Non collinear points in the projective plane joint w/ Ben OConnor. p_{1}, \ldots, p_{n} points in the plane. such that no three are collinear.
Could think of plane $=\mathbb{R}^{2}$, but there are a couple of issues:
(1). Not all (pairs of) lines are "the same".

$$
\not \approx
$$

Avoid this for the moment by moving to the projective plane
(2) A set of inequations. $(\operatorname{det}(\ldots) \neq 0)$. By choosing signs over \mathbb{R}^{2}; each component is defined by inequalities \Rightarrow convex \Rightarrow topologically boring.

So move to complex numbers.

$$
X_{n}=\left\{\left(p_{1}, \ldots, p_{n}\right) \in\left(\mathbb{C} P^{2}\right)^{n} \mid \text { no } 3 \text { are collinear }\right\}
$$

a line in $\mathbb{C} \mathbb{P}^{2}$ is the solutions to linear equation, a copy of $\mathbb{C P}$!.
What are the symmetries?
(1) Reordering/relabeling the points:
$S_{n} C\left(\mathbb{C} \mathbb{P}^{2}\right)^{n}$ by permuting coordinates.
Maybe we care more about

$$
y_{n}=x_{n} / s_{n} ?
$$

(2). Symmetries of $\mathbb{C} \mathbb{P}^{2}: G L_{3} \mathbb{C}$ acts on \mathbb{C}^{3} and descends to an action. Scalar matrices act by identify. so $P G L_{3} \mathbb{C}:=G L_{3} \mathbb{C} / \mathbb{C}^{*} G \mathbb{C} P^{2}$.

Takes lines to lines, so acts on X_{n}.
Claim The action of PGL_{3} on X_{4} is free (only identity has fixed points) and transitive (any point can be taken to any other).
For $P G L_{2} G \mathbb{C P}$ ', this is about Mobius transforms being determined by 3 points.
Also generalizes to $n+2$ points "generic" points in $\mathbb{C P}{ }^{n}$ corresponding to $P G L_{n+1}$.
Proof Given $\left(p_{1}, \ldots, p_{4}\right),\left(q_{1}, \ldots, q_{4}\right) \in X_{4}$, want: $\exists!\mathbb{C}^{x} A \in P G L_{3}$ sit.

$$
A_{p_{i}} \in \mathbb{C}^{x} q_{i} \quad i=1,2,3,4
$$

Think of $p_{i}, q_{i} \in \mathbb{1}^{3}$. Non collinear \Rightarrow lin. ind.
WLOG, $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=\left(\begin{array}{ll}e_{1}, e_{2}, e_{3}, & \left.e_{1}+e_{2}+e_{3}\right) \\ (1,1,1)\end{array}\right.$ $(1,1,1)$.

$$
q_{4}=x q_{1}+y q_{2}+z q_{3} \Rightarrow x, y, z \neq 0
$$

Now take $A=\left(x q_{1}\left|y q_{2}\right| z q_{3}\right)$

Corollary $X_{4} \cong P G L_{3} \mathbb{C}$.
More generally, $\quad X_{n}=\left(P G L_{3} \mathbb{C}\right) \times\left(X_{n} / P G L_{3} \mathbb{C}\right)$ for $n \geqslant 4$.

$$
F_{n} \cong\left\{\left(p_{5}, \ldots, p_{n}\right) \left\lvert\, \begin{array}{c}
\left(e_{1}, e_{2}, e_{3}, e_{1}+e_{2}+e_{3}, p_{5}, \ldots, p_{n}\right) \\
\in X_{n}
\end{array}\right.\right\}
$$

$$
\left[\begin{array}{ll}
P G L_{3} \mathbb{C} \rightarrow & X_{n} \\
& \begin{array}{l}
\text { is a principle } P G L_{3} \mathbb{C} \\
\text { bundle with a section }
\end{array} \\
& F_{n}
\end{array} \begin{array}{l}
\text { The other projection } \cong \\
\left(X_{n} \rightarrow X_{4} \cong P G L_{3} \mathbb{C}\right.
\end{array}\right)
$$

Theorem 1 (D-O'Comor) Explicit computation of $H^{*}\left(X_{6} ; \mathbb{O}\right)$ with S_{6} action.
(Also X_{5}, but this was known before)
Theorem 2 (D-O'(ounor)

$$
H^{*}\left(X_{n} ; \mathbb{Q}\right) \cong H^{*}\left(P G L_{3} \mathbb{C} ; \mathbb{Q}\right) \otimes H^{*}\left(F_{n} ; \mathbb{Q}\right)
$$

as S_{n}-representations.
(By claim above, true as vector spaces)

$$
\begin{aligned}
& H_{\mathcal{J}}^{*}\left(X ; \mathbb{Q}_{\widetilde{\pi}}\right) \\
& \text { earization of topology ignoring torsion. }
\end{aligned}
$$

Connections:

- There is a unique smooth conic (solution set to quadratic) through each point of X_{5}. Conversely, 5 points on a conic C define. a point of X_{5}.
Since all conics are equivalent under $P G L_{3} \mathbb{C}$.

$$
\begin{aligned}
X_{5} / P G L_{3} \mathbb{C} & \cong\left\{\left(p_{1}, \ldots, p_{5}\right) \in C^{5} \mid p_{i} \neq p_{i}\right\} / \\
& \cong m_{0,5}\left(\begin{array}{c}
\text { moduli space of } 5 \text { pts } \\
\text { on a genus } 0 \\
\text { ie. } \mathbb{P}^{\prime} \cong
\end{array}\right.
\end{aligned}
$$

Kisin-Lehrer for $m_{0, n}$

- Blowing up $\mathbb{C} P^{2}$ at 6 generic points. produces a smooth cubic surface
\longrightarrow no 3 on a line, not all on a conic
 complement is M0,6.
The appropriate symmetry group for this space is $W\left(E_{6}\right)$, but the S_{6} restriction can be obtained by our methods: see also Bergvall-Gounelas.
Similarly other $X_{n} / P G L_{3} \mathbb{C}$ for $n \leq 5$ are moduli spaces of del Pezzo surfaces of $\operatorname{deg}(9-n)$.
- There are analogues of X_{n} and $Y_{n}=X_{n} / S_{n}$ defined over any field.
$\# Y_{n}\left(\mathbb{F}_{q}\right)$ is
- polynomial for $n \leqslant 6$, elementary
- quasi-polynomial for $n=7,8,9$
(ie. given by one of finitely many polynomials, chosen by q mod ...) elementary for 7,8.
$n=9$ by Iampolskaia- Skorobogatov - Sorokin
- Not quasipolynomial for $n=10$ In progress work by IKKLPW
- Not all configurations are the same:

(More strata for higher n.) \rightarrow Different choices for $7^{\text {th }}$ point given
\rightarrow Different choices for $7^{\text {th }}$ point given the first 6 .
\leadsto Topology of various strata for n large can be arbitrarily complicated "-
\leadsto we expect them not to "cancel out" and affect the topology of X_{n}.

Mnév's universality.
says any algebraic relation can be encoded in combinatorics of collinearity. see also.' Vakil, "Murphy law...

Key Ideas:
Connection between $H^{*}(X(\mathbb{C}))$ and $\# X\left(\mathbb{F}_{q}\right)$ as a function of q

Weil conjectures + comparison theorems

+ knowledge about + knowledge about class
Usual form: $H_{c}^{*}(X(\mathbb{C})) \xrightarrow{\text { knowledge }} \# X\left(\mathbb{F}_{q}\right)$
In "good" situations, can reverse the arrow.

In good slluations, can reverse the arrow.

- Why are our spaces, $X_{n}=X_{n}(\mathbb{C})$, "good"?

For $n \leq 6, \quad$| X_{n} |
| :---: |
| X_{n-1} | is a fiber

The space of choices for the $n^{\text {th }}$ point (fiber) depends continuously on the first $n-1$
What is the fiber?
$\mathbb{P}^{2} \backslash \bigcup\{$ lines joining each pair of the first $(n-1) p-t s\}$
This is a hyperplane complement, so
H^{*} is generated by classes pulled back $H^{*}\left(\mathbb{C}^{d} \backslash \mathbb{C}^{d-1}\right) \simeq H^{*}(\mathbb{C} \backslash 0)$, which are "good" (the best one can expect, even).
(e.g. by Goresky-Macpherson)

- We also want to know the S_{n} action on $H^{*}(x: \mathbb{R}) \quad T 1 . \therefore \ldots .11$ I. t. limner :r...........
than $\# X\left(\mathbb{F}_{q}\right)$, ins corresponds is specifically. the action of than $\# X\left(\mathbb{F}_{q}\right)$, specifically. the action of Frobq on points of $X_{n}\left(\mathbb{F}_{q d}\right)$ that produce $x \leftrightarrow x^{q}$ points of $\left(X_{n} / S_{n}\right)\left(\mathbb{F}_{q}\right)$.

What is $\left(X_{n} / S_{n}\right)\left(F_{q}\right)$?
$\operatorname{NOT}^{\prime} X_{n}\left(\mathbb{F}_{q}\right) / S_{n}=\left(X_{n}\left(\overline{\mathbb{F}_{q}}\right)^{\text {Prob }_{q}}\right) / S_{n}$. $\operatorname{but}\left(X_{n}\left(\overline{\mathbb{F}_{q}}\right) / S_{n}\right)^{F_{\text {rob }}}$

For comparison, $x^{2}+1$ is an \mathbb{R}-polynomial, so its set of roots $\{ \pm i\}$ is defined over \mathbb{R}, but not the individual roots.

$$
\left(S_{y m}{ }^{2} A^{\prime}\right)(\mathbb{R})=\left(\text { Sym }^{2} \mathbb{C}\right)^{z \mapsto \bar{z}} \neq \operatorname{Sym}^{2} \mathbb{R}
$$

Since $\overline{F_{q}}=\bigcup_{d \geqslant 1} \mathbb{F}_{q d}$, any such orbit actually realized in some finite extension

$$
X\left(\mathbb{F}_{q^{d}}\right)
$$

So we need to count points in $X_{n}\left(\overline{F_{q}}\right)$

So we need to comm points in $X_{n}\left(\mathrm{It}_{q}\right)$ on which Froby acts by some element of S_{n}.
More precisely, we need to count them by conjugacy class in S_{r}, since the actual element depends on the choice of \mathbb{F}_{q} (or rather $\overline{\mathbb{F}}_{q}$).

Combinatorics of points and lines in $\mathbb{P}^{2}\left(\mathbb{F}_{q^{d}}\right)$

+ "twisted Grothendieck-Lefschetz trace formula" (ie. for twisted/local coefficients)

$$
\sum_{p \in X\left(\mathbb{F}_{q}\right)} \operatorname{Tr}\left(\mathrm{Frob}_{q} \mid \mathcal{V}_{p}\right)=\sum_{i} \operatorname{Tr}\left(\mathrm{Frob}_{q}: H_{\mathrm{e},, c}^{2 n-i}(X ; \mathcal{V})\right),
$$

+ character theory
=Theorem

