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Abstract. We study negative curves on surfaces obtained by blowing up special con�gu-
rations of points in P2. Our main results concern the following con�gurations: very general
points on an irreducible cubic, 3�torsion points on an elliptic curve and nine Fermat points.
As a consequence of our analysis, we also show that the Bounded Negativity Conjecture holds
for the surfaces we consider. The note contains also some problems for future attention.

1. Introduction

Negative curves on algebraic surfaces are an object of classical interest. One of the most
prominent achievements of the Italian School of algebraic geometry was Castelnuovo's Con-
tractibility Criterion.

De�nition 1.1 (Negative curve). We say that a reduced and irreducible curve C on a smooth
projective surface is negative, if its self-intersection number C2 is less than zero.

Example 1.2 (Exceptional divisor, (−1)-curves). Let X be a smooth projective surface and
let P ∈ X be a closed point. Let f : BlP X → X be the blow up of X at the point P .
Then the exceptional divisor E of f (i.e., the set of points in BlP X mapped by f to P ) is
a negative curve. More precisely, E is rational and E2 = −1. By a slight abuse of language
we will call such curves simply (−1)�curves.

Castelnuovo's result asserts that the converse is also true, see [13, Theorem V.5.7] or [2,
Theorem III.4.1].

Theorem 1.3 (Castelnuovo's Contractibility Criterion). Let Y be a smooth projective surface
de�ned over an algebraically closed �eld. If C is a rational curve with C2 = −1, then there
exists a smooth projective surface X and a projective morphism f : Y → X contracting C to
a smooth point on X. In other words, Y is isomorphic to BlP X for some point P ∈ X.

The above result plays a pivotal role in the Enriques-Kodaira classi�cation of surfaces.

Of course, there are other situations in which negative curves on algebraic surfaces appear.

Example 1.4. Let C be a smooth curve of genus g(C) ≥ 2. Then the diagonal ∆ ⊂ C × C
is a negative curve as its self-intersection is ∆2 = 2− 2g.
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It is quite curious that it is in general not known if for a general curve C, there are other
negative curves on the surface C×C, see [15]. It is in fact even more interesting, that there is
a direct relation between this problem and the famous Nagata Conjecture. This was observed
by Ciliberto and Kouvidakis [6].

There is also a connection between negative curves and the Nagata Conjecture on general
blow ups of P2. We recall the following conjecture about (−1)-curves which in fact implies
the Nagata Conjecture; see [5, Lemma 2.4].

Conjecture 1.5 (Weak SHGH Conjecture). Let f : X → P2 be the blow up of the projective
plane P2 in general points P1, . . . , Ps. If s ≥ 10, then the only negative curves on X are the
(−1)-curves.

On the other hand, it is well known that already a blow up of P2 in 9 general points carries
in�nitely many (−1)�curves.

One of the central and widely open problems concerning negative curves on algebraic
surfaces asks whether on a �xed surface negativity is bounded. More precisely, we have the
following conjecture (BNC in short). See [3] for an extended introduction to this problem.

Conjecture 1.6 (Bounded Negativity Conjecture). Let X be a smooth projective surface.
Then there exists a number τ such that

C2 ≥ τ

for any reduced and irreducible curve C ⊂ X.

If the Conjecture holds on a surface X, then we denote by b(X) the largest number τ
such that the Conjecture holds. It is known (see [3, Proposition 5.1]) that if the negativity
of reduced and irreducible curves is bounded below, then the negativity of all reduced curves
is also bounded below.

Conjecture 1.6 is known to fail in the positive characteristic; see [9, 3]. In fact Example
1.4 combined with the action of the Frobenius morphism provides a counterexample. In
characteristic zero, Conjecture 1.6 is open in general. It is easy to prove BNC in some cases;
see Remark 3.11 for an easy argument when the anti-canonical divisor of X is nef. However,
in many other cases the conjecture is open. In particular the following question is open and
answering it may lead to a better understanding of Conjecture 1.6.

Question 1.7. Let X, Y be smooth projective surfaces and suppose that X and Y are
birational and Conjecture 1.6 holds for X. Then does Conjecture 1.6 hold for Y also?

This is not known even in the simplest case, when one of surfaces is P2 (where Conjecture
1.6 obviously holds) and the other is a blow up of P2. If we blow up general points, then
this is governed by Conjecture 1.5. The question is of interest also for special con�gurations
of points in P2 and we focus our research here on such con�gurations. More concretely, we
consider some examples of such special rational surfaces and list all negative curves on them.
In particular, we study blow ups of P2 at certain points which lie on elliptic curves. Our
main results classify negative curves on such surfaces; see Theorems 2.1, 3.3 and 3.7. As
a consequence, we show that Conjecture 1.6 holds for such surfaces. This recovers some
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existing results of Harbourne and Miranda [12], [11]. Additionally we compute values of the
number b(X) on such surfaces.

2. Very general points on an irreducible cubic

To put our results in Section 3 into perspective, we recall results on negative curves on
blow ups of P2 at s very general points on an plane curve of degree 3. Geometry of such
surfaces was studied by Harbourne in [10].

Theorem 2.1 (Points on a cubic curve). Let D be an irreducible and reduced plane cubic
and let P1, . . . , Ps be smooth points on D. Let f : X −→ P2 be the blow up at P1, . . . , Ps. If
C ⊂ X is any reduced and irreducible curve such that C2 < 0, then

a) C is the proper transform of D, or
b) C is a (−1)-curve, or
c) C is a (−2)-curve.

Moreover, if the points P1, . . . , Ps are very general, then only cases a) and b) are possible.

Proof. The �rst part of Theorem follows from [11, Remark III.13] and also from our Remark
3.11. The "moreover" part follows from the following abstract argument. A negative curve
on X is either a component of −KX , or a (−1)-curve or a (−2)-curve. But a (−2)-curve
is in ker(Pic(X) → Pic0(−KX)), which is 0 for very general points, so there are no (−2)-
curves. �

Corollary 2.2. Let X be a surface as in Theorem 2.1 with s > 0 very general points. Then
Conjecture 1.6 holds for X and we have

b(X) = min {−1, 9− s} .

3. Special points on a smooth cubic

In this section, we consider blow ups of P2 at 3-torsion points of an elliptic curve as well
as the points of intersection of the Fermat arrangement of lines. In order to consider these
two cases, we deal �rst with the following numerical lemma which seems quite interesting in
its own right.
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Lemma 3.1. Let m1, . . . ,m9 be nonnegative real numbers satisfying the following 12 inequa-
lities:

m1 +m2 +m3 ≤ 1,(3.1)

m4 +m5 +m6 ≤ 1,(3.2)

m7 +m8 +m9 ≤ 1,(3.3)

m1 +m4 +m7 ≤ 1,(3.4)

m2 +m5 +m8 ≤ 1,(3.5)

m3 +m6 +m9 ≤ 1,(3.6)

m1 +m5 +m9 ≤ 1,(3.7)

m2 +m6 +m7 ≤ 1,(3.8)

m3 +m4 +m8 ≤ 1,(3.9)

m1 +m6 +m8 ≤ 1,(3.10)

m2 +m4 +m9 ≤ 1,(3.11)

m3 +m5 +m7 ≤ 1.(3.12)

Then m2
1 + · · ·+m2

9 ≤ 1.

Proof. Assume that the biggest number amongm1, . . . ,m9 ism1 = 1−m for some 0 ≤ m ≤ 1.

Consider the following four pairs of numbers

p1 = (m2,m3), p2 = (m4,m7), p3 = (m9,m5), p4 = (m6,m8).

These are pairs such that together with m1 they occur in one of the 12 inequalities. In each
pair one of the numbers is greater or equal than the other. Let us call this bigger number
a giant. A simple check shows that there are always three pairs, such that their giants are
subject to one of the 12 inequalities in the Lemma.

Without loss of generality, let p1, p2, p3 be such pairs. Also without loss of generality, let
m2, m4 and m9 be the giants. Thus m2 +m4 +m9 ≤ 1. Assume that also m6 is a giant.

Inequality m2 +m3 ≤ m implies that

m2
2 +m2

3 = (m2 +m3)
2 − 2m2m3 ≤ m(m2 +m3)− 2m2m3.

Observe also that

(m2 +m3)
2 − 4m2m3 ≤ m(m2 −m3).

Analogous inequalities hold for pairs p2, p3 and p4. Therefore

m2
2 +m2

3 +m2
4 +m2

7 +m2
5 +m2

9 ≤
≤ m(m2 +m4 +m9 +m3 +m7 +m5)− 2m2m3 − 2m4m7 − 2m5m9 ≤

≤ m+
[
m(m3 +m7 +m5)− 2m2m3 − 2m4m7 − 2m5m9

]
.
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But we have also

m2
2 +m2

3 +m2
4 +m2

7 +m2
5 +m2

9 =

= (m2 +m3)
2 + (m4 +m7)

2 + (m5 +m9)
2 − 2m2m3 − 2m4m7 − 2m5m9 =

= (m2 +m3)
2 − 4m2m3 + (m4 +m7)

2 − 4m4m7+

+(m5 +m9)
2 − 4m5m9 + 2m2m3 + 2m4m7 + 2m5m9 ≤

≤ m(m2 −m3) +m(m4 −m7) +m(m9 −m5) + 2m2m3 + 2m4m7 + 2m5m9 ≤
≤ m−

[
m(m3 +m7 +m5)− 2m2m3 − 2m4m7 − 2m5m9

]
,

which obviously gives

m2
2 +m2

3 +m2
4 +m2

7 +m2
5 +m2

9 ≤ m.

Since

m2
6 +m2

8 ≤ m2
6 +m6m8 ≤ m6(m6 +m8) ≤ (1−m)m,

we get that the sum of all nine squares is bounded by

(1−m)2 +m+ (1−m)m = 1. �

If we think of numbers m1, . . . ,m9 as arranged in a 3× 3 matrix m1 m2 m3

m4 m5 m6

m7 m8 m9

 ,

then the inequalities in the Lemma 3.1 are obtained considering the horizontal, vertical triples
and the triples determined by the condition that there is exactly one element mi in every
column and every row of the matrix (so determined by permutation matrices). Bounding
sums of only such triples allows us to bound the sum of squares of all entries in the matrix. It
is natural to wonder, if this phenomena extends to higher dimensional matrices. One possible
extension is formulated as the next question.

Problem 3.2. LetM = (mij)i,j=1...k be a matrix whose entries are non-negative real numbers.
Assume that all the horizontal, vertical and permutational k-tuples of entries in the matrix
M are bounded by 1. Is it true then that the sum of squares of all entries of M is also
bounded by 1?

3.1. Torsion points. We now consider a blow up of P2 at 9 points which are torsion points
of order 3 on an elliptic curve embedded as a smooth cubic.

Theorem 3.3 (3�torsion points on an elliptic curve). Let D be a smooth plane cubic and let
P1, . . . , P9 be the �exes of D. Let f : X → P2 be the blow up of P2 at P1, . . . , P9. If C is a
negative curve on X, then

a) C is the proper transform of a line passing through two (hence three) of the points
P1, . . . , P9, and C

2 = −2 or
b) C is an exceptional divisor of f and C2 = −1.
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Proof. It is well known that there is a group law on D such that the �exes are 3�torsion
points. Since any line passing through two of the torsion points automatically meets D in a
third torsion point, there are altogether 12 such lines. The torsion points form a subgroup
of D which is isomorphic to Z3 × Z3. We can pick this isomorphism so that

P1 = (0, 0), P2 = (1, 0), P3 = (2, 0),

P4 = (0, 1), P5 = (1, 1), P6 = (2, 1),

P7 = (0, 2), P8 = (1, 2), P9 = (2, 2).

This implies that the following triples of points are collinear (note that these are exactly
triples of indices in inequalities from (3.2) to (3.10):

(P1, P2, P3), (P4, P5, P6), (P7, P8, P9), (P1, P4, P7),

(P2, P5, P8), (P3, P6, P9), (P1, P5, P9), (P2, P6, P7),

(P3, P4, P8), (P1, P6, P8), (P2, P4, P9), (P3, P5, P7).

Let C be a reduced and irreducible curve on X di�erent from the exceptional divisors of f
and the proper transforms of lines through the torsion points. Then C is of the form

C = dH − k1E1 − . . .− k9E9,

where E1, . . . , E9 are the exceptional divisors of f and k1, . . . , k9 ≥ 0 and d > 0 is the degree
of the image f(C) in P2.

For i = 1, . . . , 9, let mi = ki
d
. Since C is di�erent from proper transforms of the 12 lines

distinguished above, taking the intersection product of C with the 12 lines, and dividing by
d, we obtain exactly the 12 inequalities in Lemma 3.1. The conclusion of Lemma 3.1 implies
then that

C2 = d2 −
9∑
i=1

m2
i ≥ 0,

which �nishes our argument. �

Corollary 3.4. For the surface X in Theorem 3.3 Conjecture 1.6 holds with

b(X) = −2.

Remark 3.5. Theorem 3.3 �ts in a more general setting of elliptic �brations. Negative curves
on surfaces X with h0(X,−mKX) ≥ 2 for some m ≥ 2 have been studied by Harbourne and
Miranda in [12].

The observation in Remark 3.5 allows us to explain results of Theorem 3.3 from another
point of view. Let D̃ be the proper transform of D. Then, it is a member of the Hesse
pencil, see [1], in particular the linear system |D̃| de�nes a morphism from X to P1. The
components of reducible �bers are (−2) curves. There are 12 of them and they are proper
transforms of lines passing through triples of blown-up points. The exceptional divisors over
these points are the (−1) curves. These are sections of the �bration determined by D̃.

Clearly Corollary 3.4 follows also from the adjunction and the fact that −KX is e�ective,
see Remark 3.11. Of course, there is no reason to restrict to 3�torsion points.
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Remark 3.6. With the same approach one can show that m ≥ 4 the Bounded Negativity
Conjecture holds on the blow ups of P2 at all the m�torsion points of an elliptic curve
embedded as a smooth cubic and we have

b(X) = 9−m2.

3.2. Fermat con�guration of points. The 9 points and 12 lines considered in subsection
3.1 form the famous Hesse arrangement of lines; see [14]. Any such arrangement is projectively
equivalent to that obtained from the �ex points of the Fermat cubic x3 + y3 + z3 = 0 and the
lines determined by their pairs. Explicitly in coordinates we have then

P1 = (1 : ε : 0), P2 = (1 : ε2 : 0), P3 = (1 : 1 : 0),

P4 = (1 : 0 : ε), P5 = (1 : 0 : ε2), P6 = (1 : 0 : 1),

P7 = (0 : 1 : ε), P8 = (0 : 1 : ε2), P9 = (0 : 1 : 1),

for the points and

x = 0, y = 0, z = 0, x+ y + z = 0, x+ y + εz = 0, x+ y + ε2z = 0

x+εy+z = 0, x+ε2y+z = 0, x+εy+εz = 0, x+εy+ε2z = 0, x+ε2y+εz = 0, x+ε2y+ε2z = 0,

for the lines, where ε is a primitive root of unity of order 3.

Passing to the dual plane, we obtain an arrangement of 9 lines de�ned by the linear factors
of the Fermat polynomial

(x3 − y3)(y3 − z3)(z3 − x3) = 0.

These lines intersect in triples in 12 points, which are dual to the lines of the Hesse ar-
rangement. The resulting dual Hesse con�guration has the type (94, 123) and it belongs to a
much bigger family of Fermat arrangements; see [17]. Figure 1 is an attempt to visualize this
arrangement (which cannot be drawn in the real plane due to the famous Sylvester-Gallai
Theorem; for instance, see [16]).

Figure 1. Fermat con�guration of points
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It is convenient to order the 9 intersection points in the a�ne part in the following way:

Q1 = (ε : ε : 1), Q2 = (1 : ε : 1), Q3 = (ε2 : ε : 1),
Q4 = (ε : 1 : 1), Q5 = (1 : 1 : 1), Q6 = (ε2 : 1 : 1),
Q7 = (ε : ε2 : 1), Q8 = (1 : ε2 : 1), Q9 = (ε2 : ε2 : 1).

With this notation established, we have the following result.

Theorem 3.7 (Fermat points). Let f : X → P2 be the blow up of P2 at Q1, . . . , Q9. If C is
a negative curve on X, then

a) C is the proper transform of a line passing through two or three of the points Q1, . . . , Q9,
or

b) C is a (−1)-curve.

Proof. The proof of Theorem 3.3 works with very few adjustments.

Let us assume, to begin with, that C is a negative curve on X, distinct from the curves
listed in the theorem. Then

C = dH − k1E1 − . . .− k9E9,

for some d > 0 and k1, . . . , k9 ≥ 0. We can also assume that d is the smallest number for
which such a negative curve exists. As before, we set

mi =
ki
d

for i = 1, . . . , 9.

Then the inequalities (3.1) to (3.9) follow from the fact that C intersects the 9 lines in the
arrangement non-negatively.

If one of the remaining inequalities (3.10), (3.11) or (3.12) fails, then we perform a standard
Cremona transformation based on the points involved in the failing inequality. For example,
if (3.10) fails, we make Cremona based on points Q1, Q6 and Q8. Note that these points are
not collinear in the set-up of our Theorem. Since C is assumed not to be a line through
any two of these points, its image C ′ under Cremona is a curve of strictly lower degree,
negative on the blow up of P2 at the 9 points. The points Q1, . . . , Q9 remain unchanged
by the Cremona because, as already remarked, all dual Hesse arrangements are projectively
equivalent. Then C ′ is again a negative curve on X of degree strictly lower than d, which
contradicts our choice of C such that C ·H is minimal.

Hence, we can assume that the inequalities (3.10), (3.11) and (3.12) are also satis�ed.
Then we conclude exactly as in the proof of Theorem 3.3. �

Remark 3.8. The surface X considered in Theorem 3.7 is a non-extremal Jacobian rational
elliptic surface and contains in�nitely many (−1)-curves. See [12] for more details.

In fact, we are in the position to identify all these (−1)-curves. Let L(X, Y ) denote the
line determine two distinct points X and Y . Let

L = {U1 = L(Q1, Q6), U2 = L(Q1, Q8), U3 = L(Q6, Q8), V1 = L(Q2, Q4),

V2 = L(Q2, Q9), V3 = L(Q4, Q9),W1 = L(Q3, Q5),W2 = L(Q3, Q7),W3 = L(Q5, Q7)}
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Cremona deg Q1 Q6 Q8 Q2 Q4 Q9 Q3 Q5 Q7

1 1 1 0 0 0 0 0 0 0

ϕ2 2 1 1 0 1 1 1 0 0 0

ϕ3 4 1 1 0 1 1 1 2 2 2

ϕ1 6 3 3 2 1 1 1 2 2 2

ϕ2 9 3 3 2 4 4 4 2 2 2

ϕ3 12 3 3 2 4 4 4 5 5 5

Table 1. A series of Cremona transformations

be the set of lines determined by pairs of points Qi, Qj with 1 ≤ i < j ≤ 9 which contain only
2 points Qk. These lines can grouped in three �triangles�, which is indicated by the letters
U, V and W used to labeling relevant triples. Vertices of these triangles determine standard
Cremona transformations, which we denote by ϕ1 for the U -triangle, i.e., points Q1, Q6, Q8

and ϕ2 and ϕ3 for the V and W -triangles respectively.

Corollary 3.9. Let C ⊂ X be a (−1)-curve. Then either C ∈ L or there exists a positive
integer r ≥ 1 and a sequence of Cremona transformations ϕ = ϕir ◦ . . . ◦ϕi1 with i1, . . . , ir ∈
{1, 2, 3} such that C is the image under ϕ of one of the lines in L.

Proof. The statement follows directly from the proof of Theorem 3.7. There is an interesting
regularity in applying Cremona transformation, which we would like to present additionally.
This is done best by the way of an example. Recall that there is the following general rule
concerning changes of degree and multiplicities, when applying Cremona transformation. Let
ϕ be the standard Cremona transformation based on a triangle F,G,H. Let C be a curve
of degree d, di�erent from the three lines L(F,G), L(F,H) and L(G,H) passing through
the points F,G,H with multiplicities mF ,mG,mH . Let k = d−mF −mG −mH . Then the
image curve C ′ = ϕ(C) has degree d + k and multiplicities mF + k, mG + k, mH + k in the
base points of the reverse Cremona transformation. In Table 3.2 we present how the line
L(Q1, Q6) transforms under the sequence of Cremona transformations indicated in the �rst
column. If it is possible to perform one of 2 Cremonas, we indicate it by writing the chosen
one in boldface. Of course, it is always possible to choose the Cremona performed in the
last step but as this leads to nothing new, we ignore this option. The diagram in Figure 2
indicates possible bifurcations at the places where one of two Cremona transformations can
be performed. For simplicity, we put only degree of resulting (−1)-curves in the diagram.

�

The diagram in Figure 2 seems quite interesting in its own right. There is a vertical sym-
metry, and it leads to a scheme of numbers indicated in Table 2, which has some reminiscences
to the Pascal's triangle.

Problem 3.10. Investigate numerical properties of the Cremona hexal. For example, �nd a
direct formula for the entry in line i and column j.
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1

2 2

4 4

6 65

9 8 9

1210 1012

16 14 14 16

ϕ2 ϕ3

ϕ3 ϕ2

ϕ1 ϕ2 ϕ3 ϕ1

ϕ2 ϕ1 ϕ3

ϕ3 ϕ1 ϕ2 ϕ3 ϕ1 ϕ2

ϕ1 ϕ3 ϕ2 ϕ1

Figure 2. Bifurcations of Cremona transformations

1

2 2

4 4

6 5 6

9 8 9

12 10 10 12

16 14 14 16

Table 2. Cremona hexal

Remark 3.11. If we are interested only in the bounded negativity property on X, then there
is a simple proof. Indeed, if C ⊂ X is a reduced and irreducible curve, the genus formula
gives

1 +
C · (C +KX)

2
≥ 0.



NEGATIVE CURVES ON SPECIAL RATIONAL SURFACES 11

Now, since the anti-canonical divisor on the blow up of P2 in the 9 Fermat points is e�ective,
we conclude that C is a component of −KX or

C2 ≥ −2− CKX ≥ −2.

Having classi�ed all the negative curves on the blow up of P2 at the 9 Fermat points, it is
natural to wonder about the negative curves on blow ups of P2 arising from the other Fermat
con�gurations. Note that the argument given in Remark 3.11 is no longer valid, since −KX

is not nef or e�ective anymore. So it will be interesting to ask whether BNC holds for such
surfaces. We pose the following problem.

Problem 3.12. For a positive integer m, let Z(m) be the set of all points of the form

(1 : εα : εβ),

where ε is a primitive root of unity of order m and 1 ≤ α, β ≤ m. Let fm : X(m) → P2 be
the blow up of P2 at all the points of Z(m). Is the negativity bounded on X(m)? If so, what
is the value of b(X(m))?

We end this note by the following remark which discusses bounded negativity for blow
ups of P2 at 10 points.

Remark 3.13. Let X denote a blow up of P2 at 10 points. As mentioned before, if the
blown up points are general, then Conjecture 1.5 predicts that the only negative curves on
X are (−1)-curves. This is an open question. On the other hand, let us consider a couple of
examples of special points.

Let X be obtained by blowing up the 10 nodes of an irreducible and reduced rational
nodal sextic. Such surfaces are called Coble surfaces (these are smooth rational surfaces X
such that | −KX | = ∅, but | − 2KX | 6= ∅). Then it is known that BNC holds for X. In fact,
we have C2 ≥ −4 for every irreducible and reduced curve C ⊂ X; see [4, Section 3.2].

Now let X be the blow up of 10 double points of intersection of 5 general lines in P2. Then
−KX is a big divisor and by [18, Theorem 1], X is a Mori dream space. For such surfaces,
the submonoid of the Picard group generated by the e�ective classes is �nitely generated.
Hence BNC holds for X ([9, Proposition I.2.5]).
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