Topology, Mid-semester Exam February 22, 2012

Do any five problems. Each problem is worth 20 points.

- (1) (a) Show that a connected metric space having more than one point is uncountable.
 - (b) Let $\{A_n\}_{n\geq 1}$ be a sequence of connected subsets of a topological space X such that $A_n \cap A_{n+1} \neq \emptyset$ for all $n \geq 1$. Show that $\cup A_n$ is connected.
- (2) Determine if the following pairs of spaces are homeomorphic. Justify your answers.
 (a) ℝ and ℝⁿ, with n > 1;
 - (b) $\{(x,y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$ and $\{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\}$ (in subspace topology);
 - (c) order topology and standard topology on \mathbb{R} ;
 - (d) \mathbb{R}_l and \mathbb{R} under finite complement topology.
- (3) True or False. Justify your answers.
 - (a) A space with a countable basis has a countable dense subset.
 - (b) A compact subset of any topological space is closed.
 - (c) A finite Hausdorff space is totally disconnected.
 - (d) Any ordered set is Hausdorff in the order topology.
- (4) (a) Show that $[0,1] \subset \mathbb{R}_l$ is not limit point compact (in the subspace topology).
 - (b) Let (X, d) be a metric space and let $A \subset X$ be compact. Fix $x \in X \setminus A$. Show that there exist points $a_0, a_1 \in A$ such that $d(a_0, x) \leq d(a, x) \leq d(a_1, x)$ for all $a \in A$.
- (5) Let X be a compact metric space and let $f: X \to X$ be an isometry. Show that f is a homeomorphism.
- (6) Show that an arbitrary intersection of compact subsets of a **Hausdorff** space is compact. Give an example to show that the conclusion does not hold when X is not Hausdorff.
- (7) Let $X = [0, 1]^{[0,1]}$. Show that X (with product topology) is **not** sequentially compact by exhibiting a sequence in X which has no convergent subsequence.

Definitions

- 1. \mathbb{R}_l is the set \mathbb{R} with the lower limit topology: basic open sets are of the form [a, b), for real numbers a, b.
- 2. Let (X, d) be a metric space. A continuous map $f : X \to X$ is called an **isometry** if d(f(x), f(y)) = d(x, y) for all $x, y \in X$.
- 3. A space is **limit point compact** if every infinite subset has a limit point.
- 4. A space X is **totally disconnected** if the only connected subsets of X are singletons.
- 5. Finite complement topology: U is open if it is \emptyset or the complement of U is finite.