundles on Bott tower, Bull. Sci. Math. 155 (2019),

74–91.
[La] R. Lazarsfeld, Lengths of periods and Seshadri constants of abelian varieties, Math. Res. Lett.

3 (1996), 439–447.
[LZ] Y. Liu and Z. Zhuang, Characterization of projective spaces by Seshadri constants, Math. Zeit.

289 (2018), 25–38.
[Na] M. Nakamaye, Seshadri constants on abelian varieties, Amer. Jour. Math. 118 (1996), 621–635.
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