
SESHADRI CONSTANTS ON SURFACES

KRISHNA HANUMANTHU

1. Preliminaries

By a surface, we mean a projective nonsingular variety of dimension 2 over C. A curve C
on a surface X is an effective divisor. The group of divisors on X modulo linear equivalence
is isomorphic to isomorphism classes of line bundles on X. We use the additive notation of
divisors and multiplicative notation of line bundles interchangeably.

We use notation from [2], especially from Chapter 5. A basic reference for much of this
material is [3, 1.5, 5.1, 5.2].

Let X be a surface and let x ∈ X. We will often work with the blow up π : X1 → X
of X at x. We denote the exceptional divisor of π by E = π−1(x). Then we have an
isomorphism Div(X1) ∼= Div(X) ⊕ Z, where Div(−) denotes the group of divisors modulo
linear equivalence. The intersection pairing on Div(X1) is completely determined by the
following (see [2, Proposition 5.3.2]).

(1) π󰂏(C) · π󰂏(D) = C ·D for C,D ∈ Div(X);
(2) π󰂏(C) · E = 0 for C ∈ Div(X);
(3) E2 = −1.

The following is a nice argument for (3)1.

Choose two curves C,D on X which meet transversally at x. Then the strict transforms
of C,D are given by π󰂏(C)−E and π󰂏(D)−E respectively (see [2, Proposition 5.3.6]). Then
using properties (1) and (2) above, C ·D − 1 = C ·D + E2.

We recall the Riemann-Roch theorem for surfaces (see [2, Theorem 5.1.6]).

Theorem 1.1 (Riemann-Roch theorem for surfaces). Let X be a surface and let L be a
line bundle on X. Suppose K denotes the canonical line bundle on X. Then h0(X,L) −
h1(X,L) + h2(X,L) = L·(L−K)

2
+ 1− h1(X,OX) + h2(X,OX).

We will also use the following theorem frequently (see [2, Theorem 5.1.10]).

Theorem 1.2 (Nakai criterion for ampleness). A line bundle L on X is ample if and only
if L2 > 0 and L · C > 0 for all curves C on X.

Theorem 1.3 (Kleiman’s theorem). Let X be a surface. Let D be a divisor on X such that
D · C ≥ 0 for every curve on X. Then D2 ≥ 0.
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Proof. Fix an ample divisor H on X. For t ∈ R, consider the quadratic polynomial P (t) =
(D + tH)2 = D2 + 2tD ·H + t2H2. We are done if P (0) ≥ 0. Suppose that P (0) < 0.

Since H is ample, there is a curve C in the linear system mH for some m > 0. By
hypothesis on D, D · C = D · mH ≥ 0, and hence D · H ≥ 0. Since the coefficient of t in
P (t) is non-negative and the coefficient of t2 is positive, there is a real number t0 > 0 such
that P (t0) = 0.

If t > t0 is a rational number then D + tH is ample. Indeed, this divisor meets all curves
positively. Further P (t) = (D + tH)2 > 0, so D + tH is ample by Nakai criterion Theorem
1.2.

Now define Q(t) = D · (D + tH) and R(t) = tH · (D + tH), so that P (t) = Q(t) + R(t)
for every t ∈ R. If t > t0 is a rational number, Q(t) ≥ 0 since D + tH is ample. Thus
Q(t0) ≥ 0 too, by continuity. On the other hand, R(t0) > 0. We thus get P (t0) > 0, which
is a contradiction. □

Definition 1.4. A line bundle L is called nef if L · C ≥ 0 for every curve C on X.

2. Seshadri constants

Definition 2.1 (Seshadri constants). Let X be a surface and let L be a nef line bundle on
X. The Seshadri constant of L at a point x ∈ X, denoted 󰂃(X,L, x), is defined as:

󰂃(X,L, x) := inf
x∈C

L · C
multxC

.

Remark 2.2. It suffices to consider only integral curves in Definiton 2.1. Indeed, it is easy
to check that for two curves C and D passing through x, we have

L · (C +D)

multx(C) + multx(D)
≥ min

󰀕
L · C

multx(C)
,

L ·D
multx(D)

󰀖
.

Lemma 2.3. Let π : X1 → X be the blow up of X at x with exceptional divisor E. Then

󰂃(X,L, x) = sup {λ ∈ R | π󰂏(L)− λE is nef}.

Proof. Let 󰂃1 denote the supremum in the lemma and let 󰂃 = 󰂃(X,L, x).

Suppose that π󰂏(L) − λE is nef for some λ and let C be a curve with multiplicity m at
x. Then the strict transform of C is π󰂏(C) − mE. Hence (π󰂏(L) − λE) · (π󰂏(C) − mE) =
L · C − λm ≥ 0. So λ ≤ L·C

m
. This shows that 󰂃1 ≤ 󰂃. On the other hand, we claim that

π󰂏(L)− 󰂃E is nef which proves that 󰂃 ≤ 󰂃1 and the lemma is proved.

Let C1 be an integral curve on X1. If C1 = E then (π󰂏(L)− 󰂃E) · E = 󰂃 > 0. Otherwise,
C1 is the strict transform of C = π(C1). So C1 = π󰂏(C) −mE, where m is the multiplicity
of C at x. By definition, 󰂃 ≤ L·C

m
which implies that (π󰂏(L)− 󰂃E) · C1 ≥ 0. □

Theorem 2.4 (Seshadri criterion for ampleness). A nef line bundle L on X is ample if and
only if 󰂃(X,L, x) > 0 for every x ∈ X.
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Proof. Let D be a divisor on X corresponding to the line bundle L. If D is ample then a
multiple mD is very ample for some positive integer m. Then mD is a hyperplane section for
the embedding given by mD. If C is a curve on X passing through x, mD · C ≥ multx(C)
by properties of intersection numbers. Here we choose a hyperplane section which meets C
properly. Hence 󰂃 = 󰂃(X,L, x) ≥ 1

m
.

Now assume that 󰂃 > 0. We use Nakai criterion to show that D is ample. The hypothesis
clearly implies that D · C > 0 for any curve on X. We have to show that D2 > 0. Choose
an integer a > 1/󰂃. We claim that aπ󰂏(D)−E is nef on the blow up X1 of X at x. Then by
Theorem 1.3, (aπ󰂏(D)− E)2 = a2D2 − 1 ≥ 0, which proves that D2 > 0.

In order to show that aπ󰂏(D) − E is nef, we show that it meets all integral curves non-
negatively. Since its intersection number with E is 1, we consider a curve C1 ∕= E on X1.
Then C1 is the strict transform of C = π(C1). So we may write C1 = π󰂏(C)−mE where m is
the multiplicity of C at x. So (aπ󰂏(D)−E)·C1 = aD·C−m ≥ 0, since aD·C ≥ a󰂃m ≥ m. □

Using one of the directions of the proof of Theorem 2.4, we obtain the following.
Corollary 2.5. If L is very ample then 󰂃(X,L, x) ≥ 1 for any x ∈ X.
Remark 2.6. In fact, one can prove that 󰂃(X,L, x) ≥ 1 for any x ∈ X if L is merely
ample and base point free. Indeed, let L be such a line bundle. Let x ∈ X and let C be
an irreducible and reduced curve on X passing through x. Then there exists a curve D in
the linear system |L| such that x ∈ D and C is not a component of D. This is because the
sections of L determine a finite morphism f : X → Pn, because L is ample. This means
that f(C) is not a point. So we can choose a hyperplane H ⊂ PN such that f(x) ∈ H and
f(C) ∕⊂ H. Then D := f 󰂏(H) has the required property. Then L · C = D · C ≥ multx(C).
Proposition 2.7 (An upper bound). Given X,L, x as in Definition 2.1, we have 󰂃(X,L, x) ≤√
L2.

Proof. We use the equivalent formulation of 󰂃 = 󰂃(X,L, x) in Lemma 2.3. With the notation
in Lemma 2.3, π󰂏(L)− 󰂃E is nef. By Theorem 1.3, 0 ≤ (π󰂏(L)− 󰂃E)2 = L2 − 󰂃2. □
Example 2.8. Let p, q ∈ P2 and let π : X → P2 be the blow up of P2 at p, q. Let H be the
pull-back of OP2(1) and let E1, E2 be the exceptional curves. Let L = 3H −E1−E2. Denote
the strict transform of the line through p, q in P2. by l.

We claim that 󰂃(X,L, x) = 1 if x ∈ E1 ∪ E2 ∪ l and 󰂃(X,L, x) = 2 otherwise.

It is not hard to see that L is ample and base point free (in fact L is very ample). Hence
by Remark 2.6, 󰂃(X,L, x) ≥ 1 for all x ∈ X.

Let x ∈ E1 ∪ E2 ∪ l. Then 󰂃(X,L, x) = 1, since L · E1 = L · E2 = L · l = 1 and E1, E2, l
are nonsingular.

Let x /∈ E1 ∪ E2 ∪ l. Let l1, l2 be the strict transforms of the lines through p, π(x) and
q, π(x). Since L · l1 = 2, we have 󰂃(X,L, x) ≤ 2. We now show that 󰂃(X,L, x) ≥ 2, to
complete the argument.

Let C be any irreducible and reduced curve on X passing through x. Assume that C
is different from E1, E2, l, l1, l2. Then C is the strict transform of π(C) and we may write
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C = dH −m1E1−m2E2, where d is the degree of π(C) and mi are the multiplicities of π(C)
at p, q. Let m be the multiplicity of π(C) at π(x). Since d > 1 by assumption, we have
C · l ≥ 0, C · l1 ≥ 0 and C · l2 ≥ 0. Hence d ≥ m1 +m2, d ≥ m+m1 and d ≥ m+m2. This
gives 3d ≥ 2m+m1 +m2, which in turn implies that L · C ≥ 2m. Hence 󰂃(X,L, x) ≥ 2.

Definition 2.9. Let X be a surface.

(1) Let x ∈ X. The Seshadri constant of X at x is defined as 󰂃(X, x) = inf 󰂃(X,L, x),
where the infimum is taken over all ample line bundles L on X.

(2) Let L be an ample line bundle on X. The Seshadri constant of L is defined as
󰂃(X,L) = inf 󰂃(X,L, x), where the infimum is taken over all points x ∈ X.

(3) The Seshadri constant of X is defined as 󰂃(X) = inf 󰂃(X,L), where the infimum is
taken over all ample line bundles L on X. Equivalently, 󰂃(X) = inf 󰂃(X, x), where
the infimum is taken over all points x ∈ X.

Question 2.10 (Some open questions about Seshadri constants).

(1) Is there a surface X such that 󰂃(X) = 0?
(2) Is there a triple (X,L, x) such that 󰂃(X,L, x) is irrational?

However the Seshadri constants can be arbitrarily small when we vary the surface.

Theorem 2.11 (Miranda’s example). Given a real number δ > 0 there exists a surface X
and an ample line bundle L on X such that 󰂃(X,L, x) < δ for some x ∈ X.

Proof. Choose m ∈ N so that m > 1
δ
. For some d > 2, let Γ ⊂ P2 be an integral curve

of degree d with a point x ∈ P2 of multiplicity m. Now choose another integral curve Γ′

meeting Γ transversally such that the linear system spanned by Γ and Γ′ consists of only
integral curves. Such a Γ′ exists by Lemma 2.12 below.

Let π : X → P2 be the blow up of P2 at Γ ∩ Γ′ = {p1, . . . , pd2}. Denote by C and C ′ the
strict transforms of Γ and Γ′ respectively. Since pi are all simple points on Γ and Γ′, C,C ′

are isomorphic to Γ,Γ′, respectively. In particular, C contains a point x ∈ X of multiplicity
m. Moreover the pencil 〈C,C ′〉 spanned by C and C ′ consists of only integral curves.

We have a morphism f : X → P1 determined by the linear system 〈C,C ′〉. Note that f
resolves the indeterminacies of the map P2 󰃚󰃚󰃄 P1 determined by the pencil 〈Γ,Γ′〉. Let E
be an exceptional divisor on X for the blow up π. For some a ≥ 2, let L = aC + E. We
claim that L is ample.

Since C2 = 0, C · E = 1 and E2 = −1, we have L2 = 2a − 1 > 0, L · C = 1 > 0 and
L · E = a− 1 > 0. By Nakai, it suffices to show that L ·D > 0 for every curve D on X.

If D is a fibre of f then D is inside a curve in the pencil 〈C,C ′〉. But since all curves in
this linear system are integral, D itself is in it. So D is linearly equivalent to C and L ·D = 1.
If D is not a fibre of f , let p ∈ P1. Since f−1(p) is a curve in the pencil 〈C,C ′〉, it is linearly
equivalent to C. As D is not in this linear system and it meets f−1(p) in a nonempty set
f−1(p) ∩D, we have C ·D > 0. Further it is clear that D ·E ≥ 0. Indeed, if D ·E < 0 then
E is a component of D. Since D is integral it follows that D = E. Thus L ·D ≥ a− 1 > 0
and L is ample.
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Finally, 󰂃(X,L, x) ≤ L·C
multx(C)

= 1
m

< δ. □

Lemma 2.12. Let Γ ⊂ P2 be an integral curve of degree d > 2. Then there exists an integral
curve Γ′ which intersects Γ transversally such that the linear system of plane curves spanned
by Γ and Γ′ contains only integral curves.

Proof. The (projective) space of degree d plane curves has dimension
󰀃
d+2
2

󰀄
− 1. A degree d

curve C is not integral precisely when there are polynomials f1, f2 such that f = f1f2 where
f is the form defining C. Thus the space of all non-integral degree d curves has dimension
bounded above by

󰀃
e+2
2

󰀄
+

󰀃
d−e+2

2

󰀄
− 2 = d2+3d

2
+ e2 − de, for e ∈ {1, 2, . . . , d − 1}. This

number is largest when e = 1 and in this case it is equal to d2+3d
2

+ 1− d. So the space of all
non-integral degree d curves has codimension at least 1 in the space of all degree d curves. So
a “general line” through Γ avoids this subspace. More precisely, there is a dense open set of
integral curves Γ′ such that the pencil spanned by Γ and Γ′ consists only of integral curves.

Now by Bertini’s theorem, there is a dense open subspace of degree d curves consisting
of integral curves which meet Γ transversally. So we may choose Γ′ satisfying the desired
properties. □

In view of Proposition 2.7, we say that a Seshadri constant 󰂃(X,L, x) is sub-optimal if
󰂃(X,L, x) <

√
L2. We further say that a curve C is a Seshadri curve if 󰂃(X,L, x) = L·C

multx(C)
.

The following theorem says that there is always a Seshadri curve for a sub-optimal Seshadri
constant. As a consequence, they are always rational.

Theorem 2.13. Let X be a surface and let L be an ample line bundle on X. Let x ∈
X. Suppose that 󰂃(X,L, x) <

√
L2. Then there is an irreducible curve C on X such that

󰂃(X,L, x) = L·C
multx(C)

.

Proof. The argument we give is due to Th. Bauer [1]. Let 󰂃 = 󰂃(X,L, x). Choose γ ∈ Q
such that ε < γ <

√
L2.

By definition of 󰂃, there is a sequence {Cn}n≥1 of irreducible curves such that L·Cn

multx(Cn)

converges to 󰂃. Since 󰂃 < γ, there exists some N such that L·Cn

multx(Cn)
< γ for n ≥ N .

Next we make the following claim:

Claim: There exists an integer d such that there exists a curve D ∈ |dL| containing x

such that L·D
multxD

≤ L2

γ
.

Proof: Let r be an integer such that rL−KX is ample. Note that since L is ample, such
an integer exists. Now choose an integer d > r such that m := dγ is an integer.

By Riemann-Roch theorem and Serre vanishing, we have h0(dL) = dL·(dL−K)
2

+χ(OX) (we
may choose d large enough such that h1(dL) = h2(dL) = 0).
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Re-writing the above equality, we have

h0(dL) =
d(d− r)L2

2
+

dL(rL−K)

2
+ χ(OX)

≥ d(d− r)L2

2
+ χ(OX).

The linear system |dL| contains a curve D which has multiplicity at least m at x provided
h0(dL) ≥ m2+m

2
. Hence such a curve exists if d(d− r)L2+2χ(OX) ≥ m2+m ⇔ d(d− r)L2+

2χ(OX) ≥ d2γ2 + dγ ⇔ d2(L2 − γ2)− d(rL2 + γ) + 2χ(OX) ≥ 0.

Since the last expression is a quadratic in d with a positive leading term, it is positive for
large d. So we may choose such an integer d > r such that m = dγ is an integer. Thus there
exists a curve D ∈ |dL| such that multx(D) ≥ m.

Then L·D
multx(D)

≤ L·D
m

= dL2

dγ
. So the claim holds.

The theorem now follows by the lemma below. The lemma implies that the collection of
curves {Cn} is finite. So the limit 󰂃 is achieved by some Cn. □

Lemma 2.14. Given a real number γ > 0, suppose that there is a divisor D ∈ |dL| for some
d > 0, such that L·D

multx(D)
≤ L2

γ
. Then every irreducible curve C satisfying L·C

multx(C)
< γ is a

component of D.

Proof. If C is not a component of D, then C and D meet properly. By Bezout’s theorem,
D · C = dL · C ≥ (multx(D))(multx(C)) > γ(L·D)

L2
L·C
γ

= dL · C. This is a contradiction. □

2.1. Multi-point Seshadri constants. Let X be a smooth projective surface and let L be
a nef line bundle on X. Let r ≥ 1 be an integer. For x1, . . . , xr ∈ X, the multi-point Seshadri
constant of L at x1, . . . , xr is defined as follows.

󰂃(X,L, x1, . . . , xr) := inf
C∩{x1,...,xr} ∕=∅

L · C󰁓r
i multxi

C
.

As in case of the single point Seshadri constants, we note that the above infimum is the same
as the infimum taken over irreducible, reduced curves C such that C ∩ {x1, . . . , xr} ∕= ∅.

We have the following proposition which is an analogue of Proposition 2.7.

Proposition 2.15 (An upper bound). Given X,L, x1, . . . , xr as above, we have 󰂃(X,L, x1, . . . , xr) ≤󰁴
L2

r
.

Definition 2.16. Let X,L, r be as above. We set 󰂃(X,L, r) := max
x1,...,xr∈X

󰂃(X,L, x1, . . . , xr).

The value 󰂃(X,L, r) is attained at a very general set of points x1, . . . , xr ∈ X. For a
reference, see [5]. Here very general means that (x1, . . . , xr) is outside a countable union of
proper Zariski closed sets in Xr = X ×X × . . .×X.
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3. Examples

3.1. (X,L) = (P2,OP2(1)). We first consider the case of projective plane in detail.

If r = 1, it is easy to see that 󰂃(X,L, x) = 1 for any x ∈ X. Similarly, if r = 2 and x1, x2

are arbitrary points on X, then 󰂃(X,L, x1, x2) = 1/2.

Now let x1, x2, x3 ∈ X. If the points are collinear, then the line through them is a Seshadri
curve and 󰂃(X,L, x1, x2, x3) = 1/3. On the other hand, if the points are not collinear, one
has 󰂃(X,L, x1, x2, x3) = 1/2. Indeed, let l be the line through x1 and x2. By hypothesis,
x3 /∈ l. Hence the Seshadri quotient for l is 1/2. Let C ∕= l be any other irreducible curve
of degree d passing through at least one of the points x1, x2 or x3. For i = 1, 2, 3, let mi

denote the multiplicity of C at xi. It is clear that d ≥ mi for every i. Applying Bezout to
the irreducible curves C and l, we have d ≥ m1 +m2. Hence we obtain 2d ≥ m1 +m2 +m3.
Hence 󰂃(X,L, x1, x2, x3) = 1/2.

Thus we have 󰂃(X,L, 3) = 1/2, and this is achieved for any three non-collinear points.

Similarly, it is not hard to prove that 󰂃(X,L, 4) = 1/2, 󰂃(X,L, 5) = 󰂃(X,L, 6) = 2/5,
󰂃(X,L, 7) = 3/8, 󰂃(X,L, 8) = 6/17 and 󰂃(X,L, 9) = 3.

For r ≥ 10, the value of 󰂃(X,L, r) is not known except when r is a square. If r = s2

and s ≥ 3, Nagata [4] showed that 󰂃(X,L, r) = 1/s. In the same paper, Nagata made the
following famous conjecture.

Conjecture 3.1 (Nagata Conjecture). 󰂃(P2,OP2(1), r) = 1√
r
, when r ≥ 10.

Note that an affirmative solution to Nagata Conjecture for even one non-square value of
r ≥ 10 also solves Question 2.10 (2).

Nagata Conjecture 3.1 is a statement about linear systems of plane curves in the sense we
explain now.

Let x1, . . . , xr be very general points of P2. Let d,m1, . . . ,mr be non-negative integers.
We are interested in the question:

Is there a curve C ∈ P2 of degree d passing through xi with multiplicity at least mi for
each 1 ≤ i ≤ r?

Let L(d,m1, . . . ,mr) denote the linear system of plane curves of degree d passing through
xi with multiplicity at least mi for each 1 ≤ i ≤ r. So our question can be rephrased as:

Is L(d,m1, . . . ,mr) non-empty?

The linear system of degree d plane curves has dimension d(d+3)
2

. This can be seen by
observing that a degree d plane curve is given by a homogeneous form of degree d in three
variables. This is also a special case of Riemann-Roch Theorem 1.1.

On the other hand, a point of multiplicity m imposes
󰀃
m+1
2

󰀄
conditions on the linear

systems of curves of degree d. It follows that L(d,m1, . . . ,mr) is non-empty provided d(d+3)
2

≥󰁓r
i=1

󰀃
mi+1

2

󰀄
. Let us refer to this as the Riemann-Roch inequality.
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It is easy to prove that if d,m1, . . . ,mr satisfy the Riemann-Roch inequality, then the
Seshadri quotient d󰁓

i mi
is at least 1√

r
, as predicted by the Nagata Conjecture. However this

inequality is not necessary for existence of such curves, as the example below shows.

Consider r = 11, d = 10, m1 = 8, and m2 = . . . = m11 = 2. Then d(d+3)
2

= 65

while
󰁓11

i=1

󰀃
mi+1

2

󰀄
= 66. However there is a curve in the linear system L(10, 8, 2, . . . , 2)!

Indeed, we first observe that L(5, 4, 1, . . . , 1) is non-empty (again r = 11). This follows from
Riemann-Roch inequality. Let C ∈ L(5, 4, 1, . . . , 1). Then 2C ∈ L(10, 8, 2, . . . , 2). Note
that the Seshadri quotient for 2C is 10

28
= 0.3571, while the Nagata Conjecture predicts that

󰂃(P2,OP2(1), 11) = 1√
11

= 0.3015. The curve C is an example of exceptional curve: its proper
transform on the blow up of P2 at x1, . . . , x11 is a smooth rational curve of self-intersection
-1.

So, in order to prove the Nagata Conjecture, one needs to understand effective curves
given by d,m1, . . . ,mr that do not satisfy the Riemann-Roch inequality.

There is a precise conjecture, called the SHGH Conjecture, which completely characterizes
tuples (d,m1, . . . ,mr) which represent effective plane curves. It says, in part, that any
effective linear system of plane curves given by a tuple (d,m1, . . . ,mr) not satisfying the
Riemann-Roch inequality contains a non-reduced multiple of an exceptional curve. The
SHGH Conjectures implies the Nagata Conjecture.
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